欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

微波技术论文大全11篇

时间:2023-03-17 18:01:23

微波技术论文

微波技术论文篇(1)

1.序言

微波是指频率为300MHz~300GHz、波长为lmm~lm的电磁波。它的干燥原理是:微波发生器将微波辐射到待干燥的物料上,当微波射人物料内部时,使物料内的水等极性分子按微波频率作同步旋转和摆动;水等极性分子高速旋转的结果,使物料内部瞬时产生摩擦热,导致物料内部和表面同时升温,使大量的水分子从物料中蒸发逸出,从而达到干燥的目的。

微波真空干燥是随微波干燥技术发展起来的一项新的组合干燥技术。它不仅具有干燥速度快、时问短、物料温度低、色香味及营养成分保留好等优点,而且参数容易控制,能干燥多种不同类型的物料。目前我国虽有一些单位正在进行研究,但其技术性能还需要完善,在机理和工艺方面也还有很多问题需要深化和研究。

2.国内外研究现状

早在上世纪80年代,美国、加拿大、英国和德国就开始研究微波真空干燥技术,主要集中在美国的威斯康辛大学、加利福尼亚大学,加拿大的BritisC0lumbia大学,德国的Karlsruhe大学,英国的QueenUniversity,希腊的国立科技大学,法国的Albi研究所等。研究的内容涉及微波真空干燥机理、传热传质微波真空干燥模拟、微波真空干燥能耗与工艺以及各种不同类型物料(香蕉,萝卜片,果胶,土豆,浆果等)的微波真空干燥操作等。

国内目前的研究单位有江南大学食品学院、东北大学、大连水产大学、中国农业大学、浙江大学、上海工程技术大学、华南理工大学、华南农业大学、天津轻工大学、上海辰灿轻工机械公司、四川大学食品学院食品科学与工程系、南京三乐微波技术有限公司等。

江南大学食品学院进行了甘蓝的微波真空和热风联合干燥试验。试验结果表明:微波真空联合干燥缩短干燥时问48%,提高了营养成分和叶绿素的保存率,改善了干燥品质。

大连水产大学张国琛进行了扇贝柱的微波-真空-联合干燥,试验研究了微波功率、真空度,微波炉启闭比、预处理盐水浓度和扇贝大小对干燥效果的影响,建立了扇贝微波真空干燥的动力学模型。

3.微波组合干燥技术

组合干燥是一种具有广阔发展前景的干燥技术,它可以发挥各种干燥工艺的长处,克服各自缺点,借长补短,达到高效率、低能耗、优品质的干燥目的。由于微波干燥是一种完全不同于其它干燥方式的干燥技术,所以它也是与其它干燥方式组合最多的一种干燥技术,同时也是当前国际上研究最多的一种干燥技术。以下是几种较常见的组合方式。

3.1微波热风组合干燥(也称微波对流干燥)

在与微波组合的干燥方法中,微波热风组合干燥是研究最多的一种。由于热风干燥时间长、质量差,故不适合干燥热敏性物料;采用热风微波组合干燥可以克服上述缺点。此外,微波干燥的成本与热风干燥相比还是很高,单纯微波干燥是不经济的。热风干燥对物料来说是从表面向内干燥,温度梯度与水分转移的方向相反,而微波干燥是从内部加热,温度梯度与水分转移的方向相同,二者结合,可以达到既缩短干燥时间又降低成本的目的。微波与热风干燥可以有三种结合方式。

3.1.1.在临界含水率处加入微波

当干燥从恒速段进入降速段(即物料含水率达到临界水分)时将微波能引入干燥器,使物料内部产生热量和蒸汽压,使水分扩散至物料的表面并被排除,这时利用微波会非常显著地提高干燥速度。3.1.2.在干燥器的终端加入微波

单一的干燥系统在接近干燥终了时效率最低去除几个百分点的水分往往需要很长的时间,利用微波可以显著减少干燥时间。

3.1.3.在最初预热阶段加入微波

在干燥前物料含水率较高,可以先用微波将物料加热到蒸发温度,然后用普通热风干燥,去除表面水分,干燥时间可以缩短。

3.2.微波真空组合干燥

微波虽然具有加热速度快、干燥时间短、选择性好、能源利用率高和便于控制等优点,但单纯使用微波进行食品干燥,容易产生由于过热引起的烧伤现象和食品边缘焦化、结壳和硬化等现象;上述现象多半是由于温度过高和干燥过快引起的。采用真空可以降低水的蒸发温度,使物料在较低的温度下快速蒸发,同时还可避免氧化,因而改善了干燥品质。在医药、食品和化工领域有很多热敏性物料需要低温快速干燥,因此,将微波技术与真空技术相结合就成为一项极具发展前景和实用价值的新技术。从国内外有关微波干燥的研究现状来看,微波真空组合干燥也是目前发展较快的一种组合干燥技术。

3.2.1.脉冲间歇式微波真空干燥

微波干燥虽有许多优点,但经常会发生局部过热、表面硬化、颜色不正和加热不均匀等现象;此外,能量效率不高也是一个缺点。产生这些现象的原因之一就是热质传递控制不当,解决的方法之一是采用脉冲方式输入微波能,即短时间的微波加热和较长时间的间断。试验证明:当物料干燥到临界水分以后,连续施加微波能并不能加速水分的蒸发;采用间歇干燥的方法,不仅可以节省能量、提高干燥效率,还可以改善干后物料的品质。脉冲间歇式微波真空干燥技术是Edh0lm于1933年提出的。采用这种技术的特点是使物料中的水分和温度在间歇阶段能够均衡再分配,减少水分梯度,这将有利于提高下阶段的干燥速率。

试验还表明,脉冲微波干燥时,微波接通时间越长、断开时间越短,物料温度越高。因此,通过调节脉冲比或真空度可以改变物料的温度。

3.2.2.变功率微波真空干燥

加拿大食品工程研究所ChristeneH.等进行了萝卜片的变功率微波真空干燥,微波的频率为2450MHz,微波功率4kW可调,真空度为13.3kPa,萝卜片的终水分为10%,微波谐振腔为圆筒形,直径350mm,长度500mm,采用的干燥工艺为:干燥开始后的最初19min微波功率为3kW,中间4min为1kW,最后10min为0.5kW。试验过程研究了颜色、复水性、密度和胡萝卜素、维生素含量等质量指标。结果表明:如果综合考虑,微波真空干燥的性能甚至优于真空冷冻干燥。美国加利福尼亚大学研制的微波真空干燥设备谐振腔是一个长12.2m的不锈钢圆筒,中间有输送带,沿长度方向分为三个干燥区,第一干燥区的微波功率较大,真空度为1.33~3.99kPa,第二、第三干燥区的微波功率递减。说明变功率微波真空干燥是一个研究方向。

3.2.3.微波热风和真空组合干燥技术

Maskan利用微波和热风组合方式干燥猕猴桃,发现干后猕猴桃的收缩率(76%)小于单纯的微波干燥(85%),而且颜色也有很大改善。Szab0利用热风+微波+热风的组合方式进行蘑菇的干燥试验,发现能改善干后蘑菇的品质。大连水产大学的研究表明,热风干燥扇贝具有较小的收缩率Durance利用微波真空与热风组合干燥西红柿,发现西红柿的复水率有所改善。由此可见,微波真空干燥与热风干燥具有一定的互补性。近些年,在高含水率和热敏性物料的干燥中,微波真空和热风的组合干燥也逐步得到了应用。4.几个值得探讨的问题

4.1.关于物料的尺寸和形状

微波干燥的物料种类繁多,成分和状态也各不相同,按形状分有液状、糊状、浆状、粒状、片状、粉状;按类型分有蔬菜、水果、谷物、药品、水产品和农副产品;就尺寸而言可以小到菜籽,大到人参、蘑菇。微波干燥的研究表明,物料的大小、形状、数量、水分和在微波炉谐振腔中的位置对干燥效果均有一定影响。Dr0uzas用微波进行干燥果胶试验时,用五个料盘放在炉内五个不同的位置,发现干燥速率有明显区别。因此微波干燥应根据物料的特性(介电特性热物理特性、含水率和形状、大小)选择干燥工艺和参数,其原则如下:

①微波功率应与干燥的物料量相匹配。

②待干燥的物料其大小和含水率应尽可能均匀一致。

③考虑微波的穿透深度,大块物料最好先处理成小的粒状或片状。

④粉状物料如果堆积在一起时应看成是一个整体。

⑤小粒物料所用的微波功率(w/g)可以适当减小。

⑥对于热敏性物料可以适当加大真空度或减小微波功率。

4.2.关于真空度

从蒸汽特性表可知,真空度越高,水的沸点温度越低,水分越容易蒸发。但是在微波真空干燥时,并不是真空度越高越好,真空度增高,能耗加大,干燥成本加,而且会产生击穿放电现象。当微波频率为2450MHz时,真空度2~7kPa已经足够了,其相应的水分汽化温度是20℃和40℃。对于热敏性物料,要求物料的温度低,所以真空度就要高一些。法国Pere教授进行了不同真空条件下的微波真空干燥试验,试验表明,在相同的条件下真空度从1kPa增加到7kPa时,各单位采用的真空度数值有很大的差别,说明对于微波真空干燥中真空度的合理选择尚需进一步研究探讨。

5.注意事项

采用微波真空干燥时,有一些问题需要注意:

①微波能被金属反射,干燥物料和测试传感器中不可混入金属。

②待干燥物料的大小和形状应基本接近。

③微波干燥设备不可空载运行。

④微波可以穿透玻璃和聚合物而不损失能量。

⑤微波炉内的物料应分散布置而不要堆积。

⑥干燥过程中物料最好能够运动。

参考文献:

[l]徐艳阳,张憨,等.热风和微波真空联合干燥甘蓝试验[J].无锡轻工大学学报,2003(6).

[2]张国琛,毛志怀,等.微波真空干燥扇贝柱的物理特性研究[J].农工学报,2004(6).

