欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

采集技术大全11篇

时间:2023-03-02 15:00:27

采集技术

采集技术篇(1)

1引言

现在网络安全面临的一个大问题是缺乏对入侵者的了解。即谁正在攻击、攻击的目的是什么、如何攻击以及何时进行攻击等,而蜜罐为安全专家们提供一个研究各种攻击的平台。它是采取主动的方式,用定制好的特征吸引和诱骗攻击者,将攻击从网络中比较重要的机器上转移开,同时在黑客攻击蜜罐期间对其行为和过程进行深入的分析和研究,从而发现新型攻击,检索新型黑客工具,了解黑客和黑客团体的背景、目的、活动规律等。

2蜜罐技术基础

2.1蜜罐的定义

蜜罐是指受到严密监控的网络诱骗系统,通过真实或模拟的网络和服务来吸引攻击,从而在黑客攻击蜜罐期间对其行为和过程进行分析,以搜集信息,对新攻击发出预警,同时蜜罐也可以延缓攻击和转移攻击目标。

蜜罐在编写新的IDS特征库、发现系统漏洞、分析分布式拒绝服务(DDOS)攻击等方面是很有价值的。蜜罐本身并不直接增强网络的安全性,将蜜罐和现有的安全防卫手段如入侵检测系统(IDS)、防火墙(Firewall)、杀毒软件等结合使用,可以有效提高系统安全性。

2.2蜜罐的分类

根据蜜罐的交互程度,可以将蜜罐分为3类:

蜜罐的交互程度(LevelofInvolvement)指攻击者与蜜罐相互作用的程度。

⑴低交互蜜罐

只是运行于现有系统上的一个仿真服务,在特定的端口监听记录所有进入的数据包,提供少量的交互功能,黑客只能在仿真服务预设的范围内动作。低交互蜜罐上没有真正的操作系统和服务,结构简单,部署容易,风险很低,所能收集的信息也是有限的。

⑵中交互蜜罐

也不提供真实的操作系统,而是应用脚本或小程序来模拟服务行为,提供的功能主要取决于脚本。在不同的端口进行监听,通过更多和更复杂的互动,让攻击者会产生是一个真正操作系统的错觉,能够收集更多数据。开发中交互蜜罐,要确保在模拟服务和漏洞时并不产生新的真实漏洞,而给黑客渗透和攻击真实系统的机会。

⑶高交互蜜罐

由真实的操作系统来构建,提供给黑客的是真实的系统和服务。给黑客提供一个真实的操作系统,可以学习黑客运行的全部动作,获得大量的有用信息,包括完全不了解的新的网络攻击方式。正因为高交互蜜罐提供了完全开放的系统给黑客,也就带来了更高的风险,即黑客可能通过这个开放的系统去攻击其他的系统。

2.3蜜罐的拓扑位置

蜜罐本身作为一个标准服务器对周围网络环境并没有什么特别需要。理论上可以布置在网络的任何位置。但是不同的位置其作用和功能也是不尽相同。

如果用于内部或私有网络,可以放置在任何一个公共数据流经的节点。如用于互联网的连接,蜜罐可以位于防火墙前面,也可以是后面。

⑴防火墙之前:如见图1中蜜罐(1),蜜罐会吸引象端口扫描等大量的攻击,而这些攻击不会被防火墙记录也不让内部IDS系统产生警告,只会由蜜罐本身来记录。

因为位于防火墙之外,可被视为外部网络中的任何一台普通的机器,不用调整防火墙及其它的资源的配置,不会给内部网增加新的风险,缺点是无法定位或捕捉到内部攻击者,防火墙限制外向交通,也限制了蜜罐的对内网信息收集。

⑵防火墙之后:如图1中蜜罐(2),会给内部网带来安全威胁,尤其是内部网没有附加的防火墙来与蜜罐相隔离。蜜罐提供的服务,有些是互联网的输出服务,要求由防火墙把回馈转给蜜罐,不可避免地调整防火墙规则,因此要谨慎设置,保证这些数据可以通过防火墙进入蜜罐而不引入更多的风险。

优点是既可以收集到已经通过防火墙的有害数据,还可以探查内部攻击者。缺点是一旦蜜罐被外部攻击者攻陷就会危害整个内网。

还有一种方法,把蜜罐置于隔离区DMZ内,如图1中蜜罐(3)。隔离区只有需要的服务才被允许通过防火墙,因此风险相对较低。DMZ内的其它系统要安全地和蜜罐隔离。此方法增加了隔离区的负担,具体实施也比较困难。

3蜜罐的安全价值

蜜罐是增强现有安全性的强大工具,是一种了解黑客常用工具和攻击策略的有效手段。根据P2DR动态安全模型,从防护、检测和响应三方面分析蜜罐的安全价值。

⑴防护蜜罐在防护中所做的贡献很少,并不会将那些试图攻击的入侵者拒之门外。事实上蜜罐设计的初衷就是妥协,希望有人闯入系统,从而进行记录和分析。

有些学者认为诱骗也是一种防护。因为诱骗使攻击者花费大量的时间和资源对蜜罐进行攻击,从而防止或减缓了对真正系统的攻击。

⑵检测蜜罐的防护功能很弱,却有很强的检测功能。因为蜜罐本身没有任何生产行为,所有与蜜罐的连接都可认为是可疑行为而被纪录。这就大大降低误报率和漏报率,也简化了检测的过程。

现在的网络主要是使用入侵检测系统IDS来检测攻击。面对大量正常通信与可疑攻击行为相混杂的网络,要从海量的网络行为中检测出攻击是很困难的,有时并不能及时发现和处理真正的攻击。高误报率使IDS失去有效的报警作用,蜜罐的误报率远远低于大部分IDS工具。

另外目前的IDS还不能够有效地对新型攻击方法进行检测,无论是基于异常的还是基于误用的,都有可能遗漏新型或未知的攻击。蜜罐可以有效解决漏报问题,使用蜜罐的主要目的就是检测新的攻击。

⑶响应蜜罐检测到入侵后可以进行响应,包括模拟回应来引诱黑客进一步攻击,发出报警通知系统管理员,让管理员适时的调整入侵检测系统和防火墙配置,来加强真实系统的保护等。

4蜜罐的信息收集

要进行信息分析,首先要进行信息收集,下面分析蜜罐的数据捕获和记录机制。根据信息捕获部件的位置,可分为基于主机的信息收集和基于网络的信息收集。

4.1基于主机的信息收集

基于主机的信息收集有两种方式,一是直接记录进出主机的数据流,二是以系统管理员身份嵌入操作系统内部来监视蜜罐的状态信息,即所谓“Peeking”机制。

⑴记录数据流

直接记录数据流实现一般比较简单,主要问题是在哪里存储这些数据。

收集到的数据可以本地存放在密罐主机中,例如把日志文件用加密技术放在一个隐藏的分区中。本地存储的缺点是系统管理员不能及时研究这些数据,同时保留的日志空间可能用尽,系统就会降低交互程度甚至变为不受监控。攻击者也会了解日志区域并且试图控制它,而使日志文件中的数据不再是可信数据。

因此,将攻击者的信息存放在一个安全的、远程的地方相对更合理。以通过串行设备、并行设备、USB或Firewire技术和网络接口将连续数据存储到远程日志服务器,也可以使用专门的日志记录硬件设备。数据传输时采用加密措施。

⑵采用“Peeking”机制

这种方式和操作系统密切相关,实现相对比较复杂。

对于微软系列操作系统来说,系统的源代码是很难得到,对操作系统的更改很困难,无法以透明的方式将数据收集结构与系统内核相结合,记录功能必须与攻击者可见的用户空间代码相结合。蜜罐管理员一般只能察看运行的进程,检查日志和应用MD-5检查系统文件的一致性。

对于UNIX系列操作系统,几乎所有的组件都可以以源代码形式得到,则为数据收集提供更多的机会,可以在源代码级上改写记录机制,再重新编译加入蜜罐系统中。需要说明,尽管对于攻击者来说二进制文件的改变是很难察觉,一个高级黑客还是可能通过如下的方法探测到:

·MD-5检验和检查:如果攻击者有一个和蜜罐对比的参照系统,就会计算所有标准的系统二进制文件的MD-5校验和来测试蜜罐。

·库的依赖性和进程相关性检查:即使攻击者不知道原始的二进制系统的确切结构,仍然能应用特定程序观察共享库的依赖性和进程的相关性。例如,在UNIX操作系统中,超级用户能应用truss或strace命令来监督任何进程,当一个象grep(用来文本搜索)的命令突然开始与系统日志记录进程通信,攻击者就会警觉。库的依赖性问题可以通过使用静态联接库来解决。

