欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

数控机床论文大全11篇

时间:2023-03-29 09:20:36

数控机床论文

数控机床论文篇(1)

关键词:数控机床开放式数控系统电动机

Abstract:Thenumericalcontrollathecalledthenumericalcontrol(Numericalcontrol,iscalledNC)theenginebed.Itisbasedonthenumericalcontrol,hasusedthenumericalcontroltechnology,isloadedwiththeprocedurecontrolsystemtheenginebed.Itisbythemainengine,CNC,thedrive,thenumericalcontrolenginebedauxiliaryunit,theprogrammingmachineandothersomeappurtenancesiscomposed.

Thisdesignincludingthemainmovementofenginebeddesign,longitudinalentersforthedesign,alsoincludesthegearmoduluscomputationandtheexamination,themainaxlerigidityexaminationandsoon.

Keyword:numericalcontroltoolOpen-architecturemotor

当前的世界已进入信息时代,科技进步日新月异。生产领域和高科技领域中的竞争日益加剧,产品技术进步、更新换代的步伐不断加快。现在单件小批量生产的零件已占到机械加工总量的80%以上,而且要求零件的质量更高、精度更高,形状也日趋复杂化,这是摆在机床工业面前的一个突出问题。为了解决复杂、精密、单件小批量以及形状多变的零件加工问题,一种新型的机床——数字控制(Numericalcontrol)机床的产生也就是必然的了。

此次设计是数控机床主传动系统的设计,其中包括机床的主运动设计,纵向进给运动设计,还包括齿轮模数计算及校核,主轴刚度的校核等。

数控车床是基于数字控制的,它与普通车床不同,因此数控车床机械结构上应具有以下特点:

1.由于大多数数控车床采用了高性能的主轴,因此,数控机床的机械传动结构得到了简化。

2.为了适应数控车床连续地自动化加工,数控车床机械结构,具有较高的动态刚度,阻尼精度及耐磨性,热变形较小。

3.更多地采用高效传动部件,如滚动丝杆副等。CNC装置是数控车床的核心,用于实现输入数字化的零件程序,并完成输入信息的存储,数据的变换,插补运算以及实现各种控制功能。

2.2总体方案的拟定

1.根据设计所给出的条件,主运动部分z=18级,即传动方案的选择采用有级变速最高转速是2000r/min,最低转速是40r/min,。

2.纵向进给是一套独立的传动链,它们由步进电机,齿轮副,丝杆螺母副组成,它的传动比应满足机床所要求的。

3.为了保证进给传动精度和平稳性,选用摩擦小、传动效率高的滚珠丝杆螺母副,并应有预紧机构,以提高传动刚度和消除间隙。齿轮副也应有消除齿侧间隙的机构。

4.采用滚珠丝杆螺母副可以减少导轨间的摩擦阻力,便于工作台实现精确和微量移动,且方法简单。

主运动设计

参数的确定

一.了解车床的基本情况和特点---车床的规格系列和类型

1.通用机床的规格和类型有系列型谱作为设计时应该遵照的基础。因此,对这些基本知识和资料作些简要介绍。本次设计中的车床是普通型车床,其品种,用途,性能和结构都是普通型车床所共有的,在此就不作出详细的解释和说明了。

2.车床的主参数(规格尺寸)和基本参数(GB1582-79,JB/Z143-79):

最大的工件回转直径D(mm)是400;刀架上最大工件回转直径D1大于或等于200;主轴通孔直径d要大于或等于36;主轴头号(JB2521-79)是6;最大工件长度L是750~2000;主轴转速范围是:32~1600;级数范围是:18;纵向进给量mm/r0.03~2.5;主电机功率(kw)是5.5~10。

传动件的设计

传动方案确定后,要进行方案的结构化,确定个零件的实际尺寸和有关布置。为此,常对传动件的尺寸先进行估算,如传动轴的直径、齿轮模数、离合器、制动器、带轮的根数和型号等。在这些尺寸的基础上,画出草图,得出初步结构化的有关布置与尺寸;然后按结构尺寸进行主要零件的验算,如轴的刚度、齿轮的疲劳强度等,必要时作结构和方案上的修改,重新验算,直到满足要求。

对于本次设计,由于是毕业设计,所以先用手工画出草图,经自己和指导老师的多次修改后,再用计算机绘出。

一.三角带传动的计算

三角带传动中,轴间距A可以较大。由于是摩擦传递,带与轮槽间会有打滑,亦可因而缓和冲击及隔离震动,使传动平稳。带传动结构简单,但尺寸,机床中多用于电机输出轴的定比传动。

目录

第一章引言1

第二章设计方案论证与拟定2

2.1总体方案的论证2

2.2总体方案的拟定2

2.3主传动系统总体方案图及传动原理2

第三章设计计算说明5

3.1主运动设计5

3.1.1参数的确定5

3.1.2传动设计6

3.1.3转速图的拟定8

3.1.4带轮直径和齿轮齿数的确定12

3.1.5传动件的设计19

3.2纵向进给运动设计38

3.2.1滚珠丝杆副的选择38

3.2.2驱动电机的选用42

结论47

数控机床论文篇(2)

机床的加工质量(含尺寸、形位精度及表面质量)问题,主要取决于机床设备(含工具和夹具)的结构刚度,几何精度,运动精度和定位精度,当然还有环境条件(如温度、振动等)的控制与保证。因此,它需要通过研发精密、高精密乃至超精密的加工技术和机床来解决。

生产效率主要是由零件从毛坯到成品的制作周期来衡量。零件的制作周期包含直接用于改变零件材料的性(能)、(形)状(如切削成形,热处理等)所需的时间和非加工(即不改变零件性状的)时间(如零件生产过程中所需的等待、传送、检测、装调、夹紧等的时间)两大部分组成。为了减少切削加工时间,首先需要提高切削速度和进给速度。为此,人们研发了高速切削技术与机床,而为了缩短非加工时间,人们则要研发更多的技术措施和装备,包括机械自动化、数控柔性化的机床与生产线(制造系统)和现在正处于蓬勃发展的数控复合加工机床等。

加工成本包括直接成本(如材耗、能耗、工人工资等)和间接成本(含厂房、设备的折旧费,安全环保费和管理费等)。为了降低成本,这里牵涉的问题就很多了,既有技术方面的问题,也有组织管理方面的问题,所以需要进行更为综合的研究来解决。

本文不拟,也不可能讨论上述所有的问题,只想就数控复合加工机床的发展作些简要的介绍并谈点笔者的看法。

组合加工机床的出现和数控复合加工机床的兴起

一般情况下,一个机械零件的生产,从毛坯到成品,中间都要经过采用某些(一种或多种)加工艺方法(如冲压、焊接、切削、磨削、特种加工或车、铣、钻、镗、齿形加工等)的多工序(如车削中的车外圆、车端面、车槽、车内圆、车螺纹、车锥面等)加工过程。由于不同的工艺方法有着不同的加工原理和特点,不同的加工工序有着不同的加工目的和要求,因此它们各自用着不同的加工设备来实现,故在传统的制造中,一个零件的制造往往就需要有多种、多台不同的的加工设备来完成。这不仅增加了设备的台数和生产厂房的占地面积,从而增加了企业的投入,而且由于生产过程中工件需在工艺和工序设备间等待、转移、检查和重新定位装夹等,既影响加工精度,也增加了不少非加工时间。有专家分析,这部分非加工时间将占到零件生产总周期的70%~95%左右,从而大大地制约了生产效率的提高。

为了提高生产效率,减少非加工时间,人们早就有了尽可能多地把一些加工原理和要求相近或相似的加工工序,乃至不同的工艺过程集中到一台或少数几台设备上来实现。这种一次装夹后对零件进行复合加工的想法,在机械自动化生产过程中出现的组合加工机床和多刀半自动六角(转塔)车床等,就是其最初的体现。因为组合机床是以一些通用部件(如动力头、滑台、底座立柱、回转工作台等)为基础,配以根据具体零件的加工要求(含零件的形状、尺寸、加工部位、加工工序和精度等)专门设计的夹具,多轴箱和部分刀具集装而成,它可以对某一特定加工件,如汽车发动机壳体、箱盖或变速箱体等,实现一次装夹完成全部或大部分加工工序,包括铣平面、钻孔、镗孔、铰孔、攻螺纹等;而多刀半自动转塔车床,根据被加工工件的工序要求,在其转塔刀架上装上所需的切削刀具后,也即可实现一次装夹对某一特定的轴或盘、套件进行全部或大部分工序的加工,如车削内、外圆柱面、端面、沟槽、倒角、加工内外螺纹等。因此,组合机床和多刀半自动转塔车床都体现了集中工序进行复合加工的理念,大大地减少了非加工时间,从而显著地提高了生产率。但是,这些机床均属于刚性自动化范畴,当加工对象变换时,设备也必须更换或重新调整配置,所需的时间和资金投入都较大,因此只宜用于单一品种零件的中、大批量生产,而不适合用于多品种零件的单件和小批量生产。