微波技术论文篇(2)

病理内窥镜标本一般包括胃镜、肠镜标本,喉镜、气管镜标本及膀胱镜标本。这类活检组织标本较小,使用常规石蜡制片技术,需要3~4天完成制片,在病人急需手术或治疗时,常因等待病理报告时间过长而耽误临床诊治工作。为此,我们将微波技术应用于内窥镜标本的制片中,只需1~2小时就完成制片,极大提高了工作效率,且制片质量近似于常规石蜡制片技术,完全符合病理诊断的要求。

1材料与方法

1.1材料选取内窥镜活检标本100例,其中胃镜标本40例,肠镜标本40例,喉镜标本20例。要求组织块小米粒大小,便于固定脱水。

1.2仪器设备三星STG88型微波炉一台。输出功率800W,分六级调节(800W、600W、450W、300W、180W、100W)。

1.3所用药液①固定液:95%乙醇,无水乙醇。②透明液:按质量比3:1配制的硬脂酸-石蜡液态混合物。③Harris苏木精染液。

1.4微波制片①将组织放入盛有5ml95%乙醇的青霉素小瓶内,用两层纱布及布绳将瓶口封好,用450W功率微波辐射30秒,至乙醇沸腾。②取出小瓶,将剩余液体倒掉,换成5ml无水乙醇,用450W功率微波辐射30秒。③倒去无水乙醇剩余液体,用硬脂酸-石蜡液态混合物透明,用450W功率微波辐射4~5分钟。④用熔点为56~58℃的液态纯石蜡浸蜡,450W微波辐射5分钟。⑤组织包埋、切片:包埋时尽量用最小的模具,把所有组织包在一个平面上,切片时待多个组织充分暴露时再切,争取选择多个切面,切片厚4~5μm。⑥用微波烤片:450W微波辐射3分钟。

1.5微波HE染色①切片常规方法脱蜡、脱苯、水洗,经微波烤片后,脱蜡时间减少至5分钟,脱苯时间也相应减少,水洗时间正常。②吸Harris苏木精染液3~4滴滴于切片上,完全覆盖组织,用600W微波辐射30秒,水洗。③1%盐酸酒精分化1~3秒,碳酸锂饱和溶液蓝化至切片泛蓝后水洗1分钟。④伊红染色,梯度酒精脱色,中性树胶封片,镜下观察。

2讨论

微波技术论文篇(3)

微波通信技术是利用微波进行信息传递的一项高科技,主要是利用1m~0.1mm的波长、频率为0.3~3000GHz的无线波进行信息传递。微波通信的工作系统主要是由发信机、收信机、用户设备和反馈线等若干个机械设备组成。微波通信中微波具有频率高、波长短的特点,因此,在应用过程中要通过抛物面天线来进行信息传递。另外,微波通信不受地形、距离和建筑物的阻碍和影响,可以准确传输信息。

2微波通信技术在广播电视中的应用

第一,在广播电视信号传输过程中,应用微波通信技术可以加快信号的传输速率,扩大信号传播的覆盖范围,降低设备维护的难度,进而减少信号传输工作的成本消耗。正因如此,在广播电视中应用微波通信技术可以轻易实现多通路的传输,同时满足多个用户的不同需求。第二,利用微波通信技术进行信号传输时需要先将信号传播到控制中心,再由控制中心向各个卫星进行发送。这种借助地面微波和卫星进行传播的方式对信号形式没有限制,所以微波通信技术可以实现对音频及视频等信号的采集、转换与传播。第三,由于微波通信技术是借助卫星与地面微波的形式进行传播,且传播速度快、覆盖面积广,所以广播电视行业可以利用微波通信技术进行大型现场直播。除此之外,微波通信技术还能为有线数据通信提供技术服务,或者作为电台网站的多路视频指标信号采集系统,为观众接收节目提供方便。第四,微波通信系统可以应用在干线光钎传输中,在干线光钎传输中做到备份和补充,当发生自然灾害或环境恶劣等情况时,微波通信系统利用点对点的SDH微波以及PDH微波等各种微波对传输过程中遭到破坏的部分及时修复,保证信息的正常传输。

3广播电视微波通信技术的优点

3.1图像传输画质良好

再生中继技术是微波通信技术的核心,该技术能够减少广播电视的微波信号在传输过程中受到的外界各种因素的干扰,降低干扰强度,从而保证图像画质良好。

3.2传输信息的安全性有保障

由于自然环境的影响或者人为因素的破坏,广播电视信号在传输过程中可能受到干扰或损害,从而无法正常传输。尤其是当前社会形势下,很多不法分子贪图利益或恶作剧心理作祟,蓄意破坏传输信号,导致广播电视节目无法正常播出。而微波通信技术可以有效避免此类问题发生,微波通信技术将图像、声音等信号转化为微波进行传输,因微波难以破解,使信号的稳定性与安全性有了保障,进而提升了广播电视节目的质量。

4广播电视微波通信技术应用注意事项

4.1信号源配备

为保证信号传输的安全性,在利用微波通信技术进行广播电视信号传输时,广播电视台的微波站内一定要配备两种或多种不同路由的信号源,每一个信号源都要根据需要配置相应的仪器设备。并且,为了使广播电视的设备管理端口与所有的信号处理设备相吻合,一定要严格控制应急人工跳线端口。除此之外,需要在微波首站内设置完善的监测系统,时刻监测信号码流的设置,从而保证微波信号传输系统涉及到的各项设备运行情况都在微波首站的监控范围之内,保证微波信号传输的稳定性。

4.2外接电源配备

为从根本上促使使用的方便性与快捷性,微波站需要接入两种不同的外接电源,并且在整个接收过程中,严格降低配电行业的基本标准与要求。微波播出符合供电主要采用独立低压的回路方式,为保障微波电路首站能够按照相应的配置进行电源自备,需要不间断运行,并且微波站的直流电源需要设置得比较冗余,还要保证蓄电池组的后备时间超过8h。

总而言之,微波通信技术在广播电视信号传输中具有传统信号传输技术无法比拟的优势,为保证微波通信技术能够在广播电视行业得到更加广泛的应用,并真正提高信号传输的质量和效率,相关工作人员必须严格遵守微波通信技术应用注意事项,正确配备并连接电源和信号源,避免发生传输故障。

作者:赵志强 单位:新疆广电局节传中心694台

微波技术论文篇(4)

1 引言

微波是一种波长很短的电磁波,其波长范围在0.1mm~1m之间,由于其最长波长值比超短波最小波长值还要短,故称其为微波。微波具有极高的频率,其范围在300MHz~3000GHz之间,故微波亦称作“超高频电磁波”。微波整体范围介于红外线与超短波之间,根据微波波长范围的不同,又可将微波分为分米波、厘米波、毫米波以及亚毫米波。微波在整个电磁波频谱中所处的位置简图如图1所示[1]。

随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。为避免微波通信频率与工业、医学、科学等的频率相互干扰,故将微波通信频率与其他用途的微波频率分开使用。目前,工业、医学、科学常用的微波频率有433MHz、915MHz、2450MHz、5800MHz、22125MHz,其中915MHz和2450MHz在我国常用于工业加热。

2 微波技术的发展历程

微波技术的发展主要取决于微波器件的应用和发展。早在20世纪初,就有研究人员开始了对微波理论的探索,并进行了相关的实验研究。但由于当时信号发生器功率较小,加之信号接收器灵敏度较差,使得实验未能取得实质性的进展[2]。1936年,波导技术的进一步发展为微波技术的研究提供了可靠的理论及实验条件。美国电话电报公司的George C. Southworth.将波导用作宽带传输线并申请了专利,同时,美国麻省理工学院的M.L.Barrow完成了空管传输电磁波的实验,这些工作为规则波导奠定了理论基础,推动了微波技术进一步向前发展[3]。20世纪40年代,第二次世界大战期间,雷达的出现和使用引起了人们对微波理论和技术的高度重视,并研制了很多微波器件,在此期间,微波技术迅速发展并在实际应用中得到认可。但在当时战争条件下,各国都忙于实际应用,对微波理论的研究尚为欠缺,所以使得微波理论滞后于实际应用。1945~1965年,微波技术的发展速度有了明显提高,同时,其应用范围也更加广泛。在这20年间,逐步开辟了微波新波段并形成了射电气象学、射电天文学、微波波谱学等一系列新的科学领域。比较系统和完整地建立了一整套微波电子学理论,为微波技术的进一步发展打下了理论基础。1965年以后,微波集成电路与微波固体器件的发展和应用时微波设备朝着定型化与小型化的方向发展。目前,微波设备正向着更高频段、宽频带、高功率、数字化、高可靠性、小型化等方面发展,单片集成化和毫米、亚毫米波段微波的发展已成为现阶段微波技术研究的重点方向[4]。

3 两种常用的微波技术

3.1 微波加热

3.1.1 微波加热的原理

微波加热是通过极性介质材料对微波的吸收作用从而将微波的电磁能转化为介质的热能来实现的。该转化过程与介质材料内部分子的极化有密切关系。具体原理如下:当把含有极性分子的物料置于微波电磁场中时,介质材料中的极性分子在高频交变的电磁场中产生每秒高达数亿次的剧烈转动,并随着高频交变电磁场的方向重新排列,极性分子这种有规律的周期性运动必须克服相邻分子间的干扰和阻碍,从而产生一种类似于摩擦的效应。该效应微观结果表现为微波的电磁能量转化为介质材料内的能量,而宏观即表现为被加热的物体温度升高[5-6]。

3.1.2 实现微波加热的条件

由于微波加热是一种物料在电磁场中靠自身损耗电磁能而进行的体加热,是基于极性分子介质材料对微波的吸收作用而产生的热效应,所以,欲实现微波加热,就要求物料本身必须能够吸收微波[5]。

(1)极性分子组成的介质材料,吸收微波的能力比较好。例如,水分子的极性非常强,能够很好地吸收微波,所以但凡含水的物质必定能够吸收微波,即含水的物质一定能实现微波加热。

(2)非极性分子组成的介质材料,很少吸收甚至不吸收微波,但却能透过微波,所以这类物质可用作微波加热的容器,也可用作密封材料。例如,塑料制品、玻璃、陶瓷、竹器皿、聚乙烯、聚四氟乙烯等。用这类物质作加热容器,微波射入后只能使食品加热,而容器本身不会发热。

(3)还有一种特殊的物质不吸收微波,即金属[4]。与光波照射到镜面会被全部反射的特性相似,当微波照射到金属表面时,也会被全部反射,即微波对金属不起作用,从而可知,金属制品不可以用作微波加热容器。

3.1.3 微波加热的注意点

(1)由于金属不吸收微波,并且会将照射到金属表面的微波全部反射,所以要避免用微波对金属膜包装的物品或在包装袋上印有金属粉制图像的物品进行加热,否则金属下面的部分将不会有任何加热效果[4]。

(2)避免在被加热物体中混入金属片或金属针。不仅被加热物体表面要求不能有金属,而且被加热物体内部同样不可混入金属。这是因为金属尖端是微波电场最集中的地方,不仅不能实现正常加热,而且还会形成尖端放电,从而在尖薄部位产生高热[4]。

