欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

航空机电工程论文大全11篇

时间:2023-03-16 15:53:14

航空机电工程论文

航空机电工程论文篇(1)

【关键词】航空电子设备 安全性验证 人-机-环境

1 引言

随着航空电子设备广泛应用的同时,其逐渐取代了飞机上自动化程度较低的机械设备,在飞机上比重也越来越大;随着发动机技术的不断发展,飞机的续航能力得到了大幅度的提升,飞行的时间也在不断增加,设备的运行环境也越来越复杂;航空电子设备数量和种类的增多,如保障飞行安全的新型航电设备交通咨询与避撞系统、近地告警系统等不断出现,也导致设备的失效模式越来越复杂,应力、电磁等影响因素引起的失效也越来越多。综上所述,航空电子设备与飞机乃至人员之间的相互安全性影响也越来越大。

安全性验证是飞机安全性工程中的一项重要内容,其目的是通过安全风险分析与验证,识别、评价系统存在的危险,并根据危险的程度提出消除或控制危险的措施,避免重大安全事故的发生。目前在航空电子设备领域对安全性的应用主要停留在设计阶段,而在试飞阶段缺少相应的安全性验证方法,装备的安全性工作停留在较低的层次,因此,如何有效地验证民用飞机航空电子设备安全性状态成为急需解决的问题之一。

本论文通过对民机航空电子设备特点的研究,收集、分析航空电子设备安全性的相关规范等相关资料,确定航空电子设备的安全性验证要求,研究安全性验证技术(包括安全性验证矩阵和建立安全性验证方法),形成适用于试飞阶段的民机航空电子设备的安全性验证体系,为试飞阶段的民用飞机航空电子设备安全性验证提供理论依据和方法支撑。

2 问题解决方案

2.1 问题解决思路

本论文的解决思路如图1所示。

2.2 民机试飞航空电子设备安全性验证要求

为了更直观、全面系统地给出航空电子设备与飞机和人员之间相互的安全影响,通过对航空电子设备与飞机、人员之间关系的研究,将“人-机-环境”系统理论应用到机载航空电子设备的安全性验证中。

“人-机-环境”系统工程的研究可用图2来形象的描述,它包括:人本身特性、机器特性、环境特性、人-机之间关系、人-环境之间关系、机器-环境之间关系、人-机器-环境之间关系共7项内容的研究。

本文中将航空电子设备作为“人-机-环境”系统中的“机器”、航空电子设备的载机作为系统中的“环境”,演变为基于“人-设备-载机”的安全性验证体系,主要包括人-设备、设备-人、设备自身特性、设备-载机、载机-设备等5个方面。

随着航空电子设备要完成的功能和组成也越来越复杂,由此带来的安全性问题也越来越多,主要体现在航空电子设备对飞机正常飞行安全的影响,同时飞机工作状态、所处的任务剖面环境也在持续影响着航空电子设备的正常工作。另外,航空电子设备自身具有的一些结构缺陷、功能问题也在无形中影响着其自身的安全工作。航空电子设备构成危险的主要来源有:产品或产品使用材料的固有危险;设计缺陷;制造缺陷,腐蚀性物质以及毒性物质等属于使用材料的固有危险。一般而言,设计问题可能是上述诸因素中最重要的方面。设计人员不仅可能在设计产品时,引入了设计缺陷,形成产品自身的危险,还可能缺乏正确控制产品及其材料危险的能力。制造缺陷一般由不正确的生产工艺造成,常见例子有产品中的锐边、棱角、尖端等。由使用或维修设备时的人为差错造成的危险也是屡见不鲜的,也应给予足够的重视。除了产品本身存在的危险以及人为差错引起的危险外,会对系统安全产生直接影响的设备故障及有害环境也是造成危险不容忽视的因素。结合试飞特点,并对其他类似行业产品的安全性要求及特点进行研究,整理适用于民机机载航空电子设备安全性评估验证的内容,建立基于“人-设备-载机”民机机载航空电子设备安全性评估要求。

2.3 安全性证技术

在民机型号合格审定过程中,用来表明与适用的适航条款的符合性的方法统称为符合性验证方法(Means of compliance,简写MOC)。现在国际上MOC趋向统一,主要有10种。在适航管理程序AP-21-03R3《型号合格审定程序》附录I中对这10种方式进行了简单的说明,具体见表1。

本论文形成的方法通过将电子设备具体的安全性验证要求纳入到安全性验证矩阵中,确定了每一条安全性验证要求的验证时机,并对验证验证要求具体采取的验证方式,制定了针对性的验证方法。由验证矩阵和方法组成的验证方案包括了试验时机、验证方式、技术状态、试验要求、试验程序、结果处理等6个方面,可为民机航空电子设备安全性验证提供直接有效的技术支持和方法保证。下面以某一验证要求为例,对形成的验证矩阵及方法进行说明:

验证要求:电子设备产生的辐射值不得超过规定的人体所能接受安全辐射值。

试验时机:试飞后期(在电子设备的技术状态固化以后)。

验证方式:MOC7。

技术状态:

(1)飞机状态良好,设备状态良好,可正常通电;

(2)三级计量单位定标吻合的宽频谱磁场测试仪。

试验要求:

(1)飞机尽量停放在离外部辐射源较远的地方,或在辐射源关闭的时间段进行,以减少外部环境的干扰与影响;

(2)测试时,与设备无交联关系的系统不开机;

(3)关闭现场所有具有电磁辐射特性的设备(如手机、对讲机等通讯设备);

(4)以飞机上各人员所处的空间为位置点,每个位置点设三个测量点(对应人员坐姿状态下眼部、胸部、下腹部),以测量仪器在测试部位所有方向上测得最大数值为准。

试验程序:

(1)利用检测设备,对各位置点的磁场强度进行测量,以确定环境电磁的量值,记录其测量结果;

(2)发动机启动,设备及相关系统上电,进入正常飞行剖面时的正常工作状态;

(3)依次进行各位置点的磁场强度测量,测量应进行3次,并记录其测量结果。

结果处理:对3次测量结果进行算术平均,并与要求进行对比后给出验证结果。

3 结论

上述方法是对相关设计规范、准则及适航规章中的条款等进行转化,建立了基于“人-机-环境”的民机航空电子设备安全性验证要求,充分考虑了航空电子设备与人员及飞机之间的安全性影响;针对安全性验证手段缺乏等问题,通过研究试验条件、要求及程序等因素,形成了基于适航MOC符合性验证体系的民机航空电子设备安全性验证技术,使得安全性验证更具有操作性。该机载防撞系统的安全性验证,通过符合性声明、地面试验、实验室试验和航空器检查等方法进行了有效验证,为民机航空电子设备安全性验证提供了方法保证。后续可将本文形成的方法体系类推到民用飞机的其他设备(如发动机)以及飞机的安全性验证中。

4 结束语

一直以来,对安全性验证技术的研究往往陷入到失效概率的考核、寻找其他的定量指标中;在成熟的可靠性领域里,如MTBF等均可作为衡量可靠性水平的指标;然而对于安全性来说,如果存在隐患,则应不遗余力的去消除,而将安全性定量化并不能给操作者带来参考。根据墨菲定律,事故总会发生,只是时机的不同而已。

飞行安全与人的因素、飞行管理、维修管理、航空装备、气象海况、地域环境等方面密切相关,因此安全性验证应侧重于发现危及人员和飞机的因素,制定相应的措施。在“人-机-环境”系统中,既要重视人的因素,又要注意人、机、环境诸多因素的关联和综合,以提高航空安全水平。本文通过研究试飞阶段民机航空电子设备的安全性验证技术,在此基础上,也可为后期其他系统和整机安全性验证技术的建立奠定理论基础。

参考文献

[1]SAE.SAE ARP 4761 Guideline and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment[S].SAE,1996.

[2]AC25-7A\输类飞机合格审定飞行试验指南.

[3]AC20-151关于机载防撞系统(TCAS Ⅱ) 7.0版本和S模式应答机的咨询通告美国联邦航空局.

[4]AP-21-03R3型号合格审定程序[J].中国民用航空总局,2002.

[5]赵廷弟.安全性设计分析与验证[M].国防工业出版社,2011.

[6]马银才,张兴媛.航空机载设备[M].清华大学出版社,2002.

[7]孙有朝.民用飞机适航符合性验证方法与程序研究[J].航空标准化与质量,2008.

