欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

太阳能发电技术论文大全11篇

时间:2023-03-20 16:16:11

太阳能发电技术论文

太阳能发电技术论文篇(1)

中图分类号:TM615 文献标志码:A 文章编号:1674-9324(2014)49-0131-02

面临21世纪能源短缺和环境问题,国家将新能源产业列入国家战略性新兴产业。北京市中长期科学和技术发展规划纲要(2008―2020)科技发展重点任务之一是新能源利用。2012年,财政部、科技部、国家能源局联合下发“金太阳”政策及“金屋顶”政策,两大政策均支持分布式光伏发电示范项目。太阳能是能源领域的新兴重点发展方向,开设太阳能发电技术课程对提高学生的就业机会,增强学生服务社会的能力有非常重要的作用。北京信息科技大学2012级培养计划将电气工程及其自动化专业特色定位于新能源及节能技术应用。新能源特色系列课程主要有《太阳能发电技术》等5门课,其中1门必修课,3门选修课及1门实践课,《太阳能发电技术》是必修课和重要特色课,要发挥特色课程的作用,非常有必要进行课程改革。

一、太阳能光伏发电技术课程改革的意义

目前,国家需要大量的光伏发电相关的技术型人才和研究型人才,人才缺口较大。北京市重视“太阳能”学科点建设和人才培养,建议有条件的院校建立太阳能培训试验中心,以培养一大批能胜任太阳能开发需要的中高级专业技术人才和管理人才。在此形势下,开设《太阳能发电技术》课程,讲述国内外太阳能光伏发电基本理论和基本概念,从实际应用和工程设计角度,分析装置、系统和应用,介绍太阳能光伏发电的最新技术、最新成果,为学生以后从事太阳能电池研究、光伏技术应用、光伏电站建设与管理,打下坚实的基础。加强《太阳能发电技术》课程改革,对培养学生的专业素质,提高学生学习专业课的能力,增强学生的就业机会,提高学生服务于社会的能力具有十分重要的作用。《太阳能光伏发电技术》共计32学时,其中讲课24学时,实验8学时。该课程属于专业课,必修课。本课程教学目的是使学生掌握太阳能光伏发电的基本理论和方法。通过对该门课程的学习,使学生了解太阳能资源的状况,理解太阳能光伏发电的基本原理及系统的构成,掌握光伏电池、蓄电池、充放电控制器、逆变器及相关电力电子变换电路的工作原理及控制方法,熟悉最大功率跟踪的概念及常用算法,最后介绍典型小光伏发电系统的设计。

二、太阳能光伏发电技术课程存在的问题

1.教材问题。太阳能光伏发电技术的实际应用越来越多,需要大量的应用技术型人才和研究型人才,但人才培养需要有针对性的教材和相关的参考书。太阳能光伏发电技术是近年来发展迅速的一门新技术,其知识内容更新速度非常快。目前这方面的书籍很多,但实用教材却很少,有些书针对光伏发电的某一点,过于专业,有些书只是简单的科普,多数不适合作高校教材。

2.实践教学问题。实验教学对工科学生掌握所学课程的内容,灵活运用所学知识去解决实际问题的方法至关重要,太阳能发电技术更是如此。目前太阳能光伏发电实训装置相对匮乏。国内有一两家教学仪器公司开发了太阳能光伏发电实训平台,价格昂贵,能开设的实验很少,且操作性差,对锻炼学生的手动实操能力帮助不大。

3.教学案例太少,教学案例建设薄弱。工程实践部门主要完成工程设计及施工,科研院所专注于技术提升与创新,能用于教学的工程案例资料很难查询,即使能找到少许资料,技术资料也不完备,缺乏演示行和可复制性。

三、太阳能光伏发电技术课程改革的主要内容

1.教材建设。本课程没有固定的教材,参考《太阳能光伏发电及其应用》、《太阳能光伏并网发电及其逆变控制》等章节内容,有些内容借鉴网上资源、科技文献的资源,经过加工整理,形成自编讲义。

2.教学内容更新。本课程内容丰富,涉及面广。涉及到光学、电工学、电力电子学、软件工程、单片机等基础知识,涵盖了供配电技术、自动控制原理等基本理论。既包含太阳能电池、蓄电池、逆变器、控制器等组成部分的基本原理,又有包含系统设计、应用、安装、检查与试验等基本技能;既包含电力电子变换电路及控制电路等硬件内容、也包含最大功率跟踪等软件内容。随着新技术新材料的出现,这些内容会不断更新,并将更新的内容添加到课堂上。

3.实验装置研制及实验内容更新。太阳能光伏发电实验平台主要由太阳能电池板、太阳能控制器、逆变器等组成,测试仪器主要用到万用表、电流表、功率仪、温度计、照度计、辐照计等仪表,能够进行太阳能电池板伏安特性实验、太阳能电池板不同入射角影响特性实验、太阳能电池板输出功率与负载特性实验、最大功率跟踪特性实验四个必做实验。该实验平台上还可以进行太阳能电池板开路电压和短路电流随光强变换实验、太阳能电池板暗特性曲线实验、太阳能电池串并联特性实验、太阳能电池板发电原理实验、太阳能控制器性能实验以及独立光伏发电系统实验凳选作实验。

4.教学方法改革。根据本课程的特点,上课时采用案例式教学、讨论式教学以及太阳能发电系统设计等实战教学。上课过程中,讲到一些基本理论后,举一些相关的、具有一定前沿性和趣味性的例子,加深对基础理论的理解,激发学生的学习兴趣。讲到太阳能最大功率跟踪时,可以找些太阳能最大功率跟踪的图片,视频。图片是单轴跟踪还是双轴跟踪?也可以让学生思考,除了这两种跟踪方式,还有没有别的跟踪方式?结合电力电子技术和单片机等课程,启发学生思考如何设计太阳能最大功率跟踪器。另外,在举例讲解时,也可以适当介绍本研究领域的最新动态和最新发展成果。教科书出版周期长,往往不能及时介绍学科最新、最有价值的学术成果。教师把最前沿技术引入课堂,不仅扩展了学生知识面,吸引学生学习兴趣,培养学生关注本学科发展的习惯,同时也了解学生的发展潜力,以便选拔学生。讨论式教学鼓励学生积极参加课堂讨论,帮助学生建立系统的知识结构,同时也锻炼学生的语言表达能力,将学习过程转变为师生共同学习、共同探索提高的过程。太阳能发电系统设计等实战教学是为某地区设计一套10kw太阳能光伏发电系统,要求列出当地的太阳能资源状况,光伏板的性能参数、连接方式、倾斜角,控制器的主要功能及实现功能的方案,逆变器工作原理及逆变电路,蓄电池容量等,最后给出系统的经济预算及经济效益评价。

5.学生开放实验。开放实验是以学生为主体的创新性实验,能够调动学生的主动性、积极性和创造性,激发学生的创新思维和创新意识,逐渐掌握思考问题、解决问题的方法,提高其创新实践的能力。每年选拔对太阳能光伏发电技术有浓厚兴趣的学生参加。在兴趣驱动下,在导师指导下完成实验过程,参与计划项目的学生要自主设计实验、自主完成实验、自主管理实验。先后完成太阳能节能洒水控制系统设计、太阳能多功能休闲椅控制系统设计、基于太阳能的教室灯光节能控制系统、太阳能智能温湿度控制器等开放实验项目。

6.教师队伍建设。“教师有一桶水,才能给学生一杯水”,说的是教师要有丰富的知识,练就一身过硬的功夫,才能把课上好。教师要不断学习,提高自身的素质和储备知识,特别是科学知识迅速发展的今天,学生获取知识的途径很多,知识面较宽广,对教师的要求也就越来越高,这就需要老师要不断的扩展自身的业务水平,提高业务素质,才能在讲台上站稳。近年来,电气工程系每年都派老师参加教学能力提高项目、国内访问学者项目,到重点大学进行进修学习、交流,每年参加教学会议。通过与国内高校教师的交流学习,找到了差距,少走了弯路,增强了信心,锻炼了沟通交流能力,更加注重团结协作,主动参与社会活动,勇于承担责任。通过交流与合作能获得心理支持,共同分享成功,分担问题;通过交流与合作获取教学信息和灵感,产生新的想法;教师在合作过程中,潜移默化地影响着学生,用无声的语言告诉学生合作很有益,教师也在身体力行他们所倡导的信念。课程组定期组织教研活动,就教材、实验内容、授课内容、考核方式、教学方法和手段等问题进行探讨。

四、结论

《太阳能光伏发电技术》是近年来发展起来的一门新课程,没有现成的经验可以借鉴,本着多学习多探索的原则,本文从教材建设、教学内容选择及更新、实验装置设计及实验内容更新、教学方法改革、开设开放实验、教师队伍建设等方面进行了改革初探,并将这些改革应用到电气工程教学实践中,收到了良好的效果。

参考文献:

[1]肖志刚,蒋瑶,尹绍全,何岚.“太阳能光伏发电技术及应用”课程改革研究[J].乐山师范学院学报,2013:61-64.

[2]汪义旺.Matlab仿真在光伏发电技术实验教学中的应用[J].实验技术与管理,2011,28(7):177-179.

太阳能发电技术论文篇(2)

Abstract: In the new energy, solar power has the highest technical content and the most promising. This paper summarized the main types of solar power in China and its advantages, the efficiency of solar power generation system, the main principle and the solar published analyses.

Key words: solar energy; power generation; power system; the main principle

中图分类号:TM615前言

太阳能作为清洁、无污染、方便易得的可再生建筑能源,越来越受到人们的青睐。太阳能光伏发电系统安全可靠、无噪音、无振动、无污染、无需消耗燃料,无需架设输电线路即可就地发电供电,建设周期短,可靠性高、维护简便,对于换件常规能源的短缺和减少环境污染具有重要的意义。

1、我国太阳能发电的主要方式及其优势 1.1 太阳能热发电。①塔式太阳能热发电系统。塔式太阳能热发电系统也称为集中式太阳能热发电系统。它利用定日镜将太阳光聚焦在中心吸热塔的吸热器上,在那里将聚焦的辐射能转变成热能,然后将热能传递给热力循环的工质,再驱动热机做功发电。 ②槽式太阳能热发电系统。槽式太阳能热发电系统是利用槽式抛物面反射镜聚光的太阳能热发电系统的简称。该聚光镜面从几何上看是将抛物线平移而形成的槽式抛物面,它将太阳光聚在一条线上,在这条焦线上安装有管状集热器,以吸收聚焦后的太阳辐射能,并常常将众多的槽式抛物面串并联成聚光集热器阵列。该系统中机热油回路和动力蒸汽回路分离开来,经过一系列换热器来交换热量。当太阳能供应不足时,利用一个辅助加热器将油回路中的导热油加热,从而实现系统的稳定连续运行。 ③碟式太阳能热发电系统。碟式太阳能热发电系统借助双轴跟踪,利用旋转抛物面反射镜,将入射的太阳辐射进行点聚集,聚光点的温度一般为500—1000℃,吸热器洗手这部分辐射能并将其转换成热能,加热工质以驱动热机(如燃气轮机、斯特林发动机或其他类型透平等),从而将热能转换成电能。该方式的优点是:转化效率最高;可模块化;可以混合发电。