(3)对使用的加热容器有选择性。由于塑料、陶瓷、玻璃、竹器皿等非极性分子组成的材料能透过微波却不吸收微波,所以非常适合用作加热容器。一般情况下,用塑料或陶瓷做微波加热容器最佳。

3.1.4 微波加热的特点

(1)微波加热的即时性[7]。由于微波加热是将电磁能转化为热能,故为内部加热,不需要热传递过程,且内外同时加热,效果均匀,瞬时即可达到高温,方便省时。

(2)微波加热的高效性[7]。在微波加热过程中,只有被加热物体自身吸收微波并转化为热能,而微波设备的加热室壁是不吸收微波的金属材料,加热容器为几乎不吸收微波的非极性物质,所以,加热设备本身和相应的加热容器几乎没有热损失,故其热效率非常高。

(3)微波加热的选择性。介质材料由极性分子和非极性分子组成,根据微波加热的条件及原理,只有极性分子组成的物质才可以吸收微波实现微波加热。因此,可以利用微波加热的这一特性来实现对混合物料中不同组分或不同部位的选择性加热[7]。

(4)微波加热安全无害,没有废弃物产生。与采用矿物燃料燃烧进行加热的常规方法相比,微波加热不产生二氧化碳,对环境没有污染[7]。

(5)微波加热时由于内部缺乏散热条件,所以使得内部温度高于外部温度,使温度呈现梯度分布,形成驱动内部水分向表面渗透的蒸汽压差,从而使水分蒸发的速度加快。微波的这一特性有时会使微波加热的食品口感发生变化。例如,经微波加热过的馒头口感欠佳且有一种发焦的感觉,远不如常规加热的馒头松软可口。这是因为微波加热是靠电磁能转化为热能来实现的,加热时并没有水分,而加热后的馒头中的水分会随温度升高而蒸发,使馒头中水分越来越少,故会导致口感较差且有种发焦的感觉。而常规加热的馒头一般是水蒸气透过馒头表面进入芯部,使馒头的水分越来越多,所以吃起来松软可口,口感会比微波加热过的馒头好很多。利用微波加热能使物料内部水分迁移蒸发的这一特性,还可利用微波实现微波干燥。

3.2 微波灭菌

微波灭菌是利用微波对食品中微生物的热效应和非热效应的共同作用来实现杀虫灭菌目的的。微波的热效应是利用微波瞬时可达高温的特性,是细菌细胞的空间结构发生破坏,从而使其蛋白质发生变异而达到杀菌的目的。微波的非热效应又叫做生物效应,它同样是利用微波瞬时升温的特性,使细菌等微生物的生理活动物质发生变异而导致其生长发育异常直至死亡,从而达到杀菌保鲜的目的[4]。

微波灭菌与传统灭菌相比,具有很多不可比及的优势。一般来说,传统灭菌方法至少要达100℃以上,用时也较长,十至几十分钟不等。而微波灭菌温度70~90℃即可,用时短,一般3~5分钟即可[8]。且微波灭菌比较彻底,安全可靠,能使保质期延长,但有些物质经微波灭菌后口感会欠佳。冯薇丽等比较了鱼丸的微波灭菌和加热灭菌:实验一:在850W功率微波的作用下持续灭菌135s;实验二:在98℃的水浴中加热60min灭菌;结果发现:两实验杀灭大肠杆菌的有效率均为100%;在鱼丸蛋白质含量上,两实验结果相近,但在鱼丸含水量上,微波灭菌比水浴灭菌要差很多[9],故导致微波灭菌后的鱼丸口感较差。

4 微波技术的应用

4.1 微波技术在农业领域的应用

利用微波技术可进行玉米芯水解,玉米芯是一种可再生资源,用途非常广泛。以前,人们经常将其作为燃料烧掉或作为废物丢弃,造成资源的极大浪费,同时污染环境。利用微波技术可将玉米芯水解,从而利用其制备食品添加剂和化工原料,使玉米芯得到了充分利用[10]。采用微波技术可以对番薯片[11]、花椒[12]、胡萝卜[13]、金银花[14]等进行干燥,还可进行油茶籽制油[15]。利用微波技术还可以软化木材,改善木材的浸透性能,从而简化木材染色、浸渍处理等工艺。微波技术还可用于产品质量检测,如材料缺陷检测、竹木产品含水率检测、人造板甲醛释放量检测等[16]。

4.2 微波技术在医学领域的应用

利用微波技术可以检测中药、提取中草药[17]的有效成分,还可利用其进行药丸干燥[18]等。另外,微波技术也可以用于临床治疗,现其已被广泛应用于妇科、五官科、理疗科、肿瘤手术等[19]。

4.3 微波技术在环境保护方面的应用

利用微波技术处理废水[20]、气体污染物[21]、固体废弃物[22]等既可以简化操作程序,变废为宝,又无二次污染。利用微波辐射可以对动物粪便进行干燥,既可提高粪肥利用率,增加农业收入,又能杀灭病原体,减小农业污染。另外,利用微波萃取和微波消解技术可以进行环境监测等[22]。总之,微波技术在环境保护方面具有节能省时、污染小、效率高等优点,可显著降低废弃物对环境造成的危害,其在环境保护方面的应用也逐步受到了人们的高度重视。

4.4 微波技术在其他领域的应用

微波技术除在以上多个领域有重要应用以外,其在食品行业、化学及材料行业中的应用同样越来越受人们重视。微波技术可用于碎矿、磨矿、矿石预处理、矿物焙烧[7]等方面。利用微波技术可以进行水产品的膨化加工及消解[9],还可用于活性炭的准备与再生[23]。

随着微波技术和微波器件的进一步发展,微波在各个领域的应用将会变得更加广泛,而其实际应用也会相应推动微波理论不断成熟。

5 微波技术存在的问题及展望

5.1 存在问题

虽然微波技术具有传统方法不能比及的诸多优点,应用广泛,但作为一门新技术,其发展还处在初级阶段,依然有许多问题亟待解决。

(1)尽管微波技术已广泛应用于各大领域,但还缺少比较系统的理论做基础,尤其是对微波作用机理的认识还比较肤浅,对其解释也仅停留在实验基础上,有待使用更为精确的方法进行检测验证。所以,应加强对微波技术作用机理的研究,使其成为一套比较系统和完整的理论体系[24]。

(2)与国外相比,我国微波设备的稳定性尚为欠缺[25]。因此,应加强微波元器件及设备的研制,提高微波器件的适应性和兼容性,以便研制出稳定、经济、高效的微波设备。

(3)目前,微波设备是在家用设备基础上改造完成的,使其应用和推广受到限制,不能形成规模经济。故应重视微波过程与各大学科题系的交叉衔接,加强工程化研究,逐步实现微波理论成果产业化,形成规模经济,促进其在工业方面的应用。

5.2 前景展望

微波技术作为一种将电磁能转化为热能的特殊导热方式,不仅在食品加热、杀虫灭菌、干燥保鲜等方面用途广泛,同时,更向催化化学反应、新材料微波处理等应用发展[26]。随着微波技术的不断深入发展和微波理论的不断完善,微波技术必将逐步实现工业化,其安全、节能、高效、环保的优势也必将推动其广泛应用于各行各业,促进环境友好型社会的快速发展。

参考文献

[1]徐锐敏,唐璞,等.微波技术基础[M].北京:科学出版社,2009.

[2]赵宝亮,赵峰.微波技术发展及应用综述[J].中国科技信息,2007(20):272-275.

[3]杨雪霞.微波技术基础[M].北京:清华大学出版社,2009.

[4]冯垛生,等.微波技术在工业生产和医疗中的应用[M].北京:中国电力出版社,2009.

[5]史苏佳,曹栋.微波原理及其在食品上的应用[J].山西食品工业,2002(3):8-12.

[6]杨子宁.微波技术的发展与应用[J].中国科技信息,2006(18):142-143.

[7]崔礼生,韩跃新.微波技术在选矿中的应用[J].金属矿山,2006(4):29-32.

[8]杨晓清,田俊.微波技术在我国食品工业中的应用与发展[C].中国农业机械学会2008年学术年会论文集,2008.

[9]段振华.微波技术在我国水产品加工中应用研究的现状[J].水产科技情报,2008,35(1):5-7.

[10]王成福,赵光辉,修秀红.微波技术在玉米芯水解中的应用[J].中国食品添加剂,2010(3):203-206.

[11]蒋玉萍,王俊.番薯片微波干燥特性及干燥模型[J].浙江农业学报,2009,21(4):407-410.

[12]赵超,等.花椒微波干燥特性试验[J].农业机械学报,2007,38(3):99-101.

[13]Gulum,S.,& Elif,T.(2005).Drying of carrots in microwave and halogen lamp-microwave combination ovens.LWT,38,549-553.

[14]肖宏儒,王立富,吴家兵,等.微波干燥技术在金银花烘干中的应用研究[J].食品科学,2001,1(5):41-43.

[15]尹先益,胡晓中,尹志明.微波技术在油茶籽制油工艺中的应用[J].中国油脂,2011,36(2):34-35.

[16]沈斌华,等.微波技术在我国木材加工与产品检测中的应用[J].浙江林业科技,2012,32(5):75-78.

[17]刘兴国,王信.微波技术在中草药有效成分提取中的应用与发展[J].光明中医,2010,25(8):1544-1545.

[18]王怀奇,孙家海.微波技术及设备在制药行业的应用[J].中国科技纵横,2011(20):340.

[19]钱少魁.微波治疗工作原理及在临床中的应用[J].中国社区医师(医学专业),2011,13(3):120.

[20]吴南屏,张文超.微波技术在氧化反应中的应用研究进展[J].辽宁化工,2012,41(6):607-609.

[21]王丽丽,等.微波技术在节能减排方面的应用[J].广州化工,2010,38(8):17-18.

[22]孙萍,等.微波技术在环境保护领域的应用[J].化工环保,2002,22(2):71-74.

[23]Foo Keng Yuen, B.H. Hameed.(2009).Revent developments in the preparation and regeneration of activated carbons by microwaves. Advances in Colloid and Interface Science,149,19-27.