航空机电工程论文篇(2)

主管单位:国家国防科学技术工业委员会

主办单位:南京航空航天大学

出版周期:季刊

出版地址:江苏省南京市

种:中文

本:16开

国际刊号:1671-2129

国内刊号:32-1548/C

邮发代号:

发行范围:国内外统一发行

创刊时间:1999

期刊收录:

核心期刊:

期刊荣誉:

Caj-cd规范获奖期刊

航空机电工程论文篇(3)

民航机修工程专业是一门职业性很强的专业,以往多设置在中专学校或大专学校里。近年来,个别条件较好的民办独立学院也开始设置民航机修工程专业。随着我国民航事业的巨大发展,机场不断增多,机群不断壮大,对民航机修工程人员的数量和质量提出了越来越高的要求。在民办独立学院设置民航机修工程本科专业正是在这个大背景下提出来的。但是,如何才能培养出新形势下行业所需的高素质的民航机修人员?本科的民航机修工程专业与专科的民航机修工程专业在培养目标、培养模式、课程设置等方面有什么不同?在制订教学计划时如何正确地定位该专业高等教育的学术性和职业性,如何加强专业和师资队伍的建设?等等,这些问题是首先必须解决的。

1.我国民航事业的迅猛发展需要越来越多地受过本科教育的民航机修工程专业人才,民办独立学院在这方面将大有可为。

西方在大学的教育思想上存在高等教育的学术性和职业性的争论。争论的结果不是其中的一方战胜另一方,而是两者融合。在这一点上德国是一个典型。通过争论,学术性与职业性在不同类型的高等学校得到了应有的体现,促进了德国研究型大学和应用型科技大学的发展。前者主要追求学术性,后者偏重职业性,两者结合,相辅相成,有力推动了德国的工业化和现代化。但是,中国的高等教育情况不是这样的。由于历史的和文化的原因,中国的高等教育向来偏重于学术性,似乎学术性越强,大学的水平就越高;职业性越强,就越没水平。这种思想深深地植根于很多学人的心灵深处,很难在短时间内得到转变。民国时期清华大学校长梅贻琦先生有句名言:“大学者,非大楼之谓也,大师之谓也。”又说:“通识为本,而专识为末。”“通才为大,而专家次之。”他的这个思想对后世的影响很大。有一个时期,我国有相当数量的高等院校不顾自身的实力而竞相争办研究型大学就是这种重学术性轻职业性思想的典型反映。民航机修工程专业的职业性很强,因而以往多设置在大专学校或中专学校。随着我国民航事业的迅猛发展,在未来的五到十年之内,国家需要大量的航空机修工程人员,而且对人员的综合理论素质和实践能力的要求也越来越高。仅仅依靠专科学校培养人才显然已不能满足民航事业对高素质机修人才的需求。在本科院校中设置民航机修工程专业,培养有更强理论基础、能力更加全面的民航机修人员就十分迫切的了。民办独立学院在办学层次上高于专科学校,学生的理论知识基础普遍强于专科学校的学生。这些学校建校时间一般都不长,与本一、本二的院校相比,其职业性、实践性一般更为突出,学校的领导和教师对创办类似专业的积极性甚高。在民办独立院校中,特别是在其母体学校有航空专业背景的民办独立院校中办本科民航机修工程专业是非常合适的。以我院为例。我院成立于1999年,迄今已有13年的办学历史。2008年学院成立了民用航空系,下设民航电子电气工程专业和民航机电工程专业。建系的当年,两个专业就总共招收了近70名学生。几年来,在母体学校南京航空航天大学的大力支持和帮助下,这两个专业得到迅速发展。目前已有4个年级,共约700名学生在读,已经发展成为学院的几个主要特色专业之一。2011年,我院确定了要将该校办成以民航为特色的一流的独立学院的方针。可以预见,在未来的几年内,我院的民航机修工程专业一定会有新的发展。民办独立学院在这方面一定大有可为。

2.正确认识航空机修工程专业作为本科教育和作为专科教育的不同之处,明确培养目标,并制订出相应的教学计划,制定教学大纲。

高等教育的本质特性是学术性和理论性,它的主要职能就是保存、传授和发展高深的学问。民航机修工程专业实践性特别强,所培养出来的学生在今后的工作岗位上是要亲自动手操作的,是要直接对人民的生命财产负责的。所以在对该专业学生的培养中,实践性教学一定要放在一个十分突出的位置,这也是以往将此专业放在专科学校的主要原因。但飞机是一个高科技产品。飞机的设计、制造需要高深的理论知识,飞机的维护维修也需要综合各方面的理论基础知识。现代航空技术日新月异,对机修人员实践能力,特别是理论基础的要求越来越高。因此,民航机修工程的高等教育尽管不会像普通高等教育(培养飞机设计人员)那样对理论有极高的要求,但也必须具备一定深度及广度的理论知识基础。这既是本科教育区别于专科教育的根本差异,又是民航机修岗位对一名合格的机修人员应具备的素质和能力提出的更高的要求。我们发现,专科教育可以培养出好的操作人员,能顺利地完成各类日常维护维修任务,但在飞机维护维修过程中遇到较为复杂问题的时候,往往缺乏解决问题的能力或潜力。除了人员本身文化素质的差异之外,专科学校与本科学校类似专业在教学计划的制订、教学大纲的制定上存在着差异也是原因。例如,在民航飞机执飞航班中,有时飞行员会汇报一些仪表短时间间断出现非正常工作状态,或仪表输出数据出现明显误差。维护人员通常通过常规系统测试或拆换件的方式来查找问题。而通常此类间断出现的问题在地面测试中很难再现,故往往无法处理却又可能长期反复出现。在实践中发现,此类问题多数是由于设备的电磁兼容问题、设备局部过热或电源短时不稳定造成的。其中对设备电磁兼容性问题的判断,需要维护人员具备较为扎实的电学方面理论基础。在我院民航系电子电气工程专业教学计划中,《大学物理》、《电子线路》、《信号与线性系统》、《航空电子技术基础》、《雷达与天线》几门课程都为电磁兼容理论进行了知识铺垫,还在三年级的专业课中设置了《电磁兼容》这门课程。而在广州民航职业技术学校机修专业的教学计划中,只有《模拟电子技术》、《低频电子线路》两门基础类电类课程。因此这类专科学生对电磁兼容问题的理解就非常有限了,遇到此类的问题就可能束手无策。这只是一个简单例子,但它在一定程度上说明,虽同是民航机修专业,本科教育和专科教育毕业的学生之间在具备的能力或潜力上是存在差异的。

3.培养出一支双师型的师资队伍。

师资队伍的水平体现了一个学校的核心竞争力。民航机修工程专业对教师的要求更加注重教师的实践能力和动手能力,就是说,其教师一定要是双师型的。由于我国这些年来高等教育的大发展,博士生和研究生的数量大大增加,因而要求教师具有较高的学历和较高的理论水平不难办到;但是,要求教师具有较高理论水平的同时具备熟练的实际操作能力很不容易,特别是对于民航机修这样一个特殊的专业就更困难。现行的办法只有一个,就是加强对教师的培训。学校要制订出教师的培训计划,分期分批地将教师送到国内的机场或专业维修机构,诸如AMECO、GAMECO这样的地方进行专业培训,或送到国外专门培训飞机维修技术人员的机构,诸如澳大利亚墨尔本的KBIT学院或昆士兰的航空学校等进行培训。通过培训,他们不仅可以巩固和加深所学的理论知识,而且会对所教的内容有实实在在的感知,有实际的操作能力。这样,他们在教授学生时头脑中就会有一个真实飞机的图像,就不会仅仅是“纸上谈兵”。要教学生维修飞机,老师自己先要熟悉飞机,会维修飞机。这个听起来很自然的要求,要实现其实是很不容易的,现在学校师资所欠缺的正是这一点。要办好这个专业,实实在在地提高教学质量,就必须使一部分专业课的教师逐步达到这个水平。他们是教师,又是工程师,拥有一支双师型的教师队伍是办好民航机修工程专业的根本保证。

4.尽可能地应用先进的教学手段,进一步加强实践性教学。

办工科类专业比办语言类、经济类或管理类专业的办学成本要高得多,而办航空机修专业的办学成本就更高。除了上述教师的培训需要相当的经费之外,建设实验室所需的经费相当可观。一般来讲,这是独立院校一下难以承受的,而实验条件是必需的。这是一个现实的问题,需要逐步地多渠道想办法解决。以我院为例,航空发动机是该专业实验室一个重要的必不可少的设备。但是发动机非常昂贵,一台旧的航空发动机少则几百万,多则上千万。经过努力,学院得到了中国航空工业总公司赠送的两台涡喷6型发动机,以及一台全剖的MK202斯贝涡扇发动机,解决了实验室建设中一个大问题。所以实验室是要一步一步努力建设的,要坚定不移,不能一蹴而就。

用先进的电子教学手段部分地代替实物是另一个行之有效的方法。例如,学校可以引进美国NIDA公司的先进航空电子教育系统。NIDA公司成立于上世纪70年代,目前为美国、澳大利亚的军事学校提供成套的基于计算机,以及智能实验平台的电子学教育系统。其航空电子维护技术(Avionics Maintenance Technology)专业课程主要涵盖基础飞机电子、飞机数据通讯总线、飞机电气系统、飞机电子系统、电路焊接等课程。该教学系统内容围绕飞机电子、电气系统,对系统原理、设备组成、故障排除理论等内容进行了详细的讲解。该课程总共约180个课程模块,每个模块都设计有实验,配合其配套的智能实验平台就能进行实验。学生经过该系统培训后,对航空电子电气系统会有非常全面且形象具体的了解,培养了动手操作能力,初步具备了电子电气系统的故障排除能力。该教学系统采用计算机网络远程访问,配合硬件实验平台实现教学目的。该系统总体成本相对较为低廉,主要是购买软件的授权使用费用的。硬件实验平台非常简单,系统建设周期短,非常适合教学使用。使用该电子教育系统进行教学的一个特色就是教师可以设置一些故障让学生、设法排除。学生可以尝试不同的方法,试错了可以重来,直到故障被排除。通过反复的实践,学生既能加深对系统的了解,又能锻炼动手能力。这是一个非常重要的教学环节,电子教学系统恰恰在这方面发挥了自身的优势。因为即使硬件条件再好,很多故障也是很难模拟设置的。

5.加强国际合作,使教学水平在尽可能短的时间内上一个新台阶。

开展国际合作有三条渠道:一是派教师去国外学习;二是引进国外先进的教学理念、教学思想和教学设备;三是利用国外实力雄厚的实验条件和成熟的教学经验派学生去国外学校完成实践性教学任务。