随着数控机床的出现和数控技术(含数控伺服系统,功能部件及编程、软件等)的日益发展与性能的提高,大大增强了数控机床的柔性自动化能力,加上机电产品个性化的发展,市场对多品种小批量生产的需求日益增多,从而为数控机床加工复合化的发展提供了广阔的天地。事实上,早在数控机床问世后不久,1958年第一台镗铣类加工中心的出现,复合加工就已成为数控机床的重要技术发展方向之一了,时至今日,已经出现了许多种类的数控复合加工机床,以适应当今市场对多品种小批量零件进行高效低成本生产的需求。

数控复合加工机床的门类及其代表性产品

数控复合加工机床是以现代柔性自动化的数控机床为基础,以组合机床和多刀半自动转塔机床的“集中工序、一次装夹实现多工序复合加工”的理念为指导发展起来的新一类数控机床。当工件在其上一次装夹后,通过对加工所需工具(切削刀具或模具)的自动更换,便能自动地按数控程序依次进行同一工艺方法中的多个工序或不同工艺方法中的多种工序的加工,从而减少非加工时间,缩短加工周期,达到提高生产效率的目的。因此,数控复合加工机床从其加工的复合性来分,可分为工序复合型和工艺复合型两大类。前者如一般的镗铣加工中心、车削中心、磨削中心等,在一台机床上只能完成同一工艺方法的多个工序加工;而后者则如车-铣复合中心、车-磨复合中心、车削-激光加工中心等,在一台机床上不仅可以完成同一工艺方法的多个工序,而且可以完成多种不同工艺方法的多个工序。如车-铣复合中心,既可完成车削的多种工序,又能完成铣、钻、镗、攻丝等工艺的多种工序,好似把一台数控车床和一台中小型加工中心复合在一起。

如果从数控复合加工机床的加工对象、机床结构的配置方式和功能特点等特徵来分,数控复合加工机床的门类就很多了。比如按加工对象分,就有面向回转体件加工的、棱柱体件加工的和复杂形体件(由回转体和棱柱体面组合)加工的。这里不拟就门类详加讨论,下面仅对一些常见常用和具有代表性的几种数控复合加工机床作简要介绍。

1.镗铣加工中心:以普通数控铣、镗床为基础,配以相应的刀库和自动换刀装置等功能部件及控制系统发展而成,如一般3轴联动控制的立式、卧式和龙门式镗铣型加工中心,图1是美国哈斯公司生产的立式加工中心,它以加工棱柱体零件(含箱体、壳体和板块件等)为主要对象,工件在其上一次装夹后,通过机械手按加工程序从刀库上选取并更换主轴上的刀具,便可对工件的水平面进行1-3维铣削加工,如铣平面、铣轮廓、铣型腔曲面,以及钻孔、镗孔、攻丝等加工工序。这是最常见常用、也是最普通的棱柱体加工用的数控复合加工机床,但这种机床的工艺能力有限,如工件的一次装夹只能在垂直于主轴的一个面内进行加工,对箱体件上垂直于此面的其他平面则不能加工,更不能对工件上处于任意空间位置的平面进行加工。与此类似,3轴联动的卧式加工中心虽然可以通过工作台的转位加工箱体件的4个侧面,但却不能加工箱体件的顶面。

2.五面加工和五轴联动加工中心:为了克服普通镗铣加工中心存在的上述工艺局限性,人们在以普通镗铣加工中心为基础,将原来固定指向的主轴头换成可以立、卧自动转换的主轴头和采用可回转分度的工作台,这样的机床就可以在工件一次装夹的条件下,获得5面(如箱体类工件)甚至更多面的加工能力,成为5面乃至多面加工中心。如果将普通镗铣加工中心的主轴换成具有数控单摆(A或B轴)或双摆(C和A或B轴)功能的电主轴,或在工作台上配上具有C轴或C和B轴转动功能的数控回转工作台,当然还有相应的5轴联动控制的数控系统,则机床就发展成为五轴联动的加工中心。图2为米克朗公司生产的5轴联动立式加工中心。其三个直线轴分配在主轴头和工作台上,两个回转轴则由回转工作台来完成。

5面或多面加工中心与普通加工中心的功能区别主要在于:它不仅能在直垂于主轴的平面内完成普通加工中心所能完成的全部加工工序,还能在与该平面相互垂直的其他平面(除工件的装夹面外)内完成同样的加工任务。而5轴联动加工中心则既具有多面加工中心的全部加工功能和能力,还具有对工件上任意空间位置的表面(平面、斜面或曲面等)进行铣、镗、钻的加工的能力。所以它的工艺范围更广,能力更强。

.车削中心:通常是以普通数控车床为基础,配以一个或多个具有多刀位的转塔刀架发展而成,加工对象主要是轴类和盘套类等回转体零件。由于回转体件中约有一半左右的零件,除主要需车削加工外,还需部分的铣削、钻削和攻丝等加工,因此为了在一台车床上一次装夹便可对回转体件进行全部或大部分的加工,车削中心的转塔刀架上,除了装有车削刀具外,还能装上铣刀、钻头和丝锥等旋转的动力刀具,而且机床主轴具有数控精确分度的C轴功能和C与Z轴或和C与X轴联动的功能。这样一台车削中心不仅可以像普通数控车床那样能对回转体件的内外表面(含圆柱面、锥面、曲面等)、端面进行车削加工,还可以利用C-Z轴联动功能车螺纹,利用C轴分度功能和刀架的X或Y轴控制以及其上的动力旋转刀具进行偏离回转体件中心线的钻孔和铣削,从而大大地扩展了数控车床复合加工的能力。图3是SPINNER公司车削中心。但是,对于单主轴的车削中心而言,无论其工艺能力如何扩大,也无法解决回转体件一次装夹下的背面(原装夹端)二次加工问题,这正是单主轴车削中心存在的不足和开发新型车削中心的原因所在。

4.双主轴车削中心:为了克服单主轴车削中心存在的不足,机床的设计制造者采取了在单主轴车削中心的基础上,增添一个与原主轴在轴线上对置的副主轴和一个多刀位的副转塔刀架,使机床成为双主轴双刀架的车削中心(图4)。正副两主轴同步同向旋转并都具有C轴控制的功能,副主轴还能沿轴向Z移动,以拾取在正主轴上完成右端加工的零件。副主轴拾取完工件退至适当位置后即由副刀架上的刀具对其左端(原夹持端)进行加工。正、副两个刀架分别位于正、副主轴的上、下方,并可分别单独编程工作,因此双主轴、双刀架车削中心就能对回转体件实现一次装夹完成全面加工。

5.车-铣复合加工中心和铣-车复合加工中心:前者多以单主轴或双主轴的车削中心为基础,将上转塔刀架改为配有刀库和换刀机构的电主轴铣头而成,如日本山崎马扎克公司生产的Integrex-IVST系列和德国DMG公司生产的GMXLinear系列(图5)的车铣复合加工中心等,其电主轴铣头既可沿X1、Z1轴移动,还有Y轴行程和B轴的转动。后者——铣、车复合加工中心则多以五面或五轴联动的铣镗加工中心为基础,并将旋转工作台换成转速比普通转台高得多的力矩电机驱动的转台发展而成。无论是前者还是后者,两者均同时具有数控车床和加工中心的功能,都是为了满足既具有回转体件特徵,又具有棱柱体件特徵的复杂形状零件的加工需要而发展起来的。但值得一提的是:在铣-车复合加工中心上执行车削任务时,力矩电机驱动的转台将作为车床的工件主轴用,而原来作为铣削加工中心的铣头主轴,现在则必须锁住并装上车刀作为车床的刀架用。由于多轴控制、五轴联动的车-铣中心和铣-车中心既能完成各种车削工序,又能完成各种钻、铣、镗、攻丝等工序;不仅可分别加工回转体件和棱柱体件,而且都特别适合加工形状很复杂的混合体件,其工艺范围之广和能力之强,可谓是当今切削复合加工机床的佼佼者。

