欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

砌体结构论文大全11篇

时间:2022-11-18 10:53:55

砌体结构论文

砌体结构论文篇(1)

鉴于现行国家标准《砌体结构工程施工质量验收规范》GB50203的编写原则是“验评分离、强化验收、完善手段、过程控制”,将不可避免地导致两本标准在有关施工过程的质量控制条文内容上的一些重复.对此,在编写时考虑了以下原则:1)标准不同适用范围原则:在编制《砌体结构工程施工质量验收规范》GB50203过程中,在“过程控制”的相应条文编写时,只针对为实现施工质量合格验收的某些重要施工环节作出基本要求;而对于《砌体结构工程施工规范》,则对施工全过程的质量控制作出较具体的规定.2)条文细化原则:由于现行国家标准《砌体结构工程施工质量验收规范》GB50203遵循“验评分离、强化验收、完善手段、过程控制”的编制原则,因此,与之配套使用的《砌体结构工程施工规范》的个别条文内容不可避免地要涉及规范GB50203中的“过程控制”的相应条文.对此,在编写《砌体结构工程施工规范》条文时,着重对砌体结构工程施工过程中的操作技术要求进行细化,作出详细规定,以区别于规范GB50203针对施工过程控制的原则要求.3)标准完整性原则:对《砌体结构工程施工质量验收规范》GB50203“过程控制”涉及的部分内容,在施工规范中不需要再细化时,考虑到其内容的重要性和标准编写的完整性,同时也是为了保证两本规范间的协调一致,对GB50203的相关条文进行了引用.

2关于湿拌砂浆、干混砂浆及专用砂浆使用时间的规定

砌体施工中的砂浆使用时间是特指砂浆的可操作时间,即砂浆从加水拌合后到仍能施工而不影响其性能的最长时间间隔,而非等同于砂浆的凝结时间.湿拌砂浆是由专业生产厂将加水拌合后的砂浆运到施工现场的成品砂浆.由于砌体施工速度较慢,为使砂浆在一定时间内能保持其可操作性,生产厂一般通过掺加不同种类添加剂及控制添加剂用量等方法调节砂浆的凝结时间,实际上也是调整了砂浆保持可操作性的使用时间,且通过试验保证所提供的砂浆在可操作时间内不会影响砂浆性能.因此对湿拌砂浆的使用时间应按厂房提供的说明确定.干混砂浆是专业厂家生产的除拌合水外的砂浆粉状混合物,在加水拌合后即可使用的砂浆.为了解干混砌筑砂浆使用时间与强度的关系,规范编制组对西安市3个不同生产厂家的干混砌筑砂浆进行了试验分析.试验所采用砂浆类型均为DMM5,分别放置0、2、4、6、8h后,适量加水使得砂浆稠度保持在约70mm,通过制作砂浆试块对其强度进行试验,结果表明,随着使用时间的延长,砂浆强度有所降低,其中不同厂家的砂浆在0~8h强度损失最小约12%,最大超过30%,因此,施工过程中对干混砂浆的使用时间应按厂方提供的说明书确定.专用砂浆中的外加剂种类、用量存在差异,其凝结时间也不同,因此,其使用时间应以厂方提供的说明书为准.

3关于现场搅拌砂浆使用时间3h、2h的规定

砌筑砂浆采用现场拌制时,随着使用时间的延长,砂浆的流动性降低,砂浆稠度变小,砂浆操作性变差,这时如果再加水拌合(重塑)后使用,会影响砂浆的强度.原国家标准《砖石工程施工及验收规范》GB203-83编制组曾进行了M5和M5水泥石灰砂浆、M5水泥粘土砂浆、M5微沫砂浆拌合后停放时间对强度影响的试验,试验砂浆的稠度为80mm左右,气温为20~30℃(室内实验室气温).在试验过程中,砂浆稠度随停放时间的延续而减小,为模拟施工状态,对稠度减小的砂浆再加水拌合,使砂浆稠度与初拌时基本相同.试验结果表明:在一般气候状况下,水泥砂浆和水泥混合砂浆在3h和4h使用完,砂浆强度降低一般不超过20%,虽然对砌体强度有所影响,但降低幅度在10%以内,又因大部分砂浆在之前使用完毕,故对整个砌体的影响仅局限于很小的范围.另外,砌体强度除与砌筑砂浆相关外,还与瓦工的操作方法及精心施工程度密切相关,在施工中加强现场质量控制和监督检查,完全可以保证砌体的砌筑质量.当气温较高时,水泥凝结加速,砂浆拌制后的使用时间应予缩短.同时,近年来设计中对砌筑砂浆强度普遍提高,水泥用量增加,因此对现场拌制的水泥砂浆和水泥混合砂浆统一按水泥砂浆的使用时间进行了规定,即“现场搅拌的砂浆应随拌随用,拌制的砂浆应在3h内使用完毕,当施工期间最高气温超过30℃时,应在2h内使用完毕.”该规定不仅对施工质量有利,同时便于现场施工时的控制和管理.

4施工质量控制等级施工前的评审及施工中的检查规定

砌体的施工主要由手工操作完成,质量受到许多人为因素的制约和影响,为保证砌体工程的施工质量,现行国家标准《砌体结构工程施工质量验收规范》GB50203已参照有关国际标准,按施工现场质量管理水平、砂浆强度试验及搅拌、砌筑工人技术熟练程度等因素对施工质量控制等级进行了分级规定.为了保证施工过程中的质量控制等级满足设计要求,在国家标准《砌体结构工程施工规范》中,一方面要求施工前对承建工程的施工队伍进行施工质量控制等级审查、认定,同时在施工过程中对现场质量管理、砂浆与混凝土强度、砂浆拌合、砌筑工人技术等级等四要素要求适时检查监管.当发现施工质量控制等级的有关要素变化将引起施工质量控制等级下降时,应立即停工整顿,采取有效措施,使之回复到要求状态,再进行正常施工.为便于施工质量控制等级的审查、认定和检查,规范附录中提供了相应的表格.

5块材浇水湿润程度

改用相对含水率的规定试验研究和工程实践证明,砌体施工时砌块的湿润程度对砌体的施工质量影响较大:例如采用干砖砌筑不仅不利于砂浆强度的正常增长,大大降低砌体的抗压和抗剪强度,影响砌体的整体性,而且砌筑困难;相反,采用吸水饱和的砖砌筑时,会使刚砌的砌体稳定性差,且易出现墙体平面外弯曲、砂浆易流淌、灰缝厚度不均、砌体抗剪强度降低.关于砖含水率对砌体抗压强度的影响,湖南大学曾通过试验研究得出两者之间的相关性,即砌体的抗压强度随砖含水率的增加而提高,反之亦然.根据砌体抗压强度影响系数公式得到,含水率为零的烧结粘土砖的砌体抗压强度仅为含水率为15%砖的砌体抗压强度的77%.关于砖含水率对砌体抗剪强度的影响,国内外许多学者都进行过这方面的研究,试验资料较多,但结论并不完全相同.可以认为,各国(地)砖的性质不同,是试验结论不一致的主要原因.一般来说,砖砌体抗剪强度随着砖的湿润程度增加而提高,但是如果砖浇得过湿,砖表面的水膜将影响砖和砂浆间的粘结,对抗剪强度不利.美国Robert等在专著中指出:砖的初始吸水速率是影响砌体抗剪强度的重要因素,并指出,初始吸水速率大的砖,必须在使用前预湿水,使其达到较佳范围时方能砌筑.前苏联学者认为,粘土砖的含水率对砌体粘结强度的影响还与砂浆的种类及砂浆稠度有关,砖含水率在一定范围时,砌体的抗剪强度得以提高.近年来,长沙理工大学等单位通过试验获取的数据和收集的国内诸多学者研究成果撰写的研究论文指出,非烧结砖的上墙含水率对砌体抗剪强度影响,存在着最佳相对含水率,其范围是43%~55%,并从试检结果看出,蒸压粉煤灰砖在绝干状态和吸水饱和状态时,抗剪强度均大大降低,约为最佳相对含水率的30%~40%.由于各类砌筑用块材的吸水特性,如吸水率大小、吸水和失水速度快慢等的差异(有时存在十分明显的差异,例如从资料收集中得到,我国各地生产的烧结普通粘土砖的吸水率变化范围为13.2%~21.4%),以及环境温度、湿度的不同,块材砌筑时适宜的含水率也应有所不同.因此,需要在砌筑前对块材预湿的程度采用含水率控制是不适宜的.为了便于在施工中对适宜含水率有更清晰的了解和控制,块体砌筑时的适宜含水率宜采用相对含水率规定.根据国内外学者的试验研究成果和施工实践经验,以及现行国家标准《砌体结构工程施工质量验收规范》GB50203的相关规定,本次规范制定中,按照块体吸水、失水速度快慢,对烧结类、非烧结类块体的预湿程度采用相对含水率控制,并对适宜相对含水率范围分别作出了规定.

6后置拉结筋的施工质量检查的规定

近年来,对填充墙与承重墙、柱、梁、板之间的拉结钢筋,施工中常采用后植筋,这种施工方法虽然方便,但常常因锚固胶或灌浆料质量问题,钻孔、清孔、注胶或灌浆操作不规范,使钢筋锚固不牢,导致作用在植筋上的拉力不能有效通过化学粘结剂向混凝土中传递,起不到应有的拉结作用.因此,在本次规范制定中编制组从确保工程质量考虑,增加了后置拉结筋施工工序规定及对后置拉结钢筋进行现场非破坏性检验的规定.为了保证抽样检测结果具有代表性,对填充墙与承重墙、柱、梁、板之间的拉结钢筋现场实体检测的抽检数量,参照了现行国家标准《建筑结构检测技术标准》GB/T50344对建筑结构抽样检测的最小样本容量规定,即实际检测时抽检的样本容量不应少于最小样本容量的限定量.检验结果应符合设计及现行国家标准《砌体结构工程施工质量验收规范》GB50203的有关规定.

二关于节能减排政策的贯彻

为了贯彻节能减排的方针政策,《规范》在编制中主要从以下方面进行了体现:1)在材料方面,积极推广节能环保材料(如烧结类空心砖和空心砌块、蒸压加气混凝土砌块、轻集料混凝土小型空心砌块及人工砂、山砂、海砂等)和工厂化预拌砂浆在砌体结构工程中的应用,并在《规范》中对新型材料的性能和使用要求作出了相应的规定.2)《规范》中专门纳入了环保章节,特别对施工过程中可能会对环境造成污染和危害的方面做出了明确规定.3)对复合夹心墙的施工要求作出了相应规定,有利于砌体房屋在节能减排领域的推广应用.

三标准的先进性

1)预拌砂浆、专用砂浆以及新型块材的推广应用,不仅符合节能环保、发展绿色建筑的理念,也有利于建筑施工技术的工业化发展.2)针对不同种类块材吸水率差别较大的状况,对块材浇筑前浇水湿润程度要求采用了相对含水率的控制方法.3)强化施工前及施工过程中对砌体施工质量控制等级的认定及检查、整改,并编制了专用表格.4)对夹心复合墙的砌筑技术要求提出了规定.5)按照经修订的现行国家标准《砌体结构设计规范》GB50003-2011中填充墙连接方式的要求,对填充墙与主体结构之间的连接进行了规定,并提出了填充墙砌体后置拉结钢筋的植筋工艺及实体检测要求.6)注重环保和安全施工.

砌体结构论文篇(2)

一、概况

在多层砌体结构建筑物中,墙体裂隙多有发生,裂隙出现的时间因不同的建筑物而异,有的出现早,有的出现晚,但多发生在新建房屋的1一3年内;缝宽不等,较宽者有3,二以上,严重者形成贯穿性裂缝。砌体结构裂隙问题已经是一个普遍性的问题,它不仅影响了建筑物的正常使用,降低了建筑功能,缩短了使用年限,而且对抗震也是极为不利的,尤其是在住宅商品化的今天,这个问题已日益引起开发商和居民的普遍关注,因此,如何控制砌体结构房屋墙体开裂的问题是摆在工程技术人员面前的新课题。

二、裂隙成因及类型

产生裂缝的原因是多方面的,归纳起来主要有两方面:一是由外荷载(包括静、动荷载)变化引起的裂隙,二是由变形引起的裂隙(主要有温度变化,不均匀沉陷或膨胀等变形产生应力而引起的裂隙)。在砌体结构的民用建筑中,砌体裂隙绝大部分是由于变形引起的,温度变化是引起墙体开裂的主要因素。由于砖砌体的线膨胀系数,而钢筋混凝土线膨胀系数是因此当温度发生变化时,二者产生变形差异。此外,由于建筑物中的构件大多属于超静定杆件,具有多个约束,对由于温度变化所引起的变形将予以限制,从而会在构件内产生温度应力。对墙体与混凝土之间的变形差异势必在砌体中产生很大的拉力和剪力,这些力超过一定限度时,砌体就产生错位裂隙,温度裂隙是造成墙体早期开裂的主要原因。由于温度应力和变形而产生的裂隙具有“顶层重下层轻”、“两端重中间轻”、“阳面重阴面轻”的特点与规律,裂缝的类型及其产生的原因可具体分为如下5种:

l、八字形裂隙。

主要出现在横墙与纵墙两端部,此种裂缝属正八字形的热胀裂缝,随温度升降而变化,其原因是由于设计一与施工中的缺陷,使屋面保温层的热阻减少甚至失效,致使屋面板温度变形大于砌体温度变形,当产生一定的温度应力的,屋面板的推力就传给墙体,并因墙体温度附加应力在房屋两端较大,当砌筑砂浆强度较低时,则易发生剪力产生的主拉应力,当超过砌体抗拉极限时,墙体即出现八字形开裂。