派教师到国外专门培训飞机维修人员的机构或院校学习是培养师资队伍的一个行之有效的方法。国外的一些培训机构或院校有相当长的办学历史,有先进齐全的教学设备和实习条件,并积累了丰富的教学经验。如澳洲的KBIT学院(Kangan Batman Institute of TAFE)在Broadmeadows校区有一个很大的航空工程训练中心(AITC),是其航空工程专业的主要培训基地。该中心面积达到8500平方米,包括一个1450平方米的全功能机库,为学员提供理论知识、基础技能及维护实训等各项能力的培养。拥有多型号的航空发动机、单引擎飞机,以及一架能进行飞行的波音737客机,各种硬件条件一应俱全。除了这些国内多数院校尚无法比拟的硬件条件外,他们的软件条件更胜一筹。首先有雄厚的师资力量,很多教师具有多年的飞机维修的实践经验和长期的教学经验,甚至可以承接并完成航空公司飞机的维修任务,这一点是非常难能可贵的。他们还有经过多年教学实践被证明行之有效的各类教学资料,以及电子教学软件。把教师送到KBIT学院主要是学习实际的动手能力,把自己所学的理论知识应用到实践中,以得到工程实践的锻炼。通过在国外一段时间的学习和生活,教师们可以更深地理解和切实地感受到KBIT学院在教学理念、教学思想和教学方法诸方面与我院的不同。理解上的升华和实践能力的提高一定会体现在他们今后的教学中,使教学水平在短时间内上一个新的台阶。

KBIT学院是澳大利亚民航局特别认可的一所学校,学生在毕业时可以拿到Diploma of aircraft maintenance engineering(Mechanical TB1.1)证书。学员可以凭此证书去澳洲的航空公司应聘工作,在积累一定工作经验后就可以申请澳洲维修执照(B1.1)。近几年来,民航机修工程专业的毕业生在澳洲各行业中的就业率始终名列前茅。我院抓住这个机会于2009年与KBIT学院签订了合作协议。每年选拔一部分民航机修工程专业的高年级学生赴KBIT学院完成实践性教学任务,并在最后一学期由双方教师在国外共同指导学生完成毕业设计。这是我院在民航机修工程专业建设工作中的一个重要举措。由于学生在KBIT完成所学课程之后可以直接申请留澳工作,故而报名踊跃。同学们对KBIT学院良好的教学条件和生活条件非常满意,学习进步很快。国际合作不仅使我院的一部分毕业生很快地达到国际上同样专业毕业生的先进水平,而且能够真正引进国外先进的教学资源,以达到迅速提高本国教育水平的目的。

作为独立学院,我院设立民航机修工程专业是一个大胆的尝试。在民航部门和母校的支持下,通过几年的不懈努力,我院取得了初步的成功。这期间,有经验也有教训。我们可以肯定,民办独立学院可以为社会培养高水平的飞机维修工程人员做出应有贡献。

参考文献:

航空机电工程论文篇(4)

关键词:专业建设;电子信息工程;航空电子

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)13-0126-02

随着电子信息技术渗透到社会生活的各个角落,电子信息产业获得了飞速发展,国内外高新技术企业对具有综合电子信息分析和设计能力的创新人才需求旺盛。沈阳航空航天大学是一所以航空宇航为特色,以工为主,工、理、文、经、管等学科协调发展的多科性高等院校,是教育部、中航工业集团公司与辽宁省三方共建高校,是国防科工局与辽宁省共建高校。根据学校的具体定位和办学宗旨,我校电子信息工程专业以航空航天、国防企事业单位和东北老工业基地经济建设为主要服务对象,以培养“航空电子”特色人才为目标,探索出了一条特色鲜明的专业建设道路。下面将从专业建设的人才培养方案改革、课程体系优化、学生工程实践和创新能力培养三个方面进行阐述。

一、体现“航空电子”特色的专业人才培养方案

结合我校的总体发展目标与定位,对电子信息工程专业的培养目标与能力标准进行广泛调研和讨论,了解社会与行业需求,认真考虑用人单位的反馈意见,聘用企业、研究所等多单位的高级技术人员作为本专业兼职教师,参与培养计划的制定。秉承“重视基础、强化实践、突出特色”的教育理念,从人才培养方案的顶层设计入手,制定了体现“航空电子”特色的电子信息工程专业人才培养方案。重视数理知识及学科基础理论,依托学院优势课程、实验教学基地、科学研究平台与师资队伍,联合航空航天和电子领域的企业,强化实践教学体系。

以省级精品课、省级精品资源共享课和校级精品课为基础,以质量工程建设为指引,探索以“工程认知―工程实验―工程设计―工程实施”能力培养为主线,设计了“核心课程+专业模块”的理论教学体系,设置了“航空电子”方向模块,构建了“多层次,多类别”的实践教学体系,制订了相应的人才培养管理运行机制,构建了突出“航空电子”特色、通才与专才相结合、共性和个性相结合、个人发展与行业需求相结合的电子信息类工程创新型、应用型人才培养体系。

二、突出“航空电子”特色的课程体系优化整合

1.优化课程设置,加强核心课程群建设。授课内容紧跟新技术发展方向,定期组织教师讨论教学大纲,去兄弟院校进行调研,保证培养出来的学生能够紧跟社会发展的需求。结合电子类企业需求,归纳出所需知识点和相应的技能要求,在此基础上组建相应课程群,目前确立了四大课程群:信号处理课程群、电子系统设计课程群、计算机类课程群、航空电子课程群。

2.与企业需求接轨,紧跟新技术发展开设课程。与用人单位密切联系,认真研究电子信息领域的发展趋势,增加了《嵌入式系统设计》、《虚拟仪器技术》、《电子信息工程专业导论》、《软件开发综合实训》、《专业工程设计》、《专业工程实习》等产学研课程和课程设计,保证了课程内容与电子信息领域发展的一致。将电子技术类课程、单片机课程前移,确保学生尽早感知专业、步入专业。在专业教育选修平台加入业务和前沿知识模块,紧跟行业发展的趋势及企业用人需求,确保学生就业后上手快。实践教学环节采用先进的电子元器件、先进的实验仪器设备和实验装置、先进的现代设计工具和设计方法,使学生在得到实践锻炼的同时,与新技术、社会需求和学科发展接轨。

3.设置“航空电子”方向模块,突出“航空电子”特色。在保留原有信号处理方向的基础上,新开设“航空电子”方向课程,开设“卫星导航原理与应用”、“雷达原理与系统”和“航空电子系统”等体现航空电子专业特色的课程。另外,电子信息工程专业本科生在大四开始可自主选择专业方向。

航空机电工程论文篇(5)

工程教育认证标准一般由八个指标构成,分别是学生、专业教育目标、学生成果、持续改进、课程体系、师资力量、教学设施、学校支持等。其中工程教育专业认证中的课程设置,为了能支持毕业要求的达成,课程体系设计有企业或行业专家参与。我国各高校在启动工程教育专业认证工作过程中,发现课程体系设置是否科学、合理、会规直接影响到毕业生的工程实践能力与创新能力,进而影响专业培养目标、毕业要求的可达性。因此各高校针对工程教育专业认证标准和要求,提出了各个专业课程体系改革的思路、做法和经验。西北工业大学的张清江等通过调研我国工程教育与专业认证发展历程,对我国航空航天专业与其他已获得资格专业进行对比分析。并结合国际航空航天质量体系认证中的要求,从航空航天工程教育专业认证的必要性、专业特点、航空航天工程教育现状等角度出发进行研究。结合现代中国工程教育存在的普遍问题,提出针对航空航天类专业认证的新方式、新方法,并对航空航天工程教育专业认证需要注意的特性进行讨论。辽宁石油化工大学马会强等依据工程教育专业认证标准,以辽宁石油化工大学环境工程专业为例,通过明确培养目标,解析培养要求,从课程设置、实践环节、毕业设计等方面进行了课程体系改革探索。广东石油化工学院任红卫等分析了我国工程教育的现状,并探讨了在工程教育专业背景下电气专业的教学改革方法,从而提高学生的工程实践能力。浙江工业大学姜理英等人基于对工程教育专业论证的国际比较,结合环境工程教育专业认证的必要性,从培养计划的调整、课程体系的优化、实践教学的强化和师资队伍的提升四个方面,综合系统地提出了对环境工程专业教学内容进行全面优化和提升的路径。张秋根等人根据环境工程专业规范和认证标准要求,以南昌航空大学环境工程专业为例,对其核心课程体系设置和教学内容两方面进行了优化与规范的探讨。为了重视国际认证的引领作用,加强专业办学品牌建设,突出南京航空航天大学能动专业的航空航天办学特色,紧跟国内能动专业人才需要,提升其人才培养质量与专业竞争力,从而拓宽自身生存发展空间,因此需要开展基于工程教育专业认证的能动专业课程体系改革。

2基于工程教育专业认证标准下南航能动专业课程体系优化

通过对国内外本科院校工程教育专业认证的分析与研究,利用对中国近几年的专业认证与评估成果的调查与研究,对其进行梳理,依据工程教育专业认证中课程设置要求,依据南京航空航天大学能源与动力学院能动专业建设相关内容与特色,以培养具有航空航天特色的工程教育专业人才为目标,对南京航空航天大学能动专业课程体系进行优化。以培养要求为基准,着手对课程体系进行优化,并对本科培养大纲进行相应的修订,从而实现培养目标。确定能源与动力专业学生在校期间应修总学分数不能少于180学分。

2.1数学与自然科学类课程能源与动力专业数学与自然科学类课程是指该专业学生必须掌握的基础课程,主要包括高等数学(11学分)、大学物理(6.5学分)、大学英语模块(10学分)、C++语言程序设计(3学分)等方面共六门课程,总共30.5个学分。因此能源与动力专业数学与自然科学类课程占总学分的比例约为17%,达到了工程教育专业认证标准中至少占总学分的15%的要求。