6.磨削中心:一般是以数控外圆磨床为基础发展而成。为此通常采用了两项主要的技术措施;(1)工件主轴改用具有C轴控制和锁住功能的电主轴;(2)砂轮头架采用双滑台和或具有B轴摆动功能的转塔式砂轮头架,以安装2个以上的砂轮(如适于外圆和内圆磨削用的,适于端面磨削和成形磨削用的等),以满足不同磨削工序的需要。由于数控外圆磨床一般都有控制工作台左右移动的Z轴和砂轮头架前后移动的X轴功能,这样回转体件在机床上一次装夹后,便不仅可以磨削外圆、内圆、台肩端面等,还可以利用工件轴的C轴控制功能在工件的外表面上磨削平面和多棱面;通过X轴和C轴的联动控制磨削各种圆形表面和非圆形表面;通过C轴和Z轴的联动控制磨削螺纹;利用砂轮头架的B轴摆动磨削各种不同锥度的圆锥面等。图6就是STUDER公司在以数控外圆磨床为基础发展起来的磨削中心。

7.车-磨复合加工机床:一般是在现代数控车床应用的基础上,为适应某些经淬硬的回转体零件,如主轴、传动齿轮和轴承环等盘套类零件的加工要求而发展起来的。为此通常在数控车床上配备了高速CBN砂轮磨削单元和相应的磨削测量与控制系统,如EMO2005上Schaudt公司展出KAIROS车-磨复合加工中心(图7.a)和EMAG公司展出的倒置式车-磨复合加工中心(图7.b)就是例子。标准型的KAIROS机床一般配置2~3个滑台,分别用来安装高速磨削主轴头和车、铣刀具的转塔刀架。砂轮直径Φ400mm,转塔刀架有8个刀位,机床可用于车削和磨削长达1000mm的轴类零件。EMAG倒置式车-磨复合加工机床的主轴(带工件)头架在上方,作X和Z轴运动,主轴端的下方配有可安装车刀和砂轮主轴的转塔刀架,它们只作分度旋转而不作移动,机床既能像普通数控车床一样完成车削加工工序,也能像普通数控外圆磨床一样完成磨削加工工序。主要用于淬硬的盘、套类零件加工。

除了上述门类和结构型式外,数控复合加工机床还有许许多多的其他门类和结构配置型式,在此就不一一介绍了。

数控机床论文篇(3)

目前,数控系统种类繁多,按数控系统的性能价格比分为:经济型数控系统、标准型数控系统、全功能型数控系统和特殊型数控系统四大类产品。

经济型数控系统也称简易数控系统(simplenumericalcontrolsystem)。其特点是价格便宜、精度适中、功能简化、针对性强,比较适用于老设备技朮改造和产品更新。

标准型数控系统的特点是功能较全,价格适中,适用于中档的数控机床,应用较广。

多功能型数控系统的特点是功能齐全,价格较贵。适用于加工复杂零件的大中型机床以及FMS、CIMS中使用的数控机床。

特殊型数控系统适用于各类特种加工机床,如:电加工机床,超精加工机床等。

依据经济实用原则。对中小型车床的改造广泛采用步进电机驱动的开环控制系统。用经济型数控系统改造后车床的控制原理如图1所示。改造后的车床可以自动车削圆柱面、圆锥面、端面、球面、螺纹等。

2.改造方案

结合生产实际,依据工艺要求和被改造车床的完好程度,可采用不同的改造方案。

对实际役龄较短,零部件完好,精度尚未降低,导轨刮花可见或实际役龄较长经修复后达到精度要求的机床可作如下改造。

安装脉冲编码器将主轴的转速与进给量联系起来。将原机床的刀架拆除换成电动刀架实现自动换刀。将原机床的挂轮系统、进给箱、溜板箱、丝杠、光杠拆除,换成由步进电机、齿轮减速装置和滚珠丝杠组成的进给传动系统。纵向步进电机及齿轮减速装置安装在拆除进给箱处的床身上。滚珠丝杠支座可安装在原丝杠的安装基面上,螺母支座安装在纵向拖板上。纵向进给传动示意图如图2所示。横向步进电机及齿轮减速装置安装在纵向溜板上横向丝杠尾端处。滚珠丝杠安装在原丝杠位置,并对原丝杠支承部位、螺母座部位以及原空间尺寸进行加工。注意横向滑板与齿轮减速装置是否碰撞,若碰应采取措施。横向进给传动示意图如图3所示。

二、经济型数控系统的选择

目前,国内生产的经济型数控系统有多种类型。经济型数控系统主要包括数控装置、坐标轴驱动(或伺服)系统、主轴驱动系统、刀架及辅助功能的强电控制与驱动系统、接口等。

经济型数控装置有步进电机驱动的开环数控装置、直流电机驱动的半闭环数控装置和点位式经济型数控装置三种。对于数控车床改造一般选用步电机驱动开环数控装置。选择时主要考虑以下性能:CPU类型、用户容量、控制轴或联动轴数、设定单位、插补类型、编程尺寸及编程标准,G、M、S、T、F功能、刀具补偿功能、间隙补偿功能及循环功能、显示方式及显示信息的形式、绝对编程、增量编程、程序输入方式以及报警、诊断等。根据需要选择相应的性能。

步进电机驱动单元的性能参数主要有:步进电机性能参数及安装尺寸,控制箱与电机的接线型式等。系统的快速进给速度、空载起动频率,静态转矩,系统升频降频时间,起动矩频特性、起动惯频特性、运行矩频特性。

驱动电路的型式主要有:高低压驱动电路、斩波驱动电路、调频调压驱动电路、细分驱动电路、电流检测型功率放大电路等。不同的电路型式、其工作性能不同,根据加工需要合理选择。

刀架控制与驱动系统主要考虑刀架型式(如四位或八位电动刀架,或转塔六位刀架等),定位精度及重复定位精度,换刀时间、刀具选择时刀架的转向、夹紧力,刀杆尺寸及装夹刀具结构型式等性能参数。

强电接口及弱电接口、主要根据工作需要选择。如工件自动夹紧,加工螺纹时,选择强电接口;主轴的脉冲编码器与数控装置的接线,程序输入接口等选择弱电接口。

国内生产的经济型数控系统的类型主要有:BCK2─001,BKC2─005,GWK─1A/Ⅱ/Ⅲ,JWK─20T,BKC2─8A,GSK─928,2385─1T等系列产品。广泛应用在数控改装及老产品车床改型中。在选择时,除性能参数外,还要考虑其外型,安装形式等因素。结合设计计算选择合适的经济型数控系统。

【摘要】在短时期内大量地更新现有设备,无论从资金还是国内机床制造厂的生产能力都很难做到。对旧机床进行数控化改造投资少、见效快,是机械制造厂挖潜技改的一条成功之路。

【关键词】旧机床数控改造方案选择

参考文献:

[1]李福生.实用数控机床技术手册[M].北京:北京出版社,1993.

[2]龚炳铮.机电一体化技朮应用实例[M].北京:机械工业出版社,1994.

[3]林其骏.机床数控系统[M].北京:中国科学技术出版社,1991.

[4]机床手册编委会.机床设计手册[M].北京:机械工业出版社,1986.

