欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

光谱学分析大全11篇

时间:2023-06-01 15:56:46

光谱学分析

光谱学分析篇(1)

一、引言

就人造环境的概念提出来看,我们可以大致引出两种源头。

其一,我们今天所常见的几种因为人类活动而导致的自然环境问题十分重大且对人类的生活有着重要的影响,例如挖空煤矿导致的山体崩塌以及地震,再比如,大量的砍伐树木,不仅造成沙漠化严重,还导致大量的水土流失。这些问题都随时影响到人类的生活甚至生命,在这种前提之下,人造环境被提上了命题。在重大的灾难来临之时,人们所创造的避难所均设在地下,例如核辐射,而在这种条件之下通过分析光谱与类生物机械进行结合制造的人造环境,在视觉上做到与真实自然环境别无二致便为重点。

其二,人类对于太空的探索不断的进步。人们对于太空星球的探索以及资源的争夺都是愈演愈烈,所提出来的论点之中有两个极为重要,一是太空移民,一是太空资源开采。适宜人类居住的星球最重要的是哪些呢?大气,水,除此之外的一部分环境问题我们均可以用人造环境结合类生物机械来进行处理,利用分析光谱制造应急人造环境,对于刚刚登陆开发移居星球的前几批工作者来说是不可缺少的重点,在刚开始的恶劣环境之中可以用人造环境来改善进行星球开发的工作人员的生活环境。

二、可行性分析

1、光谱匹配系数

根据光电阴极的光谱响应特性曲线,我们可以计算出光谱响应率Sλ,将Sλ对其最大化Smax归一化,可得相对光谱响应率为

S(λ)=Sλ/Smax――(1)

此时,光电阴极面接受的夜天光经过景物反射后的辐射,即

ωλ= ρλPλ――(2)

其中(2)式中的ωλ为景物反射辐射光谱分布;ρλ为景物的光谱反射系数,他随波长λ而变化;Pλ为夜天光辐射光谱分布,将景物的反射辐射光谱分布ωλ对其最大值ωmax归一化,得到其相光谱分布为

ω(λ)=ωλ/ωmax――(3)

由此,我们可以从关系式定义光电阴极于景物反射辐射的光谱匹配系数为

α(S,ω(λ))=∫S(λ)ω(λ)dλ/∫ω(λ))dλ――(4)

那么我们分析式(4)可以知道,光谱匹配系数其实反映的是各种光谱响应的光电阴极对不同的辐射源的光谱利用率的高低,也就是说,这个利用率越高,越能够得到与实际物体所产生的光谱一样的光谱。分析可知当α越大时,匹配越好,从而微光夜视系统的观测效果也就越好,反之越差时匹配越差观测效果也就越差,根据式子我们可以知道α的值域在(0,1),越靠近1,越与实物反射产生的光谱相近,即越能体现出辐射源与实物之间的差别之小。达到以假乱真的效果。

2、光谱匹配基本模型算法

使用计算机软件通过算法制作光谱比较模型,通过所测物体的光谱度和已知的物体世纪光谱互相对比,来判别被测物体的种类,那么同样,我们可以通过对比从模拟人眼的光学仪器中的两条光谱曲线来使得目标物体在视觉上与实际地物一模一样。

2.1四值编码算法

首先对已知地物类别的光谱辐射至取平均值,得到阈值A,然后将光谱辐射值已A为边界分为[Xmin,A][A,Xmax]两个区间,在重复上步再划分得到总共四个区间。用同样的方法对待目标光谱曲线进行四值编码。使用异或方法,进行目标光谱和已知光谱匹配(即有区别为1,没区别为0),最后比较相等的个数,将目标分到波段数目相似最多的类别。

2.2光谱角度匹配

光谱角度定义为两地物光谱矢量之间的广义夹角余弦为相似函数,将像元N个波段的光谱响应作为N维空间中的矢量,通过计算他与最终光谱单元之间的广义夹角来表示它的匹配程度,夹角越小匹配程度越高,二者越相似。

日本kansai电力公司研制成功了一种新型太阳能辐射模拟系统,它不仅能模拟太阳光,还能模拟太阳热。这套系统用计算机控制等和加热器,一边产生接近自然的太阳辐射。它还配有人工的自然环境分系统,可模拟不同的气象条件。系统由氙灯,卤素灯和加热器组成,模拟阳光的波长范围从可见光(0.38到0.78微米)到红外线(0.78到20微米),而且光谱分布和自然阳光基本一样。

三、人造环境光学

就目前形似来看,高光谱图像在空间以及电磁谱维度中所利用较为广泛,尤其在遥控领域。

基于成像光谱仪在众多窄波段获取数据的特点,可以用已知地物类型的反射光谱,通过光谱频率曲线或特征匹配比较以达到识别地物类型的目的。长期的高光谱实验也收集了大量的实验室标准数据,建立了许多地物标准光谱数据库;那么从另一方面来说,人们可以用已知的数据伪造出与真实光谱无二的光谱已达到以假乱真的目的。

四、结束语

光谱识别技术是以物质构成的光谱唯一性为基础, 将目标的识别以光谱信息为第一特征,利用光谱的分析来得到现实生活中的自然物体在不同环境时所发射的光谱,对比获得正确的光谱,利用光电器件发射出对应的光谱。光谱识别技术的发展,包括计算机算法的发展,使得利用光谱制作更加逼真的人造环境得到可能。

参考文献:

光谱学分析篇(2)

1.1在病原微生物检测中的应用

微生物细胞膜表面有大量已知的生化成分可以看作是微生物的特征性标志,因而可以作为菌种快速识别和鉴定的判断标准。利用拉曼光谱可以在不依赖培养基的情况下直接对患者体内分离下来的或实验室中保存的单一菌种或混合菌群进行快速鉴别及分析[8]。美国华盛顿州的研究人员利用拉曼光谱对从临床患者和医院环境中分离得到的7株副溶血弧菌进行了分析,结果发现7株菌株都有其各自不同于其他菌株的特征峰。他们还将其中2株副溶血弧菌菌株分别按照1∶2、1∶1和2∶1的比例混匀后分别利用拉曼光谱检测,结果显示可以通过2株细菌各自的特征峰将两者明确区别开来,其中一株副溶血弧菌的特征峰出现在了1002cm-1、1177cm-1和1532cm-1处,而另一株副溶血弧菌的特征峰却分别出现在了525cm-1、738cm-1、1319cm-1和1639cm-1处,证明拉曼光谱无论在单一菌种标本还是混合菌群标本中均具有良好的分析鉴定能力[9]。另有研究发现结合使用拉曼光谱和化学计量法可以鉴别微生物的种类及各自血清型,已有实验利用银纳米颗粒作为基底对绿豆芽中的李斯特菌、霍乱弧菌、金黄色葡萄球菌等6种食物源性致病菌进行了拉曼光谱的鉴定和区分[10]。有研究报道对日常生活中主要的食物源性致病菌进行了拉曼光谱分析,从而对细菌进行等级划分,第一级便是区分革兰阳性菌和革兰阴性菌,另外通过各自特征峰区别不同细菌菌属,结果显示各级的识别结果准确度均在91%以上[11]。利用拉曼光谱技术与微流控芯片相结合的办法,毛丽华等人设计并建立了拉曼光谱-微流控芯片自动化检测系统,检测并统计了珠蛋白生成贫血型红细胞与健康人红细胞的拉曼光谱值,通过在1004cm-1、1130cm-1、1450cm-1等拉曼光谱特征峰的数据对比,发现了珠蛋白生成障碍性贫血型红细胞的血红蛋白宽度较健康人红细胞广,并以此发现了新的快速、便捷的检测珠蛋白生成障碍性贫血的检验医学技术。另有研究者也利用拉曼光谱技术与微流控芯片相结合的办法从十多种细菌混合的菌群中对耐甲氧西林金黄色葡萄球菌进行了快速分析研究。结果表明耐甲氧西林金黄色葡萄球菌较其他细菌有其独特的拉曼波峰,并且整个检测过程用时只需20s时间,在检验精度上也与传统PCR技术、免疫学检测技术所得到的结果相似[12]。该方法简便快速,安全可靠,非常适合用于卫生稽查部门的快速检验。

1.2在肿瘤检验中的应用

目前在全世界范围内依然没有很好的针对肿瘤的治疗手段,肿瘤的分期对预后起着决定性的影响,那么对肿瘤的早发现、早诊断、早治疗就摆在了尤为突出的地位[13]。在肿瘤组织中,在细胞发生病理学手段可观测到的形态恶变之前,其实已经存在由细胞增殖分裂分化或一些信号蛋白的产生等引起的细胞中遗传物质、蛋白质和脂类的结构和含量改变,而这些细微的改变可以及时通过拉曼光谱检测反映出来[14]。因而在肿瘤检验中拉曼光谱技术具有传统病理学检测所无法替代的功能用途,对肿瘤的早期诊断有巨大帮助。实验证明拉曼光谱可用于癌变组织与正常组织的鉴别。早在1991年就有人率先对拉曼光谱的肿瘤检验学价值进行了报道。他们发现正常乳腺组织与肿瘤组织甚至良性肿瘤与恶性肿瘤的拉曼光谱在700~1900cm-1存在着明显差别,且对应的各自拉曼峰相对强度也存在显著差异[15]。从此掀开了拉曼光谱应用于早期肿瘤诊断的新时代。Gawinkowski等[16]对拉曼光谱技术进行改进设计了快速近红外拉曼光谱检测系统,进一步提高了检测效率,可在5s内快速测得活体皮肤的拉曼光谱。随即该科研团队利用此系统对肺癌组织进行拉曼光谱检测,结果显示肺癌组织的拉曼光谱特征与正常肺组织之间存在明显差别。此后,该科研小组又成功获得了亚洲人种皮肤黑色素组织的拉曼光谱数据。在对胃癌的在体拉曼检测中研究人员将拉曼光谱技术与微型摄像机、图像分光仪、双极管激光发生器等结合建立了新型拉曼内镜系统,也推动了内镜技术的发展[17]。有学者利用激光作为拉曼光谱的激发光源,对15例手术切除且经病理确诊为基底细胞癌的组织标本进行拉曼照射,同时与正常皮肤组织进行对比分析,结果显示通过拉曼光谱检测可以实现对基底细胞癌的高灵敏度诊断[18]。在对鼻咽癌组织和正常鼻咽组织的拉曼光谱比较中也有相似发现,它们在1290~1320cm-1,1420~1470cm-1和1530~1580cm-1这3处波段区间均存在明显特征差异,可以作为鉴别要点。另有研究人员选用830nm波长激光对甲状旁腺腺瘤组织标本及增生组织标本中的结节区域进行拉曼照射,重复了四十多次试验,比较发现二者的拉曼光谱比较相似,但在蛋白质、脂质等某些特定波段仍存在可区别的差异,建立线性分析的数学模型可以很好地将二者区别开来[19]。对人体多处肿瘤组织的拉曼检测均得到了较好的鉴别指标,预示着拉曼光谱在肿瘤学检验中将有宽广的发展空间。