1.2 太阳能光发电。①单晶硅电池。单晶硅电池是建立在高质量单晶硅材料和相关的加工处理工艺基础上的。它的转换效率最高,技术也最为成熟。在实验室里最高的转换效率为23%,而规模生产的单晶硅太阳能电池,其效率为15%。硅电池进展的重要原因之一是表面钝化技术的提高。此外,倒金字塔技术、双层减反射膜技术以及陷光理论的完善也是高晶硅电池发展的主要原因。 ①多晶硅电池。多晶硅电池与单晶硅比较,由于所使用的硅远比单晶硅少,其成本远低于单晶硅电池,具有独特的优势。但是由于它存在着晶粒界面和晶格错位的明显缺陷,造成多晶硅电池光电转换率一直无法突破20%的关口,低于单晶硅电池。 ③薄膜太阳能电池发电是另一种光伏发电方式。由于受到原材料、加工工艺和制造过程的制约,若要再大幅度地降低单晶硅太阳电池成本是非常困难的。作为单晶硅电池的替代产品,现在发展了薄膜太阳电池。目前薄膜电池主要有硅基薄膜太阳电池、化合物半导体薄膜电池、燃料敏化TiO2太阳电池等。

太阳能光伏发电系统的主要优势:可以有效利用建筑物屋顶和幕墙,无需占用土地资源;可原地发电,原地使用,减少电力输送的线路损耗;各种彩色光伏组件可取代和节约外饰材料(如玻璃幕墙等)在白天用电高峰期供电,从而舒缓高峰电力需求;配备蓄电池后,还能满足安全用电设施的不断电要求;太阳能发电板阵列直接吸收太阳能,降低墙面及屋顶的温升,减轻建筑空调负荷。

2、太阳能发电系统的效率

在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。几种太阳能电池的转换效率见表1。

表1几种太阳能电池的转换效率

3、太阳能发电的主要原理分析

太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。

3.1 太阳能电源系统:太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。

①电池单元:由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有“光生电流”流过,太阳能电池组件就实现了对负载的功率P输出。

理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。

②电能储存单元:太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。

3.2 控制器:控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。

3.3 DC-AC逆变器:逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。

4、结束语

总之,绿色能源和可持续发展问题是本世纪人类面临的重大课题,开发新能源,对现有能源的充分合理利用已经得到各国政府的极大重视。太阳能发电作为一种取之不尽,用之不竭的清洁环保能源将得到前所未有的发展。随着太阳能产业化进程和技术开发的深化,它的效率、性价比将得到提高,也将极大地推动中国“绿色照明工程”的快速发展。

参考文献:

太阳能发电技术论文篇(3)

中图分类号:G646 文献标志码:A 文章编号:1674-9324(2015)03-0161-02

人类社会的可持续发展面临着环境恶化、资源短缺的严峻挑战,而取之不尽用之不竭的太阳能则成为新能源的首选之一。曾经在全球光伏产业的推动下,中国光伏产品已占据国际市场的大半壁江山,但却一直面临市场在外的困局。光伏产业经过数年爆发式增长,最终多个环节产能面临严重产能过剩。随着欧美对中国太阳能电池板的“双反”实施,近几年是中国光伏产业发展过程中的一个“寒冬”。光伏企业要应对“寒冬”,一是上游制造企业要提高自身的技术水平和产品质量;二是下游应用企业要抓住机遇,通过技术创新不断提高系统集成能力,致力于为客户提供优质可靠的系统设计方案。依据国家新能源政策的战略部署,结合上海电力学院的专业特色,我校相关太阳能光伏发电专业力图培养出合乎国家和社会需要的、满足光伏产业结构调整的市场需求的光伏材料及光伏系统设计专业方面的人才。有关专业以物理学为基础,系统学习基础物理学、固体物理、半导体物理等,使学生牢固掌握物理学基础理论。同时结合电力教学的优势,将太阳能电池技术、太阳能发电技术、电力分析基础、逆变器原理等作为专业必修课,培养太阳能发电技术行业的高层次专业人才。这样,学生在掌握光伏发电系统设计专门技能的同时具备更加扎实的理论知识基础和科技创新的潜力。其中《太阳能发电技术》包含了太阳辐射、光伏系统设计原理、部件选型、系统安装维护等内容,其教学目标是希望通过该课程的学习能使同学们能掌握太阳能发电系统的设计开发,为今后从事相关工作打下坚实的理论基础。作为最早开设《太阳能发电技术》课程的高等院校,由于该课程属于新课程教学,教学过程中受到教材、实验设备等各方面条件的限制,使用传统的教学方法效果不很理想。本文就近年教学过程中遇到的一些问题,针对目前的教学模式进行探讨。

一、加强课堂实验教学

《太阳能发电技术》作为光伏产业人才培养的基础性课程,主要讲述太阳辐射的相关知识、光伏发电系统的原理、系统设计、配件选型及系统安装维护等相关专业知识,这是一门实践性十分强的专业课程。在目前的教学过程中发现,单纯依靠理论知识讲解,学生很难对光伏系统有深入的理解。总结教学过程发现,在学习理论知识的同时如果能结合相关的实验、实践教学,则可大幅度提高教学质量与课堂教学效果,也能加深学生对知识点的理解与掌握,这就凸显了课程教学中实验环节的重要性。由于《太阳能发电技术》属于新课程,受到实验设备、实验条件和人员的限制,短时间内开展丰富实验教学有着一定的困难。但是,使用计算机软件仿真虚拟实验和设计就没有这方面的限制。因此,着手开发该课程的虚拟实验教学环境也是一种重要的方法。此外,在教学的过程中也可以根据教学的需要,动员学生与老师一起自行设计一些简单可行的实验设备,既可以加深学生对所学理论知识的理解,又能使学生能够得到全面的实际训练,还可以丰富该课程的教学资料。另外,在这个过程中,除了简单的验证性实验,还与控制类、综合设计类的实验相结合,提高了学生对已学知识的综合运用能力,加强了学生的动手能力和实践能力,使学生在走入社会后,能较快适应市场发展需要,提高就业竞争力。此前北京信息科技大学的白连平等[1]针对该课程就设计了一些可行性实验,如光伏阵列设计实验、太阳能路灯照明系统设计等。

二、开展校企合作教学

由于工科课程的实践特性,除了课堂的理论与实验之外,开展校企合作教学则是提高该课程教学效果的制胜法宝[2]。在前期的教学过程中作为实践教学曾经带学生到相关的光伏企业见习,在企业参观实习的结束之后,有些学生反映“公司实习4天比在学校2年学的东西都多”,这句话也让作为教育工作者的我们陷入沉思。现在学生学习知识的途径很多,他们更喜欢看到实际的操作而不是“纸上谈兵”。例如课堂上讲过单晶硅、多晶硅、薄膜太阳电池,而很多学生到了现场仍然分不清楚是什么类型的太阳电池组件;课堂上学习了晶体硅太阳电池的制备工艺,参观的时候学生还是提出为什么这些电池都是蓝色的,不能做成其他颜色呢?虽然这些基础的知识都已经在课堂上讲授过了,明显部分学生不知道或者不懂却从来没有人提出过,而在参观过程中他们都想到了这些问题,通过参观学习对这些知识有了更进一步的理解,充分说明了仅有课堂教学远远无法满足该课程的设置目标。因此,除了辅助的课堂实验教学或者视频演示之外,与相关企业开展校企合作教学也是提高学生认知能力的一项重要教学手段。这就要求在该课程的教学过程中,除了加强实验教学还必须加强学校和企业之间的合作,开展合作教育方可取得更好的教学成果。

三、将科研与新技术融入教学培养学生的科技创新能力

素质教育已经是高等院校的重中之重,学校有很多项目都涉及鼓励大学生科技创新,从近代科学技术的发展史我们也可以看出,年轻人在科技创新上有着巨大的潜力。而如何通过有效途径提高工科学生的科技创新能力也困扰着不少教师。同时作为高校教师大多也同时肩负着科研工作,怎么样将自己的科研工作融入日常教学并以此为基础培养学生的科技创新能力也是一个应该认真考虑的重要问题。大学生在科研领域的创新在国际上屡见不鲜,比如在超导领域,MgB2合金超导体以及NaCoO.H2O超导体都是由日本的本科生首先发现的。《太阳能电池技术》及《太阳能发电技术》课程的开设,为科研融入教学提供了良好的载体。太阳电池材料的研究是目前材料科学的一大热门研究领域,这样可以在教学过程中使学生了解到最新的材料研究,从而让学生了解到了什么是科研,科研对实际生活又有着怎样的影响,从而激发学生的学习兴趣。而《太阳能发电技术》主要包括太阳辐射、电池制造、组件制造、系统原理、系统设计、部件选型以及控制器逆变器原理等技术。它包含了多门理论性和实践性都很强的专业课程,涉及的知识面广、内容概念多,为大学生创新提供了一个良好的平台。学生在老师的指导下开展太阳能电池及发电技术的研究,查阅资料、进行光伏发电方案的设计,促使学生将所学的电学、材料学、物理学等学科联系起来。有利于调动学生的学习积极性,激发学生的科技创新兴趣,培养学生分析和解决问题的能力[3]。

四、课程考核形式多样化

基于该课程的实践性特点和教学目的,可以在传统卷面理论知识考核的基础上增加多样化的考核形式,比如系统设计作品展示、成果汇报等多种方式进行考核,综合考核专业知识、专业技能等方面。对采取不同方式、对各个不同方面进行考核的结果,通过一定的加权系数评定课程最终成绩。

五、小项目形式完成课程设计

在网络化的今天,课程设计面临的一大问题就是论文在网络上复制粘贴完成。而作为实践性较强的太阳能发电方向的毕业生,我们是否可以改变思路,课程设计不再局限于理论推导而转向实践性课程设计。指导老师可以根据地理情况和电网分布情况选择合适的条件用于学生自主设计光伏发电站,包括太阳能电站地点选择、可行性分析、电站规模及组成、蓄电池容量、光伏电站年发电量及经济效益、光伏电站整体布局(组件串并连设计、汇流箱排布、电缆连接、线管地槽整体排布、电缆规格及用量计算、线管规格及用量计算、配电房及看守房布置、支架定点图等)、系统防雷及监测、电网安全性等部分内容[4]。相信完成这样的课程设计,可以培养学生查阅文献和市场调研能力,对其今后独立从事光伏产业内业务是非常有帮助的。这样的课程设计比普通的论文撰写更能提高学生的专业水平,从而使学生的能力达到甚至超越该学科的培养目标。

本文根据《太阳能发电技术》的实际教学经验以及该课程的教学目标,探讨了在现有教学模式基础上需要进行的一些改进。作为工科应用型创新人才,最重要的是应该具有很强的独立获取和应用知识的能力,而传统的理论教学为主模式则很难让学生将书本知识与实际光伏工程结合起来,也就无法真正理解光伏发电系统。本文提出了加强实验教学、开展校企合作教学、将大学生创新融入教学以及改变传统的考核方式等,其实质都是为了改变目前理论教学为主体的教学模式,将实验、实践教学等过去不被重视的教学方式引入这些实践性较强的课程,探索新的教学模式,从而培养出更适合现代企业、社会所需的高层次人才,达到开设该专业的最终目标。

参考文献:

[1]白连平,张巧杰.光伏发电实验设计探讨[C].第五届全国高校电气工程及其自动化专业教学改革研讨会论文集(2):602-605,2008-04,中国陕西西安.

太阳能发电技术论文篇(4)

Abstract: solar photovoltaic (pv) - solar-thermal technology combining photovoltaic and solar thermal utilization, reduce the operating temperature of the photovoltaic panels on one hand, to improve the efficiency; A certain temperature heat recycling on the other hand, comprehensive improve the solar-thermal conversion efficiency. With separate photovoltaic cells compared to normal solar collector, solar easier to achieve building integrated photovoltaic (pv) - solar-thermal technology, combined with a heat pump technologies such as the system can also realize the cooling, heating, heating water, etc, are potential comprehensive utilization of solar energy technology. Photovoltaic solar - thermal collector performance research were introduced in this paper the theoretical and experimental results, and its energy-saving design and application situation, summarize the technology development trend and problems to be solved recently, in order to further implement the engineering application of the technique and to provide the reference for popularization.