数控机床论文篇(4)

采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。

1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。

这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。

在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。

数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。

然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。

到了1960年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到1966年实际使用的约6000台数控机床中,85%是点位控制的机床。

数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。这种产品最初是在1959年3月,由美国卡耐·;特雷克公司(Keaney&TreckerCorp.)开发出来的。这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令自动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。它可缩短机床上零件的装卸时间和更换刀具的时间。加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。

1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制造系统(FlexibleManufacturingSystem——FMS)之后,美、欧、日等也相继进行开发及应用。1974年以后,随着微电子技术的迅速发展,微处理器直接用于数控机床,使数控的软件功能加强,发展成计算机数字控制机床(简称为CNC机床),进一步推动了数控机床的普及应用和大力发展。

80年代,国际上出现了1~4台加工中心或车削中心为主体,再配上工件自动装卸和监控检验装置的柔性制造单元(FlexibleManufacturingCell——FMC)。这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制造系统中使用。

目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩展,从中小批量加工向大批量加工发展。

所以机床数控技术,被认为是现代机械自动化的基础技术。

那什么是车床呢?据资料所载,所谓车床,是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。

古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。1797年,英国机械发明家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可改变进给速度和被加工螺纹的螺距。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。

为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床;1848年,美国又出现回轮车床;1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床;20世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。

第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于60年代开始用于车床,70年代后得到迅速发展。

车床依用途和功能区分为多种类型。

普通车床的加工对象广,主轴转速和进给量的调整范围大,能加工工件的内外表面、端面和内外螺纹。这种车床主要由工人手工操作,生产效率低,适用于单件、小批生产和修配车间。

转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次使用不同刀具完成多种工序,适用于成批生产。

自动车床能按一定程序自动完成中小型工件的多工序加工,能自动上下料,重复加工一批同样的工件,适用于大批、大量生产。

多刀半自动车床有单轴、多轴、卧式和立式之分。单轴卧式的布局形式与普通车床相似,但两组刀架分别装在主轴的前后或上下,用于加工盘、环和轴类工件,其生产率比普通车床提高3~5倍。

仿形车床能仿照样板或样件的形状尺寸,自动完成工件的加工循环,适用于形状较复杂的工件的小批和成批生产,生产率比普通车床高10~15倍。有多刀架、多轴、卡盘式、立式等类型

立式车床的主轴垂直于水平面,工件装夹在水平的回转工作台上,刀架在横粱或立柱上移动。适用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。

铲齿车床在车削的同时,刀架周期地作径向往复运动,用于铲车铣刀、滚刀等的成形齿面。通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。

专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。联合车床主要用于车削加工,但附加一些特殊部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,适用于工程车、船舶或移动修理站

看机床的水平主要看金属切削机床,其他机床技术和复杂性不高,就是近几年很流行的电加工机床,也只是方法的改变,没什么复杂性和科技含量。

我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。

金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。

由普通发展到数控,一个人顶原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。

自美国在50年代末搞出世界一台数控车床后,机床制造业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。等80年代我们再去看世界的数控机床水平,差距就是20年了,其实奋起直追还有希望,但国营工厂不思进取,到了90年代,我们再去看世界水平,已有30年的差距了。中国改革开放前走的是苏联的路子,什么叫苏联的路子,举个例子来讲:比如,生产一根轴,苏联的方式是建一个专用生产线,用多台专用机床,好处是批量很容易上去,但一旦这根轴的参数发生了变化,这条线就报废了,生产人员也就没事做了。在1960-1980年代,国营工厂一个产品生产几十年不变样。到了1980年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就困难了,到了90年代就大量破产,大量职工下岗。现代的生产也有大批量生产,但主要是单件小批量,不管是那种,只要你的设备是数控的,适应起来就快。专业机床的路子已经到头了,;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推进螺旋桨上的制造,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。由此也可见,前苏联的机床制造业也落后了,他们落后,我们就更不用说了。虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没问题,剩下的就是电子系统方面,德国的电子系统工业本来就强大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。

但日本人的强项就是仿造,从上世纪70年代起,日本大量从德国引进技术,消化后大量仿造,经过努力,日本在90年代起,就超越了德国,成为世界第一大数控机床生产国,直到现在还是。他们在机床制造水平上,有一些也走在了世界前面,如在机床复合(一机多种功能)化方面,是世界第一。数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,主要是它的发拿科公司。第一代的系统用步进电机,我们现在也能造,第二代用交流伺服电机。现在的数控系统的核心就是交流伺服电机和系统内的逻辑控制软件,交流伺服电机我们国家目前还没有谁能制造,这是一个光学、机械、电子的综合体。逻辑控制软件就是控制机床的各轴运动,而这些轴是用伺服电机驱动的,一般的系统能同时控制3轴,高级系统能控制五轴,能控5轴的,五轴以上也没问题。我们国家也由有5轴系统,但“做秀”的成份多,还没实用化。我们的工厂用的五轴和五轴以上机床,100%进口。

机床是一个国家制造业水平高低的象征,其核心就是数控系统。我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,主要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有问题。目前国内的各大机床厂,数控系统100%外购,各厂家一般都买日本发那科、三菱的系统,占80%以上,也有德国西门子的系统,但比较少。德国西门子系统为什么用的少呢?早期,德国系统不太能适合我们的电网,我们的电网稳定性不够,西门子系统的电子伺服模块容易烧坏。日本就不同了,他们的系统就烧不坏。近来西门子系统改进了不少,价格方面还是略高。德国人很不重视中国,所以他们的系统汉语化最近才有,不像日本,老早就有汉语化版的。

就国产高级数控机床而言,其利润的主体是被外国人拿走了,中国只是挣了一个辛苦钱。美国为什么没有能成为数控机床制造大国呢?这个和他们当时制定产业政策的人有关,再加上当时美国的劳动力贵,买比制造划算。机床属于投资大,见效慢,回报率底的产业,而且需要技术积累。不太附和美国情况。但后来美国发现,机床属于战略物资,没有它,飞机、大炮、坦克、军舰的制造都有问题,所以他们重新制定政策,扶植了一些机床厂,规定了一些单位只能买国产设备,就是贵也得买,这就为美国保留了一些数控机床行业。美国机床在世界上没有什么竞争力。

欧洲的机床,除德国外,瑞士的也很好,要说超高精密机床,瑞士的相当好,但价格也是天价。一般用户用不起。意大利、英国、法国属于二流,中国很少买他们的机床。西班牙为了让中国进口他们的机床,不惜贷款给中国,但买的人也很少??借钱总是要还的。

韩国、台湾的数控机床制造能力比大陆地区略强,不过水平差不多。他们也是在上世纪90年代引进日本技术发展的。韩国应该好一点,它有自己制造的、已经商业化了的数控系统,但进口到中国的机床,应我们的要求,也换成了日本系统。我们对他们的系统信不过。韩国数控机床主要有两家:大宇和现代。大宇目前在我国设有合资企业。台湾机床和我们大体一样,自己造机械部分,系统采购日本的。但他们的机床质量差,寿命短,目前在大陆影响很坏。其实他们比我们国产的要好一点。但我们自己的差,我们还能容忍,台湾的机床是用美金买来的,用的不好,那火就大了。台湾最主要的几家机床厂已打算把工厂迁往大陆,大部分都在上海。这些厂目前在国内的竞争中,也打着“国产”的旗号。

近来随着中国的经济发展,也引起了世界一些主要机床厂商的注意,2000年,日本最大的机床制造商“马扎克”在中国银川设立了一家数控机床合资厂,据说制造水平相当高,号称“智能化、网络化”工厂,和世界同步。今年日本另外一家大机床厂大隈公司在北京设立了一家能年产1000台数控机床的控股公司,德国的一家很有名的企业也在上海设立了工厂。

目前,国家制定了一些政策,鼓励国民使用国产数控机床,各厂家也在努力追赶。国内买机床最多的是军工企业,一个购买计划里,80%是进口,国产机床满足不了需要。今后五年内,这个趋势不会改变。不过就目前国内的需要来讲,我国的数控机床目前能满足中低档产品的订货。

美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。因其社会条件不同,各有特点。

1.美国的数控发展史

美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重於基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。

2.德国的数控发展史

德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。,於1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统,均为世界闻名,竞相采用。

3.日本的数控发展史

日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出于蓝而胜于蓝。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。4.我国的现状

我国数控技术的发展起步于二十世纪五十年代,中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。在1958~1979年间为第一阶段,从1979年至今为第二阶段。第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。主要存在的问题是盲目性大,缺乏实事求是的科学精神。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。 

 在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。存在的主要问题包括:缺乏象日本“机电法”、“机信法”那样的指引;严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。