2.2工程基础类课程、专业基础类课程与专业类课程工程基础类课程和专业基础类课程主要体现数学和自然科学在该专业应用能力培养,而专业类课程主要体现系统设计和实现能力的培养。其中工程基础类课程主要包括电子电工技术(5学分)、理论力学(3学分)、材料力学(3学分)、工程图学(4.5学分)以及机械设计基础(3学分)等课程,总共为18.5个学分;专业基础类课程主要包括工程流体力学(3学分)、工程热力学(3学分)、传热学(3学分)和化学反应动力学基础(2学分)等课程,总共为11个学分。因此工程基础类课程和专业基础类课程必须要修满至少29.5个学分。对于专业类课程,由于能源与动力专业具体有两个培养方向:方向一为热能动力方向,主要陪养就业方向为航空发动机、地面燃气轮机等相关单位;方向二为能源利用方向,主要培养的就业方向为电厂、新能源以及制冷等相关单位。因此其专业类课程既有相同的专业课程,也有自身特色的课程。其中燃烧原理(2.5学分)、燃气轮机原理与构造(3学分)、热能综合利用(2学分)、热交换器原理与设计(2.5学分)以及热工测量原理与方法(2学分)等,总共12个学分,这些课程为能源与动力专业两个培养方向都必须学习的专业类课程。另外每个培养方向又有其特定的专业类课程必须选修,其中热能动力方向专业类课程包括叶轮机原理(2.5学分)、燃气轮机控制原理及应用(2学分)、燃烧技术与分析(2学分)、内燃机原理与构造(2学分)、工程传质与应用(2学分)等共9门课程;能源利用方向专业类课程包括泵与风机(2学分)、供热工程(2学分)、锅炉原理(2学分)、制冷原理与技术(2学分)、可再生能源利用技术(2学分)以及热力发电技术概论(2学分)等共10门课程。无论学生学习哪个方向,共同学习的专业类课程与特定选修的专业课程之和必须要修满至少28个学分。因此,工程基础类课程、专业基础类课程与专业类课程必须要修满的学分数为:29.5+28=57.5学分,因此该类课程学分占总学分的比例约为32%,达到了工程教育专业认证标准中至少占总学分的30%的要求。

2.3工程实践与毕业设计能源与动力专业设计完善的实践教学体系,主要包括以下几个方面:(1)军事训练,培养学生的吃苦耐力与过硬的身体素质;(2)各种课程的课程设计,如:机械设计基础课程设计、电工与电子技术课程设计、C++语言课程设计等,主要培养学生对各门基础课、专业基础课的实际应用能力;(3)工程训练,主要包括机械加工方面的车、磨、铣、刨、铸造以及焊接等金工实习,锻炼学生的动手能力;(4)下厂实习,大三暑假期间,在指导老师带领下去中航工业集团下属的企业或电厂进行为期一个月的下厂实习,锻炼学生把理论知识应用于工程实际中的能力;(5)毕业设计,指导老师开设的毕业设计题目一般都来源于实际工程问题,学生在老师的指导下,在大四下半年开展为期半年的本科毕业实际,培养学生的工程意识、协作精神以及综合应用所学知识解决实际问题的能力。能源与动力专业要求学生在实践能力与毕业设计方面修读的总学分不低于42.5,占总学分的23.6%,达到了工程教育专业认证标准中至少占总学分的20%的要求。

2.4人文社会科学类通识教育课程能源与动力专业在人文社会科学类通适教育课程方面主要包括以下几个模块:(1)通适基础教育平台,主要包括形式政策教育、思想道德修养与法律基础、安全教育、大学生心理健康教育等课程,共19.5个学分;(2)国防军事模块,包括航空航天概论、军事高技术概论等,至少修满1.5个学分;(3)文化素质模块,主要包括文化历史、艺术鉴赏、科技基础、哲学社会等课程,至少要修满6个学分;(4)创新创业类模块,主要包括大学生职业生涯发展与规划、创业基础以及经济管理等课程,共5.5个学分。人文社会科学类通识教育课程总共需修满32.5个学分,占总学分的18%,达到了工程教育专业认证标准中至少占总学分的15%的要求,使学生在从事工程设计时能够考虑经济、环境、法律、伦理等各种制约因素。

2.5航空航天特色类课程的设置为了突出南京航空航天大学能源与动力专业的航空航天特色,在开设的课程中,如国防军事模块、专业类课程以及工程实践与毕业设计中,课程教学内容包含浓郁的航空航天特色,由于指导老师所从事的科研项目都是来自于国防工业集团,具有丰富的研究经验,因此在专业基础课和专业课的讲课过程中,所列举的实例都是以航空航天为背景的工程问题,特别是毕业设计和下厂实习,因此在能源与动力专业课程优化过程中,充分突出了南京航空航天大学的航空航天特色。

2.6注重科技创新能力培养学生创新素质的培养直观重要的是培养学生的创新意识,因此积极创造条件让学生能够在大学期间积极的参与科技创新活动。主要包括:(1)鼓励学生积极参加各种科技类竞赛,如:流体力学大赛、节能减排大赛、开设卓越班等,并且科技竞赛获得奖励的同学在保研方面给予政策上的倾斜;(2)安排学生参与教师的科学研究工作,让学生在参与科研过程中更好的掌握好该专业的理论知识,加强学生的动手能力,拓展学生的科研视野。

2.7学习进程大学生本科期间的各门课程是相互衔接的,因此需要考虑课程之间的匹配与衔接,如图1所示。学习进程主要分成了三部分:一是基础课程,包括高等数学、大学物理、计算机等;二是学科基础,包括结构和流体力学、热学和电学方面的课程;三是专业课程,主要包括了热能动力和能源综合利用两个方向的相关课程。整个课程体系分为三条线:第一是流体和热学相关的课程,如流体力学、工程热力学、传热学、燃烧学等;第二是结构力学方面,包括理论力学、材料力学等;第三是计算机语言方面的课程。因此在安排各门课程的学期上需要考虑上述课程衔接问题,从而最终制定出合理的能源与动力工程专业教学计划表。

航空机电工程论文篇(6)

作者简介:秦庆霞(1985-),女,山东潍坊人,中国民航大学航空自动化学院,助教。(天津 300300)郝瑞(1981-),女,甘肃陇南人,深圳航空公司维修工程部,高级工程师。(广东 深圳 518128)

基金项目:本文系天津市高等学校本科教学改革与质量工程研究计划项目“基于CDIO工程教育的电子信息工程专业实验教学综合改革”(项目编号:D02-0807)的研究成果。

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)22-0164-02

长期以来,我国的高等教育实验课以章节为单元,通常是原理验证性质的课程,强调理论知识的验证学习,而忽略了实践能力的培养,导致工科毕业生的实际水平与社会对人才的需求有较大的差距。[1-3]作为民航类高校,航空电子专业作为民航特有专业尤其不能忽视学生实际动手能力的培养,作为CDIO工程教育重要环节的实验课程更应该注重培养专业理论知识的应用性,以锻炼学生的实际动手能力和应用所学知识解决民航机务维修工程实际问题的能力。

一、CDIO工程教育改革对专业课实验教学的要求

为了培养有扎实实践能力和团队合作能力的人才,自2000年10月以来,由美国麻省理工学院和瑞典皇家理工学院等4所大学组成的工程教育改革研究团队提出了全新的CDIO (conceiving-designing-implementing-operating),即构思—设计—实现—运行的工程教育理念和以能力培养为目标的CDIO理念,并于2004年成立了CDIO国际合作组织。[4-6]中国民航大学已进入教育部第二批CDIO试点单位,在电子信息工程品牌专业建设中融入CDIO工程教育理念的关键问题是如何培养满足企业需求的航空电子信息工程专业学生,使其除掌握日益增加的专业知识外,还要具有理论联系实际的能力。CDIO高等工程教育模式提出的12条标准中,标准4和5为实验教学指出了具体的方向,对实验教学具有重要指导作用,[7-9]标准指出实践环节应引导学生对工程的兴趣并为工程能力的培养打下基础。因此,实验课程的开发更应注重提高学生在民航飞机维修背景下的实际动手能力和和解决当前专业建设中重理论轻实践的问题。

二、基于CDIO的实验体系建设

1.建设思路

针对中国民航大学CDIO工程教育改革对航空电子专业加强机务维修工程环境下的实验实训要求和航空电子专业惯性导航系统课程的大纲要求,依托天津市航空电子电气实验教学示范中心,以航线维护工程实践的基本工作(勤务·系统检查·故障排除)为主线,设计认知类、操作类和综合类三个层次的实验(见图1)。实验课程体系旨在帮助学生循序渐进的将课本理论知识与实际工作现场相结合,有效地解决了实验课难以了解真实飞机系统、验证课堂所学理论指示并熟悉机载系统的操作、学以致用解决实际问题的困难。

图1 航空电子实验课程体系结构图

其中,认知类实验是操作类和综合类实验的基础,目的是使学生了解所学航空电子系统在航线勤务工作中的应用,将课本上抽象的界面和原理形象的转化为学生看得见、摸得着的飞机布局,以提高学生做实验的兴趣。操作类实验以航线检查工卡为实验指导,引导学生在现代民航飞机运行仿真环境的各种实验条件下,通过“做中学”反复操作观察系统工作状态和参数指示的变化,并结合系统原理图的变化进一步理解专业知识,即通过Operate(运行)加深对系统内部工作原理的理解和掌握。综合类实验以机务维修工程故障排除任务为引领,在操作类实验基础上仿真一线维修常见故障,采用问题驱动的主导学习方法,引导学生主动思考,遵循飞机维修手册,通过勤务操作、测量、拆装、排故和发动机试车等规范化操作完成维修任务,提高学生应用所学解决机务维修实际问题的能力,进行有效的工程实践。

2.实验课程建设实现

课题组以导航系统为例进行实验课程体系的设计,实验的平台依托中国民航大学建设的天津市航空电子电气实验教学示范中心,以自动飞行控制系统课程实验系统和机载维护模拟机系统为平台按照CDIO工程教育改革的要求开发实验项目。