Key words: solar energy; Photovoltaic solar-thermal collectors

中图分类号:TK513文献标识码:A文章编号:2095-2104(2013)

1.前言

能源是影响各国经济和民生发展的主要因素。随着能源消耗的日益增加,世界日耗油量已达9×107桶[1]。至2025年,该数字预计将增至12.3×107桶[2]。众所周知,大量矿物燃料的消耗是造成环境污染的主要因素。矿物燃料的短缺和环境污染的日益恶化等问题都促使人们更加关注可再生能源的开发和利用,尤其太阳能相关技术的研发备受关注。太阳能的利用技术从能量转换方式可分为两大类:太阳能光热利用和太阳能光伏利用技术。从目前的研究不难看出:两种利用技术的转化效率并不理想,尤其太阳能光伏发电效率相对较低。太阳能光热和光伏技术的结合,即太阳能光伏-光热技术,可以一定程度上提高太阳能综合利用效率。

目前,太阳热能的利用占一次能源的0.5%,而太阳光伏能源仅有0.04%[3]。因此,太阳光热利用和太阳光伏利用技术均具有广泛发展空间。相比于较理想的太阳能光热转换效率,太阳能光伏利用的发电效率普遍较低,通常在15~20%内。为克服这点,研究者提出了太阳能光伏-光热技术,即集太阳能电池与太阳能集热器功能于一体,采用层压或胶粘技术将太阳能电池(或组件)与太阳能集热器结合起来组成太阳能光伏/光热集热器(photovoltaic-thermal collector,即PVT集热器)。PVT集热器一方面通过冷却太阳能光伏板使光伏效率提高,一方面得到一定温度的热量,并由气体或液体回收利用。因此,双功能的PVT集热器与独立的太阳热能或太阳光伏系统相比,具有较高的综合转换效率,其市场潜力有望高于两种单独利用的系统。本文主要介绍PVT集热器性能研究的理论和实验结果,简述该项技术新近发展趋势及亟待解决的问题。

2. PVT集热器的性能研究

有关PVT技术的理论及实验研究始于20世纪70年代中期。Wolf和Florschuetz等人[4]提出了PVT集热器的主要概念。PVT集热器按冷却流体不同分为PVT液体(水、制冷剂)集热器和PVT空气集热器,按介质流动方式分为自然循环和强迫循环;按有无盖板又分为盖板和无盖板;按结构形式不同分为平板型和聚光型P,按与建筑结合形式的不同分为独立式和建筑一体化式。1979年, Florschuetz最早采用修正过的Hottel-Whillier模型对PVT集热器进行了详细的理论分析。随后,Raghuraman和Mbewe等人分别针对平板型、聚光型PVT集热器展开相关研究。在80年代后期,针对各类PVT集热器的性能模拟及实验研究成为热点。研究表明:太阳能热利用介质的冷却效果使光伏电池效率明显改善,且液体冷却效果好于空气冷却。平板型PVT液体集热器系统的理论热效率通常在45-70%,而空气型在优化情况下可达55%。

选择合理的工作温度对设计高效的PVT集热器至关重要。工作温度对不同类型光伏电池的PVT集热器性能影响不同。应选用价格相对较低,发电效率相对较高,并且受工作温度影响较小的光伏电池。一般来说,随着工作温度的升高,光伏电池的发电效率呈线性降低趋势。由于较低的温度系数及其价格优势,在一定工作温度范围内,薄膜光伏电池更适用于PVT集热器。但是由于晶体硅太阳能电池的发电效率普遍高于薄膜电池,所以目前的PVT集热器大多采用晶体硅太阳能电池。然而随着高效薄膜光伏电池的出现,加之较低的温度系数,该类型的电池对PVT集热器将更具吸引力。除了工作温度,集热器部件的光学性能、冷却介质的质量流量、集热器的结构参数等都是影响PVT集热器性能的重要因素[5]。因此,为保障PVT集热器综合工作性能,应根据工作温度区间选择适合的光伏电池类型,准确设计各主要结构参数,同时保证合理的运行参数设置,包括热电输出比例、太阳能百分比等参数。

3. PVT 集热器节能设计及应用

太阳能在建筑上的应用最为有效的方法之一是采用太阳能建筑一体化。现阶段,太阳能建筑一体化主要有两种体现形式:一是光热建筑一体化,在建筑上安装太阳能热水器、采暖器等,将太阳能转化为热能再加以利用。二是光伏建筑一体化,即将太阳能光伏产品集成到建筑上,充分利用建筑外表面,安装多种光伏发电产品,所产生的电能或供自身使用或并网输送。“十二五”规划中指明:太阳能建筑一体化将成为必然趋势,相比于太阳能热利用一体化、太阳能光伏建筑一体化,PVT建筑一体化(即BIPVT)更容易实现。一方面,PVT集热器的安装容易实现建筑立面统一化,相比于分别安装光伏板和集热器的情况,更符合审美要求;一方面,BIPVT可实现多功能:即在满足用户冷、热负荷需求的同时,可明显降低建筑冷负荷。Anderson等人[17]将BIPVT应用于一新建建筑,研究中采用修正过的Hottel-Whillier模型对所建系统进行模拟,并通过实验测量验证其所建模型。研究发现:对系统热电转换效率有显著影响的主要设计参数包括:翅片效率,光伏板与其支撑结构间的导热性以及层压方法。他们还指出BIPVT若采用价格较低的材料制成,比如彩涂钢板,对其综合效率影响不大。此外,他们发现用PVT取代屋顶材料,比直接在屋顶安装的方式更经济,并且可以利用BIPVT后方建筑阁楼内空气的低速自然对流换热替代专设的隔热层。这种方法在一定程度上降低了BIPVT系统的成本,这对于该系统的推广应用非常重要。Davidsson等人研发了多功能PVT太阳能窗,如图所示。为降低系统的发电成本,设计中采用了倾动式的反射器将太阳辐射聚集到太阳能电池板,该反射器同时可有效控制进入建筑内的辐射总量,同时可明显降低建筑通过窗户的热损失。研究结果表明:与垂直安装的平板光伏模块相比,单位面积光伏板年均产电高出35%。

太阳能PVT窗

综上所述,PVT 集热器技术,尤其是BIPVT技术,是一种具有前景的太阳能利用技术。为进一步实现该技术的工程应用及推广,亟待解决的关键问题有两方面:一方面提高其综合转换效率;另一方面降低其成本。提高PVT 集热器的效率,从设计角度考虑,一方面需要保证其对太阳光谱的吸收性,即在提高太阳电池吸收率的同时, 还应尽量增加PVT集热器对太阳光谱长波辐射的吸收;另一方面是改善PVT 集热器部件的传热问题[5]。原材料选择方面,则趋向于采用温度系数低、价格便宜且高效的薄膜光伏电池。从应用角度考虑,需要根据不同用途选择适合的集热器形式。

4.结论与展望

随着我国工业化和城市化进程的不断加快,人们对居住环境要求的不断提高,能源短缺、环境污染等问题成为人们关注的焦点。中国的能源消耗仍以煤炭为主,约占总耗量的69.5%,全球平均消耗仅为28.6%。众所周知,煤炭消耗过程中释放的二氧化碳远远超过其他能源。因此,相比于其他国家,中国的节能与环境之间具有更直接的关联。

建筑能耗是各行业中的耗能大户,在我国已接近总能耗的30%,其中供热通风空调的能耗已达建筑能耗的65%,因此减少这类系统能耗对建筑节能至关重要。许多专业人士及政策制定者都在这方面做出了很大努力,其中,PVT 集热器的合理应用将成为行之有效的技术措施。如上所述,PVT技术仍是相对较新的技术,目前多数研究仍处于理论分析和实验阶段,实际工程应用中仍存在许多亟待解决的问题。为进一步推进该技术应用及产品商业化,一方面应提高系统综合转换效率,降低系统成本,另一方面,从应用角度出发,根据不同的用户需求选择合适的PVT集热器,对于PVT 集热器复合利用技术其研究重点有以下几方面:PVT集热器与建筑一体化的结构设计与优化问题; PVT复合系统的合理配置,运行模式和控制策略优化问题;PVT技术与其他可再生能源综合利用等问题。因此,PVT技术有待进一步深入研究,使其成为人们普遍接受的实用技术,充分发挥其节约能源和环境保护的作用,为“十二五”规划节能目标的实现提供动力。

参考文献

[1] /roll/20110211/3387588.shtml,2011-02-11.

[2] ,2012-03-15.

太阳能发电技术论文篇(5)

中图分类号:TU18 文献标识码:A

引言

青海省地处青藏高原的东北部,纬度低,日照时间长,大气层薄而清洁,透明度好,是我国太阳能开发利用的最佳地区之一。近年来,青海省坚持多元发展、多能互补的方针,实施大力开发太阳能、风能等新能源的政策,鼓励太阳能产业的发展,使得新型的太阳能应用技术走进了千家万户。一个个光伏电站在戈壁摊上的建起,使青海省由太阳能富省逐步变成太阳能大省、强省。随着三江源生态保护工程的实施,牧区定居点、小城镇建设的力度进一步加大,为青海农牧区户用太阳能、风能等清洁能源应用技术的推广和发展,带来了新的机遇和挑战。今后,在大力发展太阳能、风能发电产业的同时,结合牧区定居点、小城镇建设,坚持适用、安全、经济、美观的原则,综合应用太阳能光电、光热技术,切实提高农牧民生活质量,是实现牧区跨越式发展发展的富民之路。

1 青海农牧区太阳能光电、光热技术的应用现状

青海丰富的太阳能资源和独特的地理环境,为太阳能的利用创造了便利条件。资料显示,青海太阳辐射强度高,日照时间长,全省年日照时数在2300~3550h之间,仅次于,居全国第2位,太阳辐射总量在5637~7420MJ/m2之间,年接收太阳能折合标煤为1.623×1015kg,合3.60×1015kW·h的电量,相当于龙羊峡电站年发电量的6万倍[1]。由于太阳能资源具有分散性,而且随处可得,使太阳能光伏发电系统的应用具有适合于作为独立电源使用,可以同其他发电系统组成混合供电系统,与电网相联构成联网发电系统的特点。太阳能光伏发电系统的以上特点有利于解决青藏高原农牧区居民因居住点分散、电力输送困难而存在用户用电难的问题;风能和太阳能的互补发电技术的研发,使户用型独立太阳能发电设备的效率更高,实用性更强。

1.1 太阳能光电、光热利用技术在青海农牧区民居建设中推广的成就

1.1.1 被动式太阳房为主的太阳能光热技术普遍推广

长期以来,我国民房建设以单层的平房为主,经济又实用。而北方地区更注重房屋朝向的向阳性,即是被动式太阳房建筑。随着居民经济条件的提高、住房建设观念的转变以及铝合金等建筑材料的普及,我省农牧区太阳房建设更加趋于合理,目前较流行的民居建筑从原先单一扩大向阳面墙体采光面积的设计,现在又增加了铝合金(或塑钢)+玻璃的“封闭”部分的设计,进一步增加了采光、挡风、保温的功能,提高了太阳能利用率。

1.1.2 太阳能光电、光热技术的选择性应用

相比较而言,青藏高原绝大部分地区年平均温度低、寒冷期长、昼夜温差大,1a中采暖期长达半年(青南地区超过半年),仅采暖消耗的能源和为此而增加的居民的经济负担占每户全年能源类消费的50%以上。因此,关于能源类的新技术,如地膜种植技术、太阳灶、节能灯等,经政府技术部门介绍推广,很快得到普及应用;而太阳房建设、太阳能热水器的使用等,也经居民在实践中遴选而自发推广。