微波技术论文篇(5)

作者简介:裘国华(1974-),男,浙江绍兴人,中国计量学院信息工程学院,讲师;李九生(1976-),男,广西桂林人,中国计量学院信息工程学院,教授。(浙江杭州310018)

基金项目:本文系浙江省高等学校精品课程建设项目、中国计量学院校立高教课题资助(编号:HEX200727、HEX200872)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)08-0051-02

“电磁场理论与微波技术”是电子信息工程、通信工程和电子科学与技术类专业的一门重要专业必修课。也是一门学生公认较难学难教的课程,该课程既与前期的高等数学、大学物理学等课程的知识紧密联系,又对目前移动通信、电磁兼容和生物电磁学等前沿学科的学习与认知起着重要作用。[1-2]随着信息技术的快速发展,为满足社会对从事于微波工程、电磁测量技术和无线电技术等领域人才的需求,中国计量学院(以下简称“我校”)始终如一支持该课程的建设,我们对“电磁场理论与微波技术”进行课程改革和教学实践,有效地提高课程的教学质量,改进了教学效果,[3]2009年被评为学校精品课程,在2010年被增选为浙江省精品课程。本文对课程的改革和实践作初步总结。

一、课程建设和教学实践历程简述

我校“电磁场理论与微波技术”课程建设与教学改革实践经历多年,从原先“电磁场理论”和“微波技术与天线”分开授课,然后合并成“电磁场理论、微波技术与天线”课程,发展到目前为“电磁场理论与微波技术”,期间主要经历了三个时期:

2004年以前,课程建设初期。“电磁场理论”和“微波技术与天线”单独设课,两个课程安排在不同学期,理论与实践相隔一个学期,总体教学效果不明显。

2005至2006年,课程建设的起步期。学校根据高校微波专业的电磁场培养目标,决定将原来的“电磁场理论”和“微波技术与天线”合并为“电磁场理论、微波技术与天线”课程,电信、通信和电科三个专业同时开设该课程,并进行教学方法、教学手段的改进,以及教材建设和师资队伍建设。编写了《电磁场理论与微波技术》实验指导书;在校内实行微波实验室“全日制”开放,积极开辟学生第二课堂;制作《电磁场理论与微波技术》课件,改革教学方法与手段,结束了“黑板+粉笔”的单一教学模式,聘请外校知名教授来校讲课和培训新教师,取得了一定的教学效果。

2007年至今,课程的建设改革期。2007年申请了校级教改课题,开展“电磁场理论与微波技术”课程实践和教学探索,并以建设学校重点课程为契机,全面修改课程内容体系。从内容的广度、深度都有了质的改变,强化了电磁场理论的基本原理、基本知识,以及仿真、设计、制作方法和步骤等内容,进行精品课程建设,全面提高教学质量。

二、课程建设和教学实践的主要内容

1.完善教学大纲,调整教学内容

教学大纲是指导课程教学、评价教学质量的主要依据。根据培养计划和课程设置等情况,最近五年对教学大纲进行了三次较大的修改和完善,使学生掌握电磁场和微波的基本结构,建立相关概念间的联系,对本课程理论知识有比较完整的理解,为后续课程的学习打下基础。比如在电磁场理论方面,重点要求重点掌握静电场的梯度和散度、静电场的基本性质、恒定磁场的磁通连续性、磁介质的磁化及矢量磁位和矢量泊松方程、标量磁位和拉普拉斯方程、麦克斯韦方程组的内容及其物理内涵和时变电磁场中的分界面的边界条件等内容;在微波技术方面,掌握传输常数、特性阻抗、反射系数、驻波比等微波传输线的基本概念及其物理意义。掌握不同负载时的传输线的工作状态和传输线的阻抗圆图及其应用,掌握导波系统中的波型、传播常数、相位常数、截止波长、相速、群速等的概念,掌握微波网络分析中常用的参量和双口网络的工作特性参量,对矩形波导的波型及传输特性、TE10及波导壁的电流分布也予以重点要求,掌握各种基本微波元件的结构、原理和使用,使学生能对微波器件等最新技术有更加深入的认识,为学生在将来选修天线等知识时打下良好的基础,对于课程其余知识则要求了解。虽然本课程总学时数有所下降,但是教学大纲仍能在知识更新和课程体系结构等方面保证其合理性。

2.精选教材,突出“化繁为简”理念

根据教学大纲选择合适的教材是教学质量的基本保证。近些年来,我们先采用高等教育出版社1999年出版,谢处方、饶克勤编的《电磁场与电磁波》和西安电子科技大学出版社2001年出版,刘学观、郭辉萍编的21世纪高等学校电子信息类系列教材《微波技术与天线》,由于课本内容太多,公式推导繁琐,影响部分学生学习积极性。然后就改选用西安电子科技大学出版社2002年出版,盛振华编著的《电磁场微波技术与天线》,在与学生的互动过程中,学生反映对矢量分析这部分内容比较困惑,希望能在课本中列出这部分知识。于是又选用机械工业出版社2007年出版,傅文斌主编的《微波技术与天线》为教材,[4-6]该教材属于普通高等教育“十一五”部级规划教材。

由于进行精品课程建设,对教材也提出更高的要求。吸取以往选择教材的经验,现在使用北京邮电大学出版社2010年出版,李媛、李久生编写的《电磁场与微波技术》,与以前教材相比,该教材根据面向21世纪电类技术基础课程教学改革的要求,并考虑到电子类专业的特点,注重对电磁场与微波技术的基本概念、基本规律、基本分析方法的介绍,着重对广大普通学生分析问题、解决问题能力的培养。本书内容由浅入深、重点突出,基本理论推导去繁就简,着眼于应用,方便学生理解,使学生更易于接受课程知识。[7]

3.促进教学科研互动,培养创新能力

教学与科研的相互结合,可促进教学质量提高。任课教师在授课过程中,把自己相关的科学研究项目和研究结果介绍给学生,例如在讲授微波滤波器知识时,介绍如何用微带设计新型微波器件,并用Ansoft HFSS和MathCAD等仿真软件进行设计和分析,画出设计电路原理图,然后再播放相关滤波器件的实际电路图,这样一方面使学生对利用微带设计微波器件等复杂过程和抽象概念有简洁的理解,加深对理论知识的认识,另一方面提高学生对本课程的学习兴趣,为学生今后做相关微波研究和创新设计打下基础,例如利用MATLAB软件进行练习和处理,学生还可以自己动手实践,起到良好的效果。目前太赫兹波的研究利用是近些年比较热门的课题,在车站、奥运会和出入境等安检以及食品质量检测方面具有越来越多的应用前景,鼓励有潜力的学生利用学校太赫兹波实验室进行研究和创新设计,允许学生与老师一道,积极参与发表科研论文和撰写专利,有些学生在攻读硕士研究生时,继续选择与本课程相关的课题作为研究方向,学生的创新能力得到培养。

4.改进实验教学,提高实验效果

根据教学大纲,改革实验内容,重新编写实验指导书,增加综合性和设计性实验。在实验中,教师首先讲解实验要点和注意事项,然后以学生操作为主,教师指导为辅进行实验,对实验结果进行当场验收并进行相关理论知识的提问,以此作为评定学生实验平时成绩的主要依据,有助于学生的实验预习和增强学生的动手积极性,鼓励学生多角度分析实验现象,检验实验数据的可靠性,规范学生实验报告,提高实验效果。实验室还提供高要求的选做实验和开放性实验,利用学院建立的RF-2000系列射频实验基地,鼓励学生自行创新设计,切实体验和探索电磁场和微波技术在工程中的应用,使学生感受理论知识与实际工程的联系,增进对基本概念的认识。

5.重视教学电子资源建设,拓宽课程信息来源

课程组利用学校教学网络设施,建设本课程的教学网站,列出该课程的教学团队情况、教学大纲、教学日历、电子教案、授课录像、实验指导书、实验大纲、思考题、习题及解答和多媒体课件等信息,鼓励学生经常点击浏览。作为随堂答疑的补充,还安排教师负责解答学生提出的疑难问题,解决学生在学习中遇到的困惑,增强学生对学习本课程的自信心,也为学生提供了一个崭新的自学环境,拓宽了本课程信息来源。

6.改革考试方式,促进考核公平公正

本课程的考试方式曾经采用开卷考试,相当一部分学生就以为只要考试时带上书本就能考好,在平时也不认真做作业和复习,实际情况是考得不是很理想。课题组教师决定改变考试方式,采用闭卷考的方式,建立20多套试题库,由于本课程的公式较多,有的公式又较繁琐,就在每套试题后面附上公式,而且公式不按照章节的先后顺序排列,比如有关相速度的公式可能就有;;;;;等公式,需要学生真正了解试题所指物理概念才能找到正确公式。期末考试时由学校教务处随机抽取试题进行考试,任课教师也不清楚具体会考什么题目,使学生打消了以前认为的平时可以不来上课,只要划重点的那节课来了就能考好的投机心理,从而重视平时按时上课,既提高了课堂出勤率,又促使学生自觉加强考前复习,改善了学习效果,促进学生考核更加公平和公正。

7.建设精品课程,提升教学水平

精品课程建设对教学质量的提高起到积极作用,已成为课程建设的重要标志。本课程积极参与精品课程建设,整合课程资源,优化教学内容体系,全面提升课题组的教学水平,在2009年经学校评审成为校级精品课程,2010年被增选为浙江省精品课程,表明该课程建设取得了良好成果,课程的教学水平也得到进一步的提升和认可。

三、结束语

课题组教师经过多年的不懈努力,“电磁场理论与微波技术”课程建设和教学实践取得了初步成效,学生对本课程的学习积极性更加主动,教学效果得到明显改善,在校内外获得了积极评价。当然,还有许多工作需要进一步完善,我们一定会在今后的教学中继续改进。

参考文献:

[1]周雪芳,钱胜,李齐良.“电磁场与电磁波”精品课程建设的探索与实践[J].中国电力教育,2011,(4):68-69.

[2]李丹美,仇润鹤,叶建芳.“电磁场与电磁波”课程教学改革探索[J].实验室研究与探索,2005,(S1):157-159.

[3]姜宇.在“电磁场与电磁波”课程中建立创新理念[J].电气电子教学学报,2009,31(1):95-96.

[4]谢处方,饶克勤.电磁场与电磁波[M].北京:高等教育出版社,1999.