另外如果黑客攻陷一台机器,一般会安装所谓的后门工具包,这些文件会代替机器上原有的文件,可能会使蜜罐收集数据能力降低或干脆失去。因此应直接把数据收集直接融入UNIX内核,这样攻击者很难探测到。修改UNIX内核不象修改UNIX系统文件那么容易,而且不是所有的UNIX版本都有源代码形式的内核。不过一旦源代码可用,这是布置和隐藏数据收集机制有效的方法。

4.2基于网络的信息收集

基于主机的信息收集定位于主机本身,这就很容易被探测并终止。基于网络的信息收集将收集机制设置在蜜罐之外,以一种不可见的方式运行,很难被探测到,即使探测到也难被终止,比基于主机的信息收集更为安全。可以利用防火墙和入侵检测系统从网络上来收集进出蜜罐的信息。

⑴防火墙

可以配置防火墙记录所有的出入数据,供以后仔细地检查。用标准文件格式来记录,如Linux系统的tcpdump兼容格式,可以有很多工具软件来分析和解码录制的数据包。也可以配置防火墙针对进出蜜罐数据包触发报警,这些警告可以被进一步提炼而提交给更复杂的报警系统,来分析哪些服务己被攻击。例如,大部分利用漏洞的程序都会建立一个shell或打开某端口等待外来连接,防火墙可以记录那些试图与后门和非常规端口建立连接的企图并且对发起源的IP告警。防火墙也是数据统计的好地方,进出数据包可被计数,研究黑客攻击时的网络流量是很有意义的。

⑵入侵检测系统

网络入侵检测系统NIDS在网络中的放置方式使得它能够对网络中所有机器进行监控。可以用HIDS记录进出蜜罐的所有数据包,也可以配置NIDS只去捕获我们感兴趣的数据流。

在基于主机的信息收集中,高明的入侵者会尝试闯入远程的日志服务器试图删除他们的入侵记录,而这些尝试也正是蜜罐想要了解和捕获的信息。即使他们成功删除了主机内的日志,NIDS还是在网内静静地被动捕获着进出蜜罐的所有数据包和入侵者的所有活动,此时NIDS充当了第二重的远程日志系统,进一步确保了网络日志记录的完整性。

当然,不论是基于误用还是基于异常的NIDS都不会探测不到所有攻击,对于新的攻击方式,特征库里将不会有任何的特征,而只要攻击没有反常情况,基于异常的NIDS就不会触发任何警告,例如慢速扫描,因此要根据蜜罐的实际需要来调整IDS配置。

始终实时观察蜜罐费用很高,因此将优秀的网络入侵检测系统和蜜罐结合使用是很有用的。

4.3主动的信息收集

信息也是可以主动获得,使用第三方的机器或服务甚至直接针对攻击者反探测,如Whois,Portscan等。这种方式很危险,容易被攻击者察觉并离开蜜罐,而且不是蜜罐所研究的主要范畴。

5蜜罐的安全性分析

5.1蜜罐的安全威胁

必须意识到运行蜜罐存在的一定的风险,有三个主要的危险是:

⑴未发现黑客对蜜罐的接管

蜜罐被黑客控制并接管是非常严重的,这样的蜜罐已毫无意义且充满危险。一个蜜罐被攻陷却没有被蜜罐管理员发现,则蜜罐的监测设计存在着缺陷。

⑵对蜜罐失去控制

对蜜罐失去控制也是一个严重的问题,一个优秀的蜜罐应该可以随时安全地终止进出蜜罐的任何通讯,随时备份系统状态以备以后分析。要做到即使蜜罐被完全攻陷,也仍在控制之中。操作者不应该依靠与蜜罐本身相关的任何机器。虚拟机同样存在危险,黑客可能突破虚拟机而进入主机操作系统,因此虚拟蜜罐系统的主机同样是不可信的。

失去控制的另一方面是指操作者被黑客迷惑。如黑客故意制造大量的攻击数据和未过滤的日志事件以致管理员不能实时跟踪所有的活动,黑客就有机会攻击真正目标。

⑶对第三方的损害

指攻击者可能利用蜜罐去攻击第三方,如把蜜罐作为跳板和中继发起端口扫描、DDOS攻击等。

5.2降低蜜罐的风险

首先,要根据实际需要选择最低安全风险的蜜罐。事实上并不总是需要高交互蜜罐,如只想发现公司内部的攻击者及谁探查了内部网,中低交互的蜜罐就足够了。如确实需要高交互蜜罐可尝试利用带防火墙的蜜网而不是单一的蜜罐。

其次,要保证攻击蜜罐所触发的警告应当能够立即发送给蜜罐管理员。如探测到对root权限的尝试攻击就应当在记录的同时告知管理员,以便采取行动。要保证能随时关闭蜜罐,作为最后的手段,关闭掉失去控制的蜜罐,阻止了各种攻击,也停止了信息收集。

相对而言保护第三方比较困难,蜜罐要与全球的网络交互作用才具有吸引力而返回一些有用的信息,拒绝向外的网络交通就不会引起攻击者太大的兴趣,而一个开放的蜜罐资源在黑客手里会成为有力的攻击跳板,要在二者之间找到平衡,可以设置防火墙对外向连接做必要的限定:

⑴在给定时间间隔只允许定量的IP数据包通过。

⑵在给定时间间隔只允许定量的TCPSYN数据包。

⑶限定同时的TCP连接数量。

⑷随机地丢掉外向IP包。

这样既允许外向交通,又避免了蜜罐系统成为入侵者攻击他人的跳板。如需要完全拒绝到某个端口的外向交通也是可以的。另一个限制方法是布置基于包过滤器的IDS,丢弃与指定特征相符的包,如使用Hogwash包过滤器。

6结语

蜜罐系统是一个比较新的安全研究方向。相对于其它安全机制,蜜罐使用简单,配置灵活,占用的资源少,可以在复杂的环境下有效地工作,而且收集的数据和信息有很好的针对性和研究价值。既能作为独立的安全信息工具,还可以与其他的安全机制协作使用,取长补短地对入侵进行检测,查找并发现新型攻击和新型攻击工具。

蜜罐也有缺点和不足,主要是收集数据面比较狭窄和给使用环境引入了新的风险。面对不断改进的黑客技术,蜜罐技术也要不断地完善和更新。

参考文献

[1]熊华,郭世泽等.网络安全—取证与蜜罐[M].北京人民邮电出版社,2003,97-136

[2]LanceSpitzner.DefinitionsandValueofHoneypots.[EB/OL]..2002.

[3]赵伟峰,曾启铭.一种了解黑客的有效手段—蜜罐(Honeypot)[J].计算机应用,2003,23(S1):259-261.

采集技术篇(2)

用电信息采集系统作为电网的智能组成部分,不仅为智能用电服务提供技术保障,还可促进我国电网技术的发展。实现电力系统用户的全面支持预付费、全信息采集以及全覆盖是用电信息采集系统建设的主要目标。低压电力线载波能够采集用电信息,经处理后推送数据,有助于国家电网公司实现数据共享。低压电力线载波通信技术的使用保障用电信息采集系统的正常运行。

一、低压电力线载波通信技术的含义及应用的必要性

低压电力线载波通信技术是指采用电力线实现用电通信,其具有使用方便、覆盖范围广以及条件要求低等优点,不仅降低通信线路铺设,还可降低用电信息采集系统运行成本。无论是频率资源还是电力线路,都要充分利用。但在用电信息采集系统中应用低压电力载波通信技术进行信息传输时,易受到噪声、线路变化以及低压配电网信号弱等多种因素的干扰,影响了信息正常传输。窄带载波技术是低压电力线载波常用的技术。由于低压配电网信号相对较弱,阻滞了信息通信,致使低压电力线载波进行通信时,存在局限性,因此,可以采用路由机制,促进通信成功率的提升。就目前而言,低压电力线载波技术已经被广泛应用于用电信息采集系统中,其通过降低用电信息采集系统的电能损耗,进而降低运行成本,采用低压电力线载波技术使用电信息采集系统的操作更加简单、方便、快捷,不仅有利于用电信息采集系统的发展,还改善目前用电采集系统存在的问题,促进我国电力事业的发展。

二、用电信息采集系统应用低压电力线载波的原理

用电信息采集系统应用低压电力线载波的原理主要包括载波路由技术以及载波调制技术。当低压电力线载波进行数据发送时,采用高频率信号完成数据调制,放大成功率后,实施电力线耦合,在传输过程中,与接送方传输的媒介为电力线路,接收方经耦合电路对高频率信号进行接收,并通过电路解调后将高频率信号还原成数字信号。由于低压电力线载波物理层的性能在一定程度上存在局限性,而且传输信息距离相对较短,因此,可以将中继技术和路由机制应用其中,促进载波通信能力的提升。用电信息采集系统成功率的高低与路由技术的优劣有关,分布式动态路方式、动态路由方式以及静态路由方式是路由运行的三种主要方式。