1.2 太阳能光电、光热利用技术在青海农牧区民居建设中存在的问题

1.2.1 太阳能光伏建筑一体化技术的推广应用条件还不够成熟

虽然太阳能光伏建筑一体化将是未来太阳能应用发展的必然趋势,但就目前而言,还存在核心部件—-光伏组件的研发还不够完善、生产成本较高、安装复杂、转化效率较低等问题,制约了其向民用住宅的推广,目前只用在一些公共场馆的建设和部分高档住宅建设中。

1.2.2 太阳房建设普及面广,还有进一步拓展应用的空间

无论是城镇还是农牧区、楼房还是平房,太阳房已是居民首选的建筑形式。全省城镇和东部农业区结合新农村建设政策的实施,加快了民居改造建设步伐,近几年青南地区城镇化建设和牧民定居点的建设,改变了游牧民族长期以来逐水草而居、帐篷为家的生活习惯,牧区一排排漂亮的太阳房建设让广大牧民享受到了实惠。若在推广太阳房建设的同时,根据农牧民生活的需要,增加太阳能温棚、畜棚等,使太阳房建设技术更好地为牧区群众生活、生产服务。

1.2.3 户用型太阳能光伏发电设备功能需逐步完善

独立的太阳能光伏发电产品的推广,为牧民解决了用电难的问题,但也存在购置成本高、蓄电池寿命短的弊端。经过不断改进,太阳能电池板的效率逐步在提高,而风—光能互补性发电技术的应用,为牧民使用更多的用电器提供了保证,在此基础上可考虑由过去单一的照明功能向太阳能发电采暖、小型LED蔬菜温室等新型应用技术发展。

1.2.4 保温墙技术的应用需进一步向农牧区推广

自2002年以来,青海省在房屋建筑中推广保温墙技术,率先在西宁市及周遍城镇楼房建筑中使用,资料显示,增加了保温墙的房屋冬季室内温度平均提升2~3℃,具有“冬暖夏凉”的保温效果,节能效果明显[2]。如果在规范保温材料市场的前提下,逐步向农牧区推广应用,受益面会更大。

1.2.5 太阳能热水器向农牧区推广中的问题

经过近几年不断实践,家用紧凑式热管真空管太阳能热水器以其价格优势、实用性优点逐步被用户接受。目前西宁市周遍地区、海东地区的用户已超过30%,并且由东部农业区逐步向全省推进,太阳能热水器在牧区推广使用,关键是要解决热水器全天候应用和冬季安全性问题,并且使单一的热水功能向热水+供暖的多功能化技术改进。

2 促进太阳能光电、光热技术综合应用的思路和策略

太阳能的利用,基本方式可分为4大类:光热利用、太阳能发电、光化利用和光生物利用,相对而言前两种方式技术发展较为成熟。有专家认为,太阳能科技发展有两大基本趋势:光电与光热结合;太阳能与建筑的结合[3]。就目前而言,如太阳灶、节能灯等产品,单一的一种技术或产品产生的效益是十分有限的,也容易被忽视,若将较成熟的相关技术或产品加以整合,应因地制宜,发展太阳能光电、光热技术的综合利用技术,使太阳能的利用更加科学、高效,为广大的农牧民群众造福。

2.1 太阳能的利用无论技术还是产品,还没形成系统、高效的应用模式

目前正处在研发和探索阶段,所以太阳能的利用应从一点一滴做起,继续向牧区推广太阳灶、节能灯具,鼓励使用LED光源,有条件的城镇、村庄使用太阳能路灯等,减少能耗。太阳灶在农村推广使用接近20a,特别适合于庭院式居民使用,但过于注重低成本化,质量、使用寿命问题较突出,影响了群众使用的积极性。青南地区地广人稀,居住分散,电力输送成本较高,节能灯具的使用率普遍较低,而街道亮化工程的实施,太阳能路灯更是首选的节能产品。

2.2 因地制宜,民居建设中形成以太阳房为主体,附加太阳能光电、光热利用的综合技术应用

2.2.1 太阳房+太阳能热水器的光热应用设计

如图1所示,是太阳房+太阳能热水器的光热应用设计平面示意图,其中A部分是房屋外墙,增加6~10cm厚的保温材料,B部分是太阳能热水器,C部分是采光墙,由铝合金(或塑钢)构成门、窗,若使用双层玻璃可增加室内保温性,D部分为铝合金“封闭”,E为利用太阳能热水器供热的散热器,F为节能灯。这种设计在太阳房建设中增加保温墙,冬暖夏凉,太阳能热水器在夏天提供生活热水、洗澡热水,冬季提供供暖热水,通过增加热水器集热器面积(或设计成两部分)改善冬季供暖效果。

2.2.2 太阳房+独立式太阳能发电设备的综合应用设计

如图2所示,是太阳房+太阳能发电设备的光热、光电应用设计平面示意图,其中A部分是房屋外墙,增加6~10cm厚的保温材料,B部分是太阳能电池阵列,C部分是采光墙,由铝合金(或塑钢)构成门、窗,若使用双层玻璃可增加室内保温性,D部分为铝合金“封闭”,E为风力发电机,F为节能灯。这种设计适合于高海拔的牧区,在太阳房建设中增加保温墙,冬暖夏凉,风光互补型发电机弥补供电困难。同时,每户设计4m2的小型太阳能温室,利用太阳光+LED灯光照明技术,种植青菜,缓解牧区冬季吃蔬菜难的问题。

3 结语

太阳能与人类生活密切相关,作为一种可再生的清洁能源,是各国竞相研究和开发利用的重点。太阳能的利用,是长期实践和研发的过程,新的技术和产品不断涌现,为人类生活带来便利,将太阳能产品与房屋相联系,向房屋要能源,是太阳能产品发展的必然趋势,而太阳能光电、光热技术的综合利用是进一步提高太阳能利用的有效途径。

参考文献

[1] 谢佐,张才骏,韩文,等.太阳能产业发展和太阳能推广应用调研报告(之二)[EB].青海省政府网,2008,07.

[2] 青海社会科学院.2012年青海经济社会形势分析与预测[M].北京:社会科学文献出版社,2012,05.

太阳能发电技术论文篇(6)

中图分类号TM6 文献标识码A 文章编号 1674-6708(2012)72-0040-02

0 引言

地球作为人类生存的家园,其能源资源大多数都是属于不可再生的,而在当前世界经济急速发展的状态下,各种能源资源的消耗也不断加剧。在我国,虽然地域辽阔,总体上的各种资源储量相对较大,但是其作为一个发展中国家,而且人口基数较大,对能源的消耗上是十分严重的,加之科学技术的发展落后于发达国家,在能源的利用上其效率又呈现普遍偏低的想象。因此,合理开发新能源对于我们这样的国家来说意义巨大。太阳能作为一种可再生资源,其既环保又安全,在开发利用上具有非常高的价值和效益。本文主要针对当前太阳能的使用情况进行论述,并对太阳能供热供电的一体化作出相关构想,以期设计出合理的方案,运用到现实生活中来。

1 太阳能利用情况

太阳能作为一种无污染,能量又巨大而且在某种程度上属于不会枯竭的能源,其能够为人来带来非比寻常的价值。虽然太阳能具有如此多的优点,但是在实际利用上,仍然存在一些难以解决的问题。比如太阳辐射到地球的能量很大,但是其投射面较广,分布过于散漫,这在搜集利用的过程中对设备的要求及造价比较高;而于此同时,太阳能的利用还存在气候环境的影响,尤其是雨雪天气下,太阳能的接受将受到严重的制约,在某些特定的地区,其运用基本不能实现规模化等。

就目前对太阳能的开发利用上,主要有直接利用太阳能的热效应,将水等物质加热,像现在比较普遍的太阳能热水器等;还有就是将太阳能转化为电能,通过一定的条件,将电能储蓄起来然后进行别的用途,在这方面有光伏发电等;而另外,在太阳能的利用上还可以采用光化学转换的方式,即直接将太阳能用来分解水等物质进而制取氢气。下面主要谈谈太阳能发电技术和供热技术的应用。

1.1 太阳能发电

1.1.1 热力发电

太阳能热力发电即将太阳能的能量集中搜集起来再加以利用的发电技术,其基本原理亦是采用太阳能搜集器吸收能量,再将能量传输到发电机上。太阳能的热力发电比传统的发电更具优势,传统的火力发电对环境造成的影响比较大,而且消耗的煤炭等资源其花费、需求量都非常大,同时太阳能热力发电在生产上又相对安全。

当前太阳能热力发电技术其所运用的系统主要有三种,槽式系统、碟式和塔式系统,三者在太阳能的利用的运用上程度均不相同,第一种基本实现了规模化、商业化的生产,而后两者仍处于试验阶段。我国的太阳能热发电技术自研究以来虽然已经有几十年,但是由于多种因素的干扰使得这一技术并未得到广泛的应用。

1.1.2 光伏发电

在太阳能发电上,光伏发电是目前比较流行的发电方式。它主要运用半导体材料对光有一种伏特效应,然后将能量转换为电能。光伏发电一般采用蓄电池来存储搜集起来的能量,到了需要使用的时候,再将能量释放出来运输到发电机中,最后不断的产生电能。光伏发电技术本身采用三大部分,最主要是由太阳能电池板、控制器与逆变器构成,而太阳能电池板是该系统的核心部分,无论是在造价还是在所产生的价值方面都是最重要的。太阳能电池板的基本原理是在太阳的辐射下,半导体材料本身就出现了自由电荷,而当自由电荷积累并不断地移动过程中,电流就产生了。

光伏发电技术在近来的发展比较迅速,尤其是在世界上的一些发达国家和地区,他们对于光伏发电的技术研究已经进入到非常成熟的阶段,而且国家政府部分也都纷纷制定了各种开发太阳能的计划与措施,在中国,其太阳能资源的利用前阶段上较少,但随着世界光伏发电技术市场的推动,使得现今的发电事业也进入相对迅猛的时代。

1.2 太阳能供热

说到太阳能供热,几乎每个人都知道太阳能热水器,其对太阳能的利用时采取直接转化的方式,即不需要转化为化学能或者电能。当前在太阳能直接供热的设备中,像太阳能热水器,它们主要用平板集热器、聚焦集热器以及真空管集热器。在太阳能的辐射,集热器开始工作,直接将太阳能搜集起来,化为热能,现代的太阳能热水器大多都是将水分别通入各个细管,其管道能很好的吸收太阳能,在经过一定时间的照射下,太阳能的热效应就使得管道内的水的温度升高,然后将温度已经很高的水送入到保温箱中,再用冷水进行补充,反复以此循环,最终达到不断利用的目的。

2 太阳能综合利用一体化构想

鉴于现今太阳能利用的方式越来越成熟化,我们便可以尝试将太阳能发电技术和供热技术相结合起来,综合开发出比较适用而又具规模化的系统。

2.1 供热供电系统

2.1.1 对发电系统的改造

首先我们可以考虑将供电系统作进一步改造,下面以光伏发电系统为例来说明。在电池板方面,我们采取多晶硅电池,而且其在设备的安装和搭配上配合使用太阳能集热器,电池表面采用低铁钢化绒面玻璃,并且在每块玻璃的间隔处安装上热能传送器,在太阳能的不断照射下,其将能量迅速的搜集起来。要知道,太阳能电池对太阳能的吸收并不是100%,所以在多晶硅材料制成的电池下面安装上太阳能集热器,同时为了加大太阳能的吸收,我们还可以在电池板的对面与地面成一定的角度安装上平面镜,调整平面镜的位置,使其反射光能够再次照射到电池板面上。