微波技术论文篇(6)

中图分类号:TN943 文献标识码:A

一、前言

微波信号光纤传输技术作为21世纪人类社会中枢神经系统,是工业社会转变为信息社会的核心技术之一,它不仅促进了社会的发展,其自身也被应用到许多领域,方便了人们的生活。但是电波会在传输的过程中发生损耗,而作为球体的地球其曲面机构也对微波信号的传输有着很大的影响,因此电波要在不间断传输的过程中,还要不断地放大电波从而保持高质量的通信,这样才能保证信息的正确传输,其解决办法就是在发射信号的点与点之间以差不多50km的距离设置转接的中继站,这样电波才能在长距离的传输过程中不会发生损耗并且保持着高质量的通信。

二、微波信号光纤传输技术概述

微波信号光纤传输技术是以光纤作为媒介,传输微波信号的技术,以下会通过微波光纤传输技术的基本概念以及特点进行论述。

1 基本概念

微波信号光纤传输技术是利用光纤传输微波信号一种传输方式,微波信号在远距离传输过程中有很大的损耗,因为光纤通信体积细且轻,还具备频宽带的特点。时间不断推移,科学也在不断进步,学者们研究出一种将微波信号与光纤传输优点相结合的通信传输技术――微波信号光纤传输技术。

2 微波信号的特点

微波通信频率范围是300MHz(0.3GHz)~300GHz;它拥有不同于其它现代通信网传输方式。微波信号的传输是不需要固体介质,它具有容量大、质量好传输损伤小、抗干扰能力强并可传至很远的距离的特点,但是又由于它的频率高以及波长短的特点,所以视距通信是它的主要通信方式,一旦超过视距范围,就需要中继站进行转发,因为微波信号一旦遇到阻挡就被反射或被阻断。综上所述,微波通信通过微波进行正常通信,它可以用于点对点或一点对多点的通信方式,但是需要点和点之间没有阻隔,并且需要中继站进行转接传播。

3 光纤的功能

光纤是非常细小并且韧性很强的物体,如发丝一般粗细的光纤可拎起重量达到7kg的重物,并且光纤拥有通信容量大、长距离传输损耗小、体积轻、并且不受电磁波干扰的特点,因此一根光纤可以发挥很大的作用,它可以把声音、文字、图像等等转换成光信号,并以每秒3亿米的速度传递到世界各地。

4 微波信号光纤传输的原理

光纤是微波信号光纤传输技术的微波信号传输媒介,微波光纤传输技术要拥有预失真补偿技术、激光器降噪技术以及“SBS”阈值控制技术这几种关键技术才能保障通信的正常运行。它的系统主要由微波驱动器件、电光转换器件、光电转换器件以及光缆四部分组成,每个器件都拥有着不同的职能,比如光缆是作为光调制信号的传输介质,而微波信号的电光转换功能是由微波激光器及电光调制器进行完成,还有微波信号驱动的电平输出或调制是由微波驱动器件作用完成以及光信号的光电转换功能是由光电探测器完成解调的,四个部分虽然职能不同,但每个部分都非常的重要,都是保障微波信号光纤传输重要步骤。

并且微波信号光纤传输技术还拥有两种调制方式,这样两种调制模式能够寻找与微波信号驱动相匹配的调制或者电平输出,并实现微波信号的远距离传输,这两种调制模式就是外调制模式以及直接调制模式;其中直接调试模式相比外调制模式要简单许多,直接调试模式是利用微波激光器进行强度调制,但是也有缺点,就是限制了传输距离并且会产生啁啾效应,这样就没有办法进行长距离传输;而外调制模式就可以实现长距离传输并且不会出现啁啾效应,但是外调制模式需要的技术非常复杂,需要利用电光调制器实现调制,这样不仅会增加成本也需要很高的技术支持。

三、微波信号光纤传输技术的应用

1 微波信号光纤传输技术的优势

微波信号光纤传输技术的优势就在于它的特点,通过上文的论述,我们可以知道微波信号光纤传输技术具有传输容量大、通信质量好、传输损伤小、抗干扰能力强、安全隐秘性好并可传至很远距离的特点,就因为微波信号光纤传输技术的这些特性为它在应用于社会上赢得了强大的竞争优势。

2 微波信号光纤传输技术的应用

微波信号光纤传输技术常应用于商业以及军事领域。商业例如3G\4G通信技术,是因为移动技术对于信号的要求很高,而微波信号光纤传输技术安装成本低、穿透性好,并且可以进行宽带室内覆盖,在一些大型建筑中,就很是看重信号的覆盖率,对于微波信号光纤传输技术来说,只要通过在建筑物内安装中继站与分布式天线,就可以提高信号的覆盖率,满足大型建筑的要求;而对于军事领域,随着战争形式的不断更新,国家越来越看重信息化战争,这样就提出了超宽带的要求,这种传输方式必须具备抗强干扰的能力以及信号的动态频率要范围广且稳定,并且对于冷热的预判能力要强,因此必须要拥有频率为100MHz~18GHz的光端机,并且必须具备隔离、匹配、频率补偿技术等等一系列的技术,微波信号光纤传输技术的光端机具有体积小、重量轻、延迟范围宽、精确可调的特点,所以微波信号光纤传输技术非常符合标准,从而应用在军事信息传输各频段网络间的延迟网络上。

结语

在现今的信息社会中微波信号光纤传输技术扮演着一个重要的角色,因其优良的特性,因此在商业发展以及军事上都产生着巨大的作用,我们可以看到它拥有着一个非常广阔的舞台。

参考文献

微波技术论文篇(7)

随着科学技术的发展,微波技术的应用已渗透到了科学领域的许多方面,如无线通信、全球定位系统、雷达以及电子和计算机工程学科中。因此对于电子与信息工程类专业的学生来说,微波技术课程的开设是必不可少的。

一、微波技术课程特点

《微波技术》作为通信工程、电子工程、电子信息以及微波等专业的重要专业基础课,是在学习了《电路基础》和《电磁场与电磁波》等课程基础上深入研究微波领域的重要科目,其内容丰富、概念抽象、理论性强、对数学方法的依赖性强,教与学都有难度。微波技术课程主要包括传输线理论和圆图的应用;微波网络基本理论、s 矩阵及其特性等方面。在讲解波导理论时以简正波理论为线索介绍矩形波导的物理构成及其工作原理,其场结构在三维空间分布,因而要求学生有一定的空间想象能力和抽象思维能力。而课程涉及到的多由理论均以麦克斯韦方程组为理论依据,其中重要的结论推导都离不开高等数学和复变函数的知识。由此可见,微波技术课程教学难点主要表现为课程理论性更强、内容复杂而抽象、分析方法多样、对数学知识要求较高[1-3]。

二、微波技术教学中存在的问题

通过对以往教学过程中出现的情况,结合本专业特点,发现《微波技术》课程的讲授过程中存在以下几个问题:

(一)在现有的教学过程中,往往过于偏重理论教学,而实践教学所占比重较小;仅是按照课本简单设计教学计划,将基本的、重要的概念、原理、方法在有限的课时教学中教授给学生,而缺少介绍微波技术的发展前沿,因而学生课程学习意义不明确。

(二)由于该课程需要大量的先进仪器设备,而有限的学科建设及科研经费造成实验室先进仪器设备相对匮乏,导致学生缺少开放式教学环境。

(三)教学方法相对于其它课程比较传统,网上教学辅导与课堂教学难以有效结合;对学生的考核仅限于分数的高低;在课程建设过程上未能引进国外先进的教学理念、教学方法及教材,未能及时更新配套的实验教材,使学生不能在多层次、开放式的教学环境下学习。

三、微波技术教学改革的实践探索

针对以上教学中存在的问题,认为从以下几个方面对《微波技术》教学改革进行探索:

(一)注重合理利用教材,配套实验教材。以教材更好地适应当前教学的需要为目的,对教材在保留原有经典基础理论的同时,增加新的理论和实用技术;结合当前微波技术的发展,增加的新型微波元器件的原理和使用方法介绍。

(二)不断更新课程内容,提高学生学习兴趣。微波技术课程内容比较抽象,学生在学习中不易建立概念,也会因怀疑课程的实用性从而减少学习的动力。因此,应多注重对于课程内容实际应用背景的介绍,比如介绍未来移动通信技术中的射频技术等,以提高学生的学习兴趣。

(三)将实践性教学与启发式教学相结合。本课程紧密结合实际,教学中应加强实验教学环节。为节省设备经费,采取硬件平台与软件辅助相结合,学生实际动手操作与演示相结合的方法,开发基于仿真实验平台的实验内容,从测量微波的基本参量入手,将“电磁场与电磁波”实验与“微波技术”实验有机结合,使学生加深对书本知识的理解。

(四)积极改革教学内容组织方式。基础理论教学方面,教学内容以讲授基本原理、基本方法为主,使学生了解基本理论知识,掌握重点、难点问题,在讲授该课程时,把重点放在基本概念和基本原理的解释上;实践课程教学方面,结合理论课程教学内容,精心设计典型的实验范例,利用实验室拥有的微波仪器设备,进行微波系统基本参数的测量;实践环节教学方面,主要包括课程设计和毕业设计,让学生利用所学的知识,培养学生的实践技能。

(五)开展互动式教学与研究式教学。开展互动式教学,在授课过程中,鼓励学生提问,每一章结束后都进行分组讨论,培养学生的独立思考、分析问题、解决问题的能力。开放式、研究式的讨论,使学生总结归纳所学内容,用一条龙“串”起来,写出“小论文”形式的学习笔记。这些措施促进了学生的积极性和自信心的提高,帮助学生克服了畏难情绪,增强了对自己将来从事微波科研工作的兴趣和信心。

(六)坚持推进优师建设,加强教学经验与资源的总结、研究与推广,实现科研与教学的融合,不断优化教师队伍结构,全面提高任课教师水平。

(七)积极进行网上教学改革试验。充分利用利用网络教学来补充课堂教育,将网络教育与课堂教育有机地融合起来。

(八)设计教学信息调查表和听课记录表。调查表在课程结束时使用,听课记录表由课程教学负责人教学过程中随机听课时填写。对负责人每学期听课次数定量化,并要求分别对相关教学环节进行评价。根据学生填写的调查表和负责人填写的听课记录,分析教学过程中所存在的问题以及教学改革与创新的效果,为教学研讨和教改指明方向。

四、结语

通过对《微波技术》教学手段,教学方法和实验环节等多方面的不断地探索,为深化《微波技术》课程教学改革,提高课程的教学水平和教学质量提供有益借鉴。

参考文献:

微波技术论文篇(8)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2014)26-0074-02

为了培养学生的实践能力,提高学生的就业能力,使学生的综合素质和人才市场需要相接轨,普通高校都重视学生实践能力的培养,[1,2]并增加相应实验实践类课程的设置。微波技术是通信工程专业必不可少的专业基础课,也是一门重要的专业基础课。[3]近些年,随着科学的发展,微波技术得到了广泛的应用,尤其是在通信行业,如微波卫星通信、微波散射通信、模拟微波通信和数字微波通信等。[4]微波技术广泛的应用也带动了就业市场的需求。由于微波技术领域的特殊性,目前社会上招聘微波工程师和射频工程师的岗位都要求应聘者具有丰富的实践经验,能够熟练使用微波设计与仿真软件进行仿真优化设计,能够熟练使用常规的射频及微波仪器设备等。[5]为了培养微波技术领域的高素质应用型人才和卓越工程师,需要在实践和创新方面加强对学生的培养。