(1)认知类实验开发。结合导航系统课程大纲和理论课教师实际的课堂教授重点,依托教学示范中心的现有软件平台,设计认知类实验的目的主要是验证各类导航系统组成元素在真实飞机上的位置和布局,以各导航子系统为实验单位,学习各个导航计算机在飞机上的位置布局、计算机的外形特征与识别、天线位置与外形识别、驾驶舱控制面板的操作、驾驶舱的参数监控等。要求学生结合课堂知识、以实验指导书的驱动问题为主线自行在机载维护模拟机系统软件上进行相应的验证,将课本上静态枯燥的图片和原理与仿真软件的彩色、动态显示相结合,使学生获得初步的感知认识和亲手操作的乐趣。要求学生能知其然,而不一定要知其所以然,头脑中留下的问号将成为以后学习的动力。

(2)操作类实验开发。操作类实验属于验证性实验。实验以导航子系统为单位,通过指导书问题引导学生执行导航系统工程实践中经常遇到的各种功能检查和操作测试,观察仪表对应系统监控参数的变化,并结合平台配备的动态原理图实时了解系统的工作状态。另外教师可以设置不同的实验条件,学生在理解系统工作原理基础上,根据自动飞行控制系统课程在实验系统上进行独立、反复操作以加深对原理的理解。该类实验的主要目的是帮助学生通过动手操作验证课堂所学原理、结合原理图理解从驾驶舱操纵究竟是如何通过系统内部工作原理实现工作状态和参数变化的,使前期所获得的感性认识得到了理论知识的支撑,同时理论知识又在虚拟环境的操作和原理图中得到验证和运用,使学生在学习过程中不仅知其然,更知其所以然,不但加深了对理论知识的认识,并进一步锻炼了实践能力。

(3)综合类实验开发。综合类实验属于设计类实验,包括故障分析类实验和故障排除类实验。两类实验均以机务维修工程故障排除任务为引领,通过选择不同的故障条件,使学生观察故障效应和报告。分析类实验重在训练学生依据效应结合所学原理分析故障原因,通过指导书问题引导学生根据观察到的故障效应从工作原理的角度分析导航系统故障的可能原因,并且针对所分析的故障原因设计所需的检查操作检查,通过操作检查进一步排查可能的故障原因、缩小故障范围。故障类实验重在训练学生结合所学原理知识动手排故的能力,引导学生根据观察的故障效应查阅航线维修手册、依据手册步骤通过测试和测量确认故障原因并隔离故障,通过实验使学生熟悉机务维修管理工作和排故工作,提高学生应用所学解决机务维修实际问题的能力。

3.实验课程建设成果

导航系统实验课程系统共开发认知类实验5个、操作类实验10个和综合类实验15个。其中,认知类实验包括大气数据系统、惯性导航系统、无线电导航系统、气象雷达系统、近地警告系统、交通防撞系统等认知实验;操作类实验主要针对5个导航子系统进行启动、操作、测试检查,并且每个实验都配备动态原理图;综合类实验包括5个系统勤务实验和10个故障实验。开发的实验课时大大超过了课程要求的实验课时,便于教师针对不同层次的学生自由选择实验内容。

同时所有开发的实验均配备教师版实验指导书和学生版实验指导书,其中教师版指导书实验内容和步骤详尽、便于实验教师的使用;学生版指导书主要用于学生实验中使用,指导书实验步骤采取问题模式,仅提出问题、不写明操作的详细步骤和预期的结果,旨在改变以往的实验教学中让学生按部就班完成实验步骤的方式,通过问题引导学生积极思考,利用课堂学习知识设计解决问题的操作步骤,激发学生的积极性和创造性。

三、结束语

与传统实验课程有很大的不同,本文根据CDIO工程教育改革的要求提出航空电子实验课程开发的思路,将以专业课为导向的验证实验转变为在机务维修仿真环境下以工程项目为导向设计的专业实验,支持学生在工程项目中通过实验深入理解所学专业知识,引导学生在实验过程中不仅主动探寻专业知识,而且应用知识解决工程问题,同时在仿真工程环境的实验平台上加深对现代机务维修工程的理解,增强学生获取知识和技能的兴趣和主动性,将学生从专业学习逐层引导到机务维修工程实践中。课程设计达到了理论和实践相结合的目的,提高了学生实际动手能力和应用所学解决机务维修实际问题的能力。

参考文献:

[1]雷环,汤威颐,Edward F.Crawley.培养创新型、多层次、专业化的工程科技人才——CDIO工程教育改革的人才理念和培养模式[J].高等工程教育研究,2009,(5):29-35.

[2]陈春林,朱张青.基于CDIO教育理念的工程学科教育改革与实践[J].教育与现代化,2010,(1):30-33.

[3]徐吉锋.基于CDIO理念的EDA课程教学模式改革与实践[J].中国电力教育,2010,(34):125-126.

[4]田海梅,张燕,田祥宏.基于CDIO模式的认知实习项目研究与实践[J].实验技术与管理,2012,(1):140-145.

[5]郭小勤,王鑫,李漓.基于CDIO工程教育理念的实验教学设备研制[J].实验技术与管理,2010,(6):64-67.

[6]王雪峰,曹荣.大工程观与高等工程教育改革[J].高等工程教育研究,2006,(4):19-23.

航空机电工程论文篇(7)

中图分类号:G641 文献标志码:A 文章编号:1002-2589(2015)30-0145-02

引言

航空航天代表了科技和工业发展的最前沿,是促进国家科技发展、满足经济建设、增强国防安全和加快社会进步的重要力量。加强航空航天类高校教育,培养一批具有高素质、创新能力的航空航天类专业人才是服务我国战略发展的必然需求。航空航天类本科人才是高层次航空航天类人才的基础,培养适应国际竞争的航空航天类本科人才,是我国航空航天科技发展的关键。当前,以美、俄为代表的航空航天大国都建设了自己特色的航空航天专业院系,开展了多年的教学实践,具有丰富的经验。论文旨在通过材料的梳理,了解国外航空航天专业人才培养模式,对国际一流大学航空航天类专业设置、课程安排、学生培养特点等方面进行研究,从中总结经验,为国内航空航天类专业教学教改提供参考。

一、国外著名航空航天院系

(一)美国著名航空航天院系

美国是世界上航空航天类研究最发达、人才培养最成功的国家,其人才培养主要依赖其国内的大学。比较有代表性的有麻省理工学院和斯坦福大学。

麻省理工学院航空航天类教学与科研由航空航天系负责,下设三个部门,分别是信息部、航空系统部、飞行器技术部。信息部分主要研究航天系统有关的信息获取、处理、传输技术,如卫星通信、高空侦察、空中通信、集成防御系统等,负责教授导航、制导、控制、通信、网络、实时软硬件系统等课程。航空系统部门主要研究航空航天高复杂性系统的设计、制造、操作方法,教授最优化方法、故障诊断、系统容错等课程,建有人机实验室、空间系统实验室、国际空运中心、操控台研究中心、复杂系统研究实验室等。飞行器技术部门负责计算方法、流体力学、推进技术、材料科学、结构技术等的研究和教学,建有宇航计算设计实验室、空气涡轮实验室、宇航微小结构协会、空间推进实验室、先进材料和结构技术实验室等。

斯坦福大学航空航天系隶属于工学院,承担航空专业的教学科研任务。该系的研究领域包括空气弹性变形及流体仿真、飞行器设计与控制、应用航空动力学、空气声学计算、流体动力学计算、动态系统计算、机器人控制、复杂材料与结构、湍流模拟、推进、高超声速流体、导航、控制系统辨识与优化、卫星工程、湍流与燃烧等。

(二)俄罗斯著名航空航天院系

俄罗斯也是航空航天强国,开设航空航天专业的主要学院有莫斯科国立航空学院、西伯利亚国立航空航天大学。莫斯科国立航空学院建于1930年,拥有12个学院,56个系,128个实验室,3个设计局,几个计算机中心,一个实验工厂,一套运动航空训练设施,一个莫斯科附近的飞机场,两个科研机构(应用力学和电气力学,低温研究)。该学院通常以数字编号代替学院名称,从一院到十二院分别为航空工程院、发动机院、控制系统院、信息与电力院、无线电电子学院、经济与管理院、航空航天院、机器人与智能系统院、应用数学和物理院、应用力学院、人文科学院、预科院。西伯利亚国立航空航天大学拥有空间研究及高技术学院和航天技术学院,设置了飞机制造系、航空发动机与能源装备系、飞行器管理系统系、航空导弹技术系、飞行器无线电技术系统系。

(三)欧洲著名航空航天院系

英国帝国理工学院在其工学院设置了航空系,主要负责飞机设计制造方面的研究与人才培养,包括航空动力学与航空结构学两个研究方向。航空动力学方向包含流体基础、航空飞行器设计、控制、生物医学、环境与工业关系等方面的研究。航空结构学方向包括计算力学、冲击与损伤、复合材料等方面的研究。

法国国家高等航天航空学院已经有90多年的历史,它位于欧洲航天业发展的中心地带,致力于培养顶尖的技术工程师,在研制协和式客机的工程师当中,有许多就是从法国高等航天航空学院毕业的。学院下设5个系和一个研究中心,分别是空气动力学、能源、推进系、结构与材料力学系、光电子与信号系、语言文化艺术系、航空宇航中心。

二、国外著名航空航天院系专业设置与课程体系

(一)学位与专业设置

国外著名航空航天院系多数是本科四年,研究生二年,英国有本科3年,研究生1年。俄罗斯不同,如莫斯科国立航空学院预科1年、本科4年、硕士2年、博士3年。在学位设置上,各个院校有所不同,归纳起来,主要有工学学士、航空航天工程学士、航空工学学士、航空航天工学学士、航空工程理科硕士、航空航天工程学士、航空与宇航工程学士、航空学理科硕士、航空与航天学理科硕士、机械与航天工程理科硕士。