其次在发电方面多采用并网式发电技术,虽然当前这种技术的发展受到一些的因素的制约,例如电站本身要求的投资比较大,建设耗用的时间长等等,但是我们可以采取小型的并网发电系统,国内已经有将光伏发电与建筑相结合的例子。

太阳能发电技术论文篇(7)

1引言

农业建筑环境与能源工程作为农业工程领域下辖的七个二级学科之一,是我国发展现代化农业产业、推进乡村振兴的基础学科。由于专业的针对性不强、农业产业发展缓慢以及一些学生对从事农业领域工作的偏见,因此该专业较少有高校开办且均由农业类大学设立。随着传统化石能源危机和全球范围的环境问题、温室效应越发突出,以及“双碳”背景下农业现代化、农村城镇化和现代新农村建设战略的实施,该专业将在低碳化农业及“新能源+新农村”的建设进程中发挥决定性作用[1]。太阳能作为一种清洁环保的可再生能源(5%的太阳能相当于世界能源需求的50倍),将其应用于社会发展的各个领域是缓解甚至解决人类面临的能源危机的根本途径[2]。近年来,结合我国能源产业结构改革,太阳能光伏发电和光热利用得到了广泛推广,从而推动了相关产业的快速发展。因此,农业建筑环境与能源工程作为农业工程领域中与能源利用紧密相关的专业,设立太阳能工程课程对确保整个专业课程体系构建的完整性、合理性和科学性具有重要意义。本文结合农业建筑环境与能源工程专业人才培养目标和河南农业大学(以下简称我校)在农业工程领域的学科特色,对太阳能工程课程的内容设置、课程思政建设、课堂教学改革、课后创新实验建设及考核方式多样化等环节进行探讨,从而实现对现有课程的改造与提升,满足新时代的人才培养需求。

2太阳能工程课程教学存在的问题

(1)教材针对性弱。由于太阳能工程技术涉及学科众多,因此太阳能工程课程的教材选择要具有较强的针对性。目前有关太阳能利用技术的教材较多。根据培养目标的不同,有些教材主要围绕光伏发电技术而展开,有些教材则是针对光热发电技术来阐述,但已有的教材主要集中于太阳能在工业及高端制造业领域的应用,偏离了农业类大学课程建设和人才培养目标,因此缺乏适用于农业建筑环境与能源工程专业的优质教材。(2)课程实验设备匮乏。完善的配套课程实验不仅可以激发学生的学习兴趣,而且能够帮助学生理解并掌握课堂理论知识,培养学生解决实际工程问题的能力[3]。目前尚没有企业开发针对太阳能光热转换和光伏发电的课堂配套实验设备,已有的实验平台存在体积大、可移动性和操作性弱等问题,导致实验教学不能有效融入课堂教学过程。(3)辅助教学资源较少。辅助教学资源是指可以丰富和强化教学过程的各类素材,如工程案例影视介绍、系统运行原理动态解析、复杂仪器的分解等教程。目前缺乏太阳能应用于农业工程领域的教学资源,从线上线下可以查阅搜集到的可用素材非常有限,且大部分素材为企业产品的宣传视频,不适用于课堂教学。教师只能采用文字描述或静态图片加文字注释的模式进行教学,不能有效激发学生的学习兴趣,课堂活跃度较低。(4)考核形式单一。在义务教育阶段,主要采用传统的考试方式,通过试题来考查学生对知识点的掌握程度,偏重于对理论知识的考核。到了大学后亦是如此,考试内容教材化、考试题型标准化、考核方式单一化以及考试前“临时抱佛脚”的现象凸显[4]。特别是大学生在脱离了家长和教师的约束后,容易出现迟到、旷课、逃学等问题,严重者甚至出现大面积挂科、拿不到学位证书的情况。

3太阳能工程的课程建设

培养目标和知识点之间的关系是影响课程内容设置的两个主要因素。在培养目标方面,要满足社会的需求且形成专业特色。我校农业建筑环境与能源工程专业立足于农业大省河南,历经了近四十年的发展,成为部级特色专业,在农村清洁能源利用如农林废弃物资源化利用(制氢/沼气)、粮食干燥和太阳能利用等方面取得了一系列成果,开设的相关课程主要包括工程热力学、传热学、沼气工程、生物质能工程、节能原理、能源与环境、可再生能源、太阳能工程等。太阳能工程课程开设的目的是使学生理解太阳能利用对新农村建设和低碳农业生产的重要意义,用专业的理论和方法处理农村能源相关领域需求要素之间的关系,最终运用所学知识对农业工程领域太阳能利用工程进行合理科学的规划和设计,使学生成为绿色农业工程方面的建设者、低碳农业生产技术的开拓者,为我国新农村建设和“双碳”目标的实现贡献力量。在知识点之间的关系方面,由于太阳能工程课程涉及光学、传热学、热力学、材料学、电子学以及环境学、地理学等多种学科,因此需要科学合理地设计先导课程,使学生循序渐进地学习课程知识,避免教学过程出现知识点错乱穿插及重复讲授等问题。可以参考现有的太阳能利用相关优秀教材、专著以及结合我校农业建筑环境与能源工程专业特色,加工整理自编讲义。教学内容包含五部分:第一部分,对太阳能的概述。使学生了解太阳能的特点、资源分布、利用方式和现状、太阳辐射计算等,掌握太阳常数、大气质量和太阳辐照度等基本概念。第二部分,首先介绍太阳能光热转换原理,通过常见的太阳能集热系统,使学生掌握与太阳能有关的热传导问题如导热、对流换热和辐射换热等,然后介绍常见的集热器如平板式、真空管式、槽式、塔式集热器以及新型的菲涅尔式聚光集热器的结构和原理。第三部分,利用太阳能空调系统使学生掌握太阳能制冷的物理原理和常用方式,包括吸收式制冷、吸附式制冷及喷气压缩式制冷等,并能够通过工程热力学知识对常见的太阳能制冷系统进行优化设计及性能评价。第四部分,通过简单的太阳能光伏发电系统使学生掌握光伏发电系统的构成、原理以及光伏系统评价指标和评价方法,了解光伏发电系统的分类及制造。第五部分,介绍太阳能利用技术的具体应用实例,即太阳能复合系统在农村能源领域的应用,如农村家用太阳能光伏发电、供热与空调集合系统(光伏屋顶),农业建筑(新型太阳能生态农业大棚)一体化太阳能光伏光热技术系统[5],太阳能光伏/光热耦合生物质的分布式能源系统等。结合具体的农业工程应用案例使学生了解太阳能热电冷联供系统的常用形式、系统设计方法和系统运行控制策略等。

4太阳能工程课程教学改革路径

4.1加强课程思政环节

高等教育是提高我国核心竞争力、实现中华民族伟大复兴的基础,其不仅致力于提高学生的知识水平,还肩负着培育学生的思想品德、引导学生树立正确的政治方向等职责。大学课堂是实施人才培养和落实立德树人的主战场,有效地把课堂知识讲授与思想政治工作有机结合起来是推动课程思政建设的关键[7-8]。太阳能工程作为新兴的可再生能源技术产业,与我国经济建设、社会发展、环境保护和资源可持续利用等息息相关。可以通过介绍行业内有着突出贡献的人物如获得2020年太阳能热利用科学技术杰出贡献奖的葛新石教授以及因发明渐变铝氮/铝太阳能选择性吸收涂层技术而取得太阳能热利用技术重大突破的殷志强教授,从而对学生进行爱国主义教育,培养学生的奉献精神。通过介绍光伏产业发展史上具有代表性的企业如隆基股份、天合光能和晶澳科技等突破国外技术封锁、实现“弯道超车”的故事,培养学生勇于挑战、攻坚克难的品质。合理挖掘各章节知识点所蕴含的思政元素,能够实现课堂知识能力和思政素养的双重培养。

4.2实施教学方法改革

太阳能工程作为一门工程类课程,是在学生掌握工程热力学、传热学、流体力学基本理论以及电工电子技术的基础上开展的。因此,太阳能工程课程不能像上述理论课程一样局限于书本,并过多地关注理论知识的讲解与推导,而应当更多地把多媒体教学和实验教学融入课堂教学中[9]。利用多媒体视频使学生了解国内外有关太阳能利用的工程案例,确保课堂声像俱佳,不仅可以激发学生的学习兴趣,而且可以有效帮助学生理解理论知识[10]。另外,太阳能技术发展迅速,特别是在光伏发电技术领域,因此可以结合最新的科研讲座视频开展相关的教学研究,使学生在习得知识的同时掌握最新的科研动态,从而激发学生的学习兴趣、拓展课堂教学的深度。虽然现有的太阳能工程课程设置了相应的实验环节,但是理论教学和实验教学基本上是分开的,即在学生在完成了相关理论知识的学习后,再进行统一的实验。因此,可以把简易的实验引入课堂教学中,或者把课堂教学搬到实验室进行,实现理论教学和实验教学的有效结合。

4.3更新实验装置及实验内容

实验教学是帮助学生将理论知识转化为实际应用的重要环节,对激发学生的学习兴趣、启发学生思考及解决实际应用问题、提高学生的创新实践能力具有重要意义[11]。一方面,可结合我校农业建筑环境与能源工程专业特色,搭建太阳能光伏光热耦合干燥器实验平台,通过光伏发电为整个干燥系统提供强制对流动力,提升干燥效率;另一方面,通过换热器对光伏板进行冷却,提升光伏发电效率,同时对进入干燥系统的冷风进行预热。通过该平台了解太阳入射角影响、太阳能电池板伏安特性、电池板温度与输出功率间的关系等[12],并且可以实验探究太阳能电池板冷却特性如冷却介质、换热工况及换热器形式等因素的影响。筛选出对太阳能利用技术有浓厚兴趣的学生,指导其完成诸如新型太阳能生态农业大棚的设计、太阳能干燥系统与吸收式制冷系统耦合的限氧干燥装置设计、利用热管和相变储热技术的太阳能沼气发酵加热系统设计等农业工程领域的创新实验,鼓励学生参加全国大学生节能减排大赛、全国大学生农业建筑环境与能源工程相关专业创新创业竞赛,形成以研促学、以赛促学的创新教学模式。

太阳能发电技术论文篇(8)

中图分类号:G642.3 文献标识码:A 文章编号:1007-0079(2014)26-0046-02

新能源属于我国战略性新兴产业,也是国民经济发展的基础性产业。面对环境污染与能源危机的双重压力,全球都在加快推进新能源产业发展。规模化开发与利用太阳能、风能、生物质能、地热能等为代表的新能源,实现我国传统化石能源过渡为清洁、可再生能源为主的能源结构是必然之举。中国将大力推动新能源产业的发展,在加大水电、核电、太阳能和风能设施建设的同时,计划在2020年前使新能源消费比例达到15%。特别是近年来风力发电和太阳能发电作为新能源电力的两支主力军迅猛发展,出现并驾齐驱的局面,新能源电力产业的蓬勃发展对新能源专业人才提出迫切需求。在这种形势下,怎样培养适应新能源产业需求的人才,既有巨大的机遇,也有很大的挑战性。

为适应我国战略性新兴产业的需要,自2006年以来我国相继有华北电力大学、河海大学、长沙理工大学等多所高等院校开办风能与动力工程本科专业;2010年教育部紧急下达《关于战略性新兴产业相关专业申报和审批工作的通知》,自2011年开始,我国部分高等院校设置了新能源科学与工程、新能源材料与器件等新能源产业相关的本科专业。但怎么样才能更好地为国家发展新能源产业起到人才培养的支撑作用,培养什么样的新能源产业人才以及如何培养,怎么样结合学校自身的特色与资源优势开设专业方向和课程体系,是当前面临的主要课题。