1.3在药物分析检测中的应用

拉曼光谱较早即应用于药物检验领域。早期便有科研人员用共聚焦拉曼光谱仪对盐酸曲马多进行了检测,所获得的拉曼谱带显示图谱峰形良好,峰强明显,可以较准确地反映出盐酸曲马多的化学结构信息[20]。研究人员分析了倍他米松磷酸钠和地塞米松磷酸钠这两种差向异构体的化学结构差异,分别对其固态及水溶饱和态进行了常规拉曼光谱检测,并进一步对以银胶为基底的这两种药物进行了增强拉曼光谱检测分析,成功建立了这两种差向异构体的拉曼区分系统,可以实现其快速区分鉴别的目的[21]。科研人员采用傅里叶变换拉曼光谱法对不同产地且不同采集时间的野生及人工种植黄芩进行了分析研究,结果显示利用该方法对中药材的质量鉴定较传统鉴别方法更快速简便且不会对受检样品造成破坏,值得推广。有学者在前人基础上开创性地将拉曼光谱技术与光纤传感技术相结合,实现了甲硝唑片的快速无损鉴别,尤其适合于药品监管部门对药品快速检验。

1.4在眼部疾病检验中的应用

晶状体是一具有高浓度蛋白质的双凸面透明组织,其内蛋白变化对晶状体功能改变具有决定性作用,对人眼屈光调节也有重要意义。利用拉曼光谱对晶状体蛋白质的亚结构例如:氨基酸亚基、二硫键、羧基、巯基等的分析可以帮助人们更好地认识晶状体及其调节模式。拉曼光谱技术引入眼部疾病的研究首先是测定了牛晶状体中α、β和γ蛋白的拉曼图谱,结果显示α蛋白主要集中于核部而β蛋白主要集中于皮质部[22]。Short等[23]测试了紫外线诱导下的兔白内障晶状体拉曼光谱,结果显示氨基酸残基中的羟基谱线强度显著增加,无法与水形成氢键,从而科学地解释了白内障晶状体中水分的缺失。与此同时,研究中发现了多肽水解物的组成成分邻氨基苯甲酸,暗示着光化学反应可以造成色氨酸残基的下降。综合现有发现,他们提出了紫外线诱导白内障发生的热损伤学说。研究人员测试了诱发哺乳动物白内障的致病性光谱,以6月龄家兔为阴性对照组,以7月龄糖尿病家兔为糖尿病组,对比发现在900~1700cm-1,并无明显差异,而在800~850cm-1两组差异明显[24]。分析后认为诱发晶状体混浊的主要原因是α、β和γ晶体蛋白的不良聚合反应。

1.5在骨科疾病检测中的应用

绝大部分生物样本都有自体荧光,而荧光的强背景会对拉曼光谱造成很大的干扰,从而影响拉曼光谱的准确性。虽然关于引起骨组织光谱背景的物质尚不明确,但很有可能是一些有机基质中的某些非胶原蛋白分子[25]。如果在未处理的情况下,利用拉曼光谱对骨组织的检测很不准确。随后熊义等[26]发现了通过双氧水法降低骨组织光谱背景的方法,从而为拉曼光谱在骨组织中的研究打开了大门。骨组织在发育成熟后其密度与硬度即随生物力学环境的改变而改变,称为骨重建。在人体整个生命进程中,骨质会伴随着有所改变,利用拉曼光谱可以对这一过程进行深入研究。一旦吸收与沉积的动态平衡被打破,则会造成不同类型的骨科疾病。Oshokoya等[27]建立了以拉曼光谱为研究手段的外力作用下的颅缝早闭模型,研究内容涉及颅骨成分、骨质及基质的相对含量和分布。颅缝早闭症是一种由多病因造成的颅缝发育异常综合征,在婴幼儿属于常见疾病,由于颅缝过早闭合,限制了颅腔的容积,不利于智力的发展。结果显示在非轴向压力的作用下成骨区的前端矿物含量相比无压力的状态下有所下降,其原因可能是矿物沉积不完全[28]。在成骨不全症的研究中,有学者利用拉曼光谱证实了成骨不全症小鼠在6月龄后的骨强度增长不是由于骨形态改变引起的,而是由于骨基质的改进而达成的[29]。

光谱学分析篇(3)

使用光谱仪采集到的信号难免受到不同噪声源的影响。为了提高光谱信号解析的精准度,通过分析小波应用于信号降噪的原理以及经典的软、硬阈值降噪法存在的缺陷,提出了一种改进的阈值降噪法。该方法既克服了硬阈值法产生间断点,软阈值法产生恒定偏差的缺陷,又尽量地保留了有用信号。实验选用的小波基函数为SymletsA,分解层数为4,结合Birge-Mas-sart策略模型确定的分层阈值对硒化镉量子点荧光光谱信号进行降噪处理。结果表明,与经典的软、硬阈值降噪法相比,通过改进阈值降噪法得到重构信号的信噪比(SNR=47.5502)、能量占比(PER=0.9733)和均方误差(MSE=149.4213)均有提高和改善。

关键词:

小波;阈值;降噪;荧光光谱

引言

光谱分析中重点关注的是信号的局部特征,即光谱曲线中波峰的形状、位置和峰值强度[1]。然而在光谱仪采集信号的过程中,难免会受到外界光照、环境温度和仪器特性等因素的影响[2],导致实测信号往往含有高频噪声。如果直接使用采集到的光谱信号进行定量分析,必然会增大光谱鉴别的虚警率。因此,在深入分析之前,必须采取行之有效的方法对获取的原始信号进行相应的降噪预处理,以减弱或消除噪声和无用信号对有用信号的影响,才能提高光谱图解析的精准度[3-5]。由于在正交小波中,正交基的选取比传统方法更接近实际信号本身,所以通过小波变换可以更容易地分离出噪声或其他不需要的信息,因此在信号降噪中小波分析有着传统方法无可比拟的优势[6]。小波分析是一种兼顾时域和频域的分析方法,因其多分辨率分析的特点广泛适用于非平稳信号的处理[7-9]。在小波分解过程中,通过抑制部分小波系数实现降噪主要是基于如下事实:在光谱信号中,低频部分(近似系数)是表征信号本身特征的,而高频部分(细节系数)则是表征信号的细微差别。由于原始信号每次分解得到的近似系数比以前更光滑,舍去的细节信息就存放在各层细节系数中,因此为了保持原相对完整的信息,笔者采用了一种改进的阈值降噪方法处理各层小波系数,并在此基础上有选择地抑制保留的细节系数,以此达到降噪的目的。本文通过基于理论分析的实验验证了该方法的有效性。

1小波分析用于信号降噪的原理

1.1基本降噪模型

如果一个纯净信号X(t)被噪声污染后为F(t),那么基本的噪声模型就可以表示为F(t)=X(t)+σY(t)(1)其中:Y(t)为噪声;σ为噪声强度。小波变换的目的就是要抑制Y(t)以恢复X(t)。从统计学的观点看,这个模型是一个随时间推移的回归模型,这种分解方法可以看做是在正交基上对函数X(t)的无参估计。

1.2降噪的过程小波分析用于信号降噪的过程通常分为3个步骤:

1)分解过程:根据应用场合的不同,综合考虑小波函数的紧支集、对称性、正则性、消失矩等,选取适合的小波基函数对信号进行N层小波分解。

2)作用阈值过程:根据Donoho提出的小波阈值算法,对分解得到的各层小波系数进行硬阈值或软阈值处理。

3)重建过程:根据降噪处理后的第N层近似系数和各层细节系数(cdi,i=1,2,…,N),运用小波变换的重建算法实现信号的重构。

2阈值确定模型的选择

在小波分析用于信号降噪的过程中,核心的步骤就是在系数上作用阈值,因此阈值的选取直接影响降噪的质量。本文采用的方法是根据原始信号的信噪比确定各层系数降噪所需的阈值。假定噪声为高斯白噪声(噪声的数学期望为0),信噪比就用原始信号小波分解的各层系数的标准差来衡量。1)默认的阈值确定模型:)Birge-Massart策略阈值确定模型:由于本文采用的阈值降噪法需对各层小波系数设置不同的保留阈值,而通过默认的阈值确定模型求得的阈值为全局阈值,因此使用Birge-Massart策略确定分层阈值更恰当。

3改进的阈值降噪法

针对含噪信号的降噪处理,Donoho等创造性地提出了小波阈值法降噪。该方法在实际运用中取得了瞩目的成就,但也存在瑕疵。通常情况下小波硬阈值法会导致作用后的光谱曲线在某些点(阈值点)产生间断,虽然小波软阈值法克服了这一缺陷,但却给重构信号引入了附加振荡。除此之外,阈值函数将小于阈值的小波系数全部置0,会使得高频部分的有用信号无法参与重构,从而降低了还原度。针对这些缺陷,文献[10]提出了一种改进的阈值函数。

4.实验结果及分析

4.1小波基函数和最优分解层数的选取

实验采用波长为365nm的激发光源LIS365照射CdO溶液与Se粉反应15min时得到的量子点,由海洋光学QE65000光谱仪采集量子点荧光光谱,导入Matlab中得到如图1所示的CdSe量子点荧光光谱。光谱范围为300nm~1200nm,分辨率为1nm-1,横坐标为波长(nm),纵坐标为吸光度(a.u.)。小波基函数的选取应兼顾紧支集、对称性、正则性、消失矩等特性。symN小波族的构造类似于dbN小波族,且具有更好的对称性,可以减少重构时的相移。因此本文选用symN小波族对CdSe量子点荧光光谱信号进行降噪处理。由于支集太长会产生边界问题,支集太短又不利于信号能量的集中,所以选用如图2所示支集适中的sym4作为小波基函数。将CdSe量子点荧光光谱信号进行小波分解,细节系数在各分解层数上的奇异谱分布如图3所示。当分解层数为4时,奇异谱发生突变,说明最优分解层数即为4。

4.2算法验证

为了检验本文提出的改进阈值函数在实现CdSe量子点荧光光谱信号降噪时的优势,采用传统的硬阈值法、软阈值法、文献[10]提出的阈值法和改进阈值法分别对原始信号进行降噪处理,通过Matlab提供的小波降噪命令同时完成了作用阈值和重构过程,降噪后的光谱曲线如图4所示。为了进一步证明改进阈值降噪法的有效性,本文采用了信噪比、均方误差和能量占比3项指标来对降噪效果进行量化评估。

5结论

1)通过分析阈值确定模型的适用范围,选定了更适用于计算分层阈值的Birge-Massart策略模型确定各层阈值。

2)在兼顾紧支集、对称性、正则性、消失矩等特性的前提下,考量了应用于小波分解适宜的支集长度,选定sym4小波作为基函数;通过观察CdSe量子点荧光光谱信号分解后各层细节系数的奇异谱分布情况,确定了最优分解层数。

3)通过分析经典的硬阈值和软阈值降噪法的缺点,提出了一种改进的阈值降噪法,并结合选定的阈值确定模型对CdSe量子点荧光光谱信号进行了降噪处理。实验结果证明:无论是从相似性直观地判断,还是从信噪比、均方误差和能量占比进行量化评估,改进的阈值降噪法都具有优势。

参考文献:

[1]秦侠,沈兰荪.小波分析及其在光谱分析中的应用[J].光谱学与光谱分析,2000,20(6):892-897.