三、低压电力线载波的实际应用

为了充分发挥低压电力线载波在用电信息采集系统的作用,依据低压电力线载波技术的内含、原理以及特点等,将低压电力线载波应用于用电信息采集系统,并从四个方面进行分析,具体如下。

1组网方案分析。低压电力线载波的组网方案是用电信息采集系统应用低压电力线载波技术的具体体现。通常情况下,采集器、电能表和集中器共同组成了低压电力线载波的抄表系统,而电能表又可分成载波电能表和普通电能表,载波电能表比普通电能表在通信方面更具有优势,其主要是采用集中器和载波线进行通信。普通电能表需要在有线的条件下采用集中器进行信息采集,从而经电力线载波将信息传输至系统集中器。

2低压电力线载波的信息数据抄表分析。进行低压电力线组网时,通常情况下,会在变压器的附近安装集中器,从而实现用户所需要的用电提供,而采集器和载波电表的安装通常会在电力用户处,实现变压器输出三项供电。在通信过程中,电网系统中的集中器会发出信息抄读指令,而采集器及载波电表也会根据指令做出相应的反映,并通过电力线相集中器传递信息,随后在集中器的总结分析后,对信息数据进行保存。

3低压电力线载波通信模块的应用分析。低压电力线载波通信模块是用电信息采集系统中载波电表、集中器和采集器的重要部分。通常情况下,载波电表、采集器及集中器都应用各自相应的专用载波通信模块。单相通信载波模块常应用于采集器和载波电表,进行信息传输时,实现三相间的相互通信是通过集中器中的主载波模块完成的,由此可见,要想实现三相间相互通信,就必须同时发送三相数据。而半双向问答是用电采集系统常用的通信方式,因此,需要完善用电采集系统低压电力线载波通信模块,并保证在相同时间内,有某一模块与之相应。

4低压电力线载波技术的优化措施。在电能表的位置分散、用电负荷特性变化较小以及电能表布线存在困难的台区更加实用低压电力线载波通信技术。而对于城市公寓小区、城乡公变台供电区以及别墅区,采用低电压电力线载波技术,不仅能够保证电力通信网络简单、快捷的延伸至低压用户侧,还可有效的采集用户电表数据,并对其进行控制,具有良好的适应性。但在用户信息采集系统中低压电力线载波技术存在负载重、信号弱、干扰性强以及噪声大等问题,导致低压电力线载波技术在信息传输过程中信息准确性较差,给通信信息的可靠性带来不良影响。在用电信息采集系统应用低压电力线载波技术时,相关系统操作人员要对低压电力线的组网进行优化,可以采用低压电力载波的硬技术和软技术,实现优化升级,进而提高低压电力线载波技术信息数据传递的可靠性和准确性。

四、结语

低压电力线载波技术的应用,促进我国用电信息采集系统水平的提升。但低压电力线载波技术仍存在一些问题,影响了其在用电信息采集系统的作用。电力企业相关人员要采用科学合理的技术对低压电力线载波技术进行优化,最大限度降低用电信息采集系统电能的损耗,降低其运行成本,在用电信息采集系统中采用低压电力线载波技术对我国电力事业的发展具有重要意义。

采集技术篇(3)

1 前言

随着时代的飞速发展,经济发展和人民生活对交通服务能力的要求也随之提高。我国的地理情况复杂,人口数量大,人口流动性大,交通状况日益严峻,呈现出道路里程少、路网不完善、车辆出行量大以及自行车交通量大的特点。而且我国的交通基础还很薄弱,所以我们应该在大力发展交通基础设施建设的同时去完善配套智能交通系统的建设,从根本上提高我国交通系统的服务能力,在交通设施建设的同时,提高交通设施的利用率。我们要求用合理的交通系统来缓解交通的供需矛盾,大力发展智能交通系统,而其中的信息采集系统显得尤为重要。

2 ITS中的信息采集系统分类

信息采集系统是智能交通系统的一个重要的基础组成部分,是智能交通必不可少的子系统,道路设计、交通管理与控制、交通规划、ITS实施、交通流理论等方面的研究都要以信息采集系统为基础。做好这些基础的理论研究,在整个交通路网全面的信息调查的基础上,结合信息采集系统获得数据分析研究,得出交通情况的具体问题,综合提出对现有问题的有效处理方案,从而制定合理的交通流理论模型和预测模型。交通信息采集的基本要求是采集信息的实时性和准确性,只有满足这两个要求,才能为交通控制管理和交通流的诱导等提供基础保障。

2.1. 按照使用情况分类

交通信息采集的方式按照使用情况的不同分为固定数据采集和临时数据采集。两种采集方式各有优缺点,通过两种采集方式的结合来实现整个系统的信息采集过程。

2.2 按照实施主体分类

交通信息采集按照采集实施主体的不同分为人工采集和自动采集。早期的交通系统都是采用人工采集,这种采集方式耗费的人工劳动力大,系统采集的信息精度不够。现代自动的采集方式主要利用了磁性检测器、光学检测器、基于航空摄像的检测技术和基于浮动车的交通信息动态采集方式。

2.3 按照车辆与系统的交互分类

按照车辆与采集系统是否有信息交互,可以将采集系统分为独立式采集系统和协作式采集系统。

独立式采集系统中,被检测测量不会向采集系统主动发送或接受信息,采集系统也没有向被测车辆发送信息,采集有系统单方实现,被测车辆和采集系统之间只有信息的单向流动,没有信息交互。

协作式采集系统中,车辆上安装了车载终端,与采集系统中的相应设备进行信息交换。相对于独立式采集系统,协作式采集系统采集种类丰富、方便灵活,实现了车辆个性化的信息采集,同时车辆也可主动从采集系统中获取相关信息,实现了信息的交互。但因协作式采集系统需要被测车辆安装车载终端,在我国还没有广泛应用。

3 ITS中的信息采集系统的发展概况

3.1 独立式采集

独立式采集技术较为成熟,已广泛运用在交通系统中,主要有磁频采集技术、波频采集技术和视频采集技术。这些检测技术各有优势和不足,磁频采集中的线圈检测器广泛用于普通道路中,有技术成熟、技术精准的优点。波频检测安装方便,可以直接检测速度,也可同时检测多条车道,主要用于高速公路中;视频检测可提供更为丰富的交通信息,安装方便,但技术相对不够稳定。

(1)磁频采集技术

磁频检测技术主要包括感应线圈检测和地磁检测,其中感应线圈检测现已大量投入使用。

感应线圈检测器检测属于固定型采集技术,基于电磁感应原理。其中环形线圈原理的交通检测器是目前世界上使用最广泛的信息采集设备,车辆通过埋设在地下的线圈是会引起磁场变化从而检测车的流量、占用率、车辆速度等等,他的优点就是技术相对成熟,便于掌握且成本较低的优点。但是线圈在安装工程中要埋入车道,这本身会给维护和交通带来不便,埋置会让路面软化,使路面受损,冬季线圈易受冻,易被腐蚀,会大大降低检测精度,甚至失去检测功效。

地磁检测是通过测量车辆通过时地磁场的变化来分析得出交通车流信息,应用相对较少。

(2)波频采集技术

波频采集技术中最常用的是微波检测和红外线检测。

微波检测器原理是雷达线性调频技术,通过不断向路面发射微波,当车辆通过待测区时波束会被反射回检测器,收集车辆反射回来的微波信号实现交通信息的采集。

红外线检测器主动式采集与被动式采集两类采集技术。主动式采集于微波检测器相似,是通过向检测区域发射低能红外线,通过检测反射而回的红外线信号实现信息采集。被动式红外线检测器不对通过待测区发送波束,是通过被动接受车辆以及周围环境发射的红外线,进行数据分析得到交通参数。这类数据收集技术简单,便于操作,但是数据收集面窄,针对性强。现在还提出了结合压力传感器和红外线检测的检测方法,可综合检测车轮数、车轴数、车辆形状、车头高等车辆具体信息的采集。

(3)视频采集技术

视频采集技术在智能交通系统被广泛采用,主要包括运动车辆提取和阴影检测等。视频采集的主体是摄像机,还包括基于微处理器的计算机及其相关配套软件组成,是一种将视频图像与模式识别结合并运用于交通领域的采集技术。视频设备将采集到的连续模拟图像转换成离散型数字图像,经过软件分析可以得到大量交通参数。在处理过程中,通过帧间差分法、背景差分法、光流法将车辆图像检测出并从背景中提取出来。另外还要去除由于光线问题产生的阴影,获得准确的车辆信息,例如:交通流量、车速、车头视距、占有率等等。并总的来讲,视频采集技术优点明显,可提供大量交通管理信息,提供可视图像,但缺点是会因为光学原因造成阻挡,阴影,反射等视觉误差,造成错误判断。