一、我国新能源电力产业的发展形势

自2007年,我国风电装机容量呈高速增长趋势。2010年,我国(不包括台湾地区)新增风电装机1893万千瓦,累计风电装机容量4473万KW,超过美国跃居世界第一位。至2012年底,全国新增安装风电机组7872台,装机容量1296万KW;累计安装风电机组53764台,装机容量达到7532万KW;风电并网总量达到6083万KW,发电量达到1004亿千瓦时,风电已超过核电成为继煤电和水电之后的第三大主力电源。2013年我国风电又新增风电并网容量1492万千瓦。2014年我国风电发展目标为1800万千瓦。根据2014年国家能源局印发“十二五”第四批风电项目计划显示,列入“十二五”第四批风电核准计划的项目总装机容量为2760万千瓦(27.6GW)。从2011年开始,我国为把握风电发展节奏,促进产业健康有序发展,国家能源局开始制定风电项目核准计划,前三批风电核准规模分别为2683万千瓦、1676万千瓦(后又增补852万千瓦)和2797万千瓦。至此,“十二五”以来拟核准的风电项目规模累计已超过1亿千瓦。

在风电大规模发展的同时,自2009年以来我国太阳能光伏发电也迅速扩张。截至2012年底,我国累计光伏装机容量达到7.5GWp;截至2013年底,中国光伏发电新增装机容量达到10.66GWp,光伏发电累计装机容量达到18.16GWp。2013年全球光伏新增装机39GWp,比2012年增长28%。2013年,就新增光伏装机而言,中国、日本和美国成为世界上最大的三个市场,而德国则退居第四。中国2014年光伏发电的发展目标是全年新增光伏装机14GWp。根据《太阳能发电“十二五”规划》,中国光伏发电装机容量与发展目标如表1所示。

在太阳能光伏发电快速成长的过程中,全球太阳能光热发电也正以惊人的速度发展。截至2013年底为止,美国已有5座大型太阳能光热发电站投入运行,规模都在100MW以上。其中美国NRG能源公司联合Google、Brightsource公司投资22亿美元在加州莫哈维沙漠建设的太阳能发电站于2013年成功发电,装机规模为392MW,这是目前世界上规模最大的塔式电站。美国能源部SunShot计划光热发电的研发目标是到2020年实现75%的成本削减,在不依赖政策补贴的前提下将光热发电推至每千瓦时6美分甚至更低的水平。欧洲早在2009年12家跨国公司在德国慕尼黑签署协议,计划投资4000亿欧元在北非建立太阳能热发电厂,10年后开始供电,据估计到2050年,该项目在北非的发电厂将满足欧洲15%的用电需求,这也是目前世界上拟建中太阳能发电厂同类中最大的太阳能项目。此外,西班牙、南非、印度、智利、摩洛哥、以色列、沙特、阿联酋、科威特以及澳大利亚都已经开始了大规模光热发电的兴建,印度已有50MW规模的电站并网运行。中国在北京延庆县八达岭建设了首个规模为1MW的太阳能热发电示范电站,于2012年8月成功发电,但还没有商业化规模电站。可以预见,随着国外太阳能光热发电公司进入中国和国内太阳能光热发电技术的研究进展,中国未来十年将在太阳能光热发电方向上大有作为。

二、新能源科学与工程专业人才培养的定位

2012年,教育部将原风能与动力工程和新能源科学与工程合并统一改为新能源科学与工程。相应地,风动专业也将面向更宽广意义的新能源产业需求,需要对专业培养方案进行调整;特别是更名为新能源科学与工程,就业的主战场不能较好地定位,致使专业课程体系达不到市场的期望值,对该专业课程体系怎样设计仍需继续研究探讨。从用人单位和学生自身需求上来看,专业课程设置和职业能力培养占有很重要的位置。其主要原因有两个:一是我国经济水平还欠发达,从读大学所付出的成本上来看,大多数学生期望接受到职业技能方面的训练;二是用人单位企盼招收到适合于工程技术需要的、能够尽快进入工作角色的应用型、技能型、复合型人才。

对于专业设置,国内其它专业的普遍做法是根据就业渠道下设专业方向。专业必须有支撑产业为基础才会有生命力。因此,本文提出“以学科为基础设置大类专业,以产业为支撑开设专业方向”的观点。新能源科学与工程专业应该在强化“工程实践能力培养”的基础上,必须以风力发电、太阳能发电作为就业主战场,分别面向风电机组设计与制造、风电场工程、太阳能发电工程三个主要领域,设置各具特色的专业方向的课程体系。

三、新能源科学与工程专业课程体系的优化

新能源科学与工程专业自2010年教育部批准开设以来,全国已有34所高校开设此专业。2013年5月19日,“首届全国新能源科学与工程专业建设研讨会”在华北电力大学召开,指出课程体系是否合理、课程内容是否先进直接关系到人才培养的质量。现阶段我国系统培养新能源科学与工程专业本科生、研究生的工作才刚刚起步,对于相应课程体系的构建正处于探索阶段。

根据国内部分高校新能源科学与工程专业公布的培养方案,其课程体系设置与专业定位(如表2所示)。总体上来看,各高校的课程体系呈现自由发展、特色发展的局面,这有利于各学科交叉融合,促进新能源产业发展,但同时应注意一些专业基础课程的共性、相通性问题。课程体系可以大致分为两大类:一类是遵循厚基础、宽口径的原则,强调能源类基础理论课程教学(A类),但专业核心课程各高校有所偏重;另一类则是专业方向针对性较强,更强调职业能力培养(B类)。例如风动方向加强了力学、机械、电气方面的课程模块,太阳能方向则强调了半导体物理、材料科学的课程模块,但缺少光学、热学、电气工程方面的教学。

表2 国内部分高校新能源科学与工程专业的课程设置与专业定位

学 校 专业课程体系 专业定位

A类:

浙江大学、华中科技大学、西安交通大学、中南大学、重庆大学、上海理工大学等 专业基础课程:工程热力学、工程流体力学、传热学、应用电化学、固体与半导体物理、材料科学基础、工程制图、机械设计基础、电工电子技术、自动控制原理等

专业核心课程:可再生能源和新能源概论、太阳能电池原理与制造技术、太阳能光伏发电系统与应用、太阳能热利用原理与技术、风力发电原理、生物质能转化原理与技术、核能发电概论、氢气大规模制取的原理和方法、能源与环境、燃料电池概论、薄膜材料与器件、半导体材料、新能源材料、热泵技术、能源低碳利用技术、Matlab及其工程应用、CFD软件应用等 具备热学、力学、电学、机械、自动控制、能源科学、系统工程等理论基础,掌握可再生能源与新能源专业知识

B类1:

华北电力大学、河海大学、长沙理工大学、沈阳工业大学等 专业基础课程:理论力学、风力机空气动力学、材料力学、机械设计基础与CAD、、画法几何与机械制图、电机学、电路原理、模拟电子技术、数字电子技术、电机学、电力电子技术、自动控制原理、微机原理与接口技术等

专业核心课程:新能源与可再生能源概论、风力发电原理、风资源测量与评估、风电机组设计与制造、液压与气压传动、风电场电气工程、风电机组控制与优化运行、风力机组状态监测与故障诊断、风电机组测试与认证、风电场施工与管理、风电场建模与仿真、风力机设备材料、新能源材料、近海风力发电、风能与其它能源互补发电系统、风电场并网、风力发电机组计算机辅助设计、风电场规划与设计等 面向风电机组设计与制造、风电场工程等

B类2:

福建师范大学 理论物理基础、材料科学基础、固体物理学、材料分析方法与技术、材料热力学、单片机技术、电工电子技术、工程制图、磁性材料与器件、光电子材料与技术、太阳电池物理、光伏工程与技术、光热工程与技术、固体发光材料、半导体材料、电化学基础、磁熵变材料与磁制冷技术、传感材料及其传感技术、X射线分析技术、储能材料与技术、先进功能材料、光电薄膜与器件、锂离子电池原理与技术、材料设计与模拟计算、纳米材料与应用、新型能源材料与技术、太阳能光热转换理论及设备、太阳能热利用、薄膜材料与技术、光源设计与应用技术等 面向太阳电池及其它新能源材料技术研发

应当指出,大学的专业课程体系不可能完全为企业的需求而量身定做;即使课程体系相同,但由于学校资源的差别和培养方式、途径及方法的不同,人才培养的类型、质量与层次也会存在很大的差别。因此新能源本科专业教育主要考虑人才质量的基础性、技能型、创新型、复合型与可拓展性。专业基础课应该以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程。

以长沙理工大学(以下简称“我校”)新能源科学与工程专业为例,应针对风机制造、风电场、太阳能发电站三个就业领域,结合学校现有学科与专业优势,培养目标定位于既具有较宽广、厚实的专业基础,又有专业方向的特长。为此,针对新能源产业的发展需求和我校的学科优势,新能源科学与工程专业可增设太阳能发电工程方向。主要面向太阳能光伏、光热发电站及并网工程,同时兼顾太阳能领域的技术研发,为太阳能光热发电储备人才,开设材料科学、光学、热学、电气工程等模块的课程,主干学科为材料科学、电气工程,使学生具有材料科学、光学、热学理论基础,具备电气工程的职业能力。目前我校已有的材料科学与工程、光电信息科学与工程、热能与动力工程、电气工程及自动化专业为太阳能方向的开设奠定了基础。

四、结论

当前,我国风电、光伏发电呈规模化发展的趋势,太阳能光热发电也未雨绸缪。为适应新能源电力产业蓬勃发展的需要,新能源科学与工程专业应该“以学科为基础设置大类专业,以产业为支撑开设专业方向”。在风力发电、太阳能发电专业方向上,遵循厚基础、宽口径的原则,在强化“工程实践能力培养”的基础上,分别面向风机制造、风电场工程、太阳能发电工程三个主要领域,专业基础课应以能源科学为基础,兼顾高校各自的资源优势,设定各具特色的专业课程体系。新能源产业属于国家战略性新兴产业,也是国民经济发展的基础性产业;面对环境污染与能源危机的双重压力,全球都在加速发展新能源产业。应当抓住这一有利时机,整合各校相关的资源优势,推动新能源科学与工程专业人才培养的发展,打造新能源专业品牌。

参考文献:

[1] 熊怡.论道学科学专业建设,共话新能源人才培养――首届全国新能源科学与工程专业建设研讨会综述[J].中国电力教育,2013,

(21):26-28.

[2] 熊怡.我国新能源人才培养的道与术[J].中国电力教育,2013,

(21):38-41.

[3] 陈建林,陈荐. 新能源科学与工程本科专业人才培养模式探究[J].中国电力教育,2013,(22): 20-25.