2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,1999年,我们国家机械加工设备数控华率是5-8%,目前预计是15-20%之间。一、什么是数控机床车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。我们一般所说的数控设备,主要是指数控车床和加工中心。我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年,但如果国家支持,追赶起来也不是什么问题,例如:去年,沈阳机床集团收购了德国西思机床公司,意义很大,如果大力消化技术,可以缩短不少差距。大连机床公司也从德国引进了不少先进技术。上海一家企业购买日本著名的机床制造商池贝。,近几年随着中国制造的崛起,欧洲不少企业倒闭或者被兼并,如马毫、斯滨纳等。日本经济不景气,有不少在80年代很出名的机床制造商倒闭,例如:新泻铁工所。二、数控设备的发展方向六个方面:智能化、网络化、高速、高精度、符合、环保。目前德国和瑞士的机床精度最高,综合起来,德国的水平最高,日本的产值最大。美国的机床业一般。中国大陆、韩国。台湾属于同一水平。但就门类、种类多少而言,我们应该能进世界前4名。三、数控系统 由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界最大的三家厂商是:日本发那客、德国西门子、日本三菱;其余还有法国扭姆、西班牙凡高等。国内由华中数控、航天数控等。国内的数控系统刚刚开始产业化、水平质量一般。高档次的系统全都是进口。华中数控这几年发展迅速,软件水平相当不错,但差就差在电器硬件上,故障率比较高。华中数控也有意向数控机床业进军,但机床的硬件方面不行,质量精度一般。目前国内一些大厂还没有采用华中数控的。广州机床厂的简易数控系统也不错。我们国家机床业最薄弱的环节在数控系统。

四、机床精度1、机械加工机床精度分静精度、加工精度(包括尺寸精度和几何精度)、定位精度、重复定位精度等5种。2、机床精度体系:目前我们国家内承认的大致是四种体系:德国VDI标准、日本JIS标准、国际标准ISO标准、国标GB,国标和国际标准差不多。3、看一台机床水平的高低,要看它的重复定位精度,一台机床的重复定位精度如果能达到0.005mm(ISO标准.、统计法),就是一台高精度机床,在0.005mm(ISO标准.、统计法)以下,就是超高精度机床,高精度的机床,要有最好的轴承、丝杠。;4、加工出高精度零件,不只要求机床精度高,还要有好的工艺方法、好的夹具、好的刀具。五、目前世界著名机床厂商在我国的投资情况1、2000年,世界最大的专业机床制造商马扎克(MAZAK)在宁夏银川投资建了名为“宁夏小巨人机床公司”的机床公司,生产数控车床、立式加工中心和车铣复合中心。机床质量不错,目前效益良好,年产600台,目前正在建2期工程,建成后可以年产1200台。2、2003年,德国著名的机床制造商德马吉在上海投资建厂,目前年组装生产数控车床和立式加工中心120台左右。3、2002年,日本著名的机床生产商大隈公司和北京第一机床厂合资建厂,年生产能力为1000台,生产数控车床、立式加工中心、卧式加工中心。4、韩国大宇在山东青岛投资建厂,目前生产能力不知。5、台湾省的著名机床制造商友嘉在浙江萧山投资建厂,年生产能力800台。5、民营企业进入机床行业情况1、浙江日发公司,2000年投产,生产数控车床、加工中心。年生产能力300台。2.2004年,浙江宁波著名的铸塑机厂商海天公司投资生产机床,主要是从日本引进技术,目前刚开始,起点比较高。3.2002年,西安北村投产,名字象日本的,其实老板是中国人,采用日本技术。生产小型仪表数控车床,水平相当不错。六、军工企业技改情况军工企业得到国家拨款开始于当年“大使馆被炸”,后来台湾上台后,大规模技改开始了,军工企业进入新一轮的技改高峰,我们很多军工企业开始停止购买普通设备。尤其是近3年来,我们的军工企业从欧洲和日本买了大批量的先进数控机床。也从国内机床厂哪里采购了大批普通数控机床,国内机床厂商为了迎接这次大技改,也引进了不少先进技术,争取军工企业的高端订单。听在军工企业的朋友讲,如果再能“顶”三年,我们的整体水平会上一个台阶。 其实,总书记掌权以来,已经把国防事业提到了和经济发展一样的高度上,他说,我们要建立和经济发展相适应的国防能力,相信再过10年,随着我国国防工业和汽车行业的发展,我们国家会诞生世界水平的机床制造商,也将会超越日本,成为世界第一机床生产大国。

参考文献:

1.《机床与液压》20041No171995-2005TsinghuaTongfang OpticalDiscCo¸,Ltd¸Allrightsreserved

2.参考资料:/f?kz=211006537

3.参考网址:/question/79231131.html?fr=qrl&fr2=query

4.《机床数控系统的发展趋势》黄勇陈子辰浙江大学

5.《中国机械工程》

6.《数控机床及应用》作者:李佳

7.《机械设计与制造工程》2001年第30卷第1期

8《机电新产品导报》2005年第12期

数控机床论文篇(5)

2数控机床电气控制系统出现的问题

数控机床在电器控制系统方面的故障一般都是强电故障和弱电故障两种,具体如下所述。

2.1弱电故障弱电指的是数控机床电气控制系统中的电子的元器件以及集成电路为主要的控制的部分。弱电故障中又可以分为硬件发生的故障和软件发生的故障。硬件故障主要是指各种集成电路内部的芯片或者是接插件等出现的事故。软件故障指的是在硬件都属于正常的情况下,内部发生的各种动作性的问题或者是数据出现丢失等问题,一般比较常见的例子有加工程序出现错误或者是计算机的运行出现错误以及系统的程序或者是参数出现错误等。

2.2强电故障强电部分指的是控制系统之中出现的主回路或者是大功率的回路中的继电器或者是电源变压器等一系列的电气的元件以及其中组成的控制电路。强电故障虽然在维修或者是诊断问题的部分较为简单,但是因为其处于一种高压以及大电流的工作状态之下,所以一般强电发生故障的次数要多于弱点故障,因此需要相关的维护和维修人员能够予以重视。

3解决方法

3.1调节法在解决数控机床电气控制系统的众多办法中,调节的方法是其中最为简单的一种。调节法主要是通过对于电位计进行调整,以此来达到修复系统出现的故障的目的。最佳的调整办法是对于伺服驱动系统和被拖动的机械系统来进行系统的调整,并实现最佳的匹配的一种较为综合性的调节的办法。这种调节的办法也较为简单,可以使用一台但是多线的记录仪来或者是双踪示波器来对于观察指令和速度反馈的一种相互响应的关系。一般都是通过对于速度调节器的比例系数以及积分的时间进行调整,促使伺服系统能够达到比较高的动态响应的一种特征,但是又不会出现振荡的一种最恰当的状态。另外,在现场如果没有示波器的情况下,相关的工作人员可以根据自己以往的工作经验,调节来使得电机起振并向反方向慢慢进行调节,一直调节到消除振荡状态为止。

3.2复位法如果数控机床的电气控制系统由于突发性故障而引起系统报警的情况,那么可以是他呀复位法患者是开关系统电源来进行依次地操作来消除故障。但是如果系统内部的工作存储的区域掉电并且插拔电路板以及电池欠压,而造成系统出现混乱的现象,那么就需要对于系统进行初始化操作来进行清除,但是在清除之前需要提前做好数据和信息的拷贝,以免丢失数据。但是如果初始化操作之后故障依旧没有排除,那么就需要进行硬件方面的检查和诊断。

3.3更正法所谓的更正法指的是对于系统中的参数进行修改,程序更正的办法。系统的参数主要是用来确定系统的功能的一种依据,如果系统的参数在设定的时候出现错误那么就很可能造成系统出现故障或者是系统中的某一项的功能失去作用。有的时候可能会因为用户的程序出现错误而导致系统出现故障而停止运作。在这种情况下,系统修复可以使他系统的搜索功能进行检查,来对于用户的程序中出现的错误进行搜索,在搜索完成之后依次改正,这样才能在发现错误之后进行改正,系统才能恢复运行。数控机床电气控制系统的发展在未来的发展道路中将不断走向开放式的发展形式,由于其可靠性和低成本等一系列的优点,将会促使更多的数控系统生产的商家逐步走向甲方是的发展形势。其中,数控机床电气控制系统在速度方面也将走向高速化的发展道路,精度方面也会得到一定的发展。另外,数控机床的电气控制系统还会向智能化方面进行转变。人工智能机在我国的研究和发展已经走向了一定的程度,其在计算机领域的发展也在不断深入,数控系统的智能化程度也将赶上时代的潮流,走向智能化的发展道路。