[2]陈红.多组分污染物气体光谱检测关键技术研究[D].合肥:合肥工业大学,2011.

[6]夏国荣,徐志胜,马振燕.多小波阈值降噪法在钢丝绳缺陷检测中的应用[J].测试技术学报.2007,21(4):319-323.

[10]蒋薇薇,鲁昌华,张玉钧,等.基于提升小波改进阈值的光谱信号去噪研究[J].电子测量与仪器学报,2014,28(12):1363-1368.

光谱学分析篇(4)

21世纪以来,随着科学技术的不断发展,人们对于科学信息及宇宙探索的渴望,使得天文学以惊人的速度快速发展。天文观测进一步从可见光、射电波段扩展到包括红外、紫外、X射线和γ射线在内的电磁波各个阶段,形成了全波段天文光谱学,并为探索各类天体和天文现象的物理本质提供了强有力的观测手段。

一、光谱分析数据的形成

对于天体光谱分析数据的有效研究表明,光谱分析数据是按照波长的有序排列来表示的天体电磁辐射,是一系列有连续性的数据,在每一处的波长中所对应的的有效流量是不同的。天文学家利用光谱信息软件,可以对宇宙中物质的分布特征进行相关研究及数据收集,同时可以对天体的形成及随时间的演化等重大科学问题进行初步的探索,并为进一步的探索打下坚实的基础。

二、光谱分析数据的特征提取方法

特征提取是光谱分析软件应用中的一个重要环节,也是对光谱数据进行挖掘的重要一步。对于海量天体光谱数据处理的效率及准确性有着重要的影响,这一环节中包括转换和选择两个步骤,首先着重提取与目标有关的信息并进行数据成分分析,剔除与当前任务无关的信息,随后将提取的信息转化为适合分析研究的表达方式,以供研究,在这里主要介绍三种特征的表达方式:统计约简法、特征谱法、谱线法。

2.1统计约简法

这是在目前的实际探索中,应用最广泛的一种提取方式,它的优点是便于操作及使用。使用过程是对天体辐射能量进行分解、重组和取舍,尽可能的去除冗余和噪声,并及时的将信号进行转化。

2.2特征谱法

特征谱法可以看作是人工"光谱",主要包括两种构造方法:一种是强调频谱特征的准确表征,相关研究者基于观测光谱流量的中值法和几何均值法研究了类星体特征普的构造;第二种是强调对观测光谱近似表达能力,这一方面的相关研究者根据PCA方法研究了恒星特定谱的构造。

2.3谱线法

谱线法的优点是物理意义强,易于解释,但也有其相关的局限性:仪器、波长和流量标定情况对于谱线的描述影响较大等。

三、软件简介

目前应用较为广泛且使用性能好的光谱分析软件有以下7种:

3.1VOSpec软件

VOSpec软件在使用过程中,利用了光谱访问协议,对数据的组织功能强大,用户在使用时可以通过天体名称或坐标在光谱库中进行有效的相关z索。VOSpec软件标准功能主要有光谱分析和拟合光谱能量分布两种,能够为用户提供可靠的光谱处理功能,在有效时间内整合来自不同的数据提供者、波段和元数据光谱。

3.2VOSED软件

通过简单的光谱访问协议,VOSED软件可以进行在线查询光谱信息,并及时合成光谱能量分布。目前,VOSED软件有两种工作模式:单目标模式和多目标模式。单目标模式是指用户在输入目标名称后,VOSED通过数据库现实该目标的的相关信息;多目标模式是指,用户在工作中可以实时的监控查询状态,查询结束后可以创建相关的压缩文件。VOSED的查询界面和显示界面如下图:

3.3Spec View软件

Spec View软件不仅能够读取哈勃空间望远镜的数据格式,还可以读取其他科学设备的光谱,并通过虚拟天文台查询并读取数据。它的功能主要包括:光谱单位转换、数据质量控制、绘图注释、可视化参数自定义、平铺绘图等。

3.4Iris软件

Iris软件主要有NED数据导入、数据可视化和自定义、光谱模型拟合光谱能量分布和非常规数据格式转换工具四个特点。Iris可以读取多个单独的数据源或光谱能量分布,用户可以通过Iris的红移法、插值法、集成法三种方法来创建光谱能量分布。

3.5SPLAT软件

SPLAT软件在工作过程中能够同时读取多个光谱,并进行单个或多个显示。它的功能主要体现在两个方面:查询和下载光谱的简单光谱访问协议;在桌面上使用的简单应用程序传递消息。

3.6CASSIS软件

CASSIS软件主要有谱线认证、构造任何望远镜的理论光谱、比较望远镜数据和和各种模型光谱数据及估计光谱物理参量四个特点,可以通过简单应用程序消息传递协议使数据在不同的天文软件间传递和交互操作。

3.7ASERA软件

ASERA软件的特点:谱线能够随鼠标而动,同时红移值自动给出;自定义可视化;批处理程序,可以同时处理多个光谱;光谱平滑等。用户借助ASERA软件可以轻松识别光谱和估测红移,尤其对低质量光谱的识别。

结束语:

在未来的天文学发展中光谱软件的应用会越来越广泛,相信随着天文学家和研究者的互动,光谱分析软件会朝着方便快捷、强大有效的方向继续发展。

光谱学分析篇(5)

Abstract: at present, the energy dispersive X-ray fluorescence spectrometer type in quantitative less reports. Using relevant adjusting mathematical method, draw standard curve, through the test obtained X-ray fluorescence intensity data show that stimulate samples, and energy dispersive X-ray fluorescence spectrometer type in high carbon ferromanganese quantitative analysis Mn, P, Si three elements have good stability and chemical composition analysis the accuracy of the data.

Keywords: energy dispersion type; X-ray fluorescence spectrometer; Fluorescence intensity; High carbon ferromanganese

中图分类号:O434.13文献标识码:A 文章编号:

1.引言:能量色散型X荧光光谱仪是基于有关X射线进行能谱分析,它的主要特点:检测灵敏度高,没有波长色散法中高次衍射谱线的干扰问题。它可测定原子序数11-92的元素,能用于定性、半定量和定量分析,并可进行多元素同时检测,是一种快速、精密度高的分析仪器,可广泛用于金属、合金、制造、矿物等各个领域。运用能量色散型X荧光光谱仪定量分析高碳锰铁样品,分析速度快、成本低;是目前分析较为理想的方法。

2.试验部分

2.1仪器与试剂

岛津EDX-700能量色散型X射线荧光光谱仪

液氮

标准样品:通过化学分析的方法对中心化验室所收检的高碳锰铁样品进行认真分析得到准确结果作为标准样品进行试验,从分析结果的数据证明此方法所作的标准样品可作为依据进行下一步分析;也可采用国家化学分析标准样品,但要求制成与检测样品同等目数使用。

2.2分析样品的制备

根据仪器的要求使用粉末样品盒,200目粉末高碳锰铁标准样品在室温下用聚酯塑料膜封样品盒底,再加入适量样品后用聚酯塑料膜封样品盒底备用。待测样品同样准备。

2.3工作条件及分析参数

X射线管使用Rh管(25W),管电压、电流为50KV-auto,测定时间100s,测定X射线Kα,光阑10mm2,监测器为Si(Li)半导体。

2.4工作曲线的绘制

按1.2制备的标准样品,在仪器上测量各元素X射线激发后产生的荧光强度能量对各元素含量作曲线,进行数学校正(包括背景、漂移、重叠、共存元素校正),绘制工作曲线。其中Mn、P、Si三元素的曲线效果好,说明在本条件下测定Mn、P、Si三元素适宜。

2.5样品的测定

检测待测样品的X射线激发后产生的荧光强度能量,并进行与标样相同的数学校正,利用标准曲线得到样品所测元素的含量。

3.结果与讨论

3.1样品粒度的影响

样品粒度对元素X射线激发产生的荧光强度有一定的影响,试验了不同颗粒的样品荧光强度值,结果表明粉末颗粒越大,荧光强度的不确定性越大,经试验粉末样品粒度小于200目最好,因此通常采用粒度200目进行试验。

3.2共存干扰及基体校正

对于硅元素,由于本身含量低,且荧光强度能量低,很易受共存元素的干扰,特别是能量高、X射线强度大的元素及相邻谱线元素,经试验对硅干扰的元素有Ca、Mg、Mn、Fe,而Fe作为主量元素由于含量太高,在此测量条件下,激发强度高,对硅产生了很强的质量吸收效应,用于对硅校正时,出现了校正过度现象,使曲线斜率过小,测量的灵敏度低,重复性差,故没有用Fe而用Ca、Mg、Mn进行校正。本文运用近似数学模型的经验校正方法,采用了强度校正方法。经验校正公式为:

n

Ci=B0 + Ii (K0 +∑ KijIj )

j=1

式中,Ci为待测元素含量;K0,Kij为校正系数;B0为截距;Ij为j元素的X射线强度。

3.3准确度试验

把待测试样按样品制备方法制作好后,然后用仪器进行测定,并由仪器从曲线上自动求出待测试样各元素含量。

选取一组样品用化学方法和X射线荧光法进行分析对照,结果表明两种方法测定值结果在一类实验误差范围内相符,其准确度满足试验要求,结果如表一。

3.4精密度试验

对同一样品连续进行测定10次(见表二),求出标准偏差和相对标准偏差,Mn为0.19%和0.29%;SiO2为0.16%和7.34%;P2O5为0.026%和

表一 样品测定测定结果

表二 SH2005-05-1样品测定10次测定结果

4.82%。结果表明,其标准偏差小于一类实验误差,精密度合乎试验要求。

4.讨论

4.1工作曲线制作后,只要待测试样各组分含量及仪器各参数无大的变化,一般不用再调整曲线。实际运用中只需出现标样结果偏差较大时进行一次标准化。

4.2本法由于粒度效应,样品粒度对测试有一定的影响,要求制样时粒度达到200目时,粒度效应对测试基本无影响。本法分析速度快、成本低,克服了化学分析方法费时、费力的不足;是目前分析较为理想的方法。

参考文献:

⑴谢格厚,高新华,现代X射线荧光光谱仪的进展[J],冶金分析,1999,19(1):32.