3.2 协作式采集

协作式采集技术主要有三类:基于GPS定位的采集技术、基于RFID的采集技术和基于蜂窝网络的采集技术。

(1)基于GPSD定位的信息采集

此技术要再车辆上安装GPS接收模块,接收卫星信号,监测站课通过接受卫星信号得到车辆反馈信息,如车辆所处位置、时刻、车速等,实现具体车辆的定位跟踪。

(2)基于RFID的信息采集

RFID(Radio Frequency Identification)技术是非接触式自动识别技术,利用了无线射频原理。车辆上安装了储存了车辆信息的射频标签,通过相应设备读取射频标签中的信息实现车辆识别。

(3)基于蜂窝网络的信息采集

基于蜂窝网络的信息采集类似于移动网络运营商通过手机信号知道用户的位置,要用到移动通信的蜂窝网络。运用中常结合GPS定位,在GPS定位信号不好时使用,提高了信息采集系统的可靠性。

随着科技的迅猛发展,各种高新信息技术手段被的运用到ITS的信息采集系统中,如3G技术、计算机技术、GIS技术、传感器技术等,交通信息的采集经历了从单一到多元、从人工到智能的彻底转变。下面我们就几种常用的交通信息采集技术进行比较分析。交通信息采集技术种类繁多,功能各异,我们只有扬长避短,物尽其用才能够得到最全面。客观的交通信息,正确形成决策,处理交通问题。

4 结语

我国的交通状况不同于欧美发达国家,我国人口稠密,经济结构独特,交通基础设施薄弱,交通状况堪忧,而且我国智能交通系统也不同于外国是在交通设施已经完善的情况下发展起来的,我国采用的是边发展边配套边改善的方式,所以在ITS以后的建设中我们不但要借鉴发达国家的ITS建设经验,也要按照我国交通的现状来配套建设,革新ITS系统,实现ITS信息采集技术的多元化和高精度,进一步提高我国的交通服务能力。

参考文献

[1]杨晓光,王一如,彭国雄.高速公路交通事故预防与紧急救援系统.公路交通科技.1998(4).

[2]杨佩昆,杨晓光.跨世纪的智能交通系统及其高新技术和理论[C].第八届土木工程学会论文集.北京清华大学出版社,1998(3): 366-372.

采集技术篇(4)

我国是一个农业大国,种植的农作物种类繁多,各种农作物的产量直接影响国家的经济命脉。在各种农作物生长过程中,影响产量最大的因素是生长环境,包括空气的温度、湿度、风速、光照时间、强度、二氧化碳浓度等,但是目前一些农作物生长环境的数据采集采用的技术(比如人工采集方式等)对生长环境的监测还不到位,不能及时地发现农作物生长过程中的异常情况,及时地进行调控,对产量的影响很大。基于物联网技术的监测系统是在无线传感器网络上构建的,它可以实时地对农作物生长环境及农作物生长状况进行无损数据采集。

1.物联网技术

物联网是物与物相连的网络,它可以通过一些采集信息的设备(如红外感应器、射频识别、激光扫描器、全球定位系统等)与系统进行数据的提取、测量、捕获、传递,并且这种数据的采集具有广泛性,只要是需要感知和能感知的物体,就可以采集到它的数据,并传送至服务器,以便监控。物联网还可以对采集到的数据利用信息处理技术、云计算、数据挖掘技术与分析工具等各种智能计算技术进行数据的智能分析、计算和汇总。物联网的主要技术包括传感器技术、Zigbee技术、智能技术、射频识别技术等,其中Zigbee技术是数据采集的关键技术之一。

所谓数据采集系统是利用各种传感器对监测的各种农作物生长环境的数据进行自动采集,然后将采集到的数据通过数据传输技术传输到服务器。在对农作物的生长环境进行数据采集时,要力求全面、准确,即数据采集系统要完成对多节点与多区域的数据采集,除了对数据的全面性与准确性要求外,数据采集系统还要对数据自动处理(如汇总、打包等),传送到服务器。

2. Zigbee技术

Zigbee一词来源于蜜蜂的舞蹈,当蜜蜂发现食物时,会通过跳舞将信息传递给同伴,如食物的位置、食物的数量、食物的方向、食物的距离等,蜜蜂的英文是Bee,蜜蜂跳舞时发出发出嗡嗡(Zig)的声音,而蜜蜂的这种信息传递距离近,低成本,速度不快,这和Zigbee的特点很相似。Zigbee名字由此得来。Zigbee技术是一种无线通信技术,普通的两节干电池可供Zigbee节点工作几个月的时间,因此功耗低;Zigbee工作的频段是免费的,不需要支付费用,用户只要花两美元买芯片即可进行开发,因此成本低;Zigbee的节点一般距离在10m~100m之间,因此距离近;Zigbee节点连接进入网络要30毫秒,因此延时短。在对农作物生长环境的实时监测时会发现,系统需要传输的数据数量比较少,对传输速率要求不高,终端设备大都采用电池供电,并且要避免有线连接。从以上农作物生长环境监测的特点看,Zigbee技术非常适用。Zigbee协议主要包括物理层、媒体存取控制层、网络层、应用层和安全层。

图1 使用Zigbee技术进行数据采集的框架

针对数据采集的要求,设计的使用Zigbee技术进行数据采集的框架如上图1所示。

由图1可知,农作物生长环境数据采集系统分为三个部分,基于星形拓扑结构的Zigbee无线传感器网络,物联网、internet的网络传输,基于WEB的信息管理系统。Zigbee技术的拓扑结构有树形(即形状像棵树)、网形(即形状像张网)、星形三种。其中,星形拓扑结构如图2所示:

图2 星形拓扑结构

由图2可知,中心位置为协调器,网络中的传输设备都与协调器有信息传输,因此如何组建协调器网络至关重要。星形拓扑结构呈现辐射状,数据要通过协调器来传送,因此比较简单,设备成本不高。由于农作物生长环境的数据采集范围广、采集点多,为了保证采集数据满足全面、准确的要求,最好采用星形拓扑结构。一个主节点可以与若干个从节点进行通信,最多254个从节点,一个从节点又可连接多个传感器。从节点上的传感器采集数据,将数据汇聚到主节点,主节点是网络的汇聚节点,发挥协调功能,主节点通过网络将收集到的数据传输到WEB信息管理系统。

在设计数据采集系统时遵循如下原则:(1)系统要可靠。在多数情况下,设备都没有人看守,这就要求设备的可靠性要高,能够连续工作,不易出错,能够安全可靠地采集、传输、处理数据。(2)系统要实用。此系统要简单,容易维护,易于操作,让大家容易学习、掌握,并熟练地使用它。(3)系统要有适用性。农作物生长环境比较复杂,而且范围大,因此要求此系统在任何环境下都能正常运行,有一定的适应性。

在对农作物生长环境进行数据采集时,采用基于物联网技术,尤其是Zigbee技术能够完成对生长环境各类数据的采集、提取、传输、监控等,并且对数据进行智能分析,判断异常情况。

参考文献:

[1]王黎丽.基于Zigbee技术的机场机房环境数据采集系统[D].杭州:浙江工业大学学位论文,2011:10-12.

采集技术篇(5)

生物识别技术[1]包括虹膜识别技术、视网膜识别技术、面部识别技术、声音识别技术、指纹识别技术[2]。其中指纹识别技术是目前最为成熟的、应用也最为广泛的生物识别技术。每个人的包括指纹在内的皮肤纹路在图案、断点和交叉点上各不相同,也就是说,这些指纹特征是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们就可以把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。

指纹识别系统[3]是通过指纹采集、分析和对比指纹特征来实现快速准确的身份认证。指纹识别系统框图如图1所示。

指纹采集器采集到指纹图像后,才能被计算机进行识别、处理。指纹图像的质量会直接影响到识别的精度以及指纹识别系统的处理速度,因此指纹采集技术是指纹识别系统的关键技术之一。本文着重分析比较不同的指纹采集技术及其性能。

1 指纹采集技术

指纹的表面积相对较小,日常生活中手指常常会受到磨损,所以获得优质的指纹细节图像是一项十分复杂的工作。当今所使用的主要指纹采集技术有光学指纹采集技术,半导体指纹采集技术和超声波指纹采集技术。

1.1 光学指纹图像采集技术

光学指纹采集技术是最古老也是目前应用最广泛的指纹采集技术,光学指纹采集设备始于1971年,其原理是光的全反射(FTIR)。光线照到压有指纹的玻璃表面,反射光线由CCD去获得,反射光的量依赖于压在玻璃表面指纹的脊和谷的深度以及皮肤与玻璃间的油脂和水分。光线经玻璃照射到谷的地方后在玻璃与空气的界面发生全反射,光线被反射到CCD,而射向脊的光线不发生全反射,而是被脊与玻璃的接触面吸收或者漫反射到别的地方,这样就在CCD上形成了指纹的图像。如图2所示。