数控机床论文篇(6)

2、煤矿机械数控机床的设计

应综合考虑系统应用的场合,所需控制的对象以及对系统提出的基本要求这些因素之后,再选择使用合适的CPU。8088,8086,80386,8098,80286,8096等16位机的CPU是目前我国常用的CPU芯片。有时候也选用8位机的CPU,例如8080,8031,Z80等。应用于普通数控机床改造的一般是Z80CPU以及MCS一51单片机。选择它们主要是看重了配套芯片比较廉价,而且实用性和普及都是很强的,此外,对于它们的制造和维修也都是很方便的。这些特点使得它们完全符合改造需求。电气控制系统的目的就是为了满足被控对象工艺,有效的促进产品的质量和生产效率的进一步提升。在设计PLC控制系统的过程中,要按照下列原则进行。一、坚持完整性原则,也就是说,要确保可以满足工业生产过程和机械设备的需要。二、经济性原则,就是产品一经设计出可以做到简单实用。三、可靠性原则,就是PLC控制系统在设计完成后可以稳定可靠的运行。四、发展性原则,就是对现在已有的生产工艺进行全面的检查后给未来的发展留出一定的空间。通过机床的传动实现不同的工件在不同的速度下运行时的协调。传动的性能会对零件的质量和生产效率产生很大的影响,在设计中还要考虑其经济性,利用原来的电动机拖动机床的传动,达到机床的正常高效率运行。在加工的设计中,考虑到变换了切削转矩以及机床电压,会使得电机转速也发生变化,使得生产精度提高,其影响会直接反应在零件的表面生产。在主轴的设计中应加入变频调速系统,用来完成机械换挡。传动系统主要是将接受系统的指令传输给传送系统需要进行工作的部分。驱动系统会根据指令进行相应设定的工作,之后会进行机械的加工处理,从而生产出符合规定要求的零件。对于精度要求很高的参数设置需要依据传动要求进行相应的设定,同时,开环控制是对驱动系统进行改造的过程中不可缺少的环节。当现代机床与传统的进行比较时可以发现,现代机床具有更高的稳定性,而且自身发生故障的可能性越来越低,工作中出现的故障也大多是由于人为操作失误所引起。数控机床都是由机械和电气等多方面的程序构成,维修人员要从内到外仔细的检查,最大限度的排除因为随意的卸载造成的机床性能降低。此外,对于参数的设置也要能够起到将滚珠丝杠螺母副之间的轴向间隙减小甚至消除的作用,这样的操作可以更加有效地提高传动的刚度。在设计中,对数据库的整理也是很有必要的,它是远程数据库的基础,网络数据库是将数据和资源实现共享的核心技术,然后经过本地计算机的处理完成数据的存贮和查询。

3、煤矿数控机床伺服系统设计

数控机床的伺服系统有三种,即开环,半闭环和闭环三种。其中闭环的控制方案的优点很多也很突出,闭环的系统的机床精度很高,在补偿机械运动中的误差小,能减小甚至消除干扰与间隙等因素对精度的影响。但是闭环系统的机构较其他系统复杂,使用技术难度较大,对该系统的调试和维修困难,再有就是生产的造价高,在实际的生产过程中使用闭环的控制系统没有太大的必要性。ActiveX的其实就是一个开放的平台。其工作内容就是给程序的开发人员和用户,还有Web生产厂商提供在互联网创建程序集成过程中的方向。ActiveX服务器控件能把所有的能执行的代码还有程序融入到该服务器系统之中,并嵌入到Web中,让用户能通过网络就能得到想要的程序,不需要远程的客户端就能进行远程的执行。

数控机床论文篇(7)

数控机床是集机、电、液、气、光等为一体的自动化机床,经各部分的执行功能,最后共同完成机械执行机构的移动、转动、夹紧、松开、变速和换刀等各种动作,实现切削加工任务。工作时,各项功能相互结合,发生故障时也混在一起,故障现象和原因并非简单一一对应。一种故障现象可能有几种不同的原因,大部分故障以综合形式出现,数控机床的爬行与振动就是一个明显的例子。

数控机床进给伺服系统所驱动的移动部件在低速运行时,出现移动部件开始不能启动,启动后又突然作加速运动,而后又停顿,继而又作加速运动,如此周而复始,这种移动部件忽停忽跳,忽快忽慢的运动现象,称为爬行;而当其高速运行时,移动部件又出现明显的振动。这一故障现象就是典型的进给系统的爬行与振动故障。

造成这类故障的原因有多种可能,可能是因为机械部分出现了故障所导致,也可能是进给系统电气部分出现了问题,还可能是机械部分与电气部分的综合故障所造成,甚至可能因编程有误也会产生爬行故障。

一、分析机械部分原因与对策

因为数控机床低速运行时的爬行现象往往取决于机械传动部分的特性,高速时的振动又通常与进给传动链中运动副的预紧力有关,由此数控机床的爬行与振动故障可能会在机械部分。

如果在机械部分,首先应该检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果导轨间隙调整不好,仍会造成爬行或振动。对于静压导轨副应着重检查静压是否到位,对于塑料导轨可检查有否杂质或异物阻碍导轨副运动,对于滚动导轨则应检查预紧措施是否良好。关注导轨副的也有助于分析爬行问题,导轨副状态不好,导轨的油不足够,致使溜板爬行。这时,添加油,且采用具有防爬作用的导轨油是一种非常有效的措施。这种导轨油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性防止爬行。

其次,要检查进给传动链。因为在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。定位精度下降、反向间隙增大也会使工作台在进给运动中出现爬行。通过调整轴承、丝杠螺母副和丝杠本身的预紧力,调整松动环节,调整补偿环节,都可有效地提高这一传动链的扭转和拉压刚度(即提高其传动刚度),对于提高运动精度,消除爬行非常有益;另外传动链太长,传动轴直径偏小,支承座的刚度不够也是引起爬行的因素。因此,在检查时也要考虑这些方面是否有缺陷,逐个排查。

二、分析进给伺服系统原因与对策

如果故障原因在进给伺服系统,则需分别检查伺服系统中各有关环节。数控机床的爬行与振动问题属于速度问题,与进给速度密切相关,所以也就离不开分析进给伺服系统的速度环,检查速度调节器故障一是给定信号,二是反馈信号,三是速度调节器自身故障。根据故障特点(如振动周期与进给速度是否成比例变化)检查电动机或测速发电机表面是否光整;还可检查系统插补精度是否太差,检查速度环增益是否太高;与位置控制有关的系统参数设定有无错误;伺服单元的短路棒或电位器设定是否正确;增益电位器调整有无偏差以及速度控制单元的线路是否良好,应对这些环节逐项检查、分类排除。

三、其它因素

有时故障既不是机械部分的原因,又不是进给伺服系统的原因,有可能是其它原因如编程误差。如FANUC6M系统数控机床在一次切削加工时出现过载爬行。经过仔细核查,发现电动机故障引起过载,更换电动机过载消除,可爬行还是存在。先从机床着手寻找故障原因,结果核实传动链没问题,又查进给伺服系统确认无故障,随后对加工程序进行检查,发现工件曲线的加工,采用细微分段圆弧逼近来实现,而在编程中用了G61指令,也即每加工一段就要进行一次到位停止检查,从而使机床出现爬行现象,将G61改为G64指令连续切削,爬行消除。

如果故障既有机械部分的原因,又有进给伺服系统的原因,很难分辨出引起这一故障的主要矛盾,这是制约我们迅速查出故障原因的重要因素。面对这种情况,要进行多方面的检测,运用机械、电气、液压等方面的综合知识,采取综合分析判断,排除故障。

数控机床是技术密集和知识密集的设备,故障现象是多样的,其表现形式也没有简单的规律可遵循,这就要求维修的技术人员要有电子技术、计算机技术、电气自动化技术、检测技术、机械理论与实践技术、液压与气动等较全面的综合技术知识,还要求具有综合分析和解决问题的能力。

数控机床论文篇(8)