光谱学分析篇(6)

随着企业生产与社会需求的不断改变,对检验和化验的精度和速度要求也随之提高,尤其是满足连续化高速度生产的需要,检测仪器的效率也不断的得以提高。配置必要的检测设备和分析设备是十分必要的,但是一些设备受到程序的限制,一旦超出范围就不能保证检测的准确。如直读原子发射光谱仪在10s镍完成对铝基中铁元素的测定,但是其工作原理使得其测量的结果容易超过测量的曲线范围,从而不能得出准确结果。所以在检验中配合硫氰酸铵比对法则可以很准确的测量高铁含量,但是耗时长不适合用于生产,所以如能将二者结合起来,利用化学法与光谱法的各自优势来实现准确和快速的测量,利用试验获得一个平衡点,提高效率的同时保证精度。

1 试验设备与制剂

(1)直读光谱仪:入射缝:25μm;出射缝:89μm;光源:HR400激发光源;氩气:高纯度99%以上;工作条件:冲洗2s;预燃:7s;曝光4s。另准备:比色计;比色皿。

(2)制剂:氢氧化钠20%(水溶);盐酸(1:1水溶);过硫酸铵2%(水溶、当天配置);高锰酸钾,0.1mol.L1。

2 测试方法

2.1 试验步骤

样本确定:试验中拟定用光谱仪绘制工作曲线,所以选择样本应保证均匀稳定含铁量合适的样本。筛选时取多个试样,利用硫氰酸铵比色方法筛选,利用统一的测试方式选择相对有代表性且误差较低的数据,并作为管理样(其标准直径40mm,高30mm)。按照实际的情况管理样的铁含量为2-3.5%。预定管理样两个,与纯铝系的样本3个,利用光谱仪绘制曲线然后进行对比。

硫氰酸铵测量:样品处理,钻床上钻得若干位置含量的样本试样,并注意对样本采集的位置保证均匀,每个试样均安排相同的处理步骤,称量0.10000g试样,置于30mL容量的坩埚中,然后加入氢氧化钠溶液2.5mL,并利用电热板进行加热溶解,待反应完全后取下,随后利用盐酸(1∶1)溶液10ML进行酸化,在100ML容量瓶中完成,利用70-80℃的热水清洗坩埚,并加入0.05mol.L1高锰酸钾直至溶液出现微红,然后置于电炉上进行加热,稍微沸腾即可,并进行冷却,冲洗至刻度线,摇匀作为制剂备用,同时利用这个方法进行去白。

利用上述过程制备的母液,取10ml置于25ml容量瓶中,按照带标样本继续稀释至数倍,直至到达比色计适用范围,以空白母液加入基本酸度,加入2%的过硫酸铵溶液1ml,用2%的硫氰酸铵溶液冲洗值刻度,摇匀后进行比色,并作出空白和标样试验,随后利用比色计的滤光片,以水为参照,读取参数,扣除空白,得到消光值。完成后利用公式对铝基试样中的铁含量进行计算,并获得最终数据。

2.2 直读光谱仪绘制曲线

样本处理:选择在上面试验中获得的管理样本和纯铝系样本,都进行铣平保证光洁,并处理边缘毛刺。利用控制样本检查光谱仪的稳定性与准确性,如果光谱仪在检查中出现不稳定或者外部温度差异较大,或者其他实验条件改变,则应进行校正。

图1?铝基铁含量直读仪工作曲线图

绘制曲线:在直读仪器稳定后,将硫氰酸铵测定铁法的选择的管理样和原有纯铝系的样本统一进行工作曲线的数据,进行输入与绘制,包括分析参数、标准含量、验证数据、曲线计算、标准化数据构建等等,最后选定铁元素数据项,即可绘制出高铁曲线,选择适当的曲线拟合次数就可投入到生产应用中。

3 对试验结果的分析

曲线绘制:利用硫氰酸铵比色法测定铝基中的高铁含量的试验结果很好的反应了测样的稳定性情况,利用这一测试的结果,可以从诸多的试样中选择两个作为管理样,并利用筛选后的样本进行工作曲线的绘制,即利用直读光谱仪对管理样与纯铝系样本进行检测,由此获得了工作曲线如下图1:

结果分析:利用直读光谱仪可以检测到工作曲线最低标准的值是80%直至最高标准点120%之间的数据,所以测定可以满足3.755%以下的铁含量的测定。

4 结束语

光电直读发射光谱的技术已经是当前有色金属、黑金属等加工中所必须的分析措施,在相同类型的分析措施中有真空通道和非真空通道的差异,都需要以标准样作为基础。标准试样的生产较为复杂,全国范围内仅有几个大型企业可以生产。所以在检测试验中如果要并不苛刻的情况下,利用管理样本作为绘制工作曲线的基础也是可以的。因为利用硫氰酸铵比色法进行分析,尽管准确性很高,但是耗时长且认为干扰多,同时成本高不适应工业生产的过程。利用该方法的缺陷主要在于管理样的均匀情况与标准样还是有差异的,可能会造成工作曲线的制作与日常应用之间的误差,但是即使存在偏差也可进行调整,并利用最终的产品的准确分析加以控制,但是这个方法不能应用在最终的产品检验上,因为出厂品必须与国家的标准试样进行比较,并使用国家承认的方法进行测定,这是产品检验的必要条件。

在该方法的应用中,必须要用未知的高铁含量的铝锭,配合已知含量在99%以上的铝锭配制铁0.8%的合金,应用此方法分析高铁铝锭中的铁含量通常在一定的范围内,并进行合理的分析计算,最后利用国家的标准方法进行分析,然后才能确认为最终的结果,试验证明其可以能满足相关测定需要,并可应用与生产。

参考文献

光谱学分析篇(7)

近现代红外吸收光谱法已成为对有机物进行定性分析和结构分析的有力手段之一。红外吸收光谱分为近红外光区、中红外光区和远红外光区。其中近红外光谱分析技术利用其具备高效节能、安全性高、无污染的优越性已经应用于各行各业,包括石油开采、化工产品生产领域,通过参考物理参数数值分析满足生产的需要。现如今随着石油化工产业的不同需求,近红外光谱技术几乎成功实现了对各个环节的技术分析,成为化工行业中不可或缺的科技手段。

一、近红外光谱分析技术的理论分析

红外光辐射的能量远小于紫外光辐射的能量,当红外光照射到样品时,其辐射能量不能引起分子中电子能级的跃迁,而只能被样品分子吸收,引起分子振动能级和转动能级的跃迁。由分子的振动能级和转动能级跃迁产生的连续吸收光谱称为红外吸收光谱。在红外吸收光谱的三个区域中,近红外光谱是由分子振动能级跃迁产生的振动光谱。对大多数有机化合物分子产生的都是振动光谱。这就是近红外吸收光谱研究的中心内容。

近红外光谱分析技术采用的是定量分析方法和定性分析方法。所谓定量分析基本原理是依据朗伯-比尔定律,利用比率分析法、趋势分析法、结构分析法、相互对比法和数学模型法等方法选择具有普遍性的化学样品当作标准集;然后把待预测的化学样品利用扫描的方法扫描出近红外光谱,将扫描出的光谱值代入到先前的数学模型之中得到预测值,通过预测值和化学测定值之间的相关值和标准差衡量模型的准确度。在此结果中,如果模型的准确度高就可以用此模型来测定分析样品,但由于红外吸收光谱测定多在可透过红外光的固体介质中进行,在获得的相邻吸收峰较密集的带状谱带中,吸收峰往往不对称,因此进行定量分析时,应严格保持测定条件的一致,以获得可靠的分析结果。近红外吸收光谱进行有机化合物定性分析可分为两个方面,一是官能团定性分析,二是结构分析。近红外光谱分析技术定性分析法是利用相同样品在波长不同的条件下具有相同的光谱的特征,借助峰位鉴别法、聚类分析法、模式鉴别法等分析方法,使各种样品实现聚类识别,最后结合某一样品的定量数据模型判断其物理参数数值。作为两种不同性质的测量技术,区别在于定量分析需要测定样品的相应数值,要求较高的精确的;定性分析的方法则主要依据红外光谱图谱,凭借样品光谱反映出的样品组成和结构信息进行测定分析。

近红外光谱技术利用光纤测量技术对处在不同环境下的样品进行遥控测量,十分广泛的应用于样品的过程阶段分析中。因此,近红外光谱分析技术作为针对各种样品进行即时分析和快速检测是一种十分理想的技术手段,是石油开采和化工检测过程中所依赖的分析技术。在分析过程中,根据光谱提供的样品性质及过程产物性质,实时对操作条件进行调整和优化,控制和优化生产装置,从而提高生产效率和质量。

油品分析中,近红外光谱分析技术通过对石油性质和各类指标是否达标进行测试,得到相应的数据后,利用数据及时改进生产程序,选择有效的生产加工技术,从而提高石油利用率和石油产品质量。