2、倒八字形裂隙。

属冷缩裂隙,主要出现在纵横墙两端的窗洞口处,尤以顶层两端窗洞口处最严重。由于墙体冷缩附加应力在墙体两端较大,当房屋收缩变形大于墙体时,在门窗洞口处产生应力相对集中而导致形成倒八字形裂隙,使墙体开裂。

3、水平裂隙。

多见于顶层横墙、纵墙、“女儿墙”及山墙处。当屋面保温隔热较差,屋面板受热膨胀对墙体产生水平推力,由于墙体在端部收缩要大于中部且砌体抗剪能力较低,使纵横墙与屋盖的接触面上产生水平裂隙。

4、垂直裂隙。

主要出现在窗台墙处、过梁端部及楼层错层处。此种裂隙主要由于温度变化,墙体受到楼板的拉应力作用,在门窗洞口处产生应力集中效应而拉裂,或因冷缩变形,在与墙漆之间变形差异最大的钢筋混凝上梁端和楼板错层处,引起墙体垂直开裂。

5、X形裂缝。

多数沿砌体灰缝开裂,主要受房屋热胀冷缩的反复作用形成,而底层墙体产生的X形裂缝则是由于基础不平整或不均匀沉降引起。

三、设计过程中对砌体裂隙的主动控制

砌体结构裂隙一旦产生,就会降低建筑物的使用功能,严重裂隙还会影响结构安全,同时对裂隙进行“加固补强”困难较大,因此防止、控制砌体结构产生裂隙是十分重要的,尤其是在地震区更为重要,否则将产生严重后果。

1、从计算角度控制。

由于砌体裂隙主要是由间接作用引起的,而温度变化与材料胀缩系数不同等间接作用引起的砌体附加应力的定量计算目前尚无统一的规范,因此设计人员应根据当地的实际情况,对间接作用可能引起的附加应力给予充分考虑和计算,并对砌体强度进行分析计算,以减少在通常温差下变形裂隙的产生。

2、规范结构控制。

为控制裂隙的产生,在建筑物的平面布置设计中,结构的平面形状应力求规则对称,如平面形状不规则,应尽量采用“伸缩缝”将其分成若干独立规则单元,“以放为主,抗放兼施”,以避免由于墙体温度变化产生竖向开裂。对伸缩缝的设置,设计规范的规定一般较灵活,没有严格和明确规定,设计方法均由设计人员自行处理。根据多年实际经验,只要按规范每隔一定距离留一条“伸缩缝”,按“留缝就不裂”的简单方法,在一般情况即可得到基本控制。在建筑物的竖向设计时,应力求按竖向规范规则,尽可能不出现错层,以避免由于温度变化产生的水平裂缝。

3、构造控制。

(1)、加强设置钢筋硷圈梁,提高墙体的整体性。在建筑顶层每个开间、在错层处及屋面不等高处必须设置圈梁;顶层外圈梁应设计为暗圈梁,不应外漏,这样可使外圈梁免受阳光直接照射或大气影响;无论“女儿墙”高低,均要设置钢筋混凝土压顶圈梁,并与“构造柱”连为整体,以抵抗裂缝的产生。

(2)、除据规范要求设置“构造柱”外,在“L’’“I”“L’’平面形状中的纵横墙交接处必须设置“构造柱”,以提高建筑物的整体刚度和墙体的可延性,约束墙体裂缝的扩展。

(3)、提高屋面板的整体性。屋面板最好采用现浇板,或在预制屋面板上增加现浇层;在预制屋面板与外纵墙间设置现浇板带,预制屋面板间设置现浇板缝梁,使屋面成整体式装配。

(4)、在房屋顶层端部1一2开间范围内的墙体采用配筋砌体,即每隔8皮砖在水平灰缝内加配2必6钢筋,并在1一2开间范围内拉通,与“构造柱”钢筋结合。顶层用砖不应低于MU7.5,砌筑砂浆强度不应低于MS,以提高墙体坑裂能力。

(5)、屋面“挑檐”为外露结构,在一天内的温度变化较大,不仅本身容易开裂,而且对墙体开裂也有一定的影响,故应适当增加“挑檐”纵向配筋并增设“变形缝”或“后浇带”,以减少收缩。“后浇带”的做法是在其纵向受力较小的中间适当部位,预留300mm宽的“后浇带”,用钢筋贯通,在施工40一60天后再二次浇筑,以起到先放后抗的控制作用。

(6)、重视屋面保温。选择屋面保温层时,适当加厚或选用保温隔热性能良好的材料。对屋面保温层必须按建筑节能标准进行热工计算,进一步提高屋面保温层的保温隔热性能。屋面保温不好是屋面板产生温度应力的直接原因,严重时会导致顶层墙体开裂或屋面漏水。保温层应做至“挑檐”或檐沟处,以防止混凝土结构外漏,有条件者必须增设、架空隔热层。

四、砌体裂隙的加固处理

l、当屋面保温层未达到热工要求和节能标准时,应重做屋面保温层,使裂缝稳定,因为对温度裂缝仅做一般性的加固补强是无济于事的,必须从减少温度应力人手。保温层使用的绝热材料要满足表观密度、粒经、导热系数与含水率等各项技术指标的要求,在施工中要严格按照设计和现行施工规范的要求施工,力求达到设计的保温效果。

2、对地基不均匀沉降引起的砌体裂隙,应先加固地基,等沉降量达到稳定标准(平均日沉量0.02-0.03以内)后,再加固墙体。

3、对外纵墙、横墙、内纵墙的裂隙采用钢筋网水泥砂浆抹面加固法,剔灰缝深12cm,必胀锚栓@500,呈梅花型分布。挂钢筋网必,M10水泥砂浆40mln厚,3道成活,施工完后,要注意喷水养护预防空鼓。

砌体结构论文篇(3)

【提 要】地震是最严重的自然灾害。震灾是通过房屋的倒塌产生。砌体结构抗震性能较差,但只要用滑移减震技术改造彻体结构,此类房屋亦能在特大地震中不倒塌。此种建筑在辽宁省经一年试点推广,受到各方面的普遍欢迎。 【论文关键词】 滑移减震、石墨助滑剂、错动位移。1滑移减震建筑适应工程抗震技术的发展 1.1震灾的严重性 本世纪世界陆地7级以上地震,中国有66次占1/3,人口死亡200多万,中国有115万占1/2。在最近期的1978年唐山大地震中死24万,死伤40万,经济损失100亿人民币。在国内的各种灾害中,属灾死人占54%。经济损失占6%。 1.2震灾预报的艰难性 至今世界上发生了无数次的大小地震,据资料介绍,只有海城与墨西哥两次地震的临震预报稍准,由于中长期预报不准,海城与墨西哥城的建筑物损坏与震灾还是严重的。关于地震发生的机理目前总说纷坛,例如,断裂带错动、地壳板块插入、整板变形断裂,学说越多说明可靠的学说尚未形成。日本是震灾较多,研究地震机理及预报人员最多、水平最高的国家,可是1995年1月17 日偏偏在其预报安全区西部的阪神发生大地震,死5oo0多人,经济损失1000亿美元,全国一遍震惊。因此在1994年在西班牙召开的国际地震会议上有关专家指出,目前地震是不可预报的,因此各国应将重点放在建造耐震的建筑上。 1.3如何吸取唐山大震的经验教训 海城地震后,天津市有些工程搞了抗震加固。在唐山大地震时,这些加固过的工程表现了明显的耐震性能,因此唐山地震后全国开始了大规模的现有建筑抗震加固与新建建筑抗震设防工作。我国的抗震设防是按地区设防烈度划分等级的,例如按六度设计的房屋的设防目标是:遭迂从值烈度(5.5度)时建筑不损坏;遭迂基本烈度(7度)时建筑有些损坏,但可修复使用;遭遇罕遇地震(8度强)时,破坏严重,但下例塌。海城地震时海城是9度,唐山地震时唐山中心区是10度。7度设计的房屋迂海城、唐山那样的9度、10度大震就要破坏倒塌了。全国把大多数地区均划为七度、六度区,由于经济的原因及技术的困难,尚无法按10度的条件设计这些地区的房屋结构,因此无法避免唐山地震的悲剧重演。我国地震工程科技人员寻找新的方法,也就是开始研究隔震、减震。消能与控制技术,从”硬抗”转到“软消”。我院滑移减震建筑技术就是在这种形势下从1985年开始列题研究的项目。 2滑移减震技术研究的主要成果及水平 为了避免唐山大地震的悲剧重演,为了寻求抵御十度大震的建筑技术,在1985年开展了滑移减震技术的研究。从1985年至1990年为项目研究,以机理为主;第二阶段1995年至1997年结合试点建筑,进行设计、构造及施工等配套技术研究。 2.1项目研究成果 (1)石墨是较理想的助滑剂材料:它耐久、构造简单、适宜的上部结构抗震构造与适宜的最大错动位移值。 最大错动位移是54mm;残存错动位移小于20mm; (3)高宽比控制为2,能保证只滑不摇摆; (4)能起到保险丝作用,滑誉减震房7度强时起滑, 10度时上部建筑只滑不破坏倒塌。 1990年经全国著名抗震专家宋秉译、周福霖、刘季、李桂肴、霍自正等组成的鉴定委员会鉴定认为课题成果具有重大的社会效益与经济效益,成果的广度和深度达到国内先进水平,有关计算参数均可为滑移减震消能多层砖房的设计提供依据。 然后根据研究报告编写的论文在第十届世界地震工程会议(西班牙)与国内“建筑结构学报”上发表。均获较高评价。 2.2试点建筑的研究成果 (1)上部结构设计安全度,横墙安全度是相应按7度抗震设计的1.5倍;纵墙是1.8倍。这与辽宁地区目前7度区的七层砖混住宅结构相当; 配套研究了上、下水管、煤气管及暖气管穿过滑移层的柔性接头或柔性构造; (3)构造简单施工方便; (4)采用挖孔桩基础时,由于桩的配筋减少使总造

砌体结构论文篇(4)

1.2分析围墙选用图集总说明要求:应对图集相关内容进行复核后选用,并按相应规范执行。该图集所注明的适用范围:适用于抗震设防烈度小于或等于8度的地区;仅适用于一类、二a类、二b类环境,且基本风压小于等于0.45kN/m2的地区,其他环境及地区应按国家相关规范要求采取相应构造措施及进行受力验算[1]。该图集设计说明主要内容:一般砌块围墙每15m设一道伸缩缝;基础应落在老土上;地面以下的墙体及基础部分首选混凝土及实心砌体;设计人员应根据工程所在地的环境及地质情况对本图集各部分所提供的材料标号及强度复核后选用。本工程地面粗糙度A类,基本风压0.85kN/m2,大于图集适用的基本风压0.45kN/m2。实体砌块围墙为砌体结构,应进行承载力验算,结构设计人员不验算。另外,因图集未注明地面以上该围墙适用的砌体和砂浆强度等级,结构设计人员随意定的围墙砌体和砂浆强度等级较低。以上设计失误均可导致围墙砌体结构不满足承载力要求。

1.3防治建议首先对围墙选用图集相关内容进行复核,就砌体围墙的砌体和砂浆强度等级做出选用。其次当对围墙相关内容结构复核不满足时,应就砌体厚度、砌体种类、壁柱间距、柱子截面尺寸、柱子种类———芯柱或混凝土柱等进行调整选择和计算,以满足结构构件承载力等要求。

2围墙砌体结构承载力计算

2.1对选用图集围墙砌体结构进行承载力复核按基本风压0.85kN/m2,地面粗糙度A类,对选用图集围墙砌体结构复核。本工程2m高、200mm厚混凝土小型空心砌块围墙考虑水平风载作用为受弯构件,对砌体结构受弯构件应进行受弯承载力和受剪承载力计算。壁柱间围墙按2m×3.6m双向受弯构件计算弯矩,围墙四周支承条件:底与基础固接;左右侧与壁柱简支;顶端自由。按荷载规范[2],风荷载):Wk=μsμzW0=1.3×0.87×0.85=0.96kN/m2200mm厚混凝土小型空心砌块重度11.8kN/m32m高墙重加双面粉刷总重标准值Nk=(11.8×0.2+20×0.02×2)×2=6.3kN•m经计算围墙底弯矩标准值Mk=1.03kN•m/m弯矩设计值M=1.4×1.03=1.44kN•m/m围墙底剪力标准值Vk=0.96×2=1.92kN/m剪力设计值V=1.4×1.92=2.69kN/m当采用砂浆强度等级M10时:沿通缝破坏时砌体的弯曲抗拉强度设计值ftm=0.08MPa砌体的抗剪强度设计值fv=0.09MPa按砌体规范[3]:砌体受弯构件的承载力,应满足M≤ftmW砌体受弯构件的受剪承载力,应满足V≤fvbz当截面为矩形时取内力臂z=2h/3现ftmW=0.08×1000×2002/6=533333N•mm=0.533kN•m<M=1.44kN•m,不满足fvbz=fv2bh/3=0.09×2×1000×200/3=12000N=12kN>V=2.69kN,满足经计算本例2m高围墙选用200mm厚混凝土小型空心砌块受弯构件承载力不满足。

2.2重新选择围墙砌体种类及截面后砌体结构进行承载力计算2m高围墙重新选择砌体为240mm厚混凝土多孔砖,壁柱间距仍为3.6m,壁柱采用钢筋混凝土柱400mm×400mm,地面以下的墙体选用钢筋混凝土。经结构计算后选用的围墙平面如图3所示。经计算调整后的2m高围墙选用240mm厚混凝土多孔砖受弯构件承载力满足。钢筋混凝土壁柱配筋应满足水平受力的要求及相应构造措施。