(二)国外著名航空航天院系课程体系

麻省理工学院(MIT)航空与航天专业是美国同领域中最有名的专业,其人才培养理念和课程设置世界闻名。MIT航空与航天系设有两个本科专业方向:航空与航天科学工程专业和航空与航天信息科学工程专业,两个方向的课程设置都建立在航空航天基础(核心)课程上,下面分别以A和B代指这两个专业。课程主要包括全校统一要求课程和系课程构成。全校统一要求课程包括基础科学课程(6门)、人文、艺术、社会科学课程(8门)、科学与技术限选课程(2门)、实验课程(1门);系课程包括系核心必修课程、专业课程、试验与进展课程,其中系核心必修课程包括一体化工程I、II、III、IV,计算机和工程问题求解引论,自动控制原理、动力学、随机系统分析、微分方程;专业课程中专业A包括空气动力学、结构力学、推进系统引论、航天工程中的计算方法,专业B包括航天系统的评估与控制、数字系统实验室介绍、实时系统与软件、交互系统工程、人为因素工程、自主决策原理;试验与进展课程包括飞行器工程、空间系统工程、试验项目I、试验项目II、飞行器进展、空间系统进展I、空间系统进展II。

(三)学时学分要求

1.学分组成。课程学分组成考虑教学环节,如MIT飞行动力学课程,总学分12分,构成包括课堂3分、实验1分、预习和复习8分。另外还有无学分课程,课程必修但无学分,如普林斯顿没有学分制、强调上课门数,斯坦福大学基础课程要求5门航空航天基础课程,专业课程4选3。英国大学一般不设立学分制,所有学生都按部就班完成规定课程的学习。

2.学分要求。美国大部分学校有明确的毕业学分数要求。如MIT航空航天工程系根据培养计划设课程学分,又分成4类,分别是核心课(core)108、专业领域课(professio-

nal area)48、实验和综合应用(experiment and Capstone)30、非限制性选修课(unrestrictived elective)48,总学分大于234学分。但是在学分数量并不统一,差异很悬殊,如密歇根128学分、MIT大于234学分、宾州州立132学分。航空航天专业必修课比例很高,有的高达90%以上,如斯坦福、佐治亚理工、普渡。另外还有只要求课程而不要求学分的,如普林斯顿毕业要求共36门课。

3.学时要求。有些大学要求学时达到一定数量,如悉尼大学本科至少192学时,研究生核心课程和选修课程,至少144学时。斯坦福大学研究生基础课程设置门数要求,其他按学时要求,数学(6个学时)、技术选修(12学时)、人文社科类选修(45学时)。

三、国外著名航空航天院系专业培养特色

归纳起来,国外著名航空航天院系在专业培养上具有如下特色。一是国外著名大学航空航天专业设置宽、窄各有特色。美英等专业设置以宽口径、大类培养为主,基本不针对特定航空航天器划分专业,学生专业方向只是体现在个别课程的选择上。俄罗斯、乌克兰等的专业划分细而精,如莫斯科国立航空学院几乎整个大学的院系专业就代表了航空航天器的各个不同部分,专业面向具体而明确。二是国外著名大学航空航天专业课程体系具有少而精且多样化特色。美英等课程每学期课程数量相对较少,但课业工作量不少。学生毕业所需学时学分也不少。美英等航空航天专业的课程必修多、选修少,完全学分制的作用并不明显,反映了航空航天专业的特殊性。课程学习课内外并重,还有较多实践环节、交流讨论、项目设计等。课程的环节丰富多样(如剑桥)。教授授课。三是注重通识教育与专业教育的结合。在通识教育上,在课程设置中有重视科技写作、科研道德规范、表达与交流、团队协作、人文素质培养和工程师就业指导。在专业教育上,强化多样化实践环节、注重专题课程和生产实习。四是注重综合素质和个性化培养。例如南安普敦大学设置有工程管理与相关法律的必修与选修课程,让学生学习在工程实践中如何领导团队、进行项目管理与风险评估、做出决策以及熟悉与之相关的法律知识。还会从工业部门请来客座教师来协助授课,并安排有相应的实践环节。针对个性化培养需求,在课程设置上具有较大的选择基数。

四、总结

航空航天类本科人才是高层次航空航天类人才的基础,是航空航天类研究生人才的后备军。论文主要对国际一流大学航空航天类专业学位与专业设置、课程体系、学时学分要求点等方面进行了梳理,总结了人才培养特色,为国内航空航天类专业建设和教学教改提供参考。

参考文献:

[1]田正雨,李桦.麻省理工学院航空航天类本科生课程体系分析[J].高等教育研究学报,2010(1).

航空机电工程论文篇(8)

二、航空产业人才需求特点

1.航空产业特点

航空工业涉及70多个学科和工业领域大部分产业,具有“一强、两长、三大、五高”的行业特性,即带动性强、周期长、产业链长、大投资、大风险、大市场、高管理、高技术、高熟练曲线依赖、高度垄断和国际化程度高。航空产品是现代科学技术和现代工业的结晶,它综合集成了力学、材料科学、计算机、电子学、自动控制、制造工程等科学技术领域和人机工程学、可靠性工程、试验测试技术等当代工程技术领域的多种成果,学科高度交叉、技术高度密集。基于航空产业链长、附加值高、对其他产业的辐射作用强,近年来从中央到地方,许多地区都把发展航空产业作为产业升级和产业结构调整的重要的发展战略之一,例如西安阎良国家航空高技术产业基地、天津中国民航科技产业化基地、沈阳民用航空国家高技术产业基地等。

2.航空制造技术特点

1)航空产品零件的结构特点

现代飞机为满足高速、高机动、高负载和远航程等性能要求,大量地采用新技术、新结构、新材料,其零件越来越向型面复杂化、结构轻量化、材料多元化和制造精密化方向发展。零件结构常采用整体件和薄壁件等复杂结构。为了减轻飞机重量、提高零件的强度和可靠性,航空零件广泛采用钛合金、耐高温合金、高强度钢、复合材料和工程陶瓷等新型材料。

2)航空产品零件的工艺特点

现代航空制造业所面临的通常都是多品种、小批量、短生产周期的生产任务,因此要求工艺系统有较高的响应速度。航空产品的整体结构设计使得需要切削加工的零件数量大幅增加,部分结构件的材料去除率达90%以上。薄壁结构易产生加工变形,使得如何合理选择刀具和科学选用加工参数成为工艺技术的一个难点。

3)航空制造新技术

实现产品全生命周期的数字化管理是航空制造技术发展的核心。包括数字化样机、数字化设计、数字化加工、数字化装配、数字化检测及数字化信息管理等,最终达到完全实现产品在各个阶段的信息集成与共享。传统制造方式正在被三维制造方式逐步取代,三维工艺信息完全代替了传统意义上的工艺文件,三维工艺信息的和使用使得三维产品模型被直接应用于研制过程的各个阶段,三维模型成为设计与制造的唯一依据,是三维制造方式与传统制造方式的主要区别。

3.我国航空人才培养中存在的问题

2005年10月,麦肯锡全球研究院(MGI)的一份《应对中国隐现的人才短缺》报告中指出:中国拥有160万年轻的工程专业人才,其中约33%是学工程的,但毕业生中只有大约10%具备从事该行业的必备技能。现代航空工程师的内涵已不再局限于传统的设计工程师、工艺工程师的范畴,而是向“大工程”方向发展。“大工程”人才的培养与传统技术人才培养最显著的差别在于,“大工程”人才不能仅是纯粹地掌握科学或技术,而且具备数学与科学基础知识、大工程思维方式与行为方式、沟通表达能力、工程实践能力、团队合作能力、终身学习能力以及职业道德等综合能力。“大工程”专业教育的目的不是培养从事具体某项技术工作的“工匠”型人才,而是为学生提供宽泛的专业准备,使学生在某一工程领域具备通识的、基础的知识,让学生在一个更高更广的领域对自己所学的专业有整体性的把握。郑州航空产业的高技术、国际化等特点预示着人才培养必须沿着大工程人才培养方向发展才能满足郑州航空产业的高速发展需要。

三、机电类卓越人才培养思路

1.郑州航空产业人才培养现状

长期以来,我国工程教育没有明确的人才标准和目标定位,工程教育科学化、实践动手能力弱化,却未给学生打下深厚的理论基础,植入足够的学术根基,出现工程弱化、学术不足,教育方向混沌的现象。对于航空工程教育来说,由于以前我国军用航空产品型号任务少、民用及通用航空产品任务更少,对人才的需求量较少,致使面向航空产业的工程教育非常缺乏。河南省拥有中国空空导弹研究院、洛阳电光设备研究所、新乡航空工业(集团)有限公司、郑州飞机装备有限责任公司等一批面向军用航空的企事业单位,但是对人才的需求量不够大,致使我省工程教育以面向通用教育为主,缺乏航空专业教育培养体系。随着郑州航空产业的快速发展,河南省工程教育还缺乏与之相匹配的航空工程教育体系。

2.工程教育改革国家政策

“卓越工程师教育培养计划”(以下简称“卓越计划”)是《国家中长期教育改革和发展规划纲要(2010-2020年)》和《国家中长期人才发展规划纲要(2010~2020年)》的重大改革项目,致力于面向工业界、面向世界、面向未来,培养造就一大批创新能力强、适应经济社会发展需要的高质量各类型工程技术人才,促进我国从工程教育大国走向工程教育强国。“卓越计划”要求高校和企业要共同设计培养目标,制定培养方案,实施培养过程。卓越计划对高等教育面向社会需求培养人才,推动教育教学改革,增强毕业生就业能力都具有十分重要的示范和引导作用。因此,“卓越计划”为工程教育面向郑州航空产业发展需求进行改革指明了方向。