在化学领域内含氢的基团等在波长为700-2500nm的近红外光谱波长范围内的近红区都能吸收。通常油品是由不同的组成成分构成,这些不同组成成分的油品在红外光谱图上都有各自对应的光谱特征。由于不同基团产生的光谱在红外光区吸收的峰位和程度不尽相同,伴随着样品组成的变化情况其在光谱图上呈现的光谱特征也会随之发生变化,变化的程度也就为在近红外光谱的定性和定量分析过程提供了理论依据。除此之外,石油的油品样品中烃类含量的变化的同时近红外光谱的波度也会引起相应变化,在变化过程中通过化学计量学方法对采集到的光谱数据进行总结处理,得到样品组成变化的数据。当样品组成发生不同程度的变化时,样品的性质发生相应变化,同时样品的光谱也会发生相应变化。近红外光谱利用所反映的样品性质的变化情况,构建样品性质变化与其对应的近红外光谱变化之间的联系。

二、近红外光谱分析技术在油品实际分析中的应用价值

通常情况下,在样品分析过程中如果需要对样品进行预先处理然后再进行质量测量,这样就会增加生产投资成本,加重生产负担。但是,利用近红外光谱分析技术对油品进行分析,样品可以进行直接测量,从而简化操作步骤。在测量方式上,近红外光谱对于样品是否是以固体、液体还是其他存在状态都没有限制。

利用近红外光谱分析技术可以提高测量数据的精确度并且可以将分析数据充分利用起来。在分析过程中根据样品在红外光谱图中呈现的光谱特征,能够高效率的确定被测样品与原先测定样品之间的差异,如果相同则可以直接使用资源;如果差异很大甚至不同则再用更精确的的方法进行分析,随后将测量分析的数据存放在数据库中,这就避免了繁琐的重复分析工作,降低了成本,提高了分析效率。与许多标准的油品分析方法相比较,利用近红外光谱分析技术实现了油品质量技术的最新化、分析效率的最快化和分析结果的最精确化。

当然,近红外光谱分析在油品分析中也有一定的局限性,对一些物质,如具有不同分子量的同一种高分子聚合物或同一化合物的旋光异构体也不能用近红外吸收光谱进行鉴别。此外使用近红外吸收光谱法进行定量分析的灵敏度和准确度均低于紫外、可见吸收光谱法。为获取准确的定性鉴定和结构测定的结果,对欲分析样品应尽量采取多种分离方法进行提纯。

现如今随着科学技术的日新月异和科技创新的不断发展,近红外光谱分析技术作为在石油化学化工领域一种新型的分析测量技术发展十分迅速,此技术已广泛应用于原油蒸馏、石油加工等工艺上。

三、结束语

目前,近红外光谱分析技术已经越来越多的应用于油品质量分析之中,明确汽油调和和测定汽油组成成分。例如利用近红外光谱分析技术高效测定汽油的乙醇值、辛烷值、苯含量以及详细族的物理参数值,进一步对汽油聚类进行分析,在炼油过程中最大限度的降低生产成本,保障油品质量合格,从而及时按量按质出库。作为间接测试技术近红外光谱分析技术在炼油过程中通过对油品成分各种物理参数的采集,测量化学样品的物理化学性质及组成。在现如今,利用近红外光谱分析技术对油品质量进行分析已经成为具备可靠科学数据和规范样品质量的方法并得到更广范围的应用。

参考文献

[1] 徐广通,袁洪福,陆婉珍.现代近红外光谱技术及其应用进展[J].光谱学与光谱分析,2000(02).

光谱学分析篇(8)

【中图分类号】TP391【文献标识码】A【文章编号】1672-5158(2013)02-0041-01

光谱分析法是测定物质与电磁辐射相互作用时所产生的发射、吸收辐射的波长和强度进行定性、定量和结构分析的方法。光谱分析是近几十年发展起来的,当今发展迅速、方法门类众多,能够适应各个领域所提出的新任务,已成为现代分析的重要方法:

1、原子发射光谱法

1859年基尔霍夫、本生研制了第一台用于光谱分析的分光镜,实现了光谱检验; 1900年普朗克提出了“量子化”概念并于1918年因创立量子论、发现基本量子获诺贝尔物理学奖;1905年爱因斯坦提出了光量子假说并于1921年因“光的波粒二象性”这一成就获得诺贝尔物理学奖,他们的理论为光谱分析的发展奠定了坚实的理论基础。20世纪30年代建立了光谱定量分析法。20世纪60年代以后原子发射光谱得到迅速发展,期间主要应用火焰、电弧及电火花等激发光源,在发现新元素、促进原子结构理论的发展及其在各种无机材料定性分析中发挥了重要作用。20世纪70年代以来,应用了电感耦合高频率等离子体焰炬、激光等新型激发光源。

2、原子吸收光谱法

1802年,伍朗斯顿在研究太阳连续光谱时发现了太阳连续光谱中有暗线。1817年福劳霍费在研究太阳连续光谱时,再次发现了这些暗线,将这些暗线称为福劳霍费线。1860年,本生和克希荷夫证明太阳连续光谱中的暗线,正是太阳大气圈中的钠原子对太阳光谱中的钠辐射吸收的结果。1955年澳大利亚的瓦尔西发表了论文《原子吸收光谱在化学分析中的应用》奠定了原子吸收光谱法的理论基础;50年代末和60年代初,Hilger, Varian Techtron及Perkin-Elmer公司先后推出了原子吸收光谱商品仪器,发展了瓦尔西的设计思想。1961年里沃夫发表了非火焰原子吸收法的研究工作。1965年威尔斯将氧化亚氮—乙炔火焰成功地用于火焰原子吸收光谱法中,使可测定的元素达到了70个之多。近年来,使用电视摄像管做多元素分析鉴定器,结合中阶梯光栅,设计了用电子计算机控制测定多元素的原子吸收分光光度计,为解决同时测定多种元素的问题开辟了新的途径。激光的应用使原子分光光度法为微区和薄膜分析提供了新手段。

3、紫外—可见分光光度法

紫外—可见分光光度法是在比色法的基础上发展起来的,比色法是通过比较或测量有色物质溶液颜色深度来确定待测组分含量的方法。早在公元初古希腊人就曾用五倍子溶液测定醋中的铁。比色法作为一种定量分析的方法,大约开始于19世纪30~40年代。皮埃尔·布格和约翰·海因里希·朗伯分别在1729年和1760年阐明了物质对光的吸收程度和吸收介质厚度之间的关系;1852年奥古斯特·比尔又提出光的吸收程度和吸光物质浓度也具有类似关系,两者结合起来就得到有关光吸收的基本定律——朗伯-比尔定律。1945年美国的Beckman 公司推出了第一台紫外可见分光光度计。20世纪60年代,紫外-可见分光光度计已逐渐代替光电比色计,分光光度法也随之逐渐代替了比色法。20世纪60年代以后随着科学技术的发展,紫外可见分光光度计仪器得到了飞速发展,自动化程度大大提高。

4、红外光谱法

1800年英国天文学家Hershel发现了红外光区。此后陆续有人用红外辐射观测物质的吸收光谱。1905年前后,人们已系统地研究了几百种化合物的红外吸收光谱并且发现了一些吸收谱带与分子基团间的相互关系。1918年到1940年期间人们对双原子分子进行了系统的研究,建立起了一套完整的理论,随后在量子力学的基础上又建立了多原子分子光谱理论基础。20世纪50年代在化学领域已经积累了丰富的资料,收集了大量纯物质的标准红外光谱图。20世纪40年代中期到50年代末,红外光谱法主要是采用以棱镜为色散元件的双光束记录式红外分光光度计,到六十年代,光栅式红外分光光度计得到了普及。七十年代初,又发展起来富里哀变换光谱仪,为红外光谱的应用开辟了许多新领域。近年来,电子计算机技术在红外光谱中发挥了重要的作用,电子计算机被用于记录分析结果,数据自动处理,通过求解性方程对多组分混合物进行定量分析。在定性及未知物结构鉴定中可用计算机进行谱图检索,辨认和确定未知物所含的基团和结构。

5、荧光分析法

1575年西班牙植物学家N.Monardes第一次记录了荧光现象。1852年stokes在考查奎宁和叶绿素的荧光时,用分光计观察到其荧光才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,从而导入了荧光的光发射概念,还由发荧光的矿物“莹石”提出“荧光”这一术语。1867年Goppelsroder进行了历史上首次的荧光分析工作,应用铝—桑蓝色配合物的荧光进行铝的测定。1880年Liebeman提出了最早的关于荧光与化学结构关系的经验法则。19世纪末,人们已经知道了包括荧光素、曙红、多环芳烃等600种以上的荧光化合物。1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Gario发现增感荧光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等;1928年,Jette和West研制出第一台充电荧光计;1939年Zworykin和Rajchman发明充电倍增管以后,使增加荧光计的灵敏度和容许使用分辨率更高的单色器成为可能。1943年Button和Bailey提出了一种荧光光谱的手工校正装置,到1952年才出现商品的校正光谱仪器。近十几年来,激光、微处理机、电子学、光导纤维和纳米材料新技术的引入,大大推动了荧光分析法在理论和应用方面发展,促进了荧光方面的新方法、新技术的发展。

目前,光谱分析越来越受到重视,并向多技术综合联用、自动化高速分析的方向发展。相信随着科学技术的进步,光谱分析方法会在科学的各个领域发挥极其重要的作用。

参考文献

光谱学分析篇(9)

关键词:红外光谱;纺织;定性;混纺;定量

红外光谱(Infrared Spectroscopy,IR)的研究开始于20世纪初期。70年代,在电子计算机蓬勃发展的基础上,傅立叶变换红外光谱(FTIR)试验技术进入现代化学家的实验室,成为结构分析的重要工具。近几十年来一些新技术(如发射光谱、光声光谱、色-红联用等)的出现,使红外光谱技术得到更加蓬勃的发展。红外光谱的应用包括有机化合物基团的检测、有机化合物的定性分析、检查分离过程和分离产物的检杂、红外定量分析、研究化学反应历程和机理、未知物的结构剖析等。在纺织工业领域中,红外光谱分析主要应用于成分的定性。对于混纺织物,由于谱图的叠加,特征峰的位置模糊,限制了其在纺织检测中的发展。国内外的研究仅局限于天然纤维与合成纤维的混纺,即谱图差异较大的两种纤维的混纺。在实际生产中,同类纤维(例如棉、粘)的混纺占据着较大的比例。能否用红外光谱分析技术对此种混纺织物进行定性与定量,还尚未有相关报道。