3围墙结构基础设计通病与防治

3.1选用图集围墙基础选用图集围墙基础为墙下钢筋混凝土条形基础。

3.2设计人员原设计围墙基础———通病结构设计人员原设计围墙基础,采用天然地基。地面以下的墙体为实心砌体,围墙壁柱下设独立基础,砌体墙下设基础梁250mm×350mm,仅考虑墙自重作用下基础梁受弯,未考虑围墙在水平风载作用下墙底弯矩和剪力。基础梁底与独立基础底标高相同。原设计围墙基础平面如图4所示。为使基底达基础持力层,埋深1.4m较深,可导致围墙砌体结构计算高度加大。相应墙底水平荷载作用下弯矩加大。

3.3修改后的围墙基础———防治修改后的围墙基础考虑围墙在水平风载作用下墙底弯矩和剪力,采用墙下钢筋混凝土条形基础,基础尽量浅埋,埋深0.7m。基底未达持力层,则向下挖至持力层,然后用砂石或其他材料,分层夯实回填至基础底面。修改后围墙基础平面如图5所示。砌体结构基础设计,一般采用墙下条形基础,并需考虑水平荷载作用下产生的弯矩和剪力。另外,基础设计忽略基础顶面剪力,会造成基础底面由剪力引起的弯矩缺失,可导致基础设计尺寸及配筋偏小。对天然地基,在满足地基稳定和变形要求前提下,尽量浅埋。若基底部分未达持力层,可用砂石等材料分层夯实回填至基础底面。

4围墙结构设计其他注意点

结构设计人员在砌体围墙设计时必须注意以下几点。1)围墙地面以下砌体和砂浆强度等级选用,要根据环境类别和潮湿程度而定。2)当围墙用于单体场地时,围墙长度较长,建筑未设伸缩缝,结构可根据图集要求设伸缩缝,并与建筑沟通。3)当采用实体砌块围墙时,受压构件需验算:按内力设计值计算的轴向力的偏心距e不应超过0.6y,y为截面重心到轴向力所在偏心方向截面边缘的距离。4)当采用实体砌块围墙时,必要时需抗震计算。水平地震作用采用底部剪力法计算,并进行墙体截面抗震承载力验算。5)当采用实体砌块围墙时,用于单体场地,如露天堆场,围墙结构计算需考虑场地堆载影响。当围墙场地地坪内外有较大高差时,还需考虑高差部分的土体压力,并稳定验算。6)可采取的抗震构造措施:图集中的实体砌块围墙设壁柱但未设墙顶圈梁。如需抗震设防,建议墙顶设圈梁。圈梁可限制墙体在平面外的变形,由于水平地震作用一般倒三角形分布,顶部受力和侧移均较大,所以顶部设圈梁效果更好。此外,墙顶圈梁与墙间壁柱,整体连接可形成约束框架作用。

砌体结构论文篇(5)

提要:本文在简要总结分析国内外砌体裂缝的性质和裂缝控制原则和措施的基础上,结合我国当前国情,针对性地提出了砌体结构裂缝控制的具体构造措施建议,该措施已引入我院编制的大庆油田砌块建筑构造图集。关键词:砌体结构 裂缝控制措施1 裂缝的性质 引起砌体结构墙体裂缝的因素很多,既有地基、温度、干缩,也有设计上的疏忽、施工质量、材料不合格及缺乏经验等。根据工程实践和统计资料这类裂缝几乎占全部可遇裂缝的80%以上。而最为常见的裂缝有两大类,一是温度裂缝,二是干燥收缩裂缝,简称干缩裂缝,以及由温度和干缩共同产生的裂缝。温度裂缝 温度的变化会引起材料的热胀、冷缩,当约束条件下温度变形引起的温度应力足够大时,墙体就会产生温度裂缝。最常见的裂缝是在砼平屋盖房屋顶层两端的墙体上,如在门窗洞边的正八字斜裂缝,平屋顶下或屋顶圈梁下沿砖(块)灰缝的水平裂缝,以及水平包角裂缝(包括女儿墙)。导致平屋顶温度裂缝的原因,是顶板的温度比其下的墙体高得多,而砼顶板的线胀系数又比砖砌体大得多,故顶板和墙体间的变形差,在墙体中产生很大的拉力和剪力。剪应力在墙体内的分布为两端附近较大,中间渐小,顶层大,下部小。温度裂缝是造成墙体早期裂缝的主要原因。这些裂缝一般经过一个冬夏之后才逐渐稳定,不再继续发展,裂缝的宽度随着温度变化而略有变化。干缩裂缝烧结粘土砖,包括其它材料的烧结制品,其干缩变形很小,且变形完成比较快。[KG-*2]只要不使用新出窑的砖,一般不要考虑砌体本身的干缩变形引起的附加应力。[KG-*2]但对这类砌体在潮湿情况下会产生较大的湿胀,而且这种湿胀是不可逆的变形。[KG-*2]对于砌块、灰砂砖、粉煤灰砖等砌体,随着含水量的降低,材料会产生较大的干缩变形。〖KG-*2〗如砼砌块的干缩率为0.3~0.45mm/m,它相当于25~40℃的温度变形,可见干缩变形的影响很大。轻骨料块体砌体的干缩变形更大。干缩变形的特征是早期发展比较快,如砌块出窑后放置28d能完成50%左右的干缩变形,以后逐步变慢,几年后材料才能停止干缩。但是干缩后的材料受湿后仍会发生膨胀,脱水后材料会再次发生干缩变形,但其干缩率有所减小,约为第一次的80%左右。这类干缩变形引起的裂缝在建筑上分布广、数量多、裂缝的程度也比较严重。如房屋内外纵墙中间对称分布的倒八字裂缝;在建筑底部一至二层窗台边出现的斜裂缝或竖向裂缝;在屋顶圈梁下出现的水平缝和水平包角裂缝;在大片墙面上出现的底部重、上部较轻的竖向裂缝。另外不同材料和构件的差异变形也会导致墙体开裂。如楼板错层处或高低层连接处常出现的裂缝,框架填充墙或柱间墙因不同材料的差异变形出现的裂缝;空腔墙内外叶墙用不同材料或温度、湿度变化引起的墙体裂缝,这种情况一般外叶墙裂缝较内叶墙严重。1.3 温度、干缩及其它裂缝 对于烧结类块材的砌体最常见的为温度裂缝,面对非烧结类块体,如砌块、灰砂砖、粉煤 灰砖等砌体,也同时存在温度和干缩共同作用下的裂缝,其在建筑物墙体上的分布一般可为这两种裂缝的组合,或因具体条件不同而呈现出不同的裂缝现象,而其裂缝的后果往往较单一因素更严重。另外设计上的疏忽、无针对性防裂措施、材料质量不合格、施工质量差、违反设计施工规程、砌体强度达不到设计要求,以及缺乏经验也是造成墙体裂缝的重要原因之一。如对砼砌块、灰砂砖等新型墙体材料,没有针对材料的特殊性,采用适合的砌筑砂浆、注芯材料和相应的构造措施,仍沿用粘土砖使用的砂浆和相应的抗裂措施,必然造成墙体出现较严重的裂缝。2 砌体裂缝的控制2.1 裂缝的危害和防裂的迫切性 砌体属于脆性材料,裂缝的存在降低了墙体的质量,如整体性、耐久性和抗震性能,同时墙体的裂缝给居住者在感观上和心理上造成不良影响。特别是随着我国墙改、住房商品化的进展,人们对居住环境和建筑质量的要求不断提高,对建筑物墙体裂缝的控制的要

砌体结构论文篇(6)

中图分类号:TU398 文献标志码:A 文章编号:16744764(2012)05000105

随着竖向压应力σy的增加,混凝土空心砌块砌体的剪切破坏依次表现为剪摩、剪压和斜压3类破坏形态[15],如图1所示,而与之对应的分别是库仑、主拉应力和主压应力理论[1, 612],如图2所示。但是,中国现行《砌体结构设计规范》[13](简称砌体规范)和《建筑抗震设计规范》[14](简称抗震规范)对混凝土空心砌块砌体的静力和抗震抗剪强度采用了各自不同形式的库仑理论公式,两者不仅在计算方法上不统一,而且在可靠度的取值上也与相对成熟的烧结普通砖砌体相差较大。具体表现在以下几个方面:

〖=D(〗 吕伟荣,等:混凝土空心砌块砌体抗震抗剪强度〖=〗 1)正如图1、2所示,单一的库伦理论公式仅适用于其对应的剪摩破坏,而对于另两类破坏形态,特别是具有明显下降段的斜压破坏,则拟合较差,甚至偏于不安全[1]。

2)如图3所示,尽管现行抗震规范较2001版规范在混凝土空心砌块砌体的抗震抗剪强度计算上进行了调整,但当σ0/fv大于16时,按水平段取值仍不具备下降段,与实际明显不符,不能满足日益增长的高层配筋砌体结构设计[1516]的要求。

3)以MU10、M75的烧结普通砖砌体和MU10、Mb7.5的混凝土砌块砌体为例(取永久荷载分项系数γG=1.2),如图3所示,对于国内试验数据相对较多,运用也较为成熟的烧结普通砖砌体,其静力抗剪强度曲线①普遍高于抗震抗剪强度曲线③;而对实验数据相对较少的混凝土空心砌块砌体,其静力抗剪强度曲线②普遍低于抗震抗剪强度曲线④。两本规范对于这两类砌体结构在抗剪强度计算上表现出来的不同规律,值得商榷。

综上所述,现行抗震规范采用库伦理论公式计算混凝土空心砌块砌体的抗震抗剪强度不仅不全面,而且其可靠度也值得质疑。针对以上问题,李晓文[17]、骆万康[18]、蔡勇[8, 12]、梁建国[19]等中国学者均对此进行了系统地研究,并提出了各自的计算公式,但均无法实现对剪摩、剪压和斜压三类破坏形态的全面模拟。

为此,本文作者于2008年提出了砌体剪压破坏区理。该理论认为,既然在多数的砌体剪压试验中剪摩与剪压破坏或剪压与斜压破坏共同出现,不妨将砌体的三类剪压复合破坏分为剪摩剪压破坏区和剪压斜压破坏区,通过引入权函数,推导出相应的砌体静力与动力抗剪强度简化公式[11]:

其中A、B及a需根据试验结果确定。在文[11]中,尽管也曾提出了混凝土空心砌块砌体的抗震抗剪强度公式,但该公式中A、B及a等参数的确定仅仅是在其静力抗剪强度公式的基础上,简单的对其曲线峰值折减15%得到,缺乏试验支持。

因此,本文将基于砌体剪压破坏区理论,引入近年来收集到的中国58片混凝土砌块砌体墙的剪压试验结果[19],在保证可靠度的基础上,运用曲线拟合方法,确定式(1)的3个参数,提出了剪压复合作用下混凝土砌块砌体抗震抗剪强度设计值全曲线公式,解决了现行砌体和抗震规范中存在不合理和不安全的问题。1 剪压复合作用下混凝土空心砌块砌体的抗剪强度全曲线 砌体剪压破坏区理论简化公式(1)具有下降段,能较全面的模拟砌体剪压破坏全曲线。为此,本文根据图1曲线中相关数学特征,可对公式(1)中的参数A、B及a确定如下:

根据中国现有的58片不同高宽比、不同试件尺寸、不同加载方式的混凝土空心砌块砌体结构试验结果[19],如图4所示,同时参考相关文献研究成果,对剪压复合作用下混凝土空心砌块砌体抗剪强度曲线的关键参数取值如下:

1)曲线峰值点坐标(b, ymax)的取值

如图5所示,对于坐标系统为x=σy/fm、y= fvm/fm的混凝土空心砌块砌体的剪压相关曲线而言,相关文献中横坐标b的取值各不相同:重庆建筑大学骆万康教授(1999年)对于普通粘土砖动力剪切试验回归曲线峰值点取为0502;湖南大学刘桂秋教授(2000年)对于砌体结构统一取为067[10];而对于混凝土而言,其剪压相关曲线峰值坐标为060。综合以上取值,并考虑到动力试验的取值相对偏低,本文建议取为055。

如图4所示,文[19]的试验值与式(6)计算值比值的平均值为1.27,变异系数为0245,两者吻合较好,且式(6)的计算值偏于安全。

同时,与文[19]的公式相比,式(6)的改进在于:1)具有下降段,能全面的反映剪压复合作用下混凝土空心砌块砌体的剪摩、剪压及斜压3个破坏阶段;2)解决了文[19]的计算取值偏于保守的取值,即当σy,m/fv0, m>5,文[19]取值为水平直线。同时,当σy,m/fv0, m>13.1,文[19]的计算取值由于缺乏下降段而导致不安全,无法适用于高层配筋砌块砌体结构。

2 混凝土空心砌块砌体抗震抗剪强度设计值公式2.1 γ的取值

与试验平均值公式取值不同,现行砌体规范中已明确给出了fv0和f的取值,根据砌体规范表322所列的混凝土砌块砌体类型,可计算出γ的范围在(0.015~0.050)之间,平均值为0.026,

2.2 抗震抗剪强度设计公式的确定

根据可靠度理论,砌体的强度设计设计值f与强度平均值fm的关系为:

(8)

如图5所示,本文提出的混凝土空心砌块砌体抗震抗剪强度设计公式(8)与试验平均值公式(5)相比,不仅具有可靠度保障,而且具有与试验曲线及理论分析相同的特征。为方便工程应用,本文对表1中的各种混凝土砌块砌体组合按式(8)的计算结果与现行规范中所采取的公式计算结果进行了对比,部分结果如下图6所示。

图6的计算结果表明:1)本文提出的混凝土空心砌块砌体抗震抗剪强度公式(8)普遍低于现行规范规定的混凝土砌块砌体静力抗剪强度计算值,不仅提高了其抗震可靠度,而且较好的统一、协调了烧结普通砖砌体和混凝土砌块砌体的抗震与静力抗剪强度设计值之间的变化关系。2)不同类型的混凝土砌块砌体按式(8)计算的抗震抗剪强度均在σy=f时趋于0,较好地实现了对砌体剪压相关曲线中3个破坏形态的模拟,避免了现行规范中抗剪强度单调递增的不合理和不安全。3 结论

1)在砌体剪压复合破坏区理论基础上,根据中国已有的58片灌芯砌块砌体墙片试验结果,推导出混凝土砌块砌体的剪压相关性试验值曲线公式(5)。与传统砌块砌体剪压相关曲线相比,该曲线不仅光滑连续,而且具有下降段。

2)通过对式(5)曲线顶点按f=0.42 fm进行折减以及起点、终点的相关处理后,本文推导出具有一定可靠度保证的混凝土空心砌块砌体抗震抗剪强度设计值公式(8)。如图5所示,经式(8)的计算得到的凝土空心砌块砌体抗震抗剪强度设计值不仅低于现行抗震规定的抗震抗剪强度,而且也普遍低于现行规范砌体规定的静力抗剪强度,这表明式(8)不仅满足设计可靠度要求,而且较好的统一、协调了烧结普通砖砌体和混凝土砌块砌体的抗震与静力抗剪强度设计值之间的变化关系。

3)如图6所示,本文提出的混凝土空心砌块砌体抗震抗剪强度设计公式(8)不仅具有下降段,且对于不同类型的砌块砌体组合基本上均在主压应力σy=f时趋于0,较好地实现了对砌体剪压相关曲线中各种破坏形态的模拟,能直接运用于高层砌体结构设计,避免了现行规范中抗剪强度单调递增的不合理和不安全。

参考文献:

[1]施楚贤. 砌体结构理论与设计:2版[M]. 北京: 中国建筑工业出版社, 2003.