实践教学是微波技术课程的重要组成部分。利用ADS软件构建涵盖传输线理论,Smith圆图和微波网络等内容的仿真实验可以使学生较好地掌握微波技术的基本原理,加深学生对微波器件基本参数的认识和掌握。在微波技术基本实验的基础上可以引导学生进行扩展实验,进一步研究,这样有利于培养学生的实践能力、设计能力和创新能力。

一、传输线理论仿真实验

传输线理论是微波技术的基础。传输线理论即分布参数电路理论是学生接触微波技术的切入点,也是入门点。因此,全面理解掌握传输线理论也是学习后续课程内容的关键。传输线理论重点是要学生把传输线的等效电路理解好,并能正确分析信号在其上面的工作状态。在学生已经有了输入阻抗、反射系数、驻波比的一般概念后,我们给出了广义无耗传输线上的仿真实验。广义无耗传输线更符合实际应用情况,即最普遍的情况是电路的两端均不匹配,因此实验更具有一般性和实际应用的价值。根据广义无耗传输线理论,在传输线两端均匹配,仅源端匹配和仅负载端匹配三种情况下负载端的电压分别为:[6]

其中,Vs为信号源激励电压,Zs为信号源内阻,Z0为特性阻抗,为负载处反射系数。

利用ADS软件可以仿真广义无耗传输线上的电压波形。ADS仿真模型如图1(a)所示,激励源信号的频率为1GHz,电压幅度为1V,激励源内阻为R1,负载阻抗为R2,传输线的特性阻抗为50Ω,当源端匹配而负载阻抗为100Ω时,传输线输入端电压V1和负载处电压V2的仿真结果如图1(b)所示,从图中可以看出V2叠加了反射的电压,与式相吻合,可以继续改变激励源内阻和负载阻抗,得到其他两种情况下传输线输入端电压和负载上电压的对比,从中可以直观地验证广义无耗传输线理论。在此基础上,可以进一步指导学生仿真传输线两端均不匹配情况下的电压波形,使之理解波在传输线上的来回反射。并给学生提出为什么会出现来回反射这一问题,引导学生独立思考,为学生自己设计微波电路做好理论的铺垫。

二、Smith圆图与阻抗匹配实验

Smith圆图是微波技术课程的重要内容,也是学生掌握阻抗匹配的工具。Smith圆图主要用于计算微波网络的阻抗、导纳及网络阻抗匹配设计等,还可用于设计微波元器件等。[7]利用ADS中的Smith圆图工具可以直观地进行阻抗匹配。图2为ADS软件中的Smith圆图工具。为了简单起见,设置传输线特性阻抗为50Ω,负载阻抗为75Ω。图2给出了负载和传输线进行匹配的结果。匹配结果可以从多个角度得到并验证,图3中右下角给出了匹配的网络原理图,即此时可在负载端并联一个电阻;图2中右上角给出了匹配后网络的S参数;在图2左面的Smith圆图中可以看到匹配的最终结果。由于利用Smith圆图进行匹配是一个动态的过程,因此在改变参数的过程中可以随时关注匹配的效果。在Smith圆图上既可以考虑源端匹配也可以考虑负载端匹配,特别是对于同一个匹配问题可以有不同的解决方案。在此基础上可以指导学生应用Smith圆图工具进行单支节匹配和双支节匹配等内容的练习,以加深学生对Smith圆图的认识和掌握,为微波电路及微波器件的设计奠定基础。

三、微波网络S参数仿真实验

散射矩阵即S参数是描述微波网络特性的一种重要矩阵形式,也是微波网络的特色之一,对散射矩阵概念的理解与应用是微波技术课程微波网络部分的一个重点和难点。[8]本部分可以通过一些仿真实例来使学生理解S参数。图3(a)给出了两条平行耦合微带线(四端口网络)的S参数仿真模型。当两条微带线距离很近时,由于电磁场的相互作用会产生耦合,应用平行耦合微带传输线可以构建多种类型的微波滤波器,因此本节实验来仿真两条平行耦合微带线的S参数。构建PCB板上长为4inch,线宽为40mil,线间距为40mil的两条平行微带线,并使其各个端口均匹配。S参数仿真结果如图3(b)所示,图中给出了频率在100M~3GHz范围上的S(2,1)和S(4,1)参数,从图中可以看出微带线的传输特性和耦合特性。由于所仿真的四端口网络具有互易性和对称性,因此查看其他S参数,会发现S(2,1)与S(1,2)一致,S(3,4)与S(4,3)一致,S(3,1)与S(1,3)一致,S(4,1)与S(1,4)一致。

根据这个仿真模型和结果可以引导学生再进行实验和研究。比如,实际上S(3,1)参数为两条平行耦合微带传输线间的近端串扰,S(4,1)参数为两条平行耦合微带传输线间的远端串扰。串扰是噪声,对于高速电路的设计者来说,如何抑制串扰就是一个问题。把抑制串扰这个问题抛给学生,使之思考,就会激发他们的学习兴趣和研究潜能。

四、结论

基于ADS软件的微波技术仿真实验既可以使学生掌握微波仿真软件的使用,也可以增强学生理解相关理论的能力。特别是通过引导学生在基本实验的基础上再进行扩展实验,可以激发学生的学习兴趣和研究潜能,提高他们解决实际问题的综合能力。在北京信息科技大学通信工程专业实施“卓越工程师教育培养计划”中,物联网是三个培养方向中的一个,其中的射频电路设计和射频识别技术等课程就需要学生有较好的微波技术基础,因此微波技术实践教学的地位将更加突出,基于ADS软件的微波技术仿真实验方案将为北京信息科技大学“卓越工程师教育培养计划”的实施奠定基础。

参考文献:

[1]吕淑平,马忠丽,王科俊,等.基于创新型工程科技人才培养的实验教学体系建设与实践[J].实验技术与管理,2012,29(7):133-135.

[2]张发爱,吴志强,刘来君,等.以重点实验室为平台,培养地方性工科大学生的实践和创新能力[J].实验技术与管理,2012,29(7):5-7.

[3]夏祖学,李少甫,胥磊.《天线与微波技术》课程的教学改革研究与实践[J].实验科学与技术,2013,11(6):49-51.

[4]孙凤坤,邢泽炳.微波技术原理及其发展与应用[J].科技创新与应用,2014,(6):3-4.

[5]全绍辉.构建“微波技术”课网上教学和实验实践学堂[J].实验技术与管理,2012,29(12):159-163.

微波技术论文篇(9)

中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)19-5381-02

继电保护装置是一种利用电磁感应原理而发展起来的电力系统保护装置,随着电子技术和网络通信技术的飞速发展,目前已经发展到微机型阶段,并且利用软件技术可以实现由软件技术驱动硬件而实现微机继电保护,这就是目前研究很热的技术――基于虚拟仪器技术的继电保护系统。利用虚拟仪器技术实现的微机继电保护装置,具有传统微机继电保护装置所不具备的优势,例如控制更加安全可靠等。

本论文主要将虚拟技术应用于微机保护实验系统,拟对基于虚拟仪器技术的微机保护系统进行开发,并从中找到可靠有效的微机保护实验方法与建议,并和广大同行分享。

1 微机继电保护概述

1.1 微机继电保护的基本构成

微机继电保护装置,其基本结构构成与普通的电力保护装置一样,也是有硬件和软件两大部分构成。硬件部分主要由数据采集系统、数据处理系统及逻辑判断控制模块等几个部分构成,主要由数据采集模块负责对电力系统的相关电参数实现检测与采集,并将数据传送至数据处理系统,数据经过运算之后,由逻辑判断控制模块调用软件控制程序,并发出相应的控制信号,驱动保护装置执行保护动作,从而实现电力继电保护的功能。

随着集成电子电路技术的发展,目前发展的微机型继电保护装置,其硬件系统主要由CPU(微处理器)主机系统、模拟量数据采集系统和开关量输入/输出系统三大部分组成,尽管结构构成已经发生一定变化,但其实实现继电保护的基本原理仍是一样的,由模拟量数据采集系统负责相关保护参数的采集,微机继电保护装置是以微处理器为核心,根据数据采集系统所采集到的电力系统的实时状态数据,按照给定算法来检测电力系统是否发生故障以及故障性质、范围等,并由此做出是否需要跳闸或报警等判断。

1.2 微机继电保护装置的特点

微机保护与常规保护相比具有以下优点:

1) 微机继电保护装置主要由微处理器为核心而构成的硬件系统,因此借助于现代功能强大的微处理器,微机型继电保护装置可以实现一定程度的智能化。

2) 相比于传统的机械式硬件实现的硬件保护装置,微机型继电保护装置能够依靠数据采集模块实现对相关参数的检测与采集,整个过程实现数字化流程,这就为继电保护装置的控制功能的稳定性、可靠性提供了技术条件;另一方面,依靠微处理器内部的软件程序,微机继电保护装置能够进行周期性自检,一旦发现自身硬件或者软件发生故障,能够立即实施报警,从而保障了继电保护装置功能的可靠性。

3) 传统的机械式硬件实现的硬件保护装置,其保护功能较为单一,仅仅是实现基本的保护功能,动作依靠一次性机械元件完成,一旦该部件发生故障,则整个继电保护装置无法工作;而微机型继电保护装置除了能够利用弱电驱动控制实现继电保护的功能外,还能够依靠数据采集系统对整个电力系统的相关电力参数都实施监测与采集,通过程序的分析,实现对电力系统整体性能的检测,保护功能大大丰富。

4) 传统的机械式硬件实现的硬件保护装置,其功能调试复杂,工作量大,而且极容易造成内部晶体管集成电路的失效,而现代微机继电保护装置,依靠内部的核心微处理器,能够开发专用的人机交互系统,利用人机交互系统实现继电保护装置的调试,简单易行,还可以自动对保护的功能进行快速检查。

5) 利用微机的智能特点,可以采用一些新原理,解决一些常规保护难以解决的问题。例如,采用模糊识别原理或波形对称原理识别判断励磁涌流,利用模糊识别原理判断振荡过程中的短路故障,采用自适应原理改善保护的性能等。