光学采集设备有着许多优势:它经历了长时间实际应用的考验,能承受一定程度温度变化,稳定性很好,成本相对较低,并能提供分辨率为500dpi的图像。

光学采集设备也有不足之处,主要表现在图像尺寸和潜在指印两个方面。台板必须足够大才能获得质量较好的图像。潜在指印是手指在台板上按完后留下的,这种潜在指印降低了指纹图像的质量。严重的潜在指印会导致两个指印的重叠。另外台板上的涂层(膜)和CCD阵列随着时间的推移会有损耗,精确度会降低。

随着光学设备技术的革新,光学指纹采集设备的体积也不断减小。现在传感器可以装在6x3x6英寸的盒子里,在不久的将来更小的设备是3x1X1英寸。这些进展得益于多种光学技术的发展。例如:可以利用纤维光束来获取指纹图像。纤维光束垂直照射到指纹的表面,他照亮指纹并探测反射光。另一个方案是把含有一微型三棱镜矩阵的表面安装在弹性的平面上,当手指压在此表面上时,由于指纹脊和谷的压力不同而改变了微型三棱镜的表面,这些变化通过三棱镜光的反射而反映出来。

美国DigitaIPersona[4]公司推出的U.are.U系列光学指纹采集器是目前应用比较广泛的光学指纹采集器,主要用于用户登录计算机windows系统时确认身份,它集成了精密光学系统、LED光源和CMOS摄像头协同工作,具有三维活体特点,能够接受各个方向输入的指纹,即使旋转180度亦可接受,是目前市场上最安全的光学指纹识别系统之一。U.are.U光学指纹采集器按照人体工学设计,带有USB接口,是用户桌面上紧邻键盘的新型智能化外设。

1.2 半导体指纹采集技术

半导体传感器是1998年在市场上才出现的,这些含有微型晶体的平面通过多种技术来绘制指纹图像。

(1)硅电容指纹图像传感器

这是最常见的半导体指纹传感器,它通过电子度量来捕捉指纹。在半导体金属阵列上能结合大约100,000个电容传感器,其外面是绝缘的表面。传感器阵列的每一点是一个金属电极,充当电容器的一极,按在传感面上的手指头的对应点则作为另一极,传感面形成两极之间的介电层。由于指纹的脊和谷相对于另一极之间的距离不同(纹路深浅的存在),导致硅表面电容阵列的各个电容值不同,测量并记录各点的电容值,就可以获得具有灰度级的指纹图像。

(2)半导体压感式传感器

其表面的顶层是具有弹性的压感介质材料,它们依照指纹的外表地形(凹凸)转化为相应的电子信号,并进一步产生具有灰度级的指纹图像。

(3)半导体温度感应传感器

它通过感应压在设备上的脊和远离设备的谷温度的不同就可以获得指纹图像。

半导体指纹传感器采用了自动控制技术(AGC技术),能够自动调节指纹图像像素行以及指纹局部范围的敏感程度,在不同的环境下结合反馈的信息便可产生高质量的图像。例如,一个不清晰(对比度差)的图像,如干燥的指纹,都能够被感觉到,从而可以增强其灵敏度,在捕捉的瞬间产生清晰的图像(对比度好);由于提供了局部调整的能力,图像不清晰(对比度差)的区域也能够被检测到(如:手指压得较轻的地方),并在捕捉的瞬间为这些像素提高灵敏度。

    半导体指纹采集设备可以获得相当精确的指纹图像,分辨率可高达600dpi,并且指纹采集时不需要象光学采集设备那样,要求有较大面积的采集头。由于半导体芯片的体积小巧,功耗很低,可以集成到许多现有设备中,这是光学采集设备所无法比拟的,现在许多指纹识别系统研发工作都采用半导体采集设备来进行。早期半导体传感器最主要的弱点在于:容易受到静电的影响,使得传感器有时会取不到图像,甚至会被损坏,手指的汗液中的盐分或者其他的污物,以及手指磨损都会使半导体传感器的取像很困难。另外,它们并不象玻璃一样耐磨损,从而影响使用寿命。随着各种工艺技术的不断发展,芯片的防静电性能和耐用度得到了很大的改善。

从Lucent公司中分离出来的Veridicom[5]公司,从1997年开始就一直致力于半导体指纹采集技术的研发,迄今已研制出FPSll0、FPS200等系列CMOS指纹传感器产品,并被一些商品化的指纹识别系统所采用。其核心技术是基于高可靠性硅传感器芯片设计。

FPS200是Veridicom公司在吸收了已广泛应用的FPSll0系列传感器优点的基础上,推出的新一代指纹传感器。FPS200[6]表面运用Vefidicom公司专利技术而制成,坚固耐用,可防止各种物质对芯片的划伤、腐蚀、磨损等,FPS200能承受超过8KV的静电放电(ESD),因此FPS200可应用在苛刻的环境下。该产品融合了指纹中不同的脊、谷及其他纹理信息,通过高可靠性硅传感器芯片的图像搜索功能,无论手指是干燥、潮湿、粗糙都可以从同一手指采集的多幅指纹图像中选择一幅最佳图像保存在内存中,指纹分辨率可达500dpi,大大降低了传感器芯片识别过程中误接受与误拒绝情况的发生。

FPS200是第一个内置三种通信接口的指纹设备:USB口、微处理器单元接口(MCU)、串行外设接口(Sn),这使得FPS200可以与各种类型的设备连接,甚至不需要外部接口设备的支持。外形封装尺寸(24mmx24mmxl.4mm),只有普通邮票大小。由于它的高性能、低功耗、低价格、小尺寸,可以很方便地集成到各种Intemet设备,如:便携式电脑、个人数字助理(PDA)、移动电话等。

1.3 超声波指纹图像采集技术

Ultra-scan公司首开超声波指纹图像采集设备产品先河。超声波指纹图像采集技术被认为是指纹采集技术中最好的一种,但在指纹识别系统中还不多见,成本很高,而且还处于实验室阶段。超声波指纹取像的原理是:当超声波扫描指纹的表面,紧接着接收设备获取的其反射信号,由于指纹的脊和谷的声阻抗的不同,导致反射回接受器的超声波的能量不同,测量超声波能量大小,进而获得指纹灰度图像。积累在皮肤上的脏物和油脂对超声波取像影响不大。所以这样获取的图像是实际指纹纹路凹凸的真实反映。

总之,这几种指纹采集技术都具有它们各自的优势,也有各自的缺点。超声波指纹图像采集技术由于其成本过高,还没有应用到指纹识别系统中。通常半导体传感器的指纹采集区域小于1平方英寸,光学扫描的指纹采集区域等于或大于1平方英寸,可以根据实际需要来选择采用哪种技术的指纹采集设备。

表1给出三种主要技术的比较。

表1 

采集技术篇(6)

近年来,越来越多的个人、消费者、公司和政府机关都认为现有的基于智能卡、身份证号码和密码的身份识别系统很繁琐而且并不十分可靠。生物识别技术为此提供了一个安全可靠的解决方案。识别技术根据人体自身的生理特征来识别个人的身份,这种技术是目前最为方便与安全的识别系统,它不需要你记住象身份证号码和密码,也不需随身携带像智能卡之类的东西。

生物识别技术[1]包括虹膜识别技术、视网膜识别技术、面部识别技术、声音识别技术、指纹识别技术[2]。其中指纹识别技术是目前最为成熟的、应用也最为广泛的识别技术。每个人的包括指纹在内的皮肤纹路在图案、断点和交叉点上各不相同,也就是说,这些指纹特征是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们就可以把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。

指纹识别系统[3]是通过指纹采集、分析和对比指纹特征来实现快速准确的身份认证。指纹识别系统框图如图1所示。

指纹采集器采集到指纹图像后,才能被计算机进行识别、处理。指纹图像的质量会直接影响到识别的精度以及指纹识别系统的处理速度,因此指纹采集技术是指纹识别系统的关键技术之一。本文着重分析比较不同的指纹采集技术及其性能。

1 指纹采集技术

指纹的表面积相对较小,日常生活中手指常常会受到磨损,所以获得优质的指纹细节图像是一项十分复杂的工作。当今所使用的主要指纹采集技术有光学指纹采集技术,半导体指纹采集技术和超声波指纹采集技术。

1.1 光学指纹图像采集技术

光学指纹采集技术是最古老也是目前应用最广泛的指纹采集技术,光学指纹采集设备始于1971年,其原理是光的全反射(ftir)。光线照到压有指纹的玻璃表面,反射光线由ccd去获得,反射光的量依赖于压在玻璃表面指纹的脊和谷的深度以及皮肤与玻璃间的油脂和水分。光线经玻璃照射到谷的地方后在玻璃与空气的界面发生全反射,光线被反射到ccd,而射向脊的光线不发生全反射,而是被脊与玻璃的接触面吸收或者漫反射到别的地方,这样就在ccd上形成了指纹的图像。如图2所示。