[2]Ahmad A, Hamid and Robert G, Drysdale. Concrete masonry under combined shear and compression along the mortar joint[J]. ACI Journal, 1980, 77(5): 314320.

[3]Riddington J R, Ghazali M Z. Hypothesis for shear failure in masonry joints[C]. Proc. Instn Civ. Engrs, part2, 1990(3): 89102.

[4]Graubner C A, Kranzler T. Shear design of unreinforced masonry panels[C]. In: 10th Canadian Masonry Symposium. Banff, Alberta, 2005, on CDROM.

[5]ShiehBeygi B, Pietruszczak S. Numerical Analysis of Structural Masonry: Mesoscale Approach[J]. Computers and Structures, 2008, 86: 19581973.

[6]Andreaus U. Failure criteria for masonry panels under inplane loading[J]. Journal of Structure Engineering, 1996(122): 3746.

[7]Mann W, Mǖller H. Failure of shearstressed masonryan enlarged theory, tests and application to shear walls[C]//Proc., British Ceramic Soc., 1982(30): 223235.

[8]蔡勇, 施楚贤, 马超林,等. 砌体在剪压作用下抗剪强度研究[J].建筑结构学报, 2004, 25(5): 118123.

CAI Yong, SHI Chuxian, MA Chaolin, et al. Study of the masonry shear strength under shearcompression action[J]. Journal of Building Structures, 2004, 25(5):118123.

[9]洪峰, 王绍博. 砌体结构抗震抗剪强度分析[J]. 地震工程与工程振动, 2000, 20(3): 2833.

HONG Feng, WANG Shaobo. Analysis of earthquake shear strength of masonry structures[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(3):2833.

[10]刘桂秋, 施楚贤. 平面受力砌体的破坏准则[C]//2000年全国砌体建筑结构学术交流会议论文集. 北京: 中国建筑工业出版社, 2000:1924.

[11]吕伟荣, 施楚贤, 刘桂秋. 剪压复合作用下砌体的静力与抗震抗剪强度[J]. 工程力学, 2008, 25(4): 158164.

LU Weirong, SHI Chuxian, LIU Guiqiu. Static and seismic shear strength of masonry under shearcompression loading[J]. Engineering Mechanics, 2008,25(4):158164.

[12]蔡勇. 砌体在剪压复合作用下抗震抗剪强度分析[J]. 建筑结构,2011, 41(2): 7477.

CAI Yong. Analysis on aseismic shear strength of masonry under shearcompression composite action[J]. Building Structure, 2011,41(2):7477.

[13]中华人民共和国建设部. GB 50003-2001 砌体结构设计规范[S]. 北京: 中国建筑工业出版社, 2001.

[14]中华人民共和国建设部. GB 50011-2010 建筑抗震设计规范[S]. 北京:中国建筑工业出版社,2010.

[15]金伟良, 岳增国, 高连玉. 《砌体结构设计规范》的回顾与进展[J]. 建筑结构学报, 2010, 31(6): 2228.

JIN Weiliang, YUE Zengguo, GAO Lianyu. Stateoftheart development on ‘Code for design of masonry structures’[J]. Journal of Building Structures, 2010,31(6):2228.

[16]施楚贤. 对砌体结构类型的分析与抗震设计建议[J]. 建筑结构,2010, 40(1): 7476.

SHI Chuxian. Analysis for dividing types of masonry structures and seismic design recommendations[J]. Building Structure, 2010,40(1):7476.

[17]李晓文, 王庆霖. 无筋墙体抗剪计算[C]// 2000年全国砌体建筑结构学术交流会议论文集. 北京: 中国建筑工业出版社, 2000:5965.

[18]骆万康, 李锡军. 砖砌体剪压复合受力动、静力特性与抗剪强度公式[J]. 重庆建筑大学学报, 2000, 22(4): 1319.

LUO Wankang, LI Xijun. A study on the response of brick masonry structure under dynamic and static shearcompression loading and suggested shearing equation[J]. Journal of Chongqing Jianzhu University, 2000, 22(4):1319.

砌体结构论文篇(7)

中国是砌体结构使用的大国,历史上闻名遐迩的万里长城,它是两千多万年前用建造的砌体工程,是世界上最伟大的砌体结构工程之一;在春秋战国时期就已经开始兴修水利,李冰父子修建的都江堰在今天仍然起灌溉的作用;1400年前用料石修建的赵县赵州桥,是世界上现存的敞肩式的拱桥。该桥梁已被选入世界第十二个土木工程里程碑。这些都是先人留给我们的,也对弘扬中国文化遗产起到积极作用。建国后我国在砌体结构方面有了很大的发展,下面进行这方面的介绍:

1. 我国砌体结构发展现状

1949年建国以来,砌体结构得到了飞速的发展。近些年我国砖的年产量达到了世界其他各国年产量的总和,百分之九十以上的墙体都采用砌体作为材料。我国已经从过去的用砖石建造底层的民房,发展到现在的建造大量的多层住宅等民用建筑以及中小型单层工业厂房和多层轻工业厂房、影剧院、食堂等等建筑。上世纪六十年代以来。.我国的小型空心砌块以及多孔砖的生产和应用有很大的发展,近些年来砌块与砌块建筑的年增量都在百分之二十左右,在上世纪六十年代末我国已经提出了墙体材料需要革新,九十年代末至今我国墙体材料的革新已经迈入了第三个阶段。2000年我国的新型墙体材料应用占墙体材料总用量的百分之二十八,超过“十五”计划百分之二十的目标。新型墙体材料的应用达到了2100亿块标准砖,新型墙体材料总建筑面积在3.3亿平方米。上世纪九十年代以来,在吸收以及消化国外配筋砌体结构发展的成果基础上,建立了具有色的钢筋混凝土砌块的砌体剪力墙结构体系,大大地发展了砌体结构在高层房屋和在抗震设防地区的应用。还有上世纪六十年代初至今。在有关部门的组织下在,全中国范围内对砌体结构作了比较系统的试验研究以及比较深入的理论探讨,总结出了一套具有中国特色的、较为先进的砌体结构的理论计算方法以及应用经验[1]。

2. 砌体结构发展趋势

随着新型砌体结构材料和新的结构形式的出现,砌体结构的设计理论和方法不断促进砌体结构的向前发展。根据世界各国的砌体应用情况,我国砌体结构正向适应社会需求的方向发展,发展现代砌体已经成为了摆在我们面前的重要任务。其特点如下:

(1)发展和推广应用砌体结构的新材料。为适应节能、环保的要求,要限制黏土砖的应用,而改为大力发展新型砌体材料,充分把工业废料和地方性材料利用起来,发展节能的砌体结构。加大限制高能耗的、高资源消耗的、高污染的低效益的产品的生产力度。大力发展蒸压灰砂废渣砌体材料制品,包括粉煤灰加气混凝土墙板、粉煤灰砖、炉渣砖及空心砌块、钢渣砖等。

(2)发展轻质高强多功能的砌块和高性能的砂浆,进一步研究轻质高强低能耗的砌块,使砌块向薄壁、大块发展、高强、薄壁和大尺寸是今后砌块的发展方向,可以减轻自重,节约运输的费用,减少灰缝,就可以节省劳力,并且可以提高承载力;利用页岩生产多孔砖,大力发展废渣轻型的墙板、蒸压纤维的水泥板,提高自重轻、防火、施工安装方便GRC板;大力推广复合墙板。目前,国内外还没有不仅能够满足建筑节能保温隔热,又能够满足外墙防水和强度的技术要求的单一的材料。

(3)采用新技术、新结构体系。配筋砌体和预应力砌体都是砌体结构的发展方向。向砌块孔洞内灌注混凝土,使它成为钢筋混凝土和砌块的组合砌体,可以用于多高层房屋,可以减轻自重,提高砌体的强度以及抗震性能。根据我国对粘土砖的限制政策,可就地取材、因地宜,在粘土较多的地区,如西北高原,发展高强粘土制品、高空隙率的保温砖和外墙砖、块材等在粘土少的地区发展高强砼砌块、承重装饰砌块和利用废材料制成的砌块等。在发展高强块材的同时,研制高强等级的砌筑砂浆。目前的砂浆强度等级最高为M15。当与高强块材匹配时需开发大于M15的高性能砂浆。

(4)新设计方法。研究人员更加深入地研究砌体结构的本构关系、破坏的机理和受力的性能,研究砌体结构的整体工作性能,多高层计算理论以及方法,通过物理和数学模式,建立精确并且完整的砌体结构理论,使砌体结构的计算方法以及设计理论更趋于完善。

例如北京某学生公寓,外墙采用240厚页岩煤矸石多孔砖,内墙采用150厚陶粒空心砌块。楼、地、屋面采用钢筋混凝土现浇板,条形基础,基础顶标高-1.000m。墙体采用页岩煤矸石多孔砖,内墙、厨、厕及阳台处隔墙为200厚,其余墙体厚度均为240。砖块强度采用MU15,±0.000以下采用M7.5混合砂浆。±0.000以上采用M5混合砂浆。

3. 结语

发展砌体结构的建筑材料一定要以当地资源为基础。在发展砌体砌块的同时,应该充分利用当地资源制造砌块。更重要的是,为了坚持可持续发展的工作方针,保护环境,还应充分利用工业废料,如当地有粉煤灰、炉渣、矿渣等废料,就应该充分利用起来。目前砌块形式比较单调,功能仅仅停留在墙用砌块的范畴,只有几种规格。砌体结构建筑的发展是集材料、热工、结构、建筑、施工等等多方面的系统工程,从单一角度考虑,难免会带有片面性,一定要树立总体的观念,才能建出可靠、实用、耐久的房子。

参考文献:

[1]施楚贤.砌体结构理论与设计[M].北京:中国建筑工业出版社.1992.

砌体结构论文篇(8)

一、我国砌体结构发展的现状新中国成立以来,砌体结构得到迅速发展。目前砌体结构是我国建筑工程中量大而面广的最常用的结构形式,砌体结构中砖石砌体约占95%以上。据了解,目前我国实心黏土砖的年产量已达6000亿块,破坏土地资源数10万亩,十分惊人。砌体材料方面的发展必然应考虑“节土”、“节能”、“利废”的基本国策。作为“节土”、减轻自重的重要措施,20世纪80年代以来,砖已从过去单一的烧结普通砖发展到采用多孔砖和空心砖、混凝土空心砌块、轻骨料混凝土或加气混凝土砌块、非烧结硅酸盐砖、硅酸盐砖、粉煤灰砌块、灰砂砖以及其他工业废渣或煤矿石等制成的无熟料水泥煤渣混凝土砌块等。为适应城市建设的需要,结构形式也从过去单一的墙砌体承重结构发展为大型墙板、内框架结构、内浇外砌、挂板等不同类型。砌体结构的应用范围也在不断地扩大,出现了以砖砌体建造屋面、楼面结构的情况。各地也在积极研究论证砌体用于高层建筑结构中的可行性。在应用新技术方面,我国曾采用过振动砖墙板技术、预应力空心砖楼板技术与配筋砌体等。配筋砌体结构的试验与研究在我国虽然起步较晚,但进步显著。20世纪60年代起在一些房屋的部分砖砌体承重墙、柱中尝试采用管网配筋,结果墙、柱的承载力得到了很大的提高且材料利用率也提高了很多,取得了显著的经济效果。70年代以来,尤其是经历了1975年海城地震及1976年唐山大地震之后,我国加强了对配筋砌体结构的试验和研究,且于1983年和1986年,在广西南宁修建了10层配筋砌块的住宅楼和11层办公楼试点房屋。当时采用MU20高强砌块是两次人工投料振捣而成。于辽宁盘锦市建成了一栋15层配筋砌块剪力墙点式住宅楼。1998年上海建成一栋配筋砌块剪力墙18层塔楼,所用砌块也是用美国设备生产MU20的砌块,这是我国最高的18层砌块高层房屋,而且建在7度设防的上海市,其影响和作用都是比较大的。2000年抚顺也建成一栋6.6m大开间12层配筋砌块剪力墙板式住宅楼。

二、砌体结构的优点与缺点砌体结构能够得到如此广泛的应用必然有它存在的道理,同时也会造成一些负面的影响,随着时代的发展与自然资源的变换,砌体结构的优缺点也体现的越来越明显:

1、砌体结构的优点①容易就地取材。砖主要用粘土烧制;石材的原料是天然石;砌块可以用工业废料──矿渣制作,来源方便,价格低廉。②砖、石或砌块砌体具有良好的耐火性和较好的耐久性。③砌体砌筑时不需要模板和特殊的施工设备。在寒冷地区,冬季可用冻结法砌筑,不需特殊的保温措施。④砖墙和砌块墙体能够隔热和保温,所以既是较好的承重结构,也是较好的围护结构。

2、砌体结构的缺点①与钢和混凝土相比,砌体的强度较低,因而构件的截面尺寸较大,材料用量多,自重大。②砌体的砌筑基本上是手工方式,施工劳动量大。③砌体的抗拉和抗剪强度都很低,因而抗震性能较差,在使用上受到一定限制;砖、石的抗压强度也不能充分发挥。④粘土砖需用粘土制造,在某些地区过多占用农田,影响农业生产。基于砌体结构在我国建筑中应用的如此广泛,而它的优缺点又越来越影响了社会的发展,所以我们要总结出一条砌体结构在我国可持续发展之路。

三、我国砌体结构的发展前景随着科学技术的进步,古老的砌体结构将逐步被现代砌体结构所取代。21世纪我国砌体结构已进入了成熟的发展阶段,但仍具有诸多不足之处,其今后的主要发展方向有如下几个方面。

1、研究和生产节能、环保、轻质、高强、高性能、可持续发展的块体材料。 轻质、高强空心块体,能使墙体自重减轻,生产效率提高,且保温隔热性能良好,受力更加合理,抗震性能也得到了提高。在努力研究和生产轻质、高强的砌块和砖的同时,还应注意对高黏结强度砂浆的研制和开发,发展高强、高黏结力的砂浆可有效的提高砌体结构的强度和抗震性能。

2、研究和发展新的设计理论和新的结构体系 相对其他结构形式而言,砌体结构的设计理论发展较慢,还有不少问题有待进一步研究。同时需要更加深入地研究砌体结构的结构布置,整体受力性能和破坏机理,通过物理和数学模式,建立精确而完整的砌体结构理论,研究有优良抗震性能的砌体结构,使砌体结构这种古老而有生命力的结构形式更好地造福人民。

3、研究和推广先进、高效新技术采用工业化生产,提高砌体施工技术的机械化水平,可减轻劳动强度、加快工程建设速度。国外在砌体结构的预制、装配化方面做了许多工作,积累了不少经验,我国在这方面有较大差距。我国对预应力砌体结构的研究相当薄弱,为此,有必要在我国较大范围内改变传统的砌体结构建造方式。先进、高效的建造技术,将为创造舒适的居住和使用环境提供良好的条件。综上所述,砌体结构在我国得到了广泛的应用,但随着时代的变迁也需要进行不断的进步才能适应社会的发展需要,这就要求我们站在可持续发展的角度上不断的进行科技创新,利用新技术将砌体结构这古老的建筑传统延续下去。

参考文献:

砌体结构论文篇(9)

In this paper, a brief introduction to the achievements in the field of masonry since the founding of P.R. China, which include the usage of all kinds of masonry structures, the development of new masonry materials and its structures and systems, the studies and researches on masonry theory. A recommendation to the development of masonry in future based on the author's knowledge.?

〔keywords〕 unreinforced masonry; reinforced masonry; green building material.

中国是砌体大国,在历史上有举世闻名的万里长城,它是两千多万年前用“秦砖汉瓦”建造的世界上最伟大的砌体工程之一;有在春秋战国时期就已兴修水利,如今仍然起灌溉作用的秦代李冰父子修建的都江堰水利工程;有在1400年前由料石修建的现存河北赵县安济桥,这是世界上最早的敞肩式拱桥。该桥已被美国土木工程学会选入世界第12个土木工程里程碑。这些都是值得我们自豪和继承的,也对弘扬我国文化遗产起到积极作用。[1]?解放后我国在砌体结构方面有了很大的发展,分三个方面加以概要介绍。

一 砌体结构量大面广[2]?

解放以来我国砖的产量逐年增长,据统计[3]?,1980年的全国年产量为1600亿块,1996年增至6200亿块,为世界其它各国砖每年产量的总和。全国基建中采用砌体作墙体材料约占90%左右。在办公、住宅等民用建筑中大量采用砖墙承重。50年代这类房屋一般为3-4层,现在已为5-6层,不少城市一般建到7-8层。现在每年兴建的城市住宅建筑面积多达1亿m2以上。根据重庆市1980~1983年新建住宅建筑面积为503万m2,其中采用砖承重的占98%,7~7层以上的占50%,1972年还建成12层住宅。

? 在中小型单层工业厂房和多层轻工业厂房,以及影剧院、食堂、仓库等建筑也广泛采用砖墙、柱承重结构。

? 砖石结构还用于建造各种构筑物。如镇江市建成的顶部外经2.18m、底部外径4.78m、高60m的砖烟囱;用料石建成的80m排气塔;在湖南建造的高12.4m、直径6.3m、壁厚240mm的砖砌粮仓群;福建用毛石建造的横跨云宵—东山两县的大型引水工程—向东渠,其中陈岱渡槽全长4400m,高20m,槽支墩共258座,工程规模宏大。此外我国在古代建桥技术的基础上,于1959年建成跨度60m、高52m的石拱桥,接着又建成了敞肩式现代公路桥,最大跨度达120m——湖南乌巢河大桥。我国建成的100m以上的石拱桥有10座(包括乌巢河桥),每座都有新发展和世界纪录。

? 我国还积累了在地震区建造砌体结构房屋的宝贵经验。我国绝大多数大中城市在6度或6度以上地震设防区。地震烈度≤6度的砌体结构经受了地震的考验。经过设计和构造上的改进和处理,还在7度区和8度区建造了大量的砌体结构房屋。据不完全统计,从80年代初至今10多年间我国主要大中城市建造的多层砌体结构房屋建筑面积已达70-80亿m2[4]。

二 新材料、新技术、新结构的研究与应用

60年代以来,我国粘土空心砖(多孔砖)的生产和应用有较大的发展,在南京建造了6-8层的空心砖承重的旅馆。当时空心砖孔洞率为22%,与实心砖强度等效,但可减轻自重17%、墙厚减小20%,节省砂浆20~30%,砌筑工时少20-25%,墙体造价降低19~23%。根据节能进一步要求,近年来我国在消化吸收国外先进技术的基础上,制造出规格为380×240×190、孔洞率为40%的烧结保温空心砖(块),这种保温砖的密度为1012kg/m3,抗压强度10.5Mpa,热阻1.649m2K/W。在主要力学和热工性能的指标接近或达到国际同类产品的水平[5]。《多孔砖砌体设计与施工技术规程》行业标准,为这种砖的推广创造了条件。

? 近10余年来,采用砼、轻骨料砼或加气砼,以及利用河砂、各种工业废料、粉煤灰、煤干石等制无热料水泥煤渣砼砌块或蒸压灰砂砖、粉煤灰硅酸盐砖、砌块等在我国有较大的发展。1958年建成采用砌块作墙体的房屋,经过四十多年的实践,砌块墙体已成为我国墙体革新的有效途径之一。砌块种类、规格较多,其中以中、小型砌块较为普遍,在小型砌块中又开发出多种强度等级的承重砌块和装饰砌块。据不完全统计[6],1996年全国砌块总产量约为2500万m3,各类砌块建筑

约5000万m2,近十年砼砌块与砌块建筑的年递增都在20%左右,尤其以大中城市推广迅速,以上海推广砌块建筑为例,1994年约50万m2,1995年100万m2,1996年约150万m2,到1999年一季度累计完成的砌块建筑450万m2。这些砌块建筑大多是多层的,至于中高层、高层砌块建筑我国于80年代就着手和进行试点工作,如1982年建成的广西区科委十层砌块住宅试验楼、1986年建成的广西区建二公司十一层小砌块试验楼(7度设防),[7]为我国砌块中高层的发展作了开创性的工作。从90年代初期,在总结国内外配筋砼砌块试验研究经验的基础上,我国在配筋砌块结构的配套材料、配套应用技术的研究上获得了突破,在此基础上开展了更具代表性和针对性的试点工程[10],如1997年建成的盘锦市国税局15层砌块住宅,1998年建成的上海砼空心砖块配筋砌体住宅试点工程[8]。试点工程实践表明,中高层配筋砌块建筑具有明显的社会经济效益:前者15层砌块建筑,节省钢材45%、土建造价降低18%;上海18层节约钢材25%,土建造价降低7.4%。因此,将中高层配筋砌块结构体系纳入到我国砌体结构设计规范中是理所当然的。由此可见,作为粘土砖的主要替代材和某些功能强于粘土砖的砌块的发展前景是非常好的。

? 我国在50年代~70年代,采用预制大型墙板建造多层住宅,如采用振动砖墙板、烟灰煤渣、矿渣砼墙板建造了几十万m2的建筑。近10多年来北京等地采用内浇(砼)外砌的混合结构建造中高层建筑,取得了较好的经济效益。最近几年清华大学开展了多层大开间砼核心筒、砌体外墙的混合结构的试验研究和小规模试点工程,在改进和扩展砌体结构的性能和应用范围作了有益的探索。[12、13]

? 我国配筋砌体应用研究起步较晚,60年代衡阳和株州一些房屋的部分墙、柱采用网状配筋砌体承重,节省纲材和水泥。1958~1972年在徐州采用配筋砖柱建筑了12-24m、吊车起重量50-200t的单层厂房36万m2,使用情况良好。70年代以来,尤其是1975年海城—营口地震和1976年唐山大地震之后,对设置构造柱和圈梁的约束砌体进行了一系列的试验研究,其成果引入我国抗震设计规范。在此基础之上,通过在砖墙中加大加密构造柱形成所谓强约束砌体的中高层结构的研究取得了可喜的成果。如辽宁省沈阳市、江苏徐州、湖南长沙、兰州等地先后建造了8~9层上百万m2的这类建筑,获得了较好的经济效益。这些研究成果有的已纳入到地方标准或国家标准[14、15、16]。这是我国科研工作者在粘土砖砌体低强材料情况下,向中高层作出的贡献。利用如此低的砌体材料在地震区建造如此之高的建筑唯有中国!

? 和约束配筋砌体对应的是所谓均匀配筋砌体,即国外广泛应用的配筋砼砌块剪力墙结构,这种砌体和纲筋砼剪力墙一样,对水平和竖向配筋有最小含钢率要求,而且在受力模式上也类同于砼剪力墙结构,它是利用配筋砌块剪力墙承受结构的竖向和水平作用,是结构的承重和抗侧力构件。配筋砌体具有强度高、延性好,和钢筋砼剪力墙性能十分类似,可以用于大开间和高层建筑结构[6]。如美国抗震规范规定,配筋砌体的适用范围同钢筋砼结构。我国在80年代初期主持编制国际标准《配筋砌体设计规范》[11]起至今对其进行了较为系统的试验研究[7、8、9],表明用配筋砌体可建造一定高度的既经济又安全的建筑结构,如广西的10-11层、盘锦的15层、上海的18层等。目前正在筹建的配筋砌块高层有首钢十八层配筋砌块住宅工程(8度设防),辽宁抚顺6栋16层砌块住宅、哈尔滨2栋18层砌块住宅等。可见配筋砌体中高层的研究和应用具有十分广阔的前景。

? 我国有着用砖砌筑拱和券的丰富经验,解放以来,又向新的结构形式和大跨度方向发展。50-60年代修建了一大批砖拱屋盖和楼盖,还建成了10.5×11.3m的扁球形砖壳屋盖,16×16m的双曲扁球型砖薄壳和40m直径的园形球砖壳。60年代南京用带勾空心砖建成14×10m双曲扁壳屋盖仓库,以及10m直径的园形壳屋盖油库,在西安建成了24m双曲扁壳屋盖等。70年代我国还在闽清梅溪大桥工程中建成88m跨的(砼助)双曲砖拱桥等。

三 砌体结构理论研究与计算方法

解放前直至1950年我国谈不上有任何结构设计理论。国家建委于1956年批准在我国推广应用苏联《砖石及钢筋砖石结构设计标准和技术规范》NUTY120-55,直到60年代。60~70年代初,在我国有关部门的领导和组织下,在全国范围内对砖石结构进行了比较大规模的试验研究和调查,总结出一套符合我国实际、比较先进的砖石结构理论、计算方法和经验。在砌体强度计算公式、无筋砌体受压构件的承载力计算、按刚弹性方案考虑房屋的空间工作,以及有关构造措施方面具有我国特色。在此基础上于1973年颁布了国家标准《砖石结构设计规范》GBJ3-73。这是我国第一部砖石结构设计规范。从此使我国的砌体结构设计进入了一个崭新的阶段。70年代中期至80年代末期,为修订GBJ3-73规范,我国对砌体结构进行了第二次较大规模的试验研究,其中收集我国历年来各地试验的砌体强度数据4023个,补充长柱受压试件近200个,局压试件100多个,墙梁试件200多根及2000多个有限元分析数据和进行了11栋多层的砖房空间性能实测和大量的理论分析工作等。这样在砌体结构的设计方法、多层房屋的空间工作性能、墙梁的共同工作,以及砌块的力学性能和砌块房屋的设计方面取得了新的成绩。此外对配筋砌体、构造柱和砌体房屋的抗震性能方面也进行了许多试验研究。相继出版了《中型砌块建筑设计与施工规范》JGJ5-80、《砼小型空心砌块建筑设计与施工规程》JGJ14-82、《冶金工业厂房钢筋砼墙梁设计规程》YS07-79、《多层砖房设置钢筋砼构造柱抗震设计与施工规程》JGJ13-82等,特别是《砌体结构设计规范》GBJ3-88,使我国砌体结构设计理论和方法趋于完善。我国砌体结构可靠度的设计方法,已达到当前的国际先进水平。对于多层砌体房屋的空间工作,在墙梁中考虑墙和梁的共同工作和局压设计方法等专题的研究成果在世界上处于领先地位。近10余年来,特别是《砌体结构设计规范》GBJ3-88颁行后,进入了第三次较大规模的修订时期。如1995年颁行的《砼小型空心砖块建筑技术规程》JGJ/T14-95,通过试验增强抗震构造措施,使原规范(JGJ14-82)可增加一层,扩大了地震区的应用范围。1999年6月1日颁行的《砌体工程施工及验收规范》GB50203-98,取代了《砖石工程施工及验收规范》GB203-83。它主要补充了近年来新型材料和配筋砌体施工技术、施工质量控制等级方面的内容。目前正在修编的《砌体结构设计规范》GBJ3-88,主要在砌体结构可靠度方面、配筋砼砌块砌体、墙梁的抗震方面作了调整和补充。砌体结构可靠度,根据我国当前国情,作了适当的上调。这样作主要为促进采用较高等级的砌体材料,提高耐久性和适当提高抗风险能力。配筋砌体,特别是配筋砼砌块中高层,根据我国主编的国际标准《配筋砌体结构设计规范》和我国近年来各地较大规模的试验研究和试点建筑的经验,使我国配筋砌体的理论更完善,应用范围和限制有了较大的扩展和突破。如其应用范围,已达到钢筋砼剪力墙的适用范围。配筋灌孔砼砌块砌体是作为一个体系纳入到砌体规范中的,它的未来的实施,对促进我国砌块结构向高档次发展具有重要作用。