1 红外光谱制样和测试技术进展

不同的样品制备与测试方法得到的谱图基本相似,但谱图质量上存在差异[1,2,3]。对于定性、制样和测试方法的不同对其影响也许不会很大。相比于定量,干扰因素较多,谱图质量直接影响定量分析的准确度和灵敏度。因此,要根据测试目的和测试要求采用合适的制样方法,这样才能得到准确可靠的测试数据。

1.1 透射法技术

透射法是伴随着光谱仪的发明而率先采用的技术。这种方法检测结果稳定、实用,直到现在它仍是一项重要的应用手段。常规投射光谱制样方法分为压片法、糊状法和薄膜法。

1.1.1 卤化碱(通常是溴化钾)压片法

溴化钾压片法是最早、最常用的纤维样品制备方法。氯化钾也可以用于压片法,但是由于氯化钾比溴化钾容易吸水,所以通常采用溴化钾。只有对分子结构中含有氯的样品,由于溴化钾和氯会发生离子交换影响谱图质量,才会使用氯化钾压片法。一般的纺织材料不涉及这一情况,因此在检测纤维混合物的混合比例等对制样技术要求很高的场合,常用的也是溴化钾压片法[1]。

1.1.2 糊状法

糊状法又称糊剂法或矿物油法。此法是将固体样品与糊剂(如液体石蜡油)混合成糊状,然后夹在两片KBr盐片之间进行测定。由于夹在溴化钾晶片之间样品的量是无法确定的,所以,采用石蜡油研磨法制备样品不能用于红外光谱的定量分析。当然,如果采用内标法,还是可以进行定量分析的[4]。

1.1.3 薄膜法

采用卤化物压片法或糊状法制样时,稀释剂或糊剂对测得的光谱会产生干扰。薄膜法制样得到的样品是纯样品,红外光谱中只出现样品的信息。薄膜法大多用于高分子材料红外光谱的测定。厚度在50μm以下的高聚物薄膜,可直接进行红外光谱测绘;而大多数样品需采用挥发成膜、熔融成膜和热压成膜等方法制样,并主要用于定性分析。随着红外光谱附件的种类越来越多,薄膜法制备红外样品的技术应用得越来越少[4]。1.2 反射技术

透射光谱法在制样过程中会破坏聚合物的取向、结晶等物理性质,限制了红外光谱在聚合物物理结构表征中的应用。为解决透射光谱的这种局限性,一系列红外反射光谱技术在聚合物结构表征中得到应用,如镜面反射(SR)、漫反射(DRS)、光声光谱(PAS)及衰减全反射(ATR)等。

1.2.1 镜面反射法(SR)

这个技术适合于不能或不便于用透射法测定的样品,如金属上的单层薄膜等,或具有强吸收带的聚四氟乙烯类聚合物。

理想的镜面反射光谱样品应该是光学平整、厚度无限大及均相。这在实际上是不可能满足的,但应尽量增强前表面反射光而减少漫反射和后表面反射光。镜面反射技术在聚合物的分子取向、分子构象、炭黑填充聚合物、表面改性聚合物及聚合物涂层等的结构表征中有着重要作用[5]。1.2.2 漫反射法(DRS)

漫反射法是把纤维样品剪碎压片,或把织物样品不破坏直接放在漫反射支架上,入射的红外光不透过样品而是在其表面发生漫反射,通过接收漫反射的信号形成光谱,也可研究其吸光规律。

A.C Hardy于1935年最早谈及漫反射法成为一种光谱测试技术,不过以前多是用来测定固体粉末和混浊液的紫外-可见光谱。70年代有了新型的傅立叶变换红外光谱仪,用迈克尔逊干涉仪代替了单色器,并采用了灵敏的硫酸三甘酞、汞镐磅等探测器,从而为该法延伸用于红外光谱区创造了条件[6]。

1.2.3 光声光谱法(PAS)

邵学广、赵贵文[7]通过比较得知光声光谱的质量不受样品物理形状的影响,分辨率、信噪比等都明显优于红外光谱。特别是对于天然纤维羊毛、丝绸、棉、麻的光谱分析,光声光谱比所有文献报道的红外光谱都具有明显的优越性。

光声光谱法是于1880年就发现、20世纪70年代初期复活、至80年代才获得重大发展的一种新技术,目前已成为分子光谱学的一个重要分支。至今,PAS的许多工作已用来解释处于分子态或物理态的结构。因此,物理化学家、生物物理学家、材料科学家、表面化学家会对这种技术产生兴趣。但在纺织领域应用的报道甚少[8]。

1.2.4 衰减全反射法(ATR)

用红外光谱技术鉴别纺织材料在上世纪60年代就已成为一门成熟的技术。对纤维、织物定性研究,衰减全反射法可获得神奇的结果,而且不需要样品制备,即研磨、浇注薄膜、涂料萃取、涂层剥除等都不需要。样品直接放在 ATR附件上测定,是一种无损鉴定和快速的检测方法[9]。阎巍、张金庄[10]利用傅立叶红外光谱(ATR)法对同种颜色(红色)不同品牌不同厂家的毛绒纤维样品,同一品牌相近颜色的纺织纤维样品,同种颜色(红色)不同品牌不同厂家的羊绒、腈纶纤维样品进行种类上的区分。通过重复性试验,证实了其试验结果准确可靠。

1.3 显微红外光谱法

红外显微镜按其光学性质不同,一般分为四大类产品,其主要区别是红外物镜。掠角式红外显微镜主要用于研究表面单分子层的取向,内反射式红外显微镜主要用于测定含有水分的样品,投射式红外显微镜用于测定可透过红外光的样品,反射式显微镜主要用于测定样品的表面和污染物[11]。显微红外光谱分析法对交通事故中的单丝纤维、进口显像管中石墨涂层材料中有机分散剂、玻璃纤维材料中粘合剂、覆合层高分子材料等混合物进行微区化学成分分析均取得了较为理想的测试结果[12]。

2 红外光谱仪的定性分析

目前,鉴别纤维成分的方法有很多,物理方法有感官法、密度法、熔点法、色谱法等,化学方法有燃烧法、溶解法、热分解法、试剂着色法等。考虑到各种方法的实用性以及可操作性,对于纤维成分的鉴定,现在主要应用的方法为显微镜观察法、燃烧法以及溶解法。然而随着新型纤维不断应用在纺织品领域,仅仅用这几种方法很难断定纤维成分,这时,红外光谱法就显示了其优越性[13]。

2.1 纯纺织物的鉴别

不同的纤维具有不同的化学基团、不同的分子结构,因而在红外光谱中会出现不同的特征吸收,对已知纤维的红外光谱图与未知纤维的红外光谱图进行比较,就可以对纤维的种类进行定性[14]。

但纤维素纤维红外光谱特征相似,形状上一致,主要基团和键的位置基本上未发生位移,利用红外光谱法鉴别纤维素类纤维较困难[15]。

应用模式识别和可见及近红外光谱技术建立纺织纤维鉴别的模型。采用主成分分析和最小二乘支持向量机相结合的方法,优化了常规的模式识别方法,大大提高了识别的精确度[16]。红等[17]运用近红外反射技术与化学模式识别相结合,采用了主成分分析和判别分析方法来处理Tencel、棉、粘胶、铜氨等4种纤维的近红外光谱数据,建立分析模型,可以快速、准确、有效地对Tencel纤维与其他纤维素纤维作出鉴别。

对于麻类纤维的定性,可采用红外光谱、X-荧光光谱、观察纤维灼烧残渣的形态和纤维旋转方向等手段常用麻纤维

光谱学与光谱分析, 1993, 13(5): 119-121.

[8] 钱和生,俞莲芳. 傅里叶变换红外光声光谱法在纺织上应用[J]. 中国纺织大学学报, 1994, 20(4): 70-78.

[9] 任雪松,陈勇. 红外光谱衰减全反射法(ATR)的原理及其在纺织品定性上的应用[J]. 科技信息, 2010, (33): 58,65.

[10] 阎巍,张金庄. 傅立叶红外光谱(ATR)法检验纺织纤维[J]. 辽宁警专学报, 2007, (6): 35-37.

[11] 李静,李美超,莫卫民. 显微红外光谱技术的发展及应用[J]. 理化检验(化学分册), 2009, 45(10): 1245-1248.

[12] 朱卫,方江邻. 显微红外光谱测试技术的应用[A]. 江苏省计量测试学会2005年论文集[C], 2005, 340-343.

[13] 胡淞月. 浅析红外光谱法鉴别纤维成分[J]. 天津纺织科技, 2010, (1): 39-40.

[14] 陆永良,沈维,刘艳. 红外光谱差减技术在纺织品定性分析中的应用[J]. 上海纺织科技, 2010, 38(7): 1-4.

[15] 陈莉,孟丹. 几种新型纤维素纤维的鉴别[J]. 纺织科技进展, 2008, (5): 72-74.

[16] 吴桂芳,何勇. 应用可见/近红外光谱进行纺织纤维鉴别的研究[J]. 光谱学与光谱分析, 2010, 30(2): 331-334.

[17] 红,吴文晞,林志武,等. 近红外光谱法鉴别Tencel等四种纤维[J]. 福建分析测试, 2009, 18(4): 32-34.

[18] 王成云,刘彩明,李丽霞,褚乃清,钟声扬,唐莉纯. 麻纤维的定性鉴别[J]. 中国纤检, 2007, (8): 38-41.

[19] 刘羽,邵国强,许炯. 竹纤维与其它天然纤维素纤维的红外光谱分析与比较[J]. 竹子研究汇刊, 2010, 29(3): 42-46.

[20] 刘贵,杨瑜榕,王明葵. 竹浆纤维与粘胶纤维的鉴别[J].上海纺织科技, 2010, 38(12): 49-52.

[21] 袁洪福,常瑞学,田玲玲,等. 纺织纤维及其制品非破坏性快速鉴别的研究[J]. 光谱学与光谱分析, 2010, 30(5): 1229-1232.

[22] 孙光. 混纺纤维的定性定量分析研究[J]. 江苏公安专科学校学报, 1999, (4): 100-103.

[23] 李思源,周永生,赵彦,等. 红外差谱法在纺织品涂层快速定性检测中的应用[J]. 广东化工, 2010, 37(4): 181-182.

[24] 蔡锡兰. 红外差谱技术用于混合纤维鉴定的研究[J]. 分析仪器, 2000, (1): 15-19.

[25] 王岩,杨文利,王英杰. 应用红外差谱技术测定二元混纺纤维的种类[J]. 化学分析计量, 1999, 8(3): 12-13.