太阳能发电技术论文篇(9)

引言 太阳能一直被认为是人类社会可持续发展的重要可再生的、清洁的能源,世界各国都把太阳能光伏发电的利用和商业化作为重要的发展方向。从世界范围看,从2002~2009年,全球光伏电源累计安装容量从2175•5兆瓦增长到22928•9兆瓦,增长幅度达9•5倍之多。根据欧洲JRC的预测,到2030年太阳能发电将在世界电力的供应中显现其重要作用,达到10%以上;2050年太阳能发电将占全球总能耗的20%,到本世纪末太阳能发电将在能源结构中起到主导作用[1]。每年中国陆地接收的太阳辐射总量相当于24000亿吨标准煤,约等于1000年的能源消费量;全国总面积2/3地区年日照时间都超过2000小时[2]。 目前太阳能主要用来发电和发热。我国太阳能热水器年生产能力已达到2300万平方米,太阳能热水器使用总量超过1•2亿平方米,占世界总使用量的60%[3],与此相比,我国光伏产业与国际光伏发展仍有较大的距离,世界光伏产业每年以31%的速度发展,而我国的光伏产业每年增长率仅为15%[2]。我国具有发展太阳能的天然基础,有效利用太阳能资源已经成为解决我国能源环境问题的重要突破口之一,学者张治民认为制约我国太阳能资源发展的重要问题就是技术层面上的落后[4],太阳能光伏技术扩散问题亟待解决。本文运用基本扩散模型对我国太阳能光伏发电技术扩散趋势进行预测,试图模拟出我国未来太阳能光伏发电技术发展曲线,以期对国家可再生能源发展利用提出政策依据。 1太阳能光伏技术扩散模型构建 1•1扩散模型 在已有的关于新能源技术扩散研究中,扩散模型运用较多。Collantes(2006)[5]运用logistic模型研究燃料电池车的市场增长问题,Masini、Frankl(2002)[6]、Isoard,Soria(2001)[7]、Ibenholt(2002)[8]运用学习曲线对太阳能、风能扩散进行评价,Neij(1997)[9]、Lund(2002)[10]运用经验曲线对新能源技术运用前景及需求,Lund(2005)[11]、Purohit,Kandpal(2005)[12]、UshaRao、Kishore(2009)[13]运用Bass模型对新能源市场扩散问题、印度风能问题进行研究,Peter,Ra-maseshan,Nayar•(2002)[14]运用Rogers模型对发展中国家太阳能光伏市场发展状况进行分析。这些文献研究为本文模型选择提供了基础。按照创新扩散过程的影响因素,可以将上述模型分为3类,内部影响模型,如Logistic模型,考虑系统内部因素主要是过去使用者对扩散的影响;外部影响模型,将技术扩散完全归于系统的外部因素;混合影响模型,如Bass模型,综合考虑了内外部因素对扩散的影响。混合模型中涉及的未知参数较多,对于数据充足性要求较高。外部影响模型将潜在的采用者市场氛围已采纳创新者和未采纳创新者两大类。内部影响模型假定创新扩散完全是由潜在市场内部的信息传播推动,其描述的创新扩散过程与传染病的传播过程相似,也被称为标准传染模型。本文研究认为太阳能光伏技术扩散过程符合传染病扩散过程:即初始阶段技术进入市场,由于潜在采用者的不确定性及技术本身的风险,扩散速度缓慢;加速阶段,随着用户增多,市场传播速度加快,普及量开始迅速增加;饱和阶段,当超过最大加速度点之后,技术市场扩散速度开始减慢,最终达到市场饱和,即最大开发量,这一过程通过下文图1能够清楚的看出。Fisher和Pry(1970)、Henry(1972)和Blaekmna(1974)等人通过比较研究各种技术创新扩散过程,认为内部扩散模型(Logistic模型)可以较好地描述技术创新扩散过程。因此本文研究采用Logistic模型对太阳能光伏技术扩散趋势进行预测。假设在某一时点t太阳能的市场最大开发能力Nt,时间t点上太阳能光伏的市场普及量或者已有的市场潜能为nt,若太阳能光伏技术采用比率为β,则在无限小的时间间隔dt中,市场采用数量可以表示为如下:令f(t)=ntNt,表示时间t上太阳能光伏的市场开发率,即某一时点上,太阳能光伏技术市场普及量nt在最大经济可开发量Nt中所占得比例。公式(1)可以变形如下:在Logistic模型中,市场开发率f(t)可以作为衡量技术扩散程度主要因素,然而现实中,技术扩散速度随着时间的增长呈现缓慢减弱趋势,对此,我们将公式(6)做如下变形:分析公式(7)易知随着时间的无限增长,公式逐渐减小并逐步趋向于0,这一变化趋势与模型假设以及现实都是相符合的,另外,Mansfield认为技术扩散比率与已经采纳新技术市场份额有关[5],由此可知,Logistic模型能够比较合理的解释太阳能光伏技术的扩散趋势。本文模型中自变量只有时间一个量,对于逻辑模型中只有一个自变量的情况,预测结果倾向于定性结果。因此本文的结果更多的定性反映了太阳能光伏发电技术扩散的整体趋势。 1•2模型参数估计 模型中β表示扩散速度,定义为太阳能技术扩散的市场渗透比率,是扩散研究中的关键参数。从公式(4)中可以看出,市场渗透比率在长期过程随着新技术市场占有率的提高在逐步下降,β决定了扩散曲线的斜率和坡度。对于扩散速率β的影响因素,国内外学者研究颇多。Mansifield认为技术扩散比率与技术的投资额度和收益率以及已经采纳新技术市场份额有关[6],R•Kemp(1997)认为影响可再生能源扩散过程的主要因素为采用者特征,社会经济环境特征、技术本身及技术使用者特征,Jacobson,Johnson则通过技术系统视角认为社会受众知识基础,政治环境制度以及技术原动力三方能够影响可再生能源扩散速度[15]。Reddy和Painuly则通过采访利益相关者,得出政府介入以及提高可再生能源贡献能够加快可再生能源扩散速度[16]。Peter通过研究太阳能光伏技术扩散研究发现,财政收入,政府导向积极性,投资成本,技术可靠性,信息传播程度以及环保意识能够影响新能源技术扩散速度[17]。所有这些因素对于估计β的值都有影响作用,但是在新能源研究中,这方面的数据相对较少。在Logistic模型中,数据充足时,参数估计方法通常有普通最小二乘法(Bass,1969)、极大似然估计法(sehmittlein,1982)和非线性最小二乘法(Srinirasna,1986)。而在缺乏有效数据的情况下,参数可以通过管理判断或者历史上类似创新的扩散情况来获得,用历史数据估计模型中的参数值作为一种数据确实情况下的估值方法被众多学者论证过[13],Collantes根据市场竞争者的历史数据估计出了燃料电池车的市场扩散速率,并证明了历史数据估值的有效性[5]。我国学者李继峰,张阿玲在对我国新能源可再生能源发展预测研究中,参数β值的确定也采用了专家意见及经验数据[1]。国外学者在研究太阳能光伏技术扩散方面数据较为全面,根据文献研究,德国,芬兰,以及世界范围下的太阳能光伏技术扩散市场开发率要达到50%,分别需要21、23、44年的时间,其扩散速度也有较大差别。我们取3种情况下的平均值作为假设条件下我国太阳能光伏技术扩散系数,其中扩散比率Ttop,β取自表1,将这两个参数值代入公式Ttop=α/β得α的值。参数值计算结果如表2所示。#p#分页标题#e# 2我国太阳能光伏发电技术市场扩散预测及分析 本文选取1996年为基期,对应t=1,根据上文所得α=7•626,β=0•229,将其代入公式(2),整理得出我国太阳能光伏技术市场扩散曲线如公式(8)又f(t)=ntNt,nt值取太阳能光伏发电安装容量,通过计算得出我国太阳能光伏发电的最大经济可开发量Nt。在模型中nt指产品销量数值,但由于发电量与使用量基本相等,因此本文中nt的取值选取太阳能光伏发电安装容量数据,符合模型要求。本文研究数据取自《BP能源统计年鉴2010》。 2•1我国太阳能光伏发电最大经济可开发量估计 通过模型估算,得出我国1996~2009年太阳能光伏发电最大经济可开发量Nt,如图2所显示,1996年我国太阳能光伏发电最大经济可开发量为1625•64兆瓦,2000年增加到12344•17兆瓦,实际开发量增加到19兆瓦,2008年,太阳能光伏技术发电最大经济可开发量达25379•13兆瓦,实际安装容量则增加到145兆瓦,而2009年太阳能光伏技术发电最大经济可开发量达25379兆瓦,实际安装容量迅速增加到305兆瓦,但利用率也仅为1•2%。图3显示了我国1996~2009年太阳能光伏市场的发展趋势,可以看出我国太阳能光伏市场发电安装容量逐年上升,自2005年开始呈现稳定快速的增长势头。从整体发展来看,太阳能光伏技术市场普及量都呈上升趋势。太阳能光伏发电最大经济可开发量在增长过程中存在短期起伏,但总体趋势缓慢上升,通过数据分析可以看出,我国太阳能光伏利用率较低,太阳能光伏发电的发展空间巨大。 2•2太阳能光伏技术扩散发展预测 根据模型,对我国2010~2030年间太阳能光伏技术市场扩散情况做出预测,得出太阳能光伏技术市场扩散曲线如图4。假设影响因素不变,以目前扩散速率,在2020年我国太阳能光伏技术市场开发率则能达到12%以上,而到2030年我国太阳能光伏发电技术市场开发率则将达到59•06%。将2010~2030年间的扩散趋势分解为两步,分别为2010~2020年,2021~2030年。可以看出2010~2020年我国太阳能光伏发电技术扩散较之2021~2020年更为快速。从2010~2020年,国家对于新能源的一系列政策及财政支持逐步发挥作用,大力促进了太阳能光伏的发展,扩散曲线较为倾斜,可见扩散趋势较为显著;从2020~2030年扩散势头开始呈现直线上升趋势,扩散的步调也开始趋于平缓,太阳能光伏发电市场发展趋于逐步成熟阶段。根据国家“十一五”国民经济发展规划(2005~2010年),到2020年我国太阳能光伏累计安装容量将达到28550兆瓦,光伏发电需求将增长到1•21%。中国电力科学院的研究表明,在考虑到开发煤电、水电和核电的情况下,2010年和2020年电力供需的缺口仍然分别为6•4%和10•7%[3],这个缺口正是需要用可再生能源发电进行补充的,太阳能光伏发电将成为解决我国“电荒”及高耗能问题的重要能源。 3结论及展望 每年中国陆地接收的太阳辐射总量相当于24000亿吨标准煤,约等于1000年的能源消费量[2],本文通过对我国2010~2030年之间的太阳能光伏技术市场开发率进行预测,得出在2020年我国太阳能光伏发电市场开发率将达到12%。2030年我国太阳能光伏发电市场开发率将达到59•06%,假设我国太阳能资源仅50%用来发电,则到2020年时,每年太阳能光伏发电量即相当于144亿吨煤,到2030年这一资源优势将更加明显。我国在发展太阳能光伏技术上制定了各个时期的目标,政府出台了大量的的支持及鼓励政策,并实施大范围有力的补贴资助。就太阳能项目工程而言,“太阳能屋顶计划”已经在全国部分城市开展,有效地推动太阳能资源利用。新修订的可再生能源法也提出实行可再生能源发电全额保障性收购制度,这些都将加速太阳能光伏发展,对于改善我国能源结构,实现节能减排有重要意义。

太阳能发电技术论文篇(10)

专业建设目标

探索“学校主体、行业指导、校企合作”的多层次专业建设机制,深化“做中学,学做合一”工学结合的人才培养方式。将新能源科学与工程专业建设成为教育理念先进、软硬件条件完备、人才培养质量优良和经济社会服务功能良好的特色专业,努力成为新能源行业高技术人才培养的摇篮。

人才培养目标

专业面向市场需求、产业和领域需求,从知识、能力和素质的三维空间构建人才培养体系,培养基础扎实、知识面宽、能力强、素质高,且具有面向产业和领域需求的研发能力、工程组织和管理能力的创新型、复合型专门人才。学生毕业后有能力作为新能源材料研究、工程设计与开发、LED照明工程、太阳能光电/光热和储能系统及能源工程控制的教学科研、技术开发、新工艺和新技术、工程应用和技术管理的跨学科复合型专门人才。

人才培养规格

学生主要学习新能源及其利用、能源工程控制的基本理论,掌握各种能量转换与有效开发利用的理论与技术,接受现代工程师的基本训练,具备进行新能源相关领域的材料研发、系统设计与控制、新工艺/新技术设计和工程应用等综合能力。