光学采集设备有着许多优势:它经历了长时间实际应用的考验,能承受一定程度温度变化,稳定性很好,成本相对较低,并能提供分辨率为500dpi的图像。

光学采集设备也有不足之处,主要表现在图像尺寸和潜在指印两个方面。台板必须足够大才能获得质量较好的图像。潜在指印是手指在台板上按完后留下的,这种潜在指印降低了指纹图像的质量。严重的潜在指印会导致两个指印的重叠。另外台板上的涂层(膜)和ccd阵列随着时间的推移会有损耗,精确度会降低。

随着光学设备技术的革新,光学指纹采集设备的体积也不断减小。现在传感器可以装在6x3x6英寸的盒子里,在不久的将来更小的设备是3x1x1英寸。这些进展得益于多种光学技术的发展。例如:可以利用纤维光束来获取指纹图像。纤维光束垂直照射到指纹的表面,他照亮指纹并探测反射光。另一个方案是把含有一微型三棱镜矩阵的表面安装在弹性的平面上,当手指压在此表面上时,由于指纹脊和谷的压力不同而改变了微型三棱镜的表面,这些变化通过三棱镜光的反射而反映出来。

美国digitaipersona[4]公司推出的u.are.u系列光学指纹采集器是目前应用比较广泛的光学指纹采集器,主要用于用户登录计算机windows系统时确认身份,它集成了精密光学系统、led光源和cmos摄像头协同工作,具有三维活体特点,能够接受各个方向输入的指纹,即使旋转180度亦可接受,是目前市场上最安全的光学指纹识别系统之一。u.are.u光学指纹采集器按照人体工学设计,带有usb接口,是用户桌面上紧邻键盘的新型智能化外设。

1.2 半导体指纹采集技术

半导体传感器是1998年在市场上才出现的,这些含有微型晶体的平面通过多种技术来绘制指纹图像。

(1)硅电容指纹图像传感器

这是最常见的半导体指纹传感器,它通过电子度量来捕捉指纹。在半导体金属阵列上能结合大约100,000个电容传感器,其外面是绝缘的表面。传感器阵列的每一点是一个金属电极,充当电容器的一极,按在传感面上的手指头的对应点则作为另一极,传感面形成两极之间的介电层。由于指纹的脊和谷相对于另一极之间的距离不同(纹路深浅的存在),导致硅表面电容阵列的各个电容值不同,测量并记录各点的电容值,就可以获得具有灰度级的指纹图像。

(2)半导体压感式传感器

其表面的顶层是具有弹性的压感介质材料,它们依照指纹的外表地形(凹凸)转化为相应的电子信号,并进一步产生具有灰度级的指纹图像。

(3)半导体温度感应传感器

它通过感应压在设备上的脊和远离设备的谷温度的不同就可以获得指纹图像。

半导体指纹传感器采用了自动控制技术(agc技术),能够自动调节指纹图像像素行以及指纹局部范围的敏感程度,在不同的环境下结合反馈的便可产生高质量的图像。例如,一个不清晰(对比度差)的图像,如干燥的指纹,都能够被感觉到,从而可以增强其灵敏度,在捕捉的瞬间产生清晰的图像(对比度好);由于提供了局部调整的能力,图像不清晰(对比度差)的区域也能够被检测到(如:手指压得较轻的地方),并在捕捉的瞬间为这些像素提高灵敏度。

半导体指纹采集设备可以获得相当精确的指纹图像,分辨率可高达600dpi,并且指纹采集时不需要象光学采集设备那样,要求有较大面积的采集头。由于半导体芯片的体积小巧,功耗很低,可以集成到许多现有设备中,这是光学采集设备所无法比拟的,现在许多指纹识别系统研发工作都采用半导体采集设备来进行。早期半导体传感器最主要的弱点在于:容易受到静电的影响,使得传感器有时会取不到图像,甚至会被损坏,手指的汗液中的盐分或者其他的污物,以及手指磨损都会使半导体传感器的取像很困难。另外,它们并不象玻璃一样耐磨损,从而影响使用寿命。随着各种工艺技术的不断发展,芯片的防静电性能和耐用度得到了很大的改善。

从lucent公司中分离出来的veridicom[5]公司,从1997年开始就一直致力于半导体指纹采集技术的研发,迄今已研制出fpsll0、fps200等系列cmos指纹传感器产品,并被一些商品化的指纹识别系统所采用。其核心技术是基于高可靠性硅传感器芯片设计。

fps200是veridicom公司在吸收了已广泛应用的fpsll0系列传感器优点的基础上,推出的新一代指纹传感器。fps200[6]表面运用vefidicom公司专利技术而制成,坚固耐用,可防止各种物质对芯片的划伤、腐蚀、磨损等,fps200能承受超过8kv的静电放电(esd),因此fps200可应用在苛刻的环境下。该产品融合了指纹中不同的脊、谷及其他纹理,通过高可靠性硅传感器芯片的图像搜索功能,无论手指是干燥、潮湿、粗糙都可以从同一手指采集的多幅指纹图像中选择一幅最佳图像保 存在内存中,指纹分辨率可达500dpi,大大降低了传感器芯片识别过程中误接受与误拒绝情况的发生。

fps200是第一个内置三种通信接口的指纹设备:usb口、微处理器单元接口(mcu)、串行外设接口(sn),这使得fps200可以与各种类型的设备连接,甚至不需要外部接口设备的支持。外形封装尺寸(24mmx24mmxl.4mm),只有普通邮票大小。由于它的高性能、低功耗、低价格、小尺寸,可以很方便地集成到各种intemet设备,如:便携式电脑、个人数字助理(pda)、移动电话等。

1.3 超声波指纹图像采集技术

ultra-scan公司首开超声波指纹图像采集设备产品先河。超声波指纹图像采集技术被认为是指纹采集技术中最好的一种,但在指纹识别系统中还不多见,成本很高,而且还处于实验室阶段。超声波指纹取像的原理是:当超声波扫描指纹的表面,紧接着接收设备获取的其反射信号,由于指纹的脊和谷的声阻抗的不同,导致反射回接受器的超声波的能量不同,测量超声波能量大小,进而获得指纹灰度图像。积累在皮肤上的脏物和油脂对超声波取像影响不大。所以这样获取的图像是实际指纹纹路凹凸的真实反映。

总之,这几种指纹采集技术都具有它们各自的优势,也有各自的缺点。超声波指纹图像采集技术由于其成本过高,还没有应用到指纹识别系统中。通常半导体传感器的指纹采集区域小于1平方英寸,光学扫描的指纹采集区域等于或大于1平方英寸,可以根据实际需要来选择采用哪种技术的指纹采集设备。

表1给出三种主要技术的比较。

表1

光学扫描技术 半导体传感技术 超声波扫描技术

成像能力 干手指差,汗多的和稍胀的手指成像模糊。易受皮肤上的脏物和油脂的影响。 干手指好,潮温、粗糙手指亦可成像。易受皮肤上的脏物和油脂的影响。 非常好

成像区域 大 小 中

分辨率 低于500dpi 可高达600dpi 可高达1000dpi

设备体积 大 小 中

耐用性 非常耐用 较耐用 一般

功耗 较大 小 较大

成本 较高 低 很高

采集技术篇(7)

二、EPON通信技术

EPON通信技术,是一种新兴的宽带接入技术,全称以太网无源光网络(EthernetPassiveOpticalNetwork,EPON),在物理层采用无源光纤网络(PassiveOpticalNetwork,PON)技术,在链路层使用以太网协议,最后通过利用PON的拓扑结构实现以太网的接入。所以EPON技术具有两个方面的优点,以太网技术以及PON技术,具有宽带速度高、扩展性强、兼容性好等系列的特点。EPON采用的是一点到多点的结构,所以在具体操作中拓扑结构比较灵活,可以组成数形、星形以及总线形等结构。

三、EPON通信技术在用电信息采集系统中的应用

1、需要考虑的问题。

(1)分光必须要综合考虑到ONU到OLT的距离,以及在传输中会发生的损耗,所以对光分配网络进行专门的设计。为了使得PON网络能够得到最大的覆盖范围。(2)当建成以后,如果新增节点,需要重新计算网络中的ONU关系以及分光器。