? 另外本次修订增补了墙梁在地震区的设计方法,进一步扩大了这种结构形式的使用范围。另外根据多年来砌体结构,特别是新型墙体材料结构的温度裂缝、干燥收缩裂缝普遍比较严重,进行深入研究后,增加了比较有效的抗裂构造措施。

? 我国砌体结构理论近年来有较大提高,反映在《砌体结构设计规范》GBJ3-88颁行前后,陆续出版了许多教材和著作,如丁大钧主编的《砌石结构》、《砌体结构学》、施楚贤主编的《砌体结构理论与设计》,以及《砌体结构论文集》、《砌体结构设计手册》等。这些对促进我国砌体结构的发展有一定作用。

四 展望?

砌体是包括多种材料的块体砌筑而成的,其中砖石是最古老的建筑材料,几千年来由于其良好的物理力学性能、易于取材、生产和施工,造价低廉,致今仍成为我国主导的建筑材料。但是我国的砌体材料普遍存在着自重大、强度低、生产能耗高、毁田严重、施工机械化水平较低,和耐久性、抗震性能较差等弊病。因此我认为要针地这些问题开展下列方面的工作。

1、积极开发节能环保形的新型建材[3]

? 1988年第一次国际材料研究会议上首次提出“绿色建材”的概念,1992年6月联大巴西里约热内卢环境和发展世界各国首脑会议,通过了“21世纪议程”宣言,确认了“可持续发展”的战略方针,其目标是:依据环境再生、协调共生、持续自然的原则,尽量减少自然资源的消耗,尽可能对废弃物的再利用和净化。保护生态环境以确保人类社会的可持续发展。

? 近年来发达国家在实施《绿色建材》计划上取得了较大的进展,我国以1992年联合国环境与发展首脑会议为契机,遵照江泽民同志“经济的发展,必须与人口、环境、资源统筹考虑,决不能走浪费资源和先污染后治理的老路,更不能吃祖宗饭、断子孙路……。”的指示精神,迅速行动起来,广泛研制“绿色建材”产品,取得了初步成果。

?1) 加大限制高能耗、高资源消耗、高污染低效益的产品的生产力度。如对粘土砖(按1996年生产6000亿块的代价是毁田10万多亩、能耗6000万吨标煤)国家早就出台了减少和限制的政策。近年的限制力度越来越大,如北京、上海等城市在建筑上不准采用粘土实心砖,这间接地促进了其它新材的发展。

?2) 大力发展蒸压灰砂废渣制品。这包括钢渣砖、粉煤灰砖、炉渣砖及其空心砌块、粉煤灰加气砼墙板等。这些制品我国80年代以前生产量曾达2.5亿块,吃掉工业废渣几百万吨,但由于种种原因大多数厂家已停产,致使粘土砖生产回潮。今后应加大科研投入、改进工艺、提高产品性能和强度等级、降低成本,向多功能化发展。

?3) 利用页岩生产多孔砖。我国页岩资源丰富,分布地域较广。烧结页岩砖具有能耗低、强度高、外观规则,其强度等级可达MU15~MU30,可砌清水墙和中高层建筑。页岩砖在四川、湖北和大连等地已初步应用。如城都的“绵城苑”小区16万m2的建筑均采用这种砖。

?4) 大力发展废渣轻型砼墙板。这种轻板利用粉煤灰代替部分水泥,骨料为陶粒、矿渣或炉渣等轻骨料,加入玻璃纤维或其它纤维。以及其它轻材料墙板,提高砌体施工技术的工业化水平。

?5) GRC板的改进与提高。这种板自重轻、防火、防水、施工安装方便。GRC空心条板是大力发展的一种墙体制品,需用先进的生产工艺和装配,以提高板的产量和质量。

?6) 蒸压纤维水泥板。我国是世界上第三大粉煤灰生产国,仅电力工业年排灰量达上亿吨,目前的利用率仅为38%。其实粉煤灰经处理后可生产价值更高的墙体材料。如高性能砼砌块、蒸压纤维增强粉煤灰墙板等。它具有容重低、导热系数小、可加工性强、颜色白净的特点,目前全国的产量已达700万m2。

?7) 大力推广复合墙板和复合砌块。目前国内外没有单一材料,既满足建筑节能保温隔热,又满足外墙的防水、强度的技术要求。因此只能用复合技术来满足墙体的多功能要求。如钢丝网水泥夹芯板。目前看来,现场湿作业,抹灰后难以克服龟裂现象有待改进。

?复合砌块墙体材料,也是今后的发展方向,如采用矿渣空心砖、灰砂砌块、砼空心砌块中的任一种与绝缘材料相复合都可满足外墙的要求,目前已有少量生产。我国在复合墙体材料的应用方面已有一定基础,宜进一步改善和完善配套技术,大力推广,这是墙体材料“绿色化”的主要出路。

2、发展高强砌体材料

? 目前我国的砌体材料和发达国家相比,强度低、耐久性差。如粘土砖的抗压强度一般为7.5~15Mpa,承重空心砖的孔隙率≤25%。而发达国家的抗压强度一般均达到30~60Mpa,且能达到100Mpa,承重空心砖的孔洞率可达到40%,容重一般为13KN/m3,最轻可达0.6KN/m3。根据国外经验和我国的条件,只要在配料、成型、烧结工艺上进行改进,是可以显著提高烧结砖的强度和质量的。如我国中美合资大连太平洋砖厂可生产出20Mpa~100Mpa的页岩砖。由于强度高、耐久性、耐磨性和独特的色彩,可作清水墙和装饰材料,已出口和广泛用于高档建筑。高强块材具有比低强材料高得多的价格优势。

? 根据我国对粘土砖的限制政策,可就地取材、因地植宜,在粘土较多的地区,如西北高原,发展高强粘土制品、高空隙率的保温砖和外墙装饰砖、块材等;在少粘土的地区发展高强砼砌块、承重装饰砌块和利废材料制成的砌块等。

? 在发展高强块材的同时,研制高强度等级的砌筑砂浆。目前的砂浆强度等级最高为M15。当与高强块材匹配时需开发大于M15以上的高性能砂浆。我国正在起草的《砼小型空心砌块砂浆和灌孔砼》行业标准中砂浆的强度等级为M5~M30,灌孔砼的强度等级为C20~C40,这是砼砌块配套材料方面的重要进展,对推动高强砌体材料结构的发展有重要作用。

? 根据发展趋势,为确保质量,发展干拌砂浆和商品砂浆具有很好的前景。前者是把所有配料在干燥状态下混合装包供应现场按要求加水搅拌即可。天津舒布洛克水泥砌块公司已供应这种干拌砂浆,价格约高20%左右。商品砂浆的优点同商品砼。这类砂浆的发展一旦取代传统砂浆,将是一个多么巨大的变化!

3、继续加强配筋砌体和预应力砌体的研究。

我国虽已初步建立了配筋砌体结构体系,但需研制和定型生产砌块建筑施工用的机具,如铺砂浆器、小直径振捣棒(ф≤25)、小型灌孔砼浇注泵、小型钢筋焊机、灌孔砼检测仪等。这些机具对配筋砌块结构的质量至关重要。

?预应力砌体其原理同预应力砼,能明显地改善砌体的受力性能和抗震能力。国外,特别是英国在配筋砌体和预应力砌体方面的水平很高。我国80年代初期曾有过研究,但直至最近才有少数专家研究,如重庆建筑大学的骆万康教授对预应力砖墙的抗震设计提出了建议。[17]

4、加强砌体结构理论的研究

? 进一步研究砌体结构的破坏机理和受力性能,通过物理和数学模式,建立精确而完整的砌体结构理论,是世界各国关心的课题。我国在这方面的研究具有较好的基础,有的题目有一定的深度,[18]继续加强这方面的工作十分有利,对促进砌体结构发展也有深远意义。为此还必须加强对砌体结构的实验技术和数据处理的研究,使测试自动化,以得到更精确的实验结果。

?正如一位资深砌体结构学者,E、A、James指出“砌体结构经历了一次中古欧洲的文艺复兴,其有吸引力的功能特性和经济性,是它获得新生的关键。我们不能停留在这里。我们正在进一步赋予砌体结构的新的概念和用途”。我们对砌体结构的未来充满信心,在党的方针政策的正确指引下,坚持科学态度,敢于创新,不断努力,为我国及世界的砌体结构的发展作出更大的贡献。

参考文献

?1、丁大钧.《砌体结构》教学刍议.建筑结构.1999.(3)

?2、施楚贤主编.砌体结构理论与设计.中国建筑工业出版社.1992.

?3、周玉琴等.浅谈新世纪“绿色建材”在国内外发展趋势.天津墙改办.墙改与节能.1999.(2)

?4、建筑结构设计统一标准修订组.我国建筑结构设计可靠度设定水平分析与改进意见.1999.7

?5、郑墨林.烧结保温空心砌块的性能与应用初探.天津墙改办.墙改与节能.1999.(2)

?6、苑振芳.砼砌块建筑发展现状及展望.工程建设标准化.1998.(6)

?7、广西建科所.抗震设防(7度)配筋小砌块高层建筑研究—成果鉴定资料.1987.12

?8、肖小松.砼砌体的性质.同济大学博士后工作报告.1998.5

  9、谢小军.砼小砌块砌体力学性能及其配筋砌体抗震性能的研究.湖南大学硕士论文.1998?

  10、苑振芳.15层配筋砌块住宅试点工程简介.施工技术.1998.(7)

砌体结构论文篇(10)

中图分类号:G642.0 文献标识码:A 文章编号:1002-4107(2016)11-0021-02

一、“砌体结构”课程的特点

(一)应用广泛

砌体结构应用历史悠久,目前仍为重要的结构形式之一。砌体结构具有取材便利、热工性能较好、造价低廉、施工便利等优点,这使砌体结构得到广泛应用,虽然因为其自重大、破坏耕地的缺点使之在大中型城市的应用受到了限制,但是新型绿色环保块材的开发使得砌体结构生机盎然,发展前景广阔[1]。

(二)理论综合性强

砌体结构一般由砌体材料砌筑而成的承重墙体和采用钢筋混凝土材料建造的屋盖、楼盖组成,也被称为混合结构。完整的砌体结构设计包括竖向承重构件(墙、柱和基础)和水平受力构件(板、梁、楼梯、阳台、雨篷等)设计,各构件之间相互作用形成一套完整的承重体系。砌体结构设计涉及钢筋混凝土结构、建筑抗震设计、结构力学、土力学及地基基础等众多学科门类,综合性强,是土木工程专业建筑工程方向的主要专业课程之一[2]。

(三)学生就业以砌体结构工程为主

从近几年高职学生就业的情况来看,多数学生选择建筑“员”的工作,就业的单位多在二、三线城市,所面临的结构形式多为砌体结构。高职毕业生以其较好的操作技能和环境适应性得到二、三线城市建筑企业的青睐,发展前景较好。

(四)技能与理论培养不平衡

高等职业教育的目标是培养一批具有扎实的理论知识、熟练的职业技能的复合型高素质人才,但在实际培养过程中技能培养与理论培养不平衡。有的学校只重视技能的培养,认为学生能上岗作业、就业率高就达到了目标,并没有将足够的专业理论知识放在心上,其弊端是使学生只会简单地模仿劳动,遇到技术问题时他们无法从根本上解决。有的学校只注重理论知识的学习,学生修满学分、把他们送出校园就算功德圆满了,学生的实际操作技能培养不到位。高职学生相较于本科学生而言基础薄弱,如果技能培养不到位,动手能力不足,则其竞争力会降低,不利于高职学生未来的发展。

在砌体结构发展前景广阔,而高职学生就业后多是面对砌体结构的背景下,根据就业需求调整“砌体结构”的教学方法、教学内容对夯实学生的理论基础、培养学生的实际操作技能、增强学生的竞争力意义重大。

二、以就业需求为导向的“砌体结构”教改措施

以就业需求为导向即是围绕地方经济发展对人才的需求,主动适应社会,以企业对学生在砌体结构设计方面的知识、能力、素质要求为导向,努力把学生培养成能正确指导企业施工、解决施工突发问题的高素质技能型人才[3]。