3.机电类专业的航空培养定位

航空产业与通用产品的零部件在空间结构、材料、制造技术等方面具有明显的区别,航空零部件的制造难度更大、高新技术应用更广泛、国际交流更明显。面向航空制造产业的服务定位不仅可以提升传统机电类专业的社会服务水平,而且可以提升专业的办学质量。因此,传统机电类工程教育面对郑州航空产业发展提出的人才培养需要,将必须以航空产业为背景,利用“卓越计划”理念优化专业课程体系,拓展航空领域知识、强化先进制造技术教育,构建了航空特色鲜明的机械工程专业人才培养体系。

4.机电类专业的航空办学支撑条件

机电类专业确立了面向航空产业的服务定位,还必须在课程体系、实践条件、师资培养、产学研合作等方面全面改革,来突出机械工程专业与航空技术的结合,构建适应航空技术教育的平台和环境。课程体系方面须以“大工程”为培养方向,强化提高科学技术基础素质,完善和拓展人文素质,提高学生的国际交流能力及先进技术的学习能力。实践条件方面需要面向航空企业同步先进制造技术的设备、软件,将航空企业制造现场仿真或借助视频等手段引入到课堂,提高学生的工程感知能力。师资培养方面需要提高教师的实践操作能力及航空技术理论修养,鼓励教师参与到航空企业一线进行科学研究。同时,面向航空产业的机电类专业还需同重点航空企业建立紧密的产学研合作关系,针对企业的前沿问题、重点难题展开联合技术攻关,通过校企深度合作,使学校真正融入企业发展中,同时将合作的成果在反哺到人才培养中。

四、郑州航空工业管理学院机电类专业办学实践

1.学校面向郑州航空产业的办学思路

郑州航空工业管理学院作为郑州航空经济综合实验区唯一一所与航空工业有渊源的院校,学院为全面融入郑州航空经济综合实验区建设,与河南省发展和改革委员会、河南省工业和信息化厅、河南省民航发展建设委员会办公室、河南省机场集团有限公司、河南民航发展投资有限公司、中国城市临空经济研究中心组成协同创新联盟,培育成立了“航空经济发展协同创新中心”和“航空材料技术协同创新中心”,在河南省领导的关怀下,组建了河南省“航空经济发展协同创新中心”。以此为契机,学院积极组织教师参与郑州民航维修市场规划等项目建设。

2.机电类专业面向郑州航空产业建设实践

郑州航空工业管理学院拥有机械设计制造及其自动化河南省特色专业,该专业面对郑州航空产业的战略机遇,积极与中航工业洪都航空工业集团、中航工业郑州飞机装备有限责任公司、中航工业平原机器厂、北京航空制造工程研究所等单位建立产学研合作关系,派遣教师到航空企事业单位进行顶岗锻炼,邀请企业专家参与专业建设。在专业教学计划改革中,在巩固机械工程基础理论的基础上,积极面向航空企业技术发展方向,开设了CATIA建模及数控加工、航空维修工程、三维制造技术、精密成型技术、轻质合金及复合材料等航空类相关课程。在实践环境建设方面,积极邀请企业专家参与实验项目论证,购置了三维光学扫描仪、激光非接触变形测量系统、超声C扫描系统、搅拌摩擦焊制造系统等一批先进仪器设备,构建了快速制造技术、先进检测技术等实验项目。通过对课程、实践、师资等条件的改善,我校实现了航空制造企业准现场模拟教学环境的搭建。此外,我校加强了人文素质课程建设,开设了航空知识讲座、工程项目写作、科研项目训练、技术经济学等课程建设,丰富了学生的航空知识,提高了学生的交流能力,开拓了学生的视野。最近,我专业积极参与到河南省航空经济发展协同创新中心建设,通过走访郑州航空经济综合实验区内通航企业,同时结合“卓越计划”的要求,进一步优化专业知识结构,成功申报了校级卓越人才培养计划项目,通过项目建设进一步提高机械类专业满足郑州航空产业发展的人才需求。

航空机电工程论文篇(9)

随着民航业的快速发展,对飞机维修及部附件维修人员的需求量越来越大,航空电子设备维修专业面向航空维修行业生产一线,培养德、智、体、美全面发展,掌握必备的航空电子设备维修基础理论和专门知识,具备飞机航线维修、飞机定检维修、航空器电子附件维修和航空器电气附件维修的基本工作能力,具有“严谨、审慎、精细、诚实”的职业素养和创新意识的高素质技术技能人才。为了实现航空电子设备维修专业人才培养目标,使学生更好的学习专业知识,掌握专业技能,本专业建立了基于“空客A320维护模拟器与实体波音B737飞机”相结合的实训基地。

1虚实结合的实训基地建设的必要性

在真实的飞机上进行专业技能的训练,可以让学生熟悉真实的工作场景,对学生实践技能提升最有效果,但是也存在如下问题:

1.1真实实训内容危害大、破环强

飞机上的部分系统在工作时会危害人身和环境安全,如雷达系统在工作时会产生很大的辐射,进行发动机试车时会对周围坏境产生很大的干扰等。

1.2真实实训设备成本高

真实的航材不仅成本高,而且购买渠道有限,设备出现故障后,维修费用高。

1.3部分实训不可及

飞机上面的很多故障在地面上无法重现,无法进行对这类故障的排除训练。通过仿真实训系统,可以很好的弥补以上的不足之处。A320仿真训练器是一种仿真软件与航线可更换件的仿真硬件相结合的模拟机,遵循空客320飞机维护手册标准,可以提供虚拟的工作场景,满足系统认知、系统操作、系统拆装、系统测试、故障分析和故障诊断等多个层面由浅入深的专业实践教学要求,能够有效的培养学生应用专业课程知识解决实际工程应用问题的能力。

2虚实结合的航空电子设备维修实训基地组成

航空电子设备维修实训基地包括一个真实的B737飞机和一个“基于A320飞机维修仿真设备”的仿真实训中心。仿真实训中心包括自主学习教室、航空维修综合实训室、航空电子设备内场维修实训室三个实训室。

2.1自主学习教室(CBT)自主学习系统里面包含有

1台教师席位和50台学生席位和一台服务器,所有的教学资源都存放在服务器中,TCP/IP网络连接组成成了一个局域网络,可学习常见飞机系统如飞机导航系统、仪表系统、通讯系统功用、组成、基本原理、结构和布局;机载设备常见故障及分析等。

2.2航空维修综合实训室

航空维修综合训练室分1个教师控制席位、1个教师操作席位和10个学生操作席位,各席位通过TCP/IP网络连接组成(见图1),可对飞机各系统原理,常见故障及排故流程进行综合2.3航空电子设备内场维修实训室航空电子设备内场维修实训室主要包含三套ADS仿真设备和三套VOR仿真设备,仿真实现甚高频通讯系统内场维修检查、测试与排故训练,大气数据计算机内场维修检查、测试和排故训练。

3实训基地建设成效

(1)满足专业课程实训需求。每年开设飞机导航系统、飞机电气系统、机载电子故障诊断等11门专业实训课程,提高了学生的专业技能。(2)在我校的航空机务人才培养研讨会上,实训基地得到了民航总局领导及行业内专家的高度肯定。(3)实训基地建设能有效支持区域内航空企业和国防建设,对国内同类院校实训基地建设具有示范和辐射作用。自实训基地建设以来,每年有不少于30家企业或院校到校进行参观、调研。(4)实训基地可以对外进行专业技能培训,如对川航员工,某飞机设计院的新员工进行相关的专业培训。(5)开发出2015省级精品资源课程《飞机结构与系统》部分实训项目。(6)成功申报2016四川省高等职业院校创新发展行动计划项目《空中客车A320飞机维修仿真训练中心》。

4结论

通过六年教学实践证明,采用虚实结合的方式进行航空电子设备维修专业实训教学,能够有效提高学生的工程实践能力,使学生快速适应岗位需求,此种实训基地建设模式可以在航空类院校中推广应用。

参考文献:

[1]李长奇.民用航空电子系统概论[M].北京:1992:15-75.

[2]蔡红霞.虚拟仿真原理与应用[M].上海大学出版社,2010.

航空机电工程论文篇(10)

中图分类号:V27 文献标识码:A 文章编号:1672-3791(2013)02(c)-0091-01

机载产品的适航性验证在机载产品的安全检验中应用范围很广泛,其可靠的安全检验保障方式,是我们信赖电子产品的根本。70年代,美国研制的各种型号的飞机,频频坠毁事故,让人们对机载产品的安全性,最重要的是机载产品的适航性等性能的信赖度降低,同时也反应了机载产品在我国航空领域适航性的安全保障的重要性。现行我国的民用航空器机载产品一般要求能够适应外界环境因素的极限条件,其产品的耐热度、温湿度影响、恶劣天气的影响,良好的、稳定的工作信号是其安全适航性验证的必要措施,我国民航飞机一般要求机载产品具有较好的适航性,民航飞机的设计制造寿命为两千年/百万飞行小时,主要迎合公众需要,以安全和效益为主,因此对机载产品的适航性要求越来越高。本文全面而系统的对机载产品适航性进行论述。