2、用电信息采集典型案例分析。

(1)电力载波集合EPON通信技术。这种方式主要是采用光纤通信技术,可以有效的利用载波的特点,并且还能够避免无线公网具有的局限性,这就提高了上行信道的稳定性。然后将每块用户的电表信息采集起来发送到集中器,通过电力载波的方式;电表的信息汇总主要是通过集中器汇总,最后将信息传输到主战主要是利用光纤通信。这种方式,随着配电大规模建设,可以极大的提高用电信息采集的效率以及投资成本。(2)采用EPON通信集合集中器技术。这种方式采集电表信息主要是是利用EPON技术,然后通过ONU中的RS485实现的。在这个过程中ONU主要是负责通过RS485采集电表信息,然后将其传输到集中器。RS485主要是负责信号的转换,将转换后的以太网数据汇总到集中器上。这种方式对于集中器的要求相对的比较高,目前的生产厂家的涉笔也只能支持单个以太网的上传,所以需要对集中器的硬件进行升级以及改造。(3)采用EPON通信技术。这种方式是利用ONU设备的RS485接口实现本地电表连接通信以及远端电表的通信,是目前运用最高效的一种电表信息采集方式。这种方式不需要集中器的参与,与传统的抄表方式很不同。目前RS485可以连接32个电表,每台ONU可以有4个接口,所以最后1个0NU可以完成128个电表的数据采集。

采集技术篇(8)

一、前言

当前,图像采集和处理技术的发展十分迅速,它和计算机技术一起,在很大程度上帮助了我国进入数字化时代,越来越多的场合需要用到数字图像技术,多样化的图像和视频应用,形象生动的表达了传统的媒体所不能传递的信息,结合强大的通讯网,很大程度上丰富了人民的业余文化生活。同时由于很多行业需要使用高清图像的实时监测和数据分析,高码率的图像采集方法也已经成为工业中的重要技术之一。

在监控、高清电视转播、卫星图像传送等领域,传统的压缩严重、码率较低的图像已经不能满足当前社会发展的需求,由于软硬件技术的飞速发展和市场的需求,高码率甚至是无损的图像以及视频数据已经不是硬件资源的瓶颈所在。发展先进的高码率数字图像采集和信号处理技术,成为目前科研院所和企业研究的热点。

二、研究现状

我国电子技术的发展滞后于西方国家,体现在核心技术上专利和技术积累的不足,近年来国家层面上对集成电路等技术的支持力度十分显著,标志着我国芯片技术的从无到有,从弱到强。而这些硬件技术的发展,对高码率数字图像在内的新兴行业带来了蓬勃的生机。

成像设备的是数字图像技术发展的基础,我国当前生产CMOS以及CCD模块的厂家数量逐年增加,例如中安视讯公司采用PCle xl接口的视频采集卡,在两路模拟视频信号采集下已经可以实现720x576x24bit的速率,达到的水平也逐渐跻身国际前列。

但是,我们应该看到,在高清成像技术的高端市场上,索尼、尼康、苹果、Coreco等老牌的图像厂商无论是在硬件核心器件,还是在后期图像的算法处理上,都处于绝对的领先地位。

Coreco的一款图像采集卡系列甚至达到了1GB/s的高速数据量吞吐。但是,中国市场的巨大带来的研发热潮是其他国家和地区所不能比拟的,处于高速发展时期的中国,无论是在高清电影拍摄等民用或者工业市场,还是在国防、勘探等关系到国家利益的重大层次,都对高码率的图像采集和处理技术保持着研发的热情。

三、高码率图像采集处理的技术实现要求

全高清时代的到来,使得硬件设备更新换代的速率不断提高。传统的低码率图像传输使用场合受到的限制越来越多,而对传统设备和技术的改进是一项巨大的工程,特别是我国这样庞大的一个基数量级。设计和研究高码率的图像采集和处理技术,需要注意以下几点:

1、系统的开放性以及兼容性:众多的老设备不可能在很短的时间内迅速更换,要最大程度的保留兼容的解决方案,同时,采用开放的系统接口,满足不同设备的最低开销的使用;

2、技术实现下的经济效益最优化:在满足技术指标的同时,尽可能使用性价比高的设备以及容易实现的软件方案,保证系统的实用性和经济性;

3、灵活的框架以及维护的便捷性:高码率图像采集和处理技术的核心部件价格昂贵,用户可以根据需求选择外部组件的配合使用,保证了物尽其用。同时,灵活的框架允许维护的过程更加简单,节约了人力物力;

4、安全性和稳定性:图像数据大部分存储在机器本地,需要进行严格的分级加密保存和提取。但是涉及到需要使用网络进行远程传输的信号,需要算法加密,防止信息截取。

四、高码率图像采集处理技术的方法研究

随着电子技术和大数据时代的激发,图像以及视频处理领域对更大的数字信号数据量的存储和处理需求提出了更高的诉求。

一般的,高码率数字图像的采集涉及到很大的数据带宽,这就需要很高的信号处理芯片级别,传统的单片机肯定是无法满足要求的,多数情况下,使用ARM处理器,嵌入式的Linux系统以及高速的DSP+FPGA方案实现。

硬件方面,高码率的图像信号采集和处理技术主要基于FPGA和高速并行DSP处理器完成数字信号的检测和处理,同时对硬件的设计加以优化,对程序控制中的时序进行严格把控,使系统的稳定度和处理效果达到较好的水准。在高速信号处理过程中,信号的传输质量始终关系到整个系统的运行。

传统的单端信号传输方式,功耗和速度都已经难以适应芯片的发展。采用高速差分信号传输,是一种抗共模干扰能力很强的新型数据传输方案。LVDS是满足FPGA和DSP之间高速高效数据传输的常见的差分接口,主要用于诸如高清视频转发、遥感数据采集等高速数据传输连接之中,是一种低压、差分信号的传输。LVDS规定了驱动器和接收器的电气特性。使用LVDS的模数转化器,不仅可以保证其高性能的转化,并且能够实现高速数据传输。

在高清电影拍摄、高清视频实时转播、卫星图片传输等系统采用的高码率传输设备,数据量可以达到甚至是超越Gbps,这就需要除了控制硬件采集信号的质量之外,对软件算法不断加以优化。

采集技术篇(9)

在ITS的发展过程中,“3S”技术发挥着越来越重要的作用,它可为智能交通系统提供了必要的空间数据和交通信息的获取、处理、分析和可视化理论和技术支持。动态交通信息传统的采集手段主要有感应线圈、视频、微波、超声波、红外及激光雷达等车辆检测器。近年以来,随着传感技术的发展,基于低空遥感平台的大范围交通信息高精度快速获取成为一种有效地动态交通信息采集方法。

1、动态交通信息概述

动态交通信息主要是指道路上所有移动物体所具有的特定信息,这些信息根据实际的交通状况时刻变化,主要包括交通流信息和交通事件信息。交通流信息包括交通量、平均车速、占有率和车型等;事件信息包括事件或拥堵的类型和位置等。

动态交通信息采集有历史数据和实时数据之分。历史数据主要是离线应用,用于对历史交通状况的统计分析;实时数据时在线应用,用于实时交通状况的分析与控制,绝大多数的交通管理的功能都是依靠实时数据。

2、基于浮动车的交通信息获取

目前,GPS车载设备和GPS指挥调度系统已被成功地应用于我国的城市公交交通、商务车运营、危险品运输、物流管理和防盗报警等多个行业。因此,基于浮动车的交通信息获取在我国具有应用基础。基于浮动车的交通信息采集技术的主要步骤和关键技术包括:

(1) 海量浮动车数据预处理与质量控制

剔除错误数据和不可用数据,对缺失数据进行修补,对数据精度作以评价等,旨在得到干净、高质量的交通数据。

(2) 海量浮动车数据地图匹配

地图匹配是浮动车数据用于交通状态估计的关键步骤之一。对于海量浮动车数据而言,既要保证匹配精度,也应考虑匹配效率(单位时间内完成地图匹配的浮动车数量)。

(3) 最小样本量和置信区间

浮动车定位的精度已知,数量越多则对道路交通流参数估计的精度越高,但是也会增加通信、存储成本和数据处理量。最小样本量和置信区间就是研究不同浮动车样本量条件下交通流参数(平均速度等)的置信度,并且找到样本量增加但估计精度不显著增加的“拐点”,寻求全局最优解。

3、基于低空平台的动态交通信息获取

基于低空遥感平台的大范围交通信息搞精度快速获取是以无人机/飞艇等低空飞行器为载体,由差分GPS/INS集成定位系统、CCD、激光扫描仪与无线传输设备等多传感器集成的低空遥感平台,实现大范围异常交通信息的快速获取、多源交通数据的融合与处理,以及非常态条件下实时路网信息与交通流信息一体化联动分析与交通状综合评价等。基于无人机/飞艇的非常态交通信息获取的低空遥感平台具有尺寸小、无人驾驶、机动灵活、安全可靠、可低空飞行、适应环境强等优点,不仅能克服线圈等地面固定交通信息采集凡事无法移动的不足,也能摆脱非常态条件下车载等地面移动交通信息采集方式不可到达的束缚,成为一种在有效的大范围交通信息快速采集技术与方法。

4、动态交通信息获取新型技术

随着计算机技术、移动通信技术等的快速发展,交通信息的获取技术从静态采集技术向动态采集技术快速发展,尤其出现了一些新型的交通数据获取的新方法,如利用移动通信技术、无线射频(RFID)技术、蓝牙、WIFI以及平流层飞艇等新技术,实现交通信息的获取。