以施工员的需求为例,结合与砌体结构密切相关的知识点,需要学生掌握的知识点有块材、砂浆的选择,圈梁、构造柱、条形基础的布置,过梁的选择,挑梁、墙梁的施工,女儿墙、窗台板的构造要求。砌体结构课程的主要讲授内容有材料的基本性能,构件的承载力,墙体的设计,过梁、圈梁、墙梁及挑梁设计,结构构造,抗震设计等六大部分[4]。比较就业需求和课程讲授要点可以看出,在施工中对构件、墙体的设计内容要求较低,但在实际教学过程中其比例却较大。考虑到复杂的计算理论使高职学生陷入困境,纵然下大力气进行讲解和练习,由于不能立马学以致用,会打击学生的信心,也违背了高职教育培养应用型人才的目标。

(一)夯实理论基础

考虑到高职学生的力学底子比较薄,对砌体结构中的相关公式的推导过程应从简介绍,而对基本概念的理解和计算公式的应用应重点对待。例如在对偏心受压计算公式N/φA≤f进行讲解时,首先介绍影响构件偏心受压承载力的两大因素偏心率e/h、长细比β,在学生了解这两个因素对偏心承载力的影响规律后,再介绍偏心距影响系数φ值。对于偏心距影响系数φ的计算公式的推导过程则可一带而过。对于利用偏心率e/h、长细比β来查表求偏心距影响系数φ值则应加强练习,使学生在已知偏心率和长细比的前提下,能快速、准确地通过内插法求得偏心距影响系数,从而验算构件在偏心受力的情况下是否满足要求。

要让学生了解砌体结构设计过程的影响因素及影响规律,但对于计算公式的具体推导过程不必苛求。对于学有余力的学生,教师应鼓励他们去探索,普通学生只需掌握基本的影响因素及其规律即可在今后的工作中正确分析所遇到的问题,从而给出相应对策。这是学生从事管理、指导施工工作的理论前提。学生如果没有扎实的理论基础,遇到问题时便无从下手。不能切实地解决实际问题,就算他们有再强的动手能力,那也只是普通劳工,而不是应用型技术人才。

(二)注重混凝土构件的布置及设计

砌体结构中墙体的承载力计算是设计人员的工作,高职毕业生大多数作为施工人员更多关注砌体结构中的混凝土构件如圈梁、构造柱、过梁、挑梁的设计原理、构造、施工方法。在墙体砌筑工作中,采用什么标号的砖、砂浆,墙砌多厚、多高,在设计图纸上一目了然,并且合格的砌墙工人也能轻松应对。相较于砌墙,圈梁、构造柱、过梁、挑梁等混凝土构件的施工则较复杂。

1.圈梁、构造柱。圈梁能有效保证砌体结构的整体性并降低地基不均匀导致沉降的影响,构造柱能显著改善砌体的抗震性能,但应如何设置是关键所在。此时可将圈梁、构造柱设置的原则逐条在实际工程中讲解,并对圈梁不连续、圈梁兼做过梁的特殊情况进行一一解析,这样利于学生理解课本上的大段文字。对构造柱的设置规定,还应提醒学生注意区别全国性规定和地方性规定。一般而言,地方性规定是在全国性规定的基础上结合地方实际情况制定的更为严格的规定,在实际操作过程中应严格遵守。不能因为图纸上没有遵守地方性规定而忽略地方性规定,而应保持严谨的态度,积极同设计单位沟通,从而保证结构安全。

2.过梁。过梁分为砖砌过梁和钢筋混凝土过梁两

类,但是在实际工程中多采用预制钢筋混凝土过梁,较少采用钢筋砖过梁。对于预制钢筋混凝土过梁,各个地方均已形成统一标准,直接在标准图集中选用即可。对于钢筋砖过梁在结构设计说明中会有明确说明。相较于课本上过梁的受弯、受剪,支座承压计算理论推导,给学生讲授如何从标准图集中选择合适的过梁更能吸引学生的注意力,也能取得较好的效果。

3.挑梁。首先要区分柔性挑梁和刚性挑梁,掌握挑梁的三种破坏状态(倾覆、局压、自身破坏),以此熟悉挑梁设计时抗倾覆、局压、自身强度三个要点。相较于设计方面的繁复计算,施工时只需注意以下几个要点:伸入长度满足要求,受力钢筋在上,注意马凳的摆放及施工过程中避免踩踏。强度达到100%方可拆模,且在拆模时要注意先支模的后拆模,后支模的先拆模。在拆模的同时要注意上方的抗倾覆荷载是否满足要求。此时可引入挑梁事故图片,说明挑梁正确施工的必要性和重要性。

在对混凝土构件进行布置和设计时,要引导学生把握各混凝土构件同砌体之间的关系。对砌体结构的整体性有所把握,才能正确理解设计意图,将结构施工图由图纸变成现实。

(三)结合施工过程与现场实物开展教学

传统的板书教学,可将授课过程中的重点知识在黑板上编织成网呈现在学生面前,利于学生掌握知识点间的相互联系,利于学生加深理解。通过这种直观对比,学生也会对各计算公式的异同点格外清晰,但是枯燥的公式罗列无法激起学生持续性的学习热情。这还需要通过结合施工过程和现场实物教学来激发学生兴趣,发挥学生自主学习的作用。

1.结合施工过程教学。以带构造柱墙体施工为例,先按高度分两次砌筑墙体并留好马牙槎,待墙体凝结硬化后,绑架钢筋支护模板然后浇筑混凝土构造柱,在混凝土初凝12小时后拆除模板并做养护。在这一过程中可以向学生抛出以下几个疑问:砌筑一片墙为什么要按高度分两次砌筑?为什么要留马牙槎而不直接齐高砌筑?两个构造柱之间的间距是多少,最大间距又是多少?在构造柱没有浇筑之前单片墙的高厚比能不能得到保证,如何确定能得到保证?这几个问题都是直接从施工过程中提出来的,来源于实际工程中的问题更能激起学生对知识的兴趣,提高学生学习的热情。从实践来看也使学生印象深刻,否则在实际工程中再次遇到这样的问题可就不只是脸红而已了。

2.结合现场实物教学。将结构实物照片通过演示文稿(PPT)向大家展示,虽然利于学生形成直观印象,省去了描述概念的时间。由于观察角度不同,学生此时是被动接受知识,部分学生无法准确理解教师的意图,部分学生热情不高。面对这种情况,让学生自己去实物现场观察、拍照,大家在课堂上再讨论,这样能使学生形成更直观的印象,并使他们在细节的把握上更准确,利于培养他们的观察、分析能力。

(四)注重过程考核

传统的一次期末考定胜负的模式已不再适应以就业需求为导向的课程教学要求。课程考核由过程考核和期末考核两部分组成,需要学生发挥能动性,在学习过程中加倍努力,才能取得好的成绩。这样能斩断那些平时混日子、临考抱佛脚的学生投机取巧的念想,最大限度地激发学生的学习热情。

高等职业教育以培养应用型人才为目标,在建筑技术专业更是强调学生的技能。但是光强调技能有所偏颇,需要学生在具备熟练技能的基础上,利用所学理论知识分析问题、解决问题,才能更符合建筑企业的利益,同时也能提高高职毕业生的竞争力,利于学生发展。本文结合高职毕业生的工作情况,梳理了工作中遇到的一些具体问题,在日常教学中尽量融入这些问题,使学生在一定理论基础上学以致用,引导学生注意观察、积极思考,提高学生对未来工作的适应性。

参考文献:

[1]刘立新.砌体结构:第3版[M].武汉:武汉理工大学出 版社,2009:4-5.

砌体结构论文篇(11)

在中小型单层工业厂房和多层轻工业厂房,以及影剧院、食堂、仓库等建筑也广泛采用砖墙、柱承重结构。

砖石结构还用于建造各种构筑物。如镇江市建成的顶部外经2.18m、底部外径4.78m、高60m的砖烟囱;用料石建成的80m排气塔;在湖南建造的高12.4m、直径6.3m、壁厚240mm的砖砌粮仓群;福建用毛石建造的横跨云宵—东山两县的大型引水工程—向东渠,其中陈岱渡槽全长4400m,高20m,槽支墩共258座,工程规模宏大。此外我国在古代建桥技术的基础上,于1959年建成跨度60m、高52m的石拱桥,接着又建成了敞肩式现代公路桥,最大跨度达120m——湖南乌巢河大桥。我国建成的100m以上的石拱桥有10座,每座都有新发展和世界纪录。

我国还积累了在地震区建造砌体结构房屋的宝贵经验。我国绝大多数大中城市在6度或6度以上地震设防区。地震烈度≤6度的砌体结构经受了地震的考验。经过设计和构造上的改进和处理,还在7度区和8度区建造了大量的砌体结构房屋。据不完全统计,从80年代初至今10多年间我国主要大中城市建造的多层砌体结构房屋建筑面积已达70-80亿m2[4]。

二新材料、新技术、新结构的研究与应用

60年代以来,我国粘土空心砖的生产和应用有较大的发展,在南京建造了6-8层的空心砖承重的旅馆。当时空心砖孔洞率为22%,与实心砖强度等效,但可减轻自重17%、墙厚减小20%,节省砂浆20~30%,砌筑工时少20-25%,墙体造价降低19~23%。根据节能进一步要求,近年来我国在消化吸收国外先进技术的基础上,制造出规格为380240190、孔洞率为40%的烧结保温空心砖,这种保温砖的密度为1012kg/m3,抗压强度10.5Mpa,热阻1.649m2K/W。在主要力学和热工性能的指标接近或达到国际同类产品的水平[5]。《多孔砖砌体设计与施工技术规程》行业标准,为这种砖的推广创造了条件。

近10余年来,采用砼、轻骨料砼或加气砼,以及利用河砂、各种工业废料、粉煤灰、煤干石等制无热料水泥煤渣砼砌块或蒸压灰砂砖、粉煤灰硅酸盐砖、砌块等在我国有较大的发展。1958年建成采用砌块作墙体的房屋,经过四十多年的实践,砌块墙体已成为我国墙体革新的有效途径之一。砌块种类、规格较多,其中以中、小型砌块较为普遍,在小型砌块中又开发出多种强度等级的承重砌块和装饰砌块。据不完全统计[6],1996年全国砌块总产量约为2500万m3,各类砌块建筑

约5000万m2,近十年砼砌块与砌块建筑的年递增都在20%左右,尤其以大中城市推广迅速,以上海推广砌块建筑为例,1994年约50万m2,1995年100万m2,1996年约150万m2,到1999年一季度累计完成的砌块建筑450万m2。这些砌块建筑大多是多层的,至于中高层、高层砌块建筑我国于80年代就着手和进行试点工作,如1982年建成的广西区科委十层砌块住宅试验楼、1986年建成的广西区建二公司十一层小砌块试验楼,[7]为我国砌块中高层的发展作了开创性的工作。从90年代初期,在总结国内外配筋砼砌块试验研究经验的基础上,我国在配筋砌块结构的配套材料、配套应用技术的研究上获得了突破,在此基础上开展了更具代表性和针对性的试点工程[10],如1997年建成的盘锦市国税局15层砌块住宅,1998年建成的上海砼空心砖块配筋砌体住宅试点工程[8]。试点工程实践表明,中高层配筋砌块建筑具有明显的社会经济效益:前者15层砌块建筑,节省钢材45%、土建造价降低18%;上海18层节约钢材25%,土建造价降低7.4%。因此,将中高层配筋砌块结构体系纳入到我国砌体结构设计规范中是理所当然的。由此可见,作为粘土砖的主要替代材和某些功能强于粘土砖的砌块的发展前景是非常好的。

我国在50年代~70年代,采用预制大型墙板建造多层住宅,如采用振动砖墙板、烟灰煤渣、矿渣砼墙板建造了几十万m2的建筑。近10多年来北京等地采用内浇外砌的混合结构建造中高层建筑,取得了较好的经济效益。最近几年清华大学开展了多层大开间砼核心筒、砌体外墙的混合结构的试验研究和小规模试点工程,在改进和扩展砌体结构的性能和应用范围作了有益的探索。[12、13]

我国配筋砌体应用研究起步较晚,60年代衡阳和株州一些房屋的部分墙、柱采用网状配筋砌体承重,节省纲材和水泥。1958~1972年在徐州采用配筋砖柱建筑了12-24m、吊车起重量50-200t的单层厂房36万m2,使用情况良好。70年代以来,尤其是1975年海城—营口地震和1976年唐山大地震之后,对设置构造柱和圈梁的约束砌体进行了一系列的试验研究,其成果引入我国抗震设计规范。在此基础之上,通过在砖墙中加大加密构造柱形成所谓强约束砌体的中高层结构的研究取得了可喜的成果。如辽宁省沈阳市、江苏徐州、湖南长沙、兰州等地先后建造了8~9层上百万m2的这类建筑,获得了较好的经济效益。这些研究成果有的已纳入到地方标准或国家标准[14、15、16]。这是我国科研工在粘土砖砌体低强材料情况下,向中高层作出的贡献。利用如此低的砌体材料在地震区建造如此之高的建筑唯有中国!