(1)知识体系上,要求:①具有良好的数学、物理、电子、化学等方面的基础理论知识;②较系统地掌握本专业领域宽广的技术理论基础知识,主要包括太阳能光电/光热、LED发光照明、新型储能系统、材料科学基础、电子电路、计算机语言基础知识;③较系统地掌握本专业领域的专业理论、基本技能,具有从事专业生产、技术管理、工艺设计、性能测试以及新产品、新技术、新工艺及系统集成控制的研究与开发能力;④了解相近专业(如材料物理、自动控制、物理化学和物理学等)的一般原理和知识;⑤了解本专业领域的新成果和发展趋势,熟悉国家关于新能源产业与工程研究、科技开发及相关产业政策,国内外知识产权等方面的法律法规。

(2)能力要求方面,要求具备:①新能源相关的新产品、新技术、新工艺及系统集成控制的研究与开发能力;②熟练的计算机应用能力,具备材料设计和工程应用的编程能力;③外语的听、说、读、写、译基础,能阅读本专业外文书刊;④获取新知识的能力和追踪本学科发展动态的能力;⑤创新意识和一定的创新能力,具备撰写论文或技术报告的能力。

专业支撑条件建设

学科与学位点

专业拥有物理学一级重点学科作为学科支撑,拥有物理学一级学科博士点、能源与材料物理二级学科博士点、能源与材料工程硕士点3个支撑学位点。至此,学院拥有新能源科学与工程从本科到博士完整的培养体系。

师资队伍

专业现有专任教师12名,其中高级职称教师5名,具有博士学位8名,教师的专业方向涉及新能源材料、能源工程、电子及控制,师资队伍专业结构有效保证了人才培养模式的实施。近几年来,专业教师在科研方面承担了与可再生能源有关的包含863、国家自然科学基金、省科技重大专项以及产学研合作项目等10多个项目。在太阳能应用方面,开发生产太阳能集热板的关键技术和光热系统控制技术,研制太阳能光伏发电系统的关键技术和工程应用开发、开展太阳能电池材料基础研究;在锂离子电池方面,在锂电池正(负)极材料、电池块关键技术、电解液添加剂和锂电池研发平台等方面都具有很扎实的研究和应用开发基础。这些科研工作保障了本科专业的培养层次和行业竞争力。

完备的实验条件

新能源科学与工程专业是一门实践性很强的实验科学,因此,在课程设置中加强了实践环节设计,包括大学物理实验、大学化学实验、电子电工实习、工程训练(包括光伏、光热工程、锂电池生产、能源控制工程)等诸多重要实习实践环节。2013年获批福建省先进材料与新能源工程实验教学示范中心,建成了新能源基础实验室、新能源综合实验室以及专业创新实验室。其中,专业创新实验室主要包含纳米技术、锂电池技术、太阳能技术三个创新实验平台。尤其是已建成了100kW校内太阳能光伏发电实践基地和校内锂电池工程化实训中心。这些为学生实践能力和创新能力的培养打下了坚实的基础。同时,学院拥有福建省量子调控与新能源材料重点实验室,为本科生课外科技项目和毕业设计提供重要的实验条件。

校外实践实训基地

与飞毛腿(福建)电子有限公司、福建福晶科技股份有限公司、福建星网视易信息系统有限公司、福建三元达软件公司、福州众望达太阳能科技有限公司、福州日同辉太阳能应用技术有限公司等开展校企合作,建立大学生实践基地。2012年获批福建省“大学生校外实践教育基地”建设项目——飞毛腿(福建)电子有限公司。

主要专业方向

(1)太阳能光伏。包含太阳能电池材料与太阳能发电工程两个子方向。前者着重于太阳能电池材料性能改进、新型太阳能电池材料研发工作;后者着重于太阳能发电系统设计与模式运行研究、能源智能控制以及系统应用推广。

(2)太阳能光热。包含太阳能光热材料与太阳能光热工程两个子方向。前者着重于太阳能光热转换材料性能及新材料研究;后者主要开展光热工程系统设计、运行管理以及能源智能控制。

(3)锂离子电池。包含锂离子电池材料研究与锂电池工程化两个子方向。前者着重于储能材料性能及新型锂离子电池材料体系研究;后者主要开展锂电池生产与运行管理。

(4)智能能源测控。利用现代化通讯技术、嵌入式硬件技术、数字通讯及存储技术、传感器及控制技术以及最先进的计算机及网络技术,从能源管理角度开展节能、能源智能测量与控制研究。

需要进一步改进的工作

福建师范大学新能源科学与工程专业从专业设置至今仅实施2年,从专业的人才培养模式到课程设置和具体的实施过程,不可避免的存在一些问题,在积累专业建设经验的同时,在教材、师资、平台建设、科技活动等方面仍需不断改进和优化。

(1)教材问题。目前,需要做好新能源科学与工程专业的核心课程,特别是专业实验课程的教材建设。如新能源专业基础实验和综合实验课程,可结合实验项目开设、仪器选择先编写实验讲议义,经过几年的不断完善,编写出具有一定特色的专业相关实验教材。

太阳能发电技术论文篇(11)

中图分类号:TF325.2 文献标识码:A 文章编号:

能源产业是未来三大支柱产业之一,具有高度的战略地位,直接关系到一国的国家安全,和本国人民正常的生产与生活。目前 ,煤炭、石油、天然气等传统能源日趋减少,能源问题尤其是新能源的开发利用在世界范围内受到普遍关注,各个国家在节约、高效利用传统能源的同时,积极致力于新能源的开发。由于传统能源产生的环境污染等恶劣影响,加之其它因素的变化 ,环境问题日益突出,也成为国际关注的重大问题之一。因此 ,对于无污染、可再生性强、丰富的太阳能资源的开发利用 ,就成为各国特别关注的重点。

1 机械自动化在我国太阳能领域中的应用现状分析

与其它国家一样,我国也正在致力于太阳能资源的研究、开发和利用。太阳能领域的机械化程度直接影响太阳能资源的开发和利用。但是,从现有状况来看,我国在发展太阳能的同时,存在有一些问题,需要亟待解决。

首先,在理论方面,关于机械自动化在太阳能领域的应用方便的理论研究,仍是空白,目前还未有这方面详细和系统的阐述与分析。没有理论指导和科学研究 ,实践过程中就会产生不可避免的迷茫或是重复工作。

其次,在具体实践方面,我国在太阳能领域的发展中,机械自动化程度与国外先进国家相比,普遍较低。我国在太阳能领域的机械自动化方面,没有掌握核心科技,尾气无法进行更好的闭气循环利用,无法更好、更快、更高效地利用太阳能资源。另外,随着不断发展,挖掘利用太阳能资源的设备,规模越来越庞大,

系统也越来越复杂,各个设备之间的部件联系也越来越紧密。这对我国太阳能资源利用中机械的自动化和智能化水平,提出了更高要求。

2机械自动化在太阳能光伏产业中的应用

据专家预测,在不久的将来,光伏发电将会成为发电的发展方向,光伏电能也将会成为人类用电电网的主要支柱。我国颁布了《中华人民共和国可再生资源法》,同时西方国家对于光伏产品需求的不断日益增多 ,使得近些年我国光伏产业总体容量不断扩大光伏设备销售数量也猛增。我国光伏产业有了重大的发展和突破,但与国际一流水平相比较,机械设备仍存在很大悬殊。

2.1 多硅晶提纯技术设备落后

当前,在我国范围内所投入使用的多硅晶提纯建设中,多数项目所采用的硅晶提纯技术基本采用了改良的西门子法。目前,国际的七大产商垄断了晶硅提纯最先进和关键的技术部分,他们严禁向中国产商进行转移和泄漏,这一情况使得我国产商的多硅晶提纯技术极不成熟,各种机械的自动化程度也与世界水平相差很远。所采用设备的生产效率不高 ,直接增加了太阳能资源的开发利用成本。

改变这种现状的最关键方面是我国需要不断创新,增强自主研发能力,依靠各种内部和外部力量,不断掌握最前沿的多晶硅提纯这种核心科技,以便于提高我国光伏产业领域机械设备的自动化和智能化程度。

2.2 PECVD 设备的自动化程度较低

在太阳能资源的开发利用中 ,用于沉积Si3N4 层的PECVD 设备,在一些方面存在优势。比如 ,该设备产能良好,制作工艺成熟,基本与国际先进水平接轨。而且,在产能相当的情况下,PEVCD设备价格低于同等进口设备,所以得到很多产商的认同。然而,与国际一流产品相比,PEVCD 设备的机械自动化水平较低,主要差异存在自动装卸片方面。

2.3 硅切片设备有待进一步改善

在太阳能机械设备中,对硅片切片设备要求很高。比较优质的硅片,切片之后表面需要平整光滑;切片的几何尺寸误差需要控制在零点5mm之内 ;切片上任何两个弧线弦线长度之差需要控制在1mm以内。由于切片技术不断进步 ,硅片也越来越薄 ,当前国际最薄的一流硅切片是180mm。与之相比 ,我国200mm 最薄的硅切片与国际水平相差较远。因此,我国硅切片设备在自动化与精细化方面有待进一步改善。

2.4全自动丝网印刷技术与国际存有很大差距

与国际先进的太阳能光伏产业相对比,目前,我国尚未掌握全自动丝网印刷技术,与国际存在很大差距。所以,目前我国很多产商选择在国外购买现金的丝网印刷设备,不仅增加了我国太阳能光伏产业的运营成本,而且阻滞了行业发展。

2.5 太阳能光伏发电系统成本巨大

通常 ,太阳能光伏发电系统由光伏发电电池、控制器、逆变器和蓄电池组构造而成。太阳能光伏发电系统运行的关键是整个系统运行的自动化与信息智能化。比如有学者发明了可以自动跟踪太阳变动的太阳能机械设备,实现对太阳能的充分和高效利用。但是在目前来看 ,国内在逆变器、控制器与蓄电池等机械组件的相关利用技术水平不高,尤其是质量控制、工艺流程和检测等相关设备没有达到国际流水线的自动化生产水平。总的来说,太阳能光伏产业处于初步发展阶段,该领域发展前景十分广阔。在这个领域,需要亟待解决的问题是,降低资源利用和开发的高额成本。需要强调的是,成本的降低需要通过技术的提升、自动化水平的提高来实现,通过这些途径可以降低生产能耗,节约人员和设备投入。

3 机械自动化在太阳能光热产业领域中的应用

在太阳能光热产业领域,机械自动化目前的应用有:太阳能热水器、太阳能发电站、太阳能建筑等。太阳能热水器主要投入到商业中进行运营,其机械自动化程度不高。太阳能建筑是太阳能利用的一个新的方向,对机械自动化有一定较高要求。相比较而言,太阳能发电站对于机械自动化的要求最高。当前,太阳能发电系统主要有塔式系统、碟式系统和槽式线聚焦系统三类。比如,目前我国公布了自动控制式太阳能取暖装置它可以将太阳能热水器与散热器、泵连接一体,还讲温度和时间控制仪与泵相连,实现整个系统的自动控制功能。与传统系统相比,该系统不需要人员调节 ,使用方便 ,节能减排。

4 结论

在能源危机和环境问题日益逼迫的现代,需要对新能源尤其是太阳能的研发和利用。实现太阳能资源的低投入高产出运作,必须提高资源开发系统中的机械自动化和智能化水平。

参考文献:

[1] 钱立兵. 机械自动化在太阳能领域中的应用[J]. 科技传播. 2011(14)

[2] 李强. 机械自动化在太阳能领域中的应用[J]. 科技资讯. 2009(25)