如果在机械部分,首先应该检查导轨副。因为移动部件所受的摩擦阻力主要是来自导轨副,如果导轨副的动、静摩擦系数大,且其差值也大,将容易造成爬行。尽管数控机床的导轨副广泛采用了滚动导轨、静压导轨或塑料导轨,如果导轨间隙调整不好,仍会造成爬行或振动。对于静压导轨副应着重检查静压是否到位,对于塑料导轨可检查有否杂质或异物阻碍导轨副运动,对于滚动导轨则应检查预紧措施是否良好。关注导轨副的也有助于分析爬行问题,导轨副状态不好,导轨的油不足够,致使溜板爬行。这时,添加油,且采用具有防爬作用的导轨油是一种非常有效的措施。这种导轨油中有极性添加剂,能在导轨表面形成一层不易破裂的油膜,从而改善导轨的摩擦特性防止爬行。

其次,要检查进给传动链。因为在进给系统中,伺服驱动装置到移动部件之间必定要经过由齿轮、丝杠螺母副或其他传动副所组成的传动链。定位精度下降、反向间隙增大也会使工作台在进给运动中出现爬行。通过调整轴承、丝杠螺母副和丝杠本身的预紧力,调整松动环节,调整补偿环节,都可有效地提高这一传动链的扭转和拉压刚度(即提高其传动刚度),对于提高运动精度,消除爬行非常有益;另外传动链太长,传动轴直径偏小,支承座的刚度不够也是引起爬行的因素。因此,在检查时也要考虑这些方面是否有缺陷,逐个排查。

二、分析进给伺服系统原因与对策

如果故障原因在进给伺服系统,则需分别检查伺服系统中各有关环节。数控机床的爬行与振动问题属于速度问题,与进给速度密切相关,所以也就离不开分析进给伺服系统的速度环,检查速度调节器故障一是给定信号,二是反馈信号,三是速度调节器自身故障。根据故障特点(如振动周期与进给速度是否成比例变化)检查电动机或测速发电机表面是否光整;还可检查系统插补精度是否太差,检查速度环增益是否太高;与位置控制有关的系统参数设定有无错误;伺服单元的短路棒或电位器设定是否正确;增益电位器调整有无偏差以及速度控制单元的线路是否良好,应对这些环节逐项检查、分类排除。

三、其它因素

有时故障既不是机械部分的原因,又不是进给伺服系统的原因,有可能是其它原因如编程误差。如FANUC6M系统数控机床在一次切削加工时出现过载爬行。经过仔细核查,发现电动机故障引起过载,更换电动机过载消除,可爬行还是存在。先从机床着手寻找故障原因,结果核实传动链没问题,又查进给伺服系统确认无故障,随后对加工程序进行检查,发现工件曲线的加工,采用细微分段圆弧逼近来实现,而在编程中用了G61指令,也即每加工一段就要进行一次到位停止检查,从而使机床出现爬行现象,将G61改为G64指令连续切削,爬行消除。

如果故障既有机械部分的原因,又有进给伺服系统的原因,很难分辨出引起这一故障的主要矛盾,这是制约我们迅速查出故障原因的重要因素。面对这种情况,要进行多方面的检测,运用机械、电气、液压等方面的综合知识,采取综合分析判断,排除故障。

数控机床是技术密集和知识密集的设备,故障现象是多样的,其表现形式也没有简单的规律可遵循,这就要求维修的技术人员要有电子技术、计算机技术、电气自动化技术、检测技术、机械理论与实践技术、液压与气动等较全面的综合技术知识,还要求具有综合分析和解决问题的能力。

参考文献:

数控机床论文篇(9)

目前,数控系统种类繁多,按数控系统的性能价格比分为:经济型数控系统、标准型数控系统、全功能型数控系统和特殊型数控系统四大类产品。

经济型数控系统也称简易数控系统(simplenumericalcontrolsystem)。其特点是价格便宜、精度适中、功能简化、针对性强,比较适用于老设备技朮改造和产品更新。

标准型数控系统的特点是功能较全,价格适中,适用于中档的数控机床,应用较广。

多功能型数控系统的特点是功能齐全,价格较贵。适用于加工复杂零件的大中型机床以及FMS、CIMS中使用的数控机床。

特殊型数控系统适用于各类特种加工机床,如:电加工机床,超精加工机床等。

依据经济实用原则。对中小型车床的改造广泛采用步进电机驱动的开环控制系统。用经济型数控系统改造后车床的控制原理如图1所示。改造后的车床可以自动车削圆柱面、圆锥面、端面、球面、螺纹等。

2.改造方案

结合生产实际,依据工艺要求和被改造车床的完好程度,可采用不同的改造方案。

对实际役龄较短,零部件完好,精度尚未降低,导轨刮花可见或实际役龄较长经修复后达到精度要求的机床可作如下改造。

安装脉冲编码器将主轴的转速与进给量联系起来。将原机床的刀架拆除换成电动刀架实现自动换刀。将原机床的挂轮系统、进给箱、溜板箱、丝杠、光杠拆除,换成由步进电机、齿轮减速装置和滚珠丝杠组成的进给传动系统。纵向步进电机及齿轮减速装置安装在拆除进给箱处的床身上。滚珠丝杠支座可安装在原丝杠的安装基面上,螺母支座安装在纵向拖板上。纵向进给传动示意图如图2所示。横向步进电机及齿轮减速装置安装在纵向溜板上横向丝杠尾端处。滚珠丝杠安装在原丝杠位置,并对原丝杠支承部位、螺母座部位以及原空间尺寸进行加工。注意横向滑板与齿轮减速装置是否碰撞,若碰应采取措施。横向进给传动示意图如图3所示。

二、经济型数控系统的选择

目前,国内生产的经济型数控系统有多种类型。经济型数控系统主要包括数控装置、坐标轴驱动(或伺服)系统、主轴驱动系统、刀架及辅助功能的强电控制与驱动系统、接口等。

经济型数控装置有步进电机驱动的开环数控装置、直流电机驱动的半闭环数控装置和点位式经济型数控装置三种。对于数控车床改造一般选用步电机驱动开环数控装置。选择时主要考虑以下性能:CPU类型、用户容量、控制轴或联动轴数、设定单位、插补类型、编程尺寸及编程标准,G、M、S、T、F功能、刀具补偿功能、间隙补偿功能及循环功能、显示方式及显示信息的形式、绝对编程、增量编程、程序输入方式以及报警、诊断等。根据需要选择相应的性能。

步进电机驱动单元的性能参数主要有:步进电机性能参数及安装尺寸,控制箱与电机的接线型式等。系统的快速进给速度、空载起动频率,静态转矩,系统升频降频时间,起动矩频特性、起动惯频特性、运行矩频特性。

驱动电路的型式主要有:高低压驱动电路、斩波驱动电路、调频调压驱动电路、细分驱动电路、电流检测型功率放大电路等。不同的电路型式、其工作性能不同,根据加工需要合理选择。

刀架控制与驱动系统主要考虑刀架型式(如四位或八位电动刀架,或转塔六位刀架等),定位精度及重复定位精度,换刀时间、刀具选择时刀架的转向、夹紧力,刀杆尺寸及装夹刀具结构型式等性能参数。

强电接口及弱电接口、主要根据工作需要选择。如工件自动夹紧,加工螺纹时,选择强电接口;主轴的脉冲编码器与数控装置的接线,程序输入接口等选择弱电接口。

国内生产的经济型数控系统的类型主要有:BCK2─001,BKC2─005,GWK─1A/Ⅱ/Ⅲ,JWK─20T,BKC2─8A,GSK─928,2385─1T等系列产品。广泛应用在数控改装及老产品车床改型中。在选择时,除性能参数外,还要考虑其外型,安装形式等因素。结合设计计算选择合适的经济型数控系统。

参考文献:

[1]李福生.实用数控机床技术手册[M].北京:北京出版社,1993.

[2]龚炳铮.机电一体化技朮应用实例[M].北京:机械工业出版社,1994.

[3]林其骏.机床数控系统[M].北京:中国科学技术出版社,1991.

[4]机床手册编委会.机床设计手册[M].北京:机械工业出版社,1986.

[5]顾冠群,万德均.机电一体化设计手册.江西科学技术出版社.

[6]张新义主编.经济型数控机床系统设计.机械工业出版社,1993.