1 机载产品适航理论

1.1 适航性

适航性简单地说,就是民用航空器适合航行,也就是说航空器及其在预期的使用环境中能够持续安全飞行的一个本质的、固有的特性。

1.2 适航标准

适航标准是一类特殊的技术性标准,它是为保证实现民用航空器的适航性而制定的最低安全标准。“最低”的含义是基本的,而且是经济负担最轻的。

1.3 适航管理分类

机载产品的适航性是我国航空领域验证民用航空器机载产品在安全飞行中的检验准则,机载产品具有良好的飞行能力,则说明该飞行器适行,能够满足适航标准的要求,机载产品的适航性归根结底还是机载产品能够保证良好的安全性能,在恶劣的环境条件下能够维持良好的性能,合理的设计、制造以及安全验证方法选择是保证机载产品适航性的方法,也是管理核心和审查准则。我国民用航空器主要由我国民航局统一部署和统一规划负责。适航管理主要包括全寿命管理、全领域管理、全过程管理、全方位管理等,机载产品适航性贯穿其整个寿命周期,各个性能参数都必须满足适航要求,且必须经过适航审查确认满足相应的适航标准后,方可取得相应的适航证。机载产品适航管理分为两大类,具体见表1。

2 机载产品适航性分析方法

机载产品的适航性分析方法包括功能危险性分析(对功能进行系统、综合的检查,识别这些功能的失效状态,并根据严重程度对失效状态进行分类)、初步适航安全性分析(用于完成失效状态清单以及相应安全性要求。它还可用于证明系统如何满足针对各种已识别的危险的定性或定量要求)、故障树分析(是自上而下的分析技术。这些分析通过依次展开更详细(即更低层次)的设计层次向下进行)。通过这些适航符合性验证方法,全面保证系统的可靠性、安全性。

对行适航性能评估的功能危险性分析,主要包括在飞机研制开始,对定义的飞机基本功能进行的高层次、定性评估;也可以是系统的安全定性评估,考虑影响飞机功能的单个系统失效或失效组合。当分析某个特定的影响因素对于整个机载设备的适航性研究时,多采用故障树分析,故障树分析是一种自上而下的系统评估程序,针对某一特定的不希望事件,建立定性模型,然后进行评估。分析人员从一个不希望的顶层危险事件开始,在低一级的下一个层次上,确定系统功能模块中可能导致该事件发生的、全部可信的单一故障及失效组合。

我国民用航空器对机载产品的要求很高,要求其可靠性、安全性、产品的耐环境因素影响的极限值度均需满足相关的适航标准要求,主要通过实验手段找出机载产品在设计制造过程中、使用运行过程中的各种失效情况,通过定量分析机载产品的安全性能和设计准则,解决产品设计、制造以及硬件设备带来的缺陷,从各方面提升产品的安全性,满足适航标准要求,

3 结语

近时期,我国大力发展航空航天行业,随着大量的电子产品的出现,其中机载电子产品在我国航天航空、精密仪器仪表等领域应用越来越广泛,其电子产品的可靠性和安全性、适航性方面受到广泛的关注。机载产品良好的适航性需从机载产品的设计、制造和维护等过程加以机载产品适航符合性验证研究,在试飞行阶段采集大量的数据进行分析,全面而系统的认知其产品的稳定性,依靠优秀的适航管理来实现,从初始适航性到持续适航性,均需进行全过程的监督和管理,使其符合适航标准的要求,从而达到保障民用航空器的安全。

参考文献

[1] 祝耀昌,常文君,徐明,等.产品环境工程概论[M].北京:航空工业出版社,2003.

[2] 熊敦礼,王德言,朱智雄,等.航空制造工程手册—— 机载设备环境试验部分[M].北京:航空工业出版社,1995.

航空机电工程论文篇(11)

让白族和大理乡亲分外自豪的是,与歼-10战机一起闪耀在中国航空工业腾飞光辉史册上的,还有一个响亮的名字:歼-10飞机总设计师、被誉为“歼-10之父”的中国工程院院士宋文骢。

宋文骢,云南大理人,1930年3月26日出生。苍山洱海之间秀美的山川给了他智慧和灵气,旧中国家乡的贫瘠和落后也给他留下了深刻的印象。中学时代,他就加入了共产党组织,受到革命思想的熏陶。1949年,当共和国的曙光初现,19岁的他已经成为云南边纵部队的一名侦察员,在春城昆明和平解放过程中,他冒着极大的风险传送情报,立下战功。50年代初,从空军航校毕业的宋文骢走上抗美援朝的战场,成为一名航空机械师;1954年,怀着远大的理想,宋文骢进入哈尔滨军事工程学院学习深造;1959年,走出哈军工校门的宋文骢怀着科技报国的志向和理想,踏上了中国航空工业尚未开垦的土地。

宋文骢在航空工业战线奋斗了50多个春秋,长期工作在歼击机研制第一线,是与祖国航空工业一起成长起来的航空专家,先后担任过多项国家重点型号总设计师。从仰望悠悠蓝天的童年梦想,到实现自己研制飞机的理想;从一名侦察兵战士,成长为我国著名的飞机总设计师。参加工作以来,宋文骢一直从事飞机设计研究工作,是我国歼击机设计战术技术论证、气动布局专业的创始人之一。他先后参加过东风113号机、歼一7、歼一8、歼一9、歼一10飞机等多个飞机型号的研制,担任过两个国家重点型号歼7C、歼一10飞机的总设计师,取得了一系列创造性的重大成果,为我国航空工业发展、国防武器装备建设及国家安全做出了特别重大的贡献,创造了自己辉煌的人生。

二十世纪60年代初,宋文骢首创了我国第一个飞机气动布局、战术技术论证专业组,成为我国先进新式气动布局设计技术的开拓者,他开创性地完成了战斗机作战使用分析、布局研究等工作,为我国第一架自行研制的歼一8超音速歼击机研制成功做出了重大贡献。

1980年,国防科工委任命宋文骢为国家“六五”重点项目歼一7Ⅲ飞机型号总设计师。他组织实施系统工程管理,首批建立了设计师系统,完善了技术、质量责任制。历经8年,完成了研制、设计定型和装备部队的全过程,实现了我国轻小型全天候战斗机装备的更新换代,填补了我国该类飞机的空白。在此基础上,根据部队的需求,他又及时提出了歼一7Ⅲ型飞机的改进方案,并领导了歼一7Ⅲ型改的工作。1991年11月,歼一7Ⅲ型飞机获国家科学技术进步二等奖,宋文骢荣立一等功。这两种型号的飞机均在国庆50周年飞过天安门接受检阅。

80年代中期,宋文骢又被任命为国家重大专项歼一10飞机总设计师,肩负起了我国自主研发新一代先进战斗机的历史重任。

歼一10飞机研制是我国航空工业打基础、上水平、跨时代的重要标志,是我国首次自行研制的新一代战斗机。工程研制面临着要求高,技术新,跨度大和技术基础薄弱等困难。20多年来,宋文骢带领气动专业的设计人员投入模型生产、风洞试验、数据分析、布局改进等繁重的设计试验,转战南北,进行了上万次试验,采集并处理上百万个气动数据。

1985年,宋文骢主持组建起了我国第一个航空电子系统研究室。一边组建,一边学习,逐渐形成了航空电子系统组、航空电子系统动态模拟仿真组、机载OFP软件开发组等多个核心专业组。我国第一个完整的航空电子专业体系、飞行与品质控制设计试验研究室在他的主持下也相继诞生。新一代航电系统、飞控系统设计研制有了新的战场,为歼一10飞机研制开辟了更广阔的天地。

歼一10飞机是涉及100多个参研单位、20多个部委和行业的国家重点工程。针对新一代战机的研制特点,宋文骢大胆地进行管理创新,建立起了一整套符合我国国情的飞机系统工程管理体系和措施。为了攻克关键技术,作为总设计师,他逐一主持确定了总体和各系统重大技术方案和技术途径、试验方案和关键试验设施技术方案,先后组织完成了80余项新技术试验研究。攻克了一大批关键技术,解决了大量跨学科交叉和综合性问题,保证了新机研制任务的圆满优质完成。目前,在宋文骢的领导下,歼一10飞机已形成系列发展,同型双座战斗/教练机已经设计定型。而且,歼一10飞机的技术成果已广泛应用于枭龙、山鹰等飞机的研制中;带动了整个中国航空工业的进步。由于他在研制中做出的巨大成就和突出贡献,原中航总公司授予他特等功。

宋文骢是新中国成立以后我国自己培养的航空专家。强烈的爱国之心和崇高的精神境界,使宋文骢在四十年的耕耘当中,不畏艰难,大胆创新,努力抢占航空科技发展的制高点。他深刻地认识到,一个国家航空工业的发展水平,是国防实力和综合经济实力的重要标志,尤其是在现代和未来战争中,谁掌握了制空权,谁就掌握了取得胜利的主动权。他以敏锐的眼光和思维,以深厚的理论基础和丰富的工程实践经验,带领广大工程技术人员,紧跟国际航空技术的发展趋势,不断探索,大胆创新,成功地探索出一条自行研制歼击机的发展道路,为我国航空工业迈上―个新台阶,做出了重大贡献。

几十年来,为国家的最高利益,宋文骢长期隐遁在绮丽纷呈的幕后,感受寂寞、默默奉献,将毕生的精力投入到祖国航空工业腾飞的伟大事业之中。他的严谨求实,他的创新精神,他的技术造诣,和强烈的爱国情怀,激励着一代又一代航空人。

在国防科技工业战斗的半个世纪里,被誉为“歼一10之父”的宋文骢为了祖国的航空事业殚精竭虑,辛勤耕耘,先后荣立歼一10飞机研制特等功1次、一等功1次;1988年被中华全国总工会授予全国优秀科技工作者称号和“五一”劳动奖章;1992年被航天工业部授予有突出贡献专家称号;1996年被中国航空工业集团公司和中国国防工业工会授予航空工业劳动模范称号;1999年荣立国家人事部一等功;2000年国务院授予全国先进工作者称号;2001年被中国一航授予“航空报国”金奖;2003年被国家评为中国工程院院士。2006年10月30日在首届全国“航空航天月桂奖”颁奖典礼上,荣获终身奉献奖。