和约束配筋砌体对应的是所谓均匀配筋砌体,即国外广泛应用的配筋砼砌块剪力墙结构,这种砌体和纲筋砼剪力墙一样,对水平和竖向配筋有最小含钢率要求,而且在受力模式上也类同于砼剪力墙结构,它是利用配筋砌块剪力墙承受结构的竖向和水平作用,是结构的承重和抗侧力构件。配筋砌体具有强度高、延性好,和钢筋砼剪力墙性能十分类似,可以用于大开间和高层建筑结构[6]。如美国抗震规范规定,配筋砌体的适用范围同钢筋砼结构。我国在80年代初期主持编制国际标准《配筋砌体设计规范》[11]起至今对其进行了较为系统的试验研究[7、8、9],表明用配筋砌体可建造一定高度的既经济又安全的建筑结构,如广西的10-11层、盘锦的15层、上海的18层等。目前正在筹建的配筋砌块高层有首钢十八层配筋砌块住宅工程,辽宁抚顺6栋16层砌块住宅、哈尔滨2栋18层砌块住宅等。可见配筋砌体中高层的研究和应用具有十分广阔的前景。

我国有着用砖砌筑拱和券的丰富经验,解放以来,又向新的结构形式和大跨度方向发展。50-60年代修建了一大批砖拱屋盖和楼盖,还建成了10.511.3m的扁球形砖壳屋盖,1616m的双曲扁球型砖薄壳和40m直径的园形球砖壳。60年代南京用带勾空心砖建成1410m双曲扁壳屋盖仓库,以及10m直径的园形壳屋盖油库,在西安建成了24m双曲扁壳屋盖等。70年代我国还在闽清梅溪大桥工程中建成88m跨的双曲砖拱桥等。

三砌体结构理论研究与计算方法

解放前直至1950年我国谈不上有任何结构设计理论。国家建委于1956年批准在我国推广应用苏联《砖石及钢筋砖石结构设计标准和技术规范》NUTY120-55,直到60年代。60~70年代初,在我国有关部门的领导和组织下,在全国范围内对砖石结构进行了比较大规模的试验研究和调查,总结出一套符合我国实际、比较先进的砖石结构理论、计算方法和经验。在砌体强度计算公式、无筋砌体受压构件的承载力计算、按刚弹性方案考虑房屋的空间工作,以及有关构造措施方面具有我国特色。在此基础上于1973年颁布了国家标准《砖石结构设计规范》GBJ3-73。这是我国第一部砖石结构设计规范。从此使我国的砌体结构设计进入了一个崭新的阶段。70年代中期至80年代末期,为修订GBJ3-73规范,我国对砌体结构进行了第二次较大规模的试验研究,其中收集我国历年来各地试验的砌体强度数据4023个,补充长柱受压试件近200个,局压试件100多个,墙梁试件200多根及2000多个有限元分析数据和进行了11栋多层的砖房空间性能实测和大量的理论分析工作等。这样在砌体结构的设计方法、多层房屋的空间工作性能、墙梁的共同工作,以及砌块的力学性能和砌块房屋的设计方面取得了新的成绩。此外对配筋砌体、构造柱和砌体房屋的抗震性能方面也进行了许多试验研究。相继出版了《中型砌块建筑设计与施工规范》JGJ5-80、《砼小型空心砌块建筑设计与施工规程》JGJ14-82、《冶金工业厂房钢筋砼墙梁设计规程》YS07-79、《多层砖房设置钢筋砼构造柱抗震设计与施工规程》JGJ13-82等,非凡是《砌体结构设计规范》GBJ3-88,使我国砌体结构设计理论和方法趋于完善。我国砌体结构可靠度的设计方法,已达到当前的国际先进水平。对于多层砌体房屋的空间工作,在墙梁中考虑墙和梁的共同工作和局压设计方法等专题的研究成果在世界上处于领先地位。近10余年来,非凡是《砌体结构设计规范》GBJ3-88颁行后,进入了第三次较大规模的修订时期。如1995年颁行的《砼小型空心砖块建筑技术规程》JGJ/T14-95,通过试验增强抗震构造措施,使原规范可增加一层,扩大了地震区的应用范围。1999年6月1日颁行的《砌体工程施工及验收规范》GB50203-98,取代了《砖石工程施工及验收规范》GB203-83。它主要补充了近年来新型材料和配筋砌体施工技术、施工质量控制等级方面的内容。目前正在修编的《砌体结构设计规范》GBJ3-88,主要在砌体结构可靠度方面、配筋砼砌块砌体、墙梁的抗震方面作了调整和补充。砌体结构可靠度,根据我国当前国情,作了适当的上调。这样作主要为促进采用较高等级的砌体材料,提高耐久性和适当提高抗风险能力。配筋砌体,非凡是配筋砼砌块中高层,根据我国主编的国际标准《配筋砌体结构设计规范》和我国近年来各地较大规模的试验研究和试点建筑的经验,使我国配筋砌体的理论更完善,应用范围和限制有了较大的扩展和突破。如其应用范围,已达到钢筋砼剪力墙的适用范围。配筋灌孔砼砌块砌体是作为一个体系纳入到砌体规范中的,它的未来的实施,对促进我国砌块结构向高档次发展具有重要作用。

另外本次修订增补了墙梁在地震区的设计方法,进一步扩大了这种结构形式的使用范围。另外根据多年来砌体结构,非凡是新型墙体材料结构的温度裂缝、干燥收缩裂缝普遍比较严重,进行深入研究后,增加了比较有效的抗裂构造措施。

我国砌体结构理论近年来有较大提高,反映在《砌体结构设计规范》GBJ3-88颁行前后,陆续出版了许多教材和著作,如丁大钧主编的《砌石结构》、《砌体结构学》、施楚贤主编的《砌体结构理论与设计》,以及《砌体结构论文集》、《砌体结构设计手册》等。这些对促进我国砌体结构的发展有一定作用。

四展望

砌体是包括多种材料的块体砌筑而成的,其中砖石是最古老的建筑材料,几千年来由于其良好的物理力学性能、易于取材、生产和施工,造价低廉,致今仍成为我国主导的建筑材料。但是我国的砌体材料普遍存在着自重大、强度低、生产能耗高、毁田严重、施工机械化水平较低,和耐久性、抗震性能较差等弊病。因此我认为要针地这些问题开展下列方面的工作。

1、积极开发节能环保形的新型建材[3]

1988年第一次国际材料研究会议上首次提出“绿色建材”的概念,1992年6月联大巴西里约热内卢环境和发展世界各国首脑会议,通过了“21世纪议程”宣言,确认了“可持续发展”的战略方针,其目标是:依据环境再生、协调共生、持续自然的原则,尽量减少自然资源的消耗,尽可能对废弃物的再利用和净化。保护生态环境以确保人类社会的可持续发展。

近年来发达国家在实施《绿色建材》计划上取得了较大的进展,我国以1992年联合国环境与发展首脑会议为契机,遵照同志“经济的发展,必须与人口、环境、资源统筹考虑,决不能走浪费资源和先污染后治理的老路,更不能吃祖宗饭、断子孙路……。”的指示精神,迅速行动起来,广泛研制“绿色建材”产品,取得了初步成果。

1)加大限制高能耗、高资源消耗、高污染低效益的产品的生产力度。如对粘土砖国家早就出台了减少和限制的政策。近年的限制力度越来越大,如北京、上海等城市在建筑上不准采用粘土实心砖,这间接地促进了其它新材的发展。

2)大力发展蒸压灰砂废渣制品。这包括钢渣砖、粉煤灰砖、炉渣砖及其空心砌块、粉煤灰加气砼墙板等。这些制品我国80年代以前生产量曾达2.5亿块,吃掉工业废渣几百万吨,但由于种种原因大多数厂家已停产,致使粘土砖生产回潮。今后应加大科研投入、改进工艺、提高产品性能和强度等级、降低成本,向多功能化发展。

3)利用页岩生产多孔砖。我国页岩资源丰富,分布地域较广。烧结页岩砖具有能耗低、强度高、外观规则,其强度等级可达MU15~MU30,可砌清水墙和中高层建筑。页岩砖在四川、湖北和大连等地已初步应用。如城都的“绵城苑”小区16万m2的建筑均采用这种砖。

4)大力发展废渣轻型砼墙板。这种轻板利用粉煤灰代替部分水泥,骨料为陶粒、矿渣或炉渣等轻骨料,加入玻璃纤维或其它纤维。以及其它轻材料墙板,提高砌体施工技术的工业化水平。

5)GRC板的改进与提高。这种板自重轻、防火、防水、施工安装方便。GRC空心条板是大力发展的一种墙体制品,需用先进的生产工艺和装配,以提高板的产量和质量。

6)蒸压纤维水泥板。我国是世界上第三大粉煤灰生产国,仅电力工业年排灰量达上亿吨,目前的利用率仅为38%。其实粉煤灰经处理后可生产价值更高的墙体材料。如高性能砼砌块、蒸压纤维增强粉煤灰墙板等。它具有容重低、导热系数小、可加工性强、颜色白净的特点,目前全国的产量已达700万m2。

7)大力推广复合墙板和复合砌块。目前国内外没有单一材料,既满足建筑节能保温隔热,又满足外墙的防水、强度的技术要求。因此只能用复合技术来满足墙体的多功能要求。如钢丝网水泥夹芯板。目前看来,现场湿作业,抹灰后难以克服龟裂现象有待改进。

复合砌块墙体材料,也是今后的发展方向,如采用矿渣空心砖、灰砂砌块、砼空心砌块中的任一种与绝缘材料相复合都可满足外墙的要求,目前已有少量生产。我国在复合墙体材料的应用方面已有一定基础,宜进一步改善和完善配套技术,大力推广,这是墙体材料“绿色化”的主要出路。

2、发展高强砌体材料

目前我国的砌体材料和发达国家相比,强度低、耐久性差。如粘土砖的抗压强度一般为7.5~15Mpa,承重空心砖的孔隙率≤25%。而发达国家的抗压强度一般均达到30~60Mpa,且能达到100Mpa,承重空心砖的孔洞率可达到40%,容重一般为13KN/m3,最轻可达0.6KN/m3。根据国外经验和我国的条件,只要在配料、成型、烧结工艺上进行改进,是可以显著提高烧结砖的强度和质量的。如我国中美合资大连太平洋砖厂可生产出20Mpa~100Mpa的页岩砖。由于强度高、耐久性、耐磨性和独特的色彩,可作清水墙和装饰材料,已出口和广泛用于高档建筑。高强块材具有比低强材料高得多的价格优势。

根据我国对粘土砖的限制政策,可就地取材、因地植宜,在粘土较多的地区,如西北高原,发展高强粘土制品、高空隙率的保温砖和外墙装饰砖、块材等;在少粘土的地区发展高强砼砌块、承重装饰砌块和利废材料制成的砌块等。

在发展高强块材的同时,研制高强度等级的砌筑砂浆。目前的砂浆强度等级最高为M15。当与高强块材匹配时需开发大于M15以上的高性能砂浆。我国正在起草的《砼小型空心砌块砂浆和灌孔砼》行业标准中砂浆的强度等级为M5~M30,灌孔砼的强度等级为C20~C40,这是砼砌块配套材料方面的重要进展,对推动高强砌体材料结构的发展有重要作用。

根据发展趋势,为确保质量,发展干拌砂浆和商品砂浆具有很好的前景。前者是把所有配料在干燥状态下混合装包供给现场按要求加水搅拌即可。天津舒布洛克水泥砌块公司已供给这种干拌砂浆,价格约高20%左右。商品砂浆的优点同商品砼。这类砂浆的发展一旦取代传统砂浆,将是一个多么巨大的变化!

3、继续加强配筋砌体和预应力砌体的研究。

我国虽已初步建立了配筋砌体结构体系,但需研制和定型生产砌块建筑施工用的机具,如铺砂浆器、小直径振捣棒、小型灌孔砼浇注泵、小型钢筋焊机、灌孔砼检测仪等。这些机具对配筋砌块结构的质量至关重要。

预应力砌体其原理同预应力砼,能明显地改善砌体的受力性能和抗震能力。国外,非凡是英国在配筋砌体和预应力砌体方面的水平很高。我国80年代初期曾有过研究,但直至最近才有少数专家研究,如重庆建筑大学的骆万康教授对预应力砖墙的抗震设计提出了建议。[17]

4、加强砌体结构理论的研究

进一步研究砌体结构的破坏机理和受力性能,通过物理和数学模式,建立精确而完整的砌体结构理论,是世界各国关心的课题。我国在这方面的研究具有较好的基础,有的题目有一定的深度,[18]继续加强这方面的工作十分有利,对促进砌体结构发展也有深远意义。为此还必须加强对砌体结构的实验技术和数据处理的研究,使测试自动化,以得到更精确的实验结果。

正如一位资深砌体结构学者,E、A、James指出“砌体结构经历了一次中古欧洲的文艺复兴,其有吸引力的功能特性和经济性,是它获得新生的关键。我们不能停留在这里。我们正在进一步赋予砌体结构的新的概念和用途”。我们对砌体结构的未来布满信心,在党的方针政策的正确指引下,坚持科学态度,敢于创新,不断努力,为我国及世界的砌体结构的发展作出更大的贡献。

参考文献

1、丁大钧.《砌体结构》教学刍议.建筑结构.1999.

2、施楚贤主编.砌体结构理论与设计.中国建筑工业出版社.1992.

3、周玉琴等.浅谈新世纪“绿色建材”在国内外发展趋势.天津墙改办.墙改与节能.1999.

4、建筑结构设计统一标准修订组.我国建筑结构设计可靠度设定水平分析与改进意见.1999.7

5、郑墨林.烧结保温空心砌块的性能与应用初探.天津墙改办.墙改与节能.1999.

6、苑振芳.砼砌块建筑发展现状及展望.工程建设标准化.1998.

7、广西建科所.抗震设防配筋小砌块高层建筑研究—成果鉴定资料.1987.12

8、肖小松.砼砌体的性质.同济大学博士后工作报告.1998.5

9、谢小军.砼小砌块砌体力学性能及其配筋砌体抗震性能的研究.湖南大学硕士论文.1998

10、苑振芳.15层配筋砌块住宅试点工程简介.施工技术.1998.

11、苑振芳.国际标准《配筋砌体结构设计与施工规范》简介.工程建设标准化.1995.

12、方鄂华等.砼筒一组合墙及开洞组合墙模型试验及承载力研究.建筑技术.1997

13、王绍豪等.带砼筒大开间砖混结构灵活住宅结构设计建议.建筑技术.1997

14、沈阳市建设标准《钢筋砼—砖组合墙结构技术规程》SYJB2-95

15、江苏省地方标准《约束砖砌体建筑技术规程》DB32/113-95