4.1 移动通信

通信技术的快速发展与先进通信工具的日益普及,使得利用手机的定位技术进行交通信息采集已成为可能,基于移动通信网络的交通信息采集技术最近几年在世界范围内得到了快速发展。利用手机的定位技术进行交通信息采集,利用移动通信技术,通过在运动车辆中的移动通信工具盒移动通信网络的蜂窝机构,通过手机的定位信息来推算车流状况,从而获取相应的交通信息。

4.2 移动通无线射频识别(RFID)

无线射频识别技术是一种非接触式自动识别技术,其基本原理是利用射频信号和空间耦合(电感或电磁耦合)传输特性,通过射频信号自动识别目标对象并获取数据信息。该识别无须人工干预,可工作于各种恶劣环境,并可同时识别多个目标对象,操作快捷方便。

4.3 平流层飞艇

平流层飞艇是指在平流层高度范围内能长期低速机动飞行或定点悬停的巨型无人驾驶飞艇,既可以应用于国民经济领域,也可以作为军事工具。基于平流层飞艇的交通遥感平台是一种非常有力的用于大规模社会事件,如灾害、集会等路面交通管理的技术手段。该交通遥感平台分别由空中和地面两个系统组成,利用该平台可以进行大范围区域交通的连续观测、非常态条件下的交通应急指挥与调度以及多源大范围交通数据的快速获取。

采集技术篇(10)

中图分类号:TP39文献标识码A文章编号1006-0278(2015)08-145-01

一、引言

现阶段的互联网应用中,web应用发展十分迅速,并且已经成为了现阶段网络中最普及的应用。Web信息资源具有较强的开放性、广泛性以及异构性特点,用户在进行信息获取的过程中面临着巨大的难度。高效的web信息采集技术的出现和应用,让用户可以在海量的互联网信息中快速地获取自身所需的信息。而基于主题的Web信息采集技术的出现和应用,让用户可以在限定的主题当中,对于网络中的信息进行获取和收集,提高了服务的有效性,让用户可以获得定制化、个性化的服务。在现阶段网络技术发展中,基于主题的Web信息采集技术是网络搜索技术的发展重点,也是未来互联网技术的重要发展趋势。传统的信息采集技术本身对于互联网中采集页面的针对性十分有限,并且信息采集录入的准确性和相关性也存在很大的不足。基于主题的Web信息采集技术可以更好地对于信息采集领域进行限定,并通过应用相应的信息采集规则和判定机制,保障信息采集的准确率和针对性。

二、基于主题的Web信息采集技术研究

第一,页面的采集。页面的采集过程中中,通过Crawler的应用,实现了对带采集的WEB信息资金的下载和分析。现阶段,集中式和分布式并行的Crawler应用,已经成为了当前页面采集的主要方法。在Web信息采集技术中,Crawler也可以被成为爬虫,其本身具有较强的易用性。集中式Crawler应用中,多个Crawler共同执行采集任务,其相互之间具有互和独立性,不同的Crawler执行相互独立的任务,将web页面进行下载和保存,再对于所下载中的内容中进行URL的链接抽取,最后再进行相应的URL列表的构建。每一个Crawler单元中,其执行的页面采集任务都是不同的,其通信过程需要依赖于系统总线、局域网等介质中进行完成。对于一个Crawler采集单元来说,其既可以是一整的计算机,也可以是一个计算机内部的操作线程。针对于并行访问中采集页面重复下载的问题,可以通过应用URL哈希值的计算方式来对于Crawler采集单元的访问范围进行分配,再结合周期换的策略,减少系统负担。

第二,页面的提取。页面提取的过程是对于页面内容进行过滤筛选的过程,并且从页面中对于页面的主题信息进行提取,为后续的分析提供相应的基础。现阶段的web应用中,HTML语言是主流的网络语言。HTML页面当中具有较多的标识符,整体结构相对固定。在进行页面净化的过程中,通过利用文档对象模型(DOM,Document Object Model)等技术,可以根据不同网站的布局情况和特点,对一些无关的内容进行清理和净化。例如,HTML页面中的、、< iframe>、等布局中一般都具有相对重要的数据信息,相关的清理和净化过程中则针对于不同的标识符来进行加权计算。在页面提取过程中,合理的净化也是确保对无关内容清理效果的保障,同时也可以有效地提高页面的准确性。对于页面提取操作中,通过相关的技术手段的应用,对不同的内容进行不同程度权重的计算,可以有效地对于一些无关的广告信息、版权信息、导航信息等进行清除,让整个连接的相关性得到更好地保证。

第三,页面的分析。页面分析主要是对于所提取的页面进行主题相关性方面的分析和评价,也是web信息采集技术中的重点环节。一般来说,现阶段主要应用的页面分析主要是通过对文本表示和文本分类的方式来进行的。在进行分词的过程中,需要利用相应的分词数据库、推理机以及知识库来进行分词,这种分词方式主要是理解分词。而机械分词则通过将分词过程与词典数据库进行有效的结合,本身分析的过程更加简单有效,准确度更高是当前分词的主要方式选择。在完成分词之后,还要对于维数进行约减,通过约减来对一些无特定意义词汇进行去除,提高程序的整体运行效率。在文本分类挖掘中,主要应用向量距离分类算法、最大平均熵方法、神经网络方法、贝叶斯方法等多种算法。另外,页面分析过程中一些对链接价值的计算上,主要采取Best-First和BestN-First两种原则。

三、结束语

在现阶段互联网不断发展的形势下,网络信息的数据量不断增加,信息的、采集与处理逐渐成为了当前信息网络发展的重点问题。以往web信息采集技术本身具有一定的片面性,整体采集效率不高,准确性和相关性十分有限。针对于以往技术中的缺陷和不足,基于主题的Web信息采集技术的出现和应用,更好地让采集覆盖率得到了保障,并且提高了整体页面的利用效率,是现阶段互联网技术发展的热点,具有较大的发展潜力和空间。

参考文献:

采集技术篇(11)

关键词:能量采集;压电技术;太阳能;激光

传统的能量通过有限能量的电池供应,不仅需要固定时间更换,而且在环境恶劣的条件下很难操作。而从周围环境中可利用的再生资源进行采集能量,如太阳能、风能,来供应能量受限的无线网络不仅环保而且十分方便。近些年来,一种新兴的可利用资源无线频率信号(RF)引起了专家学者的P注[1]。由于无线频率信号中不仅包含有用的信息,同时还携有可利用的能量。因此,能量受限的无线通信网络用户可以在能量收集的同时进行相关的信号处理[2]。不仅如此,能量采集技术也为移动用户带来方便。基于以上现状,本文将机械能、太阳能供电及激光主动供电这几种能量采集技术进行了分析和对比。

1 机械能

由于机械振动能量的普遍存在性,合理地利用振动能量将会是一种有效的方法。而压电能量采集技术速度快、无电磁干扰、成本低的特点使得其脱颖而出。

该技术的原理是:当系统在外界力作用下,根据能量守恒定律,该外部机械能可以转换为弹性势能,动能,机械损耗能以及电能,电能经过压电能量采集电路可应用于负载。参考文献[3]中讨论了三种经典的压电能量采集技术:被动式、半主动式及主动式,在理论上分析了其原理和框架。文献[4]对改进型能量采集电路进行了阐述。

压电能量采集技术已经有了很大的进步,但是仍处在研发阶段,还未大规模应用。

2 太阳能

能量密度高的特点使太阳能在能量采集技术中得到了广泛应用,太阳能采集模块采集到太阳能后存储到能量储存模块,与此同时,管理模块会进行充放电的控制以及电路的监测。

文献[4]说明了Heliomote、Fleck和ZebraNet系统由于对电压大小的限制,使得能量利用率不高。文章又对比分析了Ambimax、Duracap等系统的优缺点,总结出目前太阳能采集系统最大的瓶颈是能量利用率不高。

3 激光主动供能

所谓“激光”,即“受激辐射的光放大”,众所周知,电子分布在不同的能级上,受到光子激发后,高能级电子会发生跃迁,从而辐射出与激发它的光同性质的光。文献[5]提出了一种“单对多”的供能网络,得到了最大功率点追踪的实现方法。但是在实际应用场景下,此方法的研究工作有待进一步开展。

结束语

能量采集通过收集周围环境中的微小能量,将之转换成电能,绿色环保效率高,将成为通信领域最有潜力的研究方向之一。

参考文献

[1]L. R. Varshney,“Transporting information and energy simultaneously, ”in Proc. 2008 IEEE ISIT.

[2]P. Grover and A. Sahai,“Shannon meets Tesla: wireless information andpower transfer,” in Proc. 2010 IEEE ISIT.

推荐精选