光谱学分析篇(10)

中图分类号:TV219文献标识码:A文章编号:16749944(2013)10021504

1引言

我国虽然是水果生产大国, 但自1993年以来水果储藏能力只有10 % ,烂果率高达25 %,出口总量不到总产量的3%,远低于9%~10%的世界平均水平[1~3]。以上原因造成果农卖果难,增收难。要解决这些问题,必须发展水果深加工,扩大鲜果出口。阻碍我国鲜果出口的一个重要因素是果品分选、检测能力弱,检测速度慢,检测人员的素质低,果品筛选达不到国际上水果进出口市场的要求。国内早期的水果内部品质检测方法主要是化学分析法,该方法不仅可靠性和稳定性较差,而且在测试时还必须破坏水果,测试过程繁琐,只能通过少量样本的测定,来评价整批次水果的品质。鉴于以上原因,无损检测技术应运而生。无损检测技术具有无损、快速、准确性高和实时性强等特征。目前的无损检测技术主要有针对水果光学特性、电学特性、声学特性、力学振动特性等众多性质进行的各种检测,且大多还处于试验研究阶段[2]。

近红外光谱技术(Near Infrared Spectroscopy Technology, NIST)是一种利用物质对光的吸收、散射、反射和透射等特性来确定其成分含量的一种无损检测技术,具有快速、非破坏性、无试剂分析、安全、高效、低成本及同时测定多种组分等特点[4]。随着现代光谱技术的发展,且凭借其快速、方便、准确和无损伤等特点,应用近红外光谱分析技术对水果品质进行无损检测已成为近年来的研究热点。本文主要介绍2000年后,近红外光谱分析在果实成熟期检测和品质检测两方面的研究进展。

2近红外光谱技术在水果成熟期监测中

的应用研究近红外与可见光结合的无损检测技术具有适应性强、灵敏度高、对人体无害、成本低和容易实现等优点,被广泛用于水果成熟度的无损检测。2002年,McGlone等利用VIS/NIR技术,依据果实成熟过程中叶绿素减少的趋势,深入探测了“Royal Gala”苹果在采摘前和储藏后各品质指标,光谱图如图1所示,在苹果早采收、适中采收、晚采收的典型吸光度光谱对比中,发现在680nm波长处,叶绿素吸光度有明显的变化,早采收果实的吸光度明显高于适中采收和晚采收果实,因此认为该波长可用于区别苹果的成熟度[5]。Lur等人用近红外光谱检测苹果的硬度和含糖量,通过有损与无损相结合的方式建立了预测苹果内部品质的数学模型[6]。

2005年,Ann Peirs等人在前人研究的基础上研究了苹果自然特性对可见近红外模型预测采摘期成熟度精确性的影响。研究表明,近红外光谱与成熟度有一定相关关系,其Rr>0.94,RMSEP

2007年,Yongni Shao等人用可见光与近红外检测技术结合硬度、糖度和酸度等指标检测番茄的成熟度,得到了各自的相关系数,分别为0.83、0.81和0.83,表明可见光与近红外技术无损检测水果成熟度的方法是可行而且实用的[8]。

3近红外光谱技术在水果品质检测中的

应用研究利用近红外光谱(NIR)检测水果品质早已成为国际研究热点之一。2003年,Clark等利用700~900nm的透射光检测了褐心贝宾(Braeburn)苹果,探讨了投射测量时苹果的最佳位置[9]。国内的相关研究也如雨后春笋般涌现出来,研究的水果有柑橘、苹果、梨、桃、枇杷等,检测的品质涉及糖度、酸度、可溶性固形物、维生素、坚实度、色泽及单果重量、褐变、模式识别等。

3.1糖度检测

2006年,应义斌等利用小波变换结合近红外光谱技术检测水果糖度,小波变换滤波技术能有效地消除苹果近红外光谱中的噪声,在采用小波变换尺度为3时WT-SMLR法建立的校正模型精度明显优于采用SMLR法建立的模型 [10]。周文超等建立赣南脐橙内部糖度的近红外投射PLS模型,r=0.9032,RMSEP=0.2421[11]。刘春生等利用可见/近红外漫反射光谱结合PLS建立南丰蜜桔糖度校正模型,预测集r=0.9133,RMSEP=0.5577,平均预测偏差为-0.0656[12]。

3.2酸度检测

应义斌等建立苹果有效酸度的近红外漫反射PLS模型,最佳PC=3,r=0.959,SEC=0.076,SEP=0.525,Bias=0.073[13]。刘燕德等应用近红外漫反射光谱结合光线传感技术建立苹果有效酸度模型,预测值和真实值r=0.906,SEC=0.0562、SEP=0.0562,Bias=0.0115[14]。董一威等采用CCD近红外光谱系统结合偏最小二乘回归(PLSR)建立苹果酸度预测模型,r=0.8151,SEC=0.0120,SEP=0.0204[15]。

3.3可溶性固形物检测

2006年,李建平等应用近红外漫反射光谱定量分析技术对2个产地3个品种枇杷的可溶性固形物进行无损检测研究,发现在波长1400~1500nm和1900~2000nm两段范围,样品的可溶性固形物与光谱吸光度之间的相关系数较高,最终建立的可溶性固形物含量预测模型的校正集和预测集相关系数分别为0.96和0.95[16]。

2008年,刘燕德等应用近红外光谱(350~1800nm)及偏最小二乘法回归、主成分回归和多元线性回归对梨的可溶性固形物及逆行定量分析;在采用偏最小二乘法回归算法之前先用一阶微分对光谱数据进行预处理,研究表明果实中间部位的预测结果较为理想;近红外漫反射光谱可以作为一种准确、可靠和无损的检测方法用于评价梨果实内部指标可溶性固形物[17]。

2009年,周丽萍等采用可见光与近红外光结合技术对苹果的可溶性固形物含量的检测进行了研究,他们结合主成分分析(PCA)和BP神经网络技术,建立苹果SSC预测模型;采用DPS数据处理系统对苹果样本的漫反射光谱(345~1039nm波段),进行主成分分析,获得累计可信度大于95%的5个新主成分;建立一个3层BP神经网络模型,并将这5个新的主成分作为BP神经网络模型的输入量,其结果是98%以上预测样本的预测相对误差在5%以下[18]。

3.4坚实度检测

2006年,傅霞萍等采用傅里叶漫反射近红外光谱技术研究了水果坚实度的无损检测方法,他们对不同预处理方法和不同波段建模对模型的预测性能进行分析对比,建立了利用偏最小二乘法进行水果坚实度与漫反射光谱的无损检测数学模型,同时结果表明应用近红外漫反射光谱检测水果坚实度是可行的,为今后快速无损评价水果成熟度提供了理论依据[19]。

2009年,史波林等采用近红外光谱技术结合遗传算法分别对去皮前后苹果坚实度无损检测进行研究,他们采用光谱附加散射校正(MSC)、微分处理(Derivative)、直接正交信号校正(DOSC)等预处理方法和基于遗传算法(GA)的有效波段选择方法来消除果皮对模型精度的影响,结果表明,苹果果皮对近红外光谱分析模型的预测能力有很大影响,但仅通过常规的光谱预处理方法(MSC 、Derivative)很难有效消除。他们提出的遗传算法结合直接正交信号校正(GA-DOSC)方法能有效消除果皮的影响,不但使所建模型的波长点和最佳主因子数分别由1480和5降到36和1,相关系数r由0.753提高到0.805,更重要的是模型的预测相对误差RSDp从16.71%显著下降到12 .89%,并接近采用苹果果肉建模的预测性能(12.36%),达到对苹果硬度的近红外无损检测要求[20]。

3.5色泽及单果重量检测

3.8品种鉴别

赵杰文等采用支持向量机(SVM)建立苹果不同品种、不同产地的分类模型,预测识别率精度比传统的判别分析法提高5%左右,均达到100%;回判识别率分别为100%和87%[27]。何勇等提出了一种用近红外光谱技术快速鉴别苹果品种的新方法,该方法应用主成分分析结合人工神经网络建立了苹果品种鉴别的模型,该模型的预测效果很好,识别率达到100%[28]。

4存在的问题

近红外光谱技术具有检测速度快速、检测方法简便、检测准确性高及同时可测定多种成分的优点,使它在果品在线分选检测中有较好的应用前景。虽然近红外光谱技术在水果成熟期预测和内部品质检测方面的研究已有10年的时光,有些检测技术已趋于成熟,但目前来看该技术仍存在一些问题,比如怎样找出不同水果光谱的特性波段,怎样实现果品快速在线检测和分选,怎样实现对水果的成熟度、硬度、糖度和内部缺陷等同时检测,具体来说近红外光谱技术在水果品质或成熟期检测研究中主要存在以下几方面问题。

4.1水果成熟期预测中存在的问题

(1)近红外光谱技术在水果成熟期预测中,光谱波段的选择尤为重要;建立预测模型时有必要对光谱波段进行优选和组合[29]。

(2)利用近红外光谱预测果实成熟期时,既要保证预测模型的精确度,还需考虑模型的通用性,即还需进一步研究水果果实的不同光学特性与果实成熟期的相关性,提高预测的效率和准确性。

4.2水果品质检测中存在的问题

(1)在水果品质的光谱检测中,光谱仪自身的信噪比等性能会极大地影响预测模型的精确度。可见,在光谱预处理方面,选择合适的消噪方法将成为今后近红外光谱技术在水果内部品质及成熟期预测中的另一个研究重点[30]。

(2)在利用NIST对水果品质进行检测的过程中,建立数学模型是最困难的,因为近红外光谱很容易受到果品样本个体因素如温度、检测部位不同等因素的影响;同时由于检测环境条件、仪器的精度和稳定性等复杂因素的影响,使得数学模型适应性差。在线检测过程中,样品是运动的,近红外光谱受到很大的影响,如何在果品运动的状态下获得较稳定的近红外光谱仍是一个很大的难题。

(3)建立用于水果品质光谱分析的校正模型与开发用于水果品质检测的软件系统是近红外光谱技术能否用于水果品质检测的最关键问题,但当前大部分研究只是进行可行性探索,没有进行深入研究;在实际生产生活中使用的便携式水果品质无损检测仪器非常罕见。

5发展趋势

目前水果市场,或者水果生产者在田间分析水果品质都需要一种小型便捷的、可移动式的近红外光谱分析仪器。同时这些仪器还需要操作简单,对普通常见的水果都具有适用性。因此,便携式的、能够和电脑随时连接的类USB或PDA的近红外水果分析仪将会成为市场新宠。

当今水果加工过程中非常需要一种能够根据水果品质指标(如可溶性固形物、酸度、硬度等)进行快速在线分级.光纤技术与近红外技术结合必然使近红外在线检测技术广泛应用于水果以及其他各个领域,并在今后的发展中逐步形成成熟的在线检测装备投放于市场。随着近红外光谱分析技术的不断推广和深入应用,未来它将与网络技术结合,更方便快捷地实现分析模型的在线更新与升级。

目前,水果的近红外光谱无损检测中还存在检测指标单一、实时性差、检测效率低等问题。为了解决上述问题,开展高效并行图像处理算法和多指标综合检测技术的研究非常必要,并将成为研究热点。为了更快速、更准确地得到测量结果,结合近红外光谱分析技术、高光谱成像技术,及紫外、红外光技术,从多信息融合技术的不同层次:数据层、特征层和决策层选择最优的融合方法,在水果成熟期和品质检测领域将有广阔的研究前景。近红外光谱技术将会在更多领域更广泛范围为人类带来便利。

参考文献:

[1]林,近红外光谱分析技术在我国大宗水果品质无损检测中的应用研究[J].食品工业科技,2012,6(33):460~464.