2 基于虚拟仪器的微机保护实验系统开发设计

2.1 总体结构设计

本论文探讨的是基于虚拟仪器技术的微机继电保护系统,因此首先面临选择合适的虚拟仪器开发平台的问题,这里选择基于G语言的LabView开发平台是目前国际最先进的虚拟仪器控制软件,集中了对数据的采集、分析、处理、表达,各种总线接口、VXI仪器、GPIB及串口仪器驱动程序的编制。基于虚拟仪器的微机继电保护装置系统,是利用虚拟仪器开发平台,构建虚拟的微机继电保护装置,实现完整的微机继电保护装置的全部功能,并对设计的虚拟继电保护装置进行评估和改进,从而完成微机继电保护系统设计的一种设计手段。

利用虚拟仪器技术进行微机继电保护系统的开发设计,从具体设计流程来说,主要从以下几个环节入手进行总体结构的设计:

根据微机继电保护系统的设计目标、设计功能,列出所需要的相关硬件,构建整体微机继电保护系统结构框架;另一方面,尽量采用模块化的开发设计模式,将微机继电保护系统按照不同的功能环节,设计各功能模块之间的结构关系。

如下图所示,是本论文所探讨的利用虚拟仪器平台所开发的微机继电保护系统结构原理图。这种方式既便于模块的单独调试,节省系统开发周期,又便于系统功能的改变,使系统具有更强的移植与升级功能。

如图1所示,基于虚拟仪器技术的微机保护系统结构主要由一次系统、转换模块、数据采集模块、保护测量模块及保护决策软件系统等几部分构成,一次系统主要负责面向电网系统模拟设置合适的传感器,将相关拟生成电网的二次侧电压、电流信号,信号经过转换、调理电路变换成符合要求的-5V~+5V模拟信号送数据采集模块,数据采集模块主要由DAQ数据采集卡构成,能够自动将模拟产生的模拟电压信号进行A/D转换,并进行初步的数据处理转换再传送给以虚拟微处理器为核心的保护决策模块,最终将生成的继电保护控制决策信号输出到保护策略模块,最终实现微机继电保护系统的功能。

2.2 数据采集模块的设计与实现

本文中微机实现的继电保护实验系统输入信号来源于继电保护测试仪,根据保护系统测试输入信号的特点,本论文采用数据采集卡来负责数据的采集与高速传输。

2.2.1 数据采集卡的选择

要实现基于虚拟仪器技术平台的微机继电保护系统,一次系统在完成相应电力系统电参数的传感检测之后,数据采集模块要能够按照微机继电保护系统的功能于设计要求实现相应数据的转换与采集,因此,数据采集卡的选择成为整个微机继电保护系统保护功能实现的关键。目前的数据采集卡,主要有12位或16位的DAQ数据采集卡,在具体决定选用12位还是16位的DAQ设备时,主要从采集精度和分辨率这两个指标考虑,可以由给定的系统精度指标衡量出DAQ卡需要的整体精度。

在本论文中,这里选取PCI-1716数据采集卡。PCI-1716是研华公司的一款功能强大的高分辨率多功能PCI数据采集卡,它带有一个250KS/s16位A/D转换器,1K用于A/D的采样FIFO缓冲器。PCI-1716可以提供16路单端模拟量输入或8路差分模拟量输入,也可以组合输入。它带有2个16位D/A输出通道,16路数字量输入/输出通道和1个10MHz16位计数器通道。PCI-1716系列能够为不同用户提供专门的功能。

2.2.2 虚拟数据采集程序的实现

在选择了数据采集卡硬件设备之后,需要借助于虚拟仪器平台为整个系统设计虚拟护具采集程序。在具体进行设计时,由系统内部虚拟程序产生数据采集卡锁需要的相应信号,具体来说就是CT、PT信号,因此,在具体编程时,首先将CT、PT信号传输至相应的滤波器,LabVIEW提供了各种典型的滤波器模块,根据需要可以设置成低通、高通、带通、带阻等类型的滤波器;其次,将经过数据滤波处理之后的数据进行输出。数据采集模块的程序如图2所示。

2.3 微机保护模块的设计与实现

既然在数据采集模块之后需要进行数据的滤波,尽管LabVIEW提供了各种典型的滤波器模块,但是仍然需要借助于虚拟滤波模块设计专用的滤波算法,而且在微机继电保护系统中,对电力系统的继电保护功能的实现,主要是由相应的滤波保护算法实现的,因此有必要为虚拟微机电力保护系统设计滤波保护算法程序。

本论文采用如下的设计方法对滤波保护算法进行设计:

1) 利用LabVIEW自带的滤波器进行数据的排序滤波。

2) 按照系统保护功能所需要的数据频带,设置相应的低通、高通、带通、带阻等灯滤波保护功能。按照上述方法,基于虚拟仪器平台的微机继电保护系统,其滤波器输入得到的数据序列,多数是传感器采集到的电参数,如电压和电流,而电压和电流数据是离散的数字量序列,其中包含了大量的谐波干扰信号,因此有必要进行滤波。在本论文中,采用了二级滤波保护算法,即分别进行前置滤波和后置滤波,实现对数据的二级滤波保护,从而提高整个微机继电保护系统的稳定性和可靠性。前置滤波模块如图3所示,后置滤波模块如图4所示。其中前置滤波模块提供了差分滤波器、积分滤波器、级联滤波器、半波和1/4周波傅立叶滤波器、半波和1/4周波沃尔氏滤波器,可以根据需要自行选择;后置滤波模块提供了平均值滤波器、中间值滤波器,也可以自由选择。

3 结束语

利用虚拟仪器技术进行微机继电保护装置系统的设计开发,能够很好的避免了实物硬件开发设计所带来的周期较长、调试较复杂以及成本较高等劣势,所有的开发设计任务全部在虚拟仪器平台上完成。本论文将虚拟仪器技术应用到了微机保护装置的设计,对于进一步提高微机继电保护装置的可靠性与稳定性具有优势,同时借助于虚拟仪器技术的开发,能够更好的实现电气继电保护功能的完善与提升。

参考文献:

[1] 李佑光,林东.电力系统继电保护原理及新技术[M].北京:科学出版社,2003.

[2] 王亮,赵文东.微机继电保护的现状及其发展趋势[J].科技情报开发与经济,2006,16(18):150-151.

微波技术论文篇(10)

 

1 引言

我国历史悠久,土地辽阔,蕴藏着极丰富的中草药天然资源,在远古时代人们就已经开始利用各种中草药治病,如常山治疟疾,桦树皮止痛,都证明有很好的疗效。同时大量临床试验表明,相比人工合成药物,中草药的副作用小得多。免费论文。因此,传统药物尤其是中草药,在欧、亚、美等各洲越来越受到欢迎和重视。免费论文。

中药材一直是我国出口创汇的重要商品。目前我国中药材出口已扩展到世界130多个国家和地区,2008年出口金额为13.09亿美元,同比增长10.94%。但是在我国中药材出口贸易不断扩大、面临良好机遇的同时,也面对着一些随之而来的挑战,造成这种局面的主要原因之一就是中药材的质量问题。传统中药材干燥加工过程中所造成的性味劣变、生物活性物质(特别是药用有效成分)的损失以及安全性等问题,正是目前我国中药材面临的主要问题。在国际市场对中药材质量要求提高的同时,我国的中药材生产、产地加工相对不够规范,产品外观、色泽劣变、有效成分含量低。微波干燥由于具有干燥速度快、干燥均匀、产品质量好、可以选择性加热干燥、热效率高、反应灵敏等优点,而日益成为重要的中药材干燥方法之一。

2中药材干燥方法

我国对中药材干燥方法的研究已经有很长历史。早在公元1~2世纪左右,我国现存最早的中药材专著《神农百草经》中已有对中药材“阴干、曝干、采造时日、生熟土地所出”等有关干燥方面的记载[1]。唐代孙思邈著《千金翼方》一书中也有“夫药采取,不以阴干曝干,虽有药名,终无药实”等具体描述[2]。这是最经济的方法,成本较低。但是存在着许多工艺上的问题,如干燥时间长、有效成分破坏大、遇到阴雨天气容易霉烂变质、易被灰尘、蝇、鼠污染等缺点。

现代中药材干燥技术为了保证中药材药性及有效成分,在人工控制条件下,对中药材进行适当的干燥处理,包括常压或减压环境中以传导、对流、辐射方式或在高频电场内加热使之干燥,以促进水分蒸发,达到要求含水率,保持较高的产品品质,便于包装、储藏、运输。目前常采用干燥技术包括:烘房干燥、厢式烘干机、网带式干燥机、隧道式干燥机、翻版式干燥机、振动流化床干燥。上述几种方式多采用热风干燥原理,生产成本较低,因此广为采用,但有效成分损失也大,甚至有严重的品质衰退现象。另外,中药材干燥前需要适当的预处理,但由于程序较繁杂、费工时,实际干燥生产中往往不重视;干燥过程自动化程度不高,不能分时间段对中药材的含水率、水分活度,以及干燥介质的温度、湿度、流速进行自动监控,都造成干燥品质不佳、最终含水率不符合要求,严重地影响中药材产品的品质。

随着新型干燥技术及设备的开发及应用,人们对中药材干燥质量的提高、能量单耗的降低、操作的可靠性都提出了更高的要求,干燥将朝着提高产品质量、有效利用能源、减少环境影响、运用计算机提高自控水平、操作简单等方向发展。结合当前中药材的特性,正在开发研制的干燥技术主要有:真空冷冻干燥、微波干燥、远红外干燥、热泵以及太阳能干燥。真空冷冻干燥与其工艺相比,设备昂贵,加工成本高,但它是保证中药材干燥品质的较佳工艺,增值率高,将被十分广泛地应用到生产实际中去;微波干燥作为一门先进工艺,技术上是可行的,但生产成本较高,使用时还对监控手段和供电条件有苛刻的要求,所以尚未能大规模应用;远红外干燥设备简单,辐照均匀,干燥速度快,干燥时间为热风干燥的1/10左右,生产效率高,可连续操作,实现温度、风量、进料的自动控制 ,不会引起中药材物理结构的变化,较好地保持性味及有效成分,因此在实际干燥生产中普遍应用;热泵干燥能够很好地保障干燥产品的品质,中药材的颜色、外观形态和有效成分等在热泵干燥都能得到妥善的保护,其还有不污染环境、操作方便等优点,因此越来越受到中药材干燥行业的重视;太阳能干燥是取之不尽,用之不竭且无污染的能源,中药材采用太阳能干燥可以取得较好的经济效益。