[2]贺艳楠,水果成熟度无损检测技术研究进展[J].北方园艺,2010(3):208~212.

[3]莫润阳,无损检测技术在水果品质评价中的应用[J].物理学和高新技术,2004,33(11):848~851.

[4]毛莎莎,曾明,何绍兰,等,近红外光谱技术在水果成熟期预测中的应用(综述)[J].亚热带植物科学,2010,39(1):82~89.

[5]McGlone V A, et al. VIS/NIR estimation at harvest of pre- and post-storage quality indices for ‘Royal Gala’ apple [J]. Postharvest Biology and Technology,2002,25:135~144.

[6]Lu R, et al. A Near-infeared sensing technique for measuring internal quality of apple fruit[J]. Trans of the ASAE,2002,18(5):585~590.

[7]Ann Peirs, et al. Effect of natural variability among apples on the accuracy of VIS-NIR calibration model for optimal harvest date prediction[J]. Postharvest Biology and technology,2005,35:1~13.

[8]Yongni Shao,et al. Visible/near infrared spectrometric technique for nondestructive assessment of tomato quality characteristics[J]. Journal of Food Engineering,2007,81:672~678.

[9]Clark C J, McGlone V A, Jordan R B, et al. Detection of brown-heart in ‘braeburn’ apple by transmission NIR spectroscopy[J]. Post-harvest Biology and Technology, 2003(28):87~96.

[10]应义斌,基于小波变换的水果糖度近红外光谱检测研究[J].光谱学与光谱分析,2006, 26(1):63~66.

[11]周文超.近红外投射光谱无损检测赣南脐橙糖度的研究[J].农业化研究,2009(5):161~163.

[12]刘春生.偏最小二乘法——可见/近红外光谱测定南丰蜜桔糖度的研究[J].河北师范大学学报:自然科学版,2008,32(6):788~790,797.

[13]应义斌.苹果有效酸度的近红外漫反射无损检测[J].农业机械学报,2004,35(6):124~126,141.

[14]刘燕德.近红外漫反射用于检测苹果糖度及有效酸度的研究[J].光谱学与光谱分析,2005,25(11):1793~1796.

[15]董一威.苹果中糖酸度的CCD近红外光谱分析[J].食品科学,2007,28(8):376~380.

[16]李建平,傅霞萍,周莹.近红外光谱定量分析技术在枇杷可溶性固形物无损检测中的应用[J].光谱学与光谱分析,2006,26(9):1606~1609.

[17]刘燕德.近红外漫反射光谱检测梨内部指标可溶性固形物的研究[J].光谱学与光谱分析,2008,28(4):797~800.

[18]周丽萍.苹果可溶性固形物含量的检测方法[J].农业化研究,2009,4(4):104~106.

[19]傅霞萍.水果坚实度的近红外光谱检测分析实验研究[J].光谱学与光谱分析,2006,26(6):1038~1041.

[20]史波林.应用GA-DOSC算法消除果皮影响近红外漫反射光谱分析苹果硬度的研究[J].光谱学与光谱分析,2009,29(3):665~675.

[21] 刘燕德.梨子表面色泽的可见/近红外漫反射光谱无损检测研究[J].红外与毫米波学报,2008,27(4):266~268.

[22]李鑫.苹果梨单果重的近红外无损检测研究[J].安徽农业科学,2008,36(4):1297~1298.

[23]韩东海.苹果内部褐变的光学无损伤检测研究[J].农业机械学报,2006,37(6):86~88,93.

[24]王加华.基于可见/近红外能量光谱的苹果褐腐病和水心鉴别[J].光谱学与光谱分析,2008,28(9):2098~2102.

[25] 夏俊芳.基于小波变换的柑橘维生素C含量近红外光谱无损检测方法[J].农业工程学报,2007,23(6):170~174.

[26]刘燕德.可见/近红外漫反射光谱无损检测南丰蜜桔维生素C的研究[J].光谱学与光谱分析,2008,28(10):2310~2320.

[27] 赵杰文.支持向量机在苹果分类的近红外光谱模型中的应用[J].农业工程学报,2007,23(4):149~152.

光谱学分析篇(11)

随着仪器分析技术的不断发展,包括核磁共振波谱和质谱在内的分析方法已成为药学、中药学、药物制剂等相关领域和学科的重要的有机化合物分析手段。利用常见的紫外光谱(UV)、红外光谱(IR)、核磁共振(NMR)和质谱(MS)等方法对有机化合物进行定性、定量和结构分析是光谱解析的主要内容和任务。其中,利用上述方法鉴定从植物或动物中分离得到的单体化合物或化学合成药物的结构是该门课程的重点和难点。

光谱解析是化学知识和物理知识交叉形成的学科,具有理论性强、知识面广的特点。在我校药学相关专业课程体系中,与该门课程相关的基础课有《有机化学》,主要侧重于有机化合物的结构理论;光谱解析作为《分析化学》和《现代仪器分析》的一部分,则偏重于比较浅显的理论说明。对于药学相关专业的学生来说,远不能满足相关专业课程的需要。因此,对于光谱解析课程在药学专业的地位需要重新认识,并根据药学生的特点进行教学方法改革,以达到学以致用的目的。

一、应将光谱解析课程设置为药学相关专业必修课

目前我校提供光谱解析课程的专业学科有药学(含临床药学方向)、药物制剂,且均为药学专业课程群中的任意选修课。由于学生在选课之前都会对该门课程的难易程度、师资力量、考试通过率等现实情况进行摸底权衡,所以该门课程的选修人数在前几年都不能达到开班人数(20人)。偶尔有一期能开课,也存在学生反映理论难懂、数据难记、图谱难解的情况。众所周知,药学专业课程《天然药物化学》中约1/3的篇幅是讲解如何利用光谱知识解析各类天然产物的结构。如果学生对光谱解析的相关基础知识一窍不通,以上内容只能跳过,将导致学生知识结构出现重大缺陷,会对以后学生在专业领域的发展产生严重障碍。所以,为了使学生知识结构更加完整和合理,为了使药学课程之间的联系更加紧密,完全有必要将光谱解析课程设置为必修课。

二、教学过程中应加强与相关课程的联系,做到温故知新

光谱解析中的理论知识与大学物理、有机化学等课程是紧密联系在一起的,如紫外光谱基本理论中分子吸收光谱中光的性质与波长、分子能级图和光的吸收等,红外光谱基本理论中分子的振动形式、振动耦合及振转光谱等,都是与药学专业所学的《物理学》密切相关。又如影响化学位移的电性效应中,诱导效应和共轭效应在《有机化学》课程中苯环的邻对位定位基章节有详细的讲解。所以,光谱解析的基本理论与其他课程密切相关,在讲解的过程中应注意学科间知识点的交叉渗透,只有这样,才能达到融会贯通、灵活运用的目的。

三、应理论联系实际,合理设计学时,通过综合分析具体的图谱提高解谱能力

光谱解析理论性强,不但涉及较抽象的光谱知识,也涉及较多的需要理解记忆的光谱数据。如果只是一味地让学生死记硬背,效果会适得其反。所以,除了教材上较简单的图谱之外,更应该利用科研工作中所分离得到的单体化合物的图谱进行具体的讲解。天然来源的单体化合物涉及萜类、黄酮类、生物碱、甾体等不同类型的化合物,各个类型的化合物在不同的图谱中显示出不同的特征,因此,有必要通过综合解析常见的代表性化合物的波谱数据,达到学以致用的目的。而要达到此目标,还需要合理设计该门课程的学时,由于分析技术的发展,紫外光谱和红外光谱在结构鉴定和定量分析方面的优势日渐下降,而核磁共振和质谱的作用则明显加强,所以根据现有教材的编排结构,应简单的讲解红外和紫外两个章节,重点应放在核磁共振、质谱和综合解析部分,以达到重点突出、加强实践的效果。只有这样,通过学习该门课程后,才能达到教学目的和效果。另外,光谱解析还应体现药学专业特色,通过分析经典药物如麻黄素、紫杉醇、青蒿素的结构,提高学生运用理论知识解析复杂化合物的能力,为今后学生从事药学相关专业工作如新药开发奠定基础。

四、教学过程中善于使用学生易接受的语言,强化学生的主体地位,提高其学习兴趣

由于光谱解析理论性强,需要记忆的数据较多,在学习的过程中,如采用传统的填鸭式教学,学生容易失去学习兴趣。所以,在授课过程中,应用丰富多彩的教学语言使抽象理论具体化;使用90后学生易于接受的流行网络语言等方法增加学生的学习兴趣。在教学过程中,为了提高学生的主动性,应给予适当的学习压力,如可以将学生分成若干小组,在课后布置适量的作业,下次课开始之前让该组同学选派一名代表给全班学生讲解化合物的解析过程。这样不但可以增强其学习主动性,更有利于培养学习小组成员间共同解决问题的能力。

总之,光谱解析作为医学院校药学专业重要的专业基础课程,应将其设置为必修课程,学时安排应将重点放在应用较多的核磁共振及质谱上,授课时加强与其他相关课程的联系,通过综合解析各类型代表化合物的图谱,提高学生应用理论知识分析鉴定化合物的能力。