3微波技术在中药材干燥的应用

随着微波技术的发展,微波干燥技术在中药领域的应用得到一系列的进展,尤其是在中药材干燥灭菌上。卢鹏伟等对六味地黄丸进行微波干燥与烘箱干燥比较,发现微波干燥时丹参酚含量损失率平均降低2.4%,灭菌率平均提高1.9倍[3]。鞠兴荣等对不同微波功率条件下银杏叶的干燥规律和对有效成分含量的影响进行了初步研究,结果不同的微波功率对干燥速率影响比较大,脱水恒速期结束时银杏叶的水分含量在10%左右,过高强度的微波辐射导致黄酮苷和萜类内脂等主要有效成分部分降解[4]。杨张渭等把微波干燥灭菌工艺试用于丸剂生产,用微波干燥灭菌工艺对水丸、水蜜丸、和浓缩水蜜丸3种丸剂类型的5种产品进行试验,结果表明成品的形状、溶散时限、水分、微生物限度检查等质量指标均符合标准规定。一般干燥250—300kg丸药,耗电仅83kw,能源利用率达到70%,将微波频率控制在2450 MHz,时间为1.5min,对5个批号的玄驹胶囊进行微波灭菌,细菌平均降低率为98.11%[5]。王茂学利用改进的实验室微波炉进行人参干燥,提出微波与热风干燥相结合,能有效地保护人参的干燥质量,有效成分总皂贰含量损失小,且在自然对流的情况下,干燥的时间仅为热风干燥的1/10~1/5[6]。王绍林认为采用微波——真空冷冻干燥人参,微波能量达到物料深层转换成热能,使深层水分迅速蒸发形成较高的内部蒸汽压,表里温升均匀,消除了干燥表层常见的皱皮萎缩现象[38]。免费论文。

4 基于微波技术的中药材干燥设备

采用微波进行中药材干燥是指利用微波能量使中药材内水分气化的过程。微波加热穿透性强,能使中药材表里温升均匀,微波能量达到中草药物料深层转化为热能,使深层水分迅速蒸发形成较高的内部蒸汽压,消除干燥表层常见的皱皮萎缩现象,较好的保护干燥品质,这是常规加热干燥所不及的。同时微波还对物料伴随着生物效应(非热效应),在较短时间内杀死虫卵和大肠杆菌等微生物。

微波干燥设备主要有直流电源、微波管、传输线或传导、微波炉及冷却系统等几个部分所组成。如图1-1所示:

5 结语

在中药材干燥质量方面,和其他技术相比,微波技术有明显的优势。但应用微波技术进行中药材干燥,也有很多不足之处且技术比较不完善。随着技术的发展,这些不足之处必会逐步被克服,或许会有更先进的技术将应用于中药材干燥。

参考文献:

[1] 陈重明. 本草书[M]. 南京:南京工业出版社,1994

[2] 孙思邈. 千金翼方(卷一)[M]. 北京:人民医生出版社,1982

[3] 卢鹏伟, 杨晨华, 何颖等. 浓缩六味地黄丸两种不同干燥方法的比较[J]. 河南大学学报,2002,21(4):21~22

[4] 鞠兴荣, 汪海峰. 微波干燥对银杏叶中有效成分的影响[J]. 食品科学, 2002, 23(12):56~58

[5] 杨张渭, 周定君, 任琦等. 微波干燥灭菌工艺在丸剂生产中的应用[J]. 中成药, 2000, 22(7): 468~469

微波技术论文篇(11)

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2017)16-0125-02

一、俄亥俄州立大学电磁场与微波技术专业课程体系基本情况

美国俄亥俄州立大学的电磁场与微波技术学科在美国处于领先水平,其讲授的课程大致分为两大类。

第一类侧重电磁场基础理论,相关的n程包括:1)电磁场理论I,II,III(ECE719,ECE810,ECE811):主要讲授Maxwell方程及方程的经典解析解法等。2)电磁导波(ECE812):主要讲授如何求解波导和平面传输线中的导行电磁波。3)高等电磁场理论(ECE815):主要讲授电磁波的传播和散射理论,包括高频近似方法、波在各向异性介质中的传播等。4)随机媒质和粗糙表面的散射(ECE816):主要讲授基于统计模型的媒质散射理论,包括独立散射、辐射转移理论和解析波理论等。

第二类偏向于技术与工程应用,相关课程包括:1)微波电路(ECE710):主要讲授微波线性无源器件以及微波电路的计算机辅助设计和加工测量。2)非线性微波电路(ECE694):主要讲授微波非线性电路设计,如低噪声放大器,功率放大器等。

与天线相关的课程包括:1)天线的辐射(ECE711):主要讲授线天线、反射面天线、透镜天线等天线的特性以及阵列天线的性质。2)高等天线理论(ECE815):主要讲授阵列天线的方向图综合以及天线的测量等。3)无线系统的天线与传播(ECE613):主要讲授无线基站中的天线设计、城市与郊区的电波传播模型等

与课堂授课相配套的有两门实验课,包括:1)电磁实验(ECE517):实验内容主要包括微波无源器件与天线的设计、实现与测量。2)微波晶体管放大器与振荡器实验(ECE723):实验内容包括低噪声放大器、功率放大器、宽带放大器和振荡器的设计、实现与测量。

另外一些比较重要和值得关注的课程主要有:1)实践性课程,如Individual study in ECE等,这些课程一般包括项目的撰写、现代设计工具的使用、系统设计与实现以及项目研究情况报告。2)企业实习经验交流课程(ECE489),要求学生就实际的实习工作经历准备一份报告,目的是提供一个相互交流的平台,让学生之间分享工作经历和体验。

从以上课程设置可以看出,俄亥俄州立大学电磁场与微波技术专业的课程体系比较完备,从授课课程到实验实践课程均有覆盖,同时注重基础理论的学习和实践能力的培养,形成了较为科学、完备的体系。

二、我校电磁场与无线技术专业课程体系基本情况

南京邮电大学是国内为数不多的在本科阶段即开设电磁场与微波技术专业的院校之一,该专业在本科阶段称为电磁场与无线技术,下面概括介绍下课程的设置情况。

本科阶段,电磁场基础理论课程主要有电磁场理论,课程侧重于电磁场基础理论。其他课程则偏重工程技术与应用,如微波技术基础、微波网络和射频电路课程,分别讲授微波无源和有源电路的理论与设计;天线理论与设计课程则讲授常见天线如线天线、微带天线等的特性与设计;微波电路EDA课程主要讲授微波电路的计算机辅助设计方法;微波与天线测量则讲授常见微波测量仪器的结构和测量方法;电波传播理论课程主要讲授在各种环境下电磁波的传播特性;电磁兼容课程主要讲授电磁兼容的基本概念和原理以及常用的电磁兼容技术。射频电路、微波电路EDA、微波与天线测量、电磁兼容等课程均设有课内的实验课,在帮助学生消化所学知识的同时也培养他们的动手能力。此外,每学期还设有课程设计,通过课程设计可以培养学生用所学知识解决实际问题的能力以及团队合作精神。

在研究生阶段的课程主要有高等电磁场、电磁场数值方法、微波技术、射频电路理论与设计、天线CAA与CAD等。

我校电磁场与无线技术专业成立较早,所以经过多年的发展,课程体系的设置比较完备,基本涵盖了本学科的基础知识范畴,能够保证学生掌握较完善的专业基础知识,毕业后能够从事相关工程和科研工作。但还存在着一些不足之处,如课程中电磁场理论部分所占比重不足,坚实的电磁理论基础是进行科研和工程开发的必备条件,然而在本科阶段只有电磁场理论一门课程,在研究生阶段也只有高等电磁场和电磁场数值方法两门课程,其他课程基本是面向工程应用的。此外,对实践动手能力的培养也有待加强,由于实验条件的不足,造成很多学生需要合用一台仪器,每个学生平均实践时间不足。另外,由于学校的课程设置调整,专业课的课时基本都压缩至32学时,造成授课内容基本上是浅尝辄止,无法深入。

三、对我校电磁场与无线技术专业建设的几点思考

我校的电磁场与无线技术专业经过多年的发展,在课程设置和实验条件建设等方面都取得了一定的进步,但与美国知名高校如俄亥俄州立大学还存在不小的差距,甚至与国内的设置类似专业的高校如电子科技大学等高校也存在一定的差距。结合上述我校与俄亥俄州立大学各自在课程体系方面的特点,针对我们电磁场与无线技术专业的特点与不足,对其建设与发展提出几点思考:

1.增加基础理论方面的内容:由于电磁场理论涉及数学知识较多,学生在学习时普遍反映课程内容较难,因此在课程设置上电磁场理论相关的教学内容比重较少,然而电磁场理论是其他相关专业课程的基础,因此有必要加大基本电磁理论方面的比重。参考俄亥俄州立大学的课程设置,其电磁场理论课程在整个课程体系中占了很大的比值,授课内容也由浅入深,从基本的电磁场理论到复杂的电磁散射问题均有覆盖。此外,可以增开计算电磁学方面的课程,这方面课程一方面可以巩固电磁场基础理论学习,另一方面,可以锻炼学生编程能力和使用商业电磁软件的能力。

2.课程合并和增加课程学时:由于课程设置调整压缩了专业课课时,导致本专业的专业课学时明显不足,授课内容只能一再压缩,这并不利于培养学生的专业能力。所以,在不改变其他课程学时的前提下,只能将部分专业课合并,同时增加授课课时。因为有些课程在授课内容上有所重叠,完全可以将这些课程进行合并,如微波网络和微波技术课程,两门课都会涉及微波网络方面的内容,所以可以将这两门课合并,同时将课时增加到48学时。这些在授课内容上有所重叠的课程合并后,虽然课程数量减少了,但课程学时增加,课程深度可以适度增加,有利于学生的专业能力培养。

3.加强实验和实践环节。由于微波仪器价格昂贵,导致实验教学资源紧张,很多时候需要很多学生合用一台仪器,实验效果较差。为了克服这方面的不足,可以自行研发相关的实验仪器,作为教学实验用,仪器满足基本需要即可,这样减低了仪器的成本,可以让学生人手一台,保证了每个学生有充分的实践动手时间。

参考文献:

[1]付云起,袁乃昌.俄亥俄州立大学电磁场与微波技术专业及课程体系浅析[J].高等教育研究学报,2011,34(1).

[2]彭麟,姜兴.中美高校电磁场教学比较研究[J].中国电力教育,2014,(17).