数控机床论文篇(10)

采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。

1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。

这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。

在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。

数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。

然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。

到了1960年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到1966年实际使用的约6000台数控机床中,85%是点位控制的机床。

数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。这种产品最初是在1959年3月,由美国卡耐·;特雷克公司(Keaney&TreckerCorp.)开发出来的。这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令自动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。它可缩短机床上零件的装卸时间和更换刀具的时间。加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。

1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制造系统(FlexibleManufacturingSystem——FMS)之后,美、欧、日等也相继进行开发及应用。1974年以后,随着微电子技术的迅速发展,微处理器直接用于数控机床,使数控的软件功能加强,发展成计算机数字控制机床(简称为CNC机床),进一步推动了数控机床的普及应用和大力发展。

80年代,国际上出现了1~4台加工中心或车削中心为主体,再配上工件自动装卸和监控检验装置的柔性制造单元(FlexibleManufacturingCell——FMC)。这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制造系统中使用。

目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩展,从中小批量加工向大批量加工发展。

所以机床数控技术,被认为是现代机械自动化的基础技术。

那什么是车床呢?据资料所载,所谓车床,是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。

古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。1797年,英国机械发明家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可改变进给速度和被加工螺纹的螺距。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。

为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床;1848年,美国又出现回轮车床;1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床;20世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。

第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于60年代开始用于车床,70年代后得到迅速发展。

车床依用途和功能区分为多种类型。

普通车床的加工对象广,主轴转速和进给量的调整范围大,能加工工件的内外表面、端面和内外螺纹。这种车床主要由工人手工操作,生产效率低,适用于单件、小批生产和修配车间。

转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次使用不同刀具完成多种工序,适用于成批生产。

自动车床能按一定程序自动完成中小型工件的多工序加工,能自动上下料,重复加工一批同样的工件,适用于大批、大量生产。

多刀半自动车床有单轴、多轴、卧式和立式之分。单轴卧式的布局形式与普通车床相似,但两组刀架分别装在主轴的前后或上下,用于加工盘、环和轴类工件,其生产率比普通车床提高3~5倍。

仿形车床能仿照样板或样件的形状尺寸,自动完成工件的加工循环,适用于形状较复杂的工件的小批和成批生产,生产率比普通车床高10~15倍。有多刀架、多轴、卡盘式、立式等类型

立式车床的主轴垂直于水平面,工件装夹在水平的回转工作台上,刀架在横粱或立柱上移动。适用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。

铲齿车床在车削的同时,刀架周期地作径向往复运动,用于铲车铣刀、滚刀等的成形齿面。通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。

专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。联合车床主要用于车削加工,但附加一些特殊部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,适用于工程车、船舶或移动修理站

看机床的水平主要看金属切削机床,其他机床技术和复杂性不高,就是近几年很流行的电加工机床,也只是方法的改变,没什么复杂性和科技含量。

我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。

金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。

由普通发展到数控,一个人顶原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。

自美国在50年代末搞出世界一台数控车床后,机床制造业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。等80年代我们再去看世界的数控机床水平,差距就是20年了,其实奋起直追还有希望,但国营工厂不思进取,到了90年代,我们再去看世界水平,已有30年的差距了。中国改革开放前走的是苏联的路子,什么叫苏联的路子,举个例子来讲:比如,生产一根轴,苏联的方式是建一个专用生产线,用多台专用机床,好处是批量很容易上去,但一旦这根轴的参数发生了变化,这条线就报废了,生产人员也就没事做了。在1960-1980年代,国营工厂一个产品生产几十年不变样。到了1980年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就困难了,到了90年代就大量破产,大量职工下岗。现代的生产也有大批量生产,但主要是单件小批量,不管是那种,只要你的设备是数控的,适应起来就快。专业机床的路子已经到头了,;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推进螺旋桨上的制造,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。由此也可见,前苏联的机床制造业也落后了,他们落后,我们就更不用说了。虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没问题,剩下的就是电子系统方面,德国的电子系统工业本来就强大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。

但日本人的强项就是仿造,从上世纪70年代起,日本大量从德国引进技术,消化后大量仿造,经过努力,日本在90年代起,就超越了德国,成为世界第一大数控机床生产国,直到现在还是。他们在机床制造水平上,有一些也走在了世界前面,如在机床复合(一机多种功能)化方面,是世界第一。数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,主要是它的发拿科公司。第一代的系统用步进电机,我们现在也能造,第二代用交流伺服电机。现在的数控系统的核心就是交流伺服电机和系统内的逻辑控制软件,交流伺服电机我们国家目前还没有谁能制造,这是一个光学、机械、电子的综合体。逻辑控制软件就是控制机床的各轴运动,而这些轴是用伺服电机驱动的,一般的系统能同时控制3轴,高级系统能控制五轴,能控5轴的,五轴以上也没问题。我们国家也由有5轴系统,但“做秀”的成份多,还没实用化。我们的工厂用的五轴和五轴以上机床,100%进口。

机床是一个国家制造业水平高低的象征,其核心就是数控系统。我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,主要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有问题。目前国内的各大机床厂,数控系统100%外购,各厂家一般都买日本发那科、三菱的系统,占80%以上,也有德国西门子的系统,但比较少。德国西门子系统为什么用的少呢?早期,德国系统不太能适合我们的电网,我们的电网稳定性不够,西门子系统的电子伺服模块容易烧坏。日本就不同了,他们的系统就烧不坏。近来西门子系统改进了不少,价格方面还是略高。德国人很不重视中国,所以他们的系统汉语化最近才有,不像日本,老早就有汉语化版的。

就国产高级数控机床而言,其利润的主体是被外国人拿走了,中国只是挣了一个辛苦钱。

美国为什么没有能成为数控机床制造大国呢?这个和他们当时制定产业政策的人有关,再加上当时美国的劳动力贵,买比制造划算。机床属于投资大,见效慢,回报率底的产业,而且需要技术积累。不太附和美国情况。但后来美国发现,机床属于战略物资,没有它,飞机、大炮、坦克、军舰的制造都有问题,所以他们重新制定政策,扶植了一些机床厂,规定了一些单位只能买国产设备,就是贵也得买,这就为美国保留了一些数控机床行业。美国机床在世界上没有什么竞争力。

欧洲的机床,除德国外,瑞士的也很好,要说超高精密机床,瑞士的相当好,但价格也是天价。一般用户用不起。意大利、英国、法国属于二流,中国很少买他们的机床。西班牙为了让中国进口他们的机床,不惜贷款给中国,但买的人也很少??借钱总是要还的。

韩国、台湾的数控机床制造能力比大陆地区略强,不过水平差不多。他们也是在上世纪90年代引进日本技术发展的。韩国应该好一点,它有自己制造的、已经商业化了的数控系统,但进口到中国的机床,应我们的要求,也换成了日本系统。我们对他们的系统信不过。韩国数控机床主要有两家:大宇和现代。大宇目前在我国设有合资企业。台湾机床和我们大体一样,自己造机械部分,系统采购日本的。但他们的机床质量差,寿命短,目前在大陆影响很坏。其实他们比我们国产的要好一点。但我们自己的差,我们还能容忍,台湾的机床是用美金买来的,用的不好,那火就大了。台湾最主要的几家机床厂已打算把工厂迁往大陆,大部分都在上海。这些厂目前在国内的竞争中,也打着“国产”的旗号。

近来随着中国的经济发展,也引起了世界一些主要机床厂商的注意,2000年,日本最大的机床制造商“马扎克”在中国银川设立了一家数控机床合资厂,据说制造水平相当高,号称“智能化、网络化”工厂,和世界同步。今年日本另外一家大机床厂大隈公司在北京设立了一家能年产1000台数控机床的控股公司,德国的一家很有名的企业也在上海设立了工厂。

目前,国家制定了一些政策,鼓励国民使用国产数控机床,各厂家也在努力追赶。国内买机床最多的是军工企业,一个购买计划里,80%是进口,国产机床满足不了需要。今后五年内,这个趋势不会改变。不过就目前国内的需要来讲,我国的数控机床目前能满足中低档产品的订货。

美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。因其社会条件不同,各有特点。

1.美国的数控发展史

美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重於基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。

2.德国的数控发展史

德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。,於1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统,均为世界闻名,竞相采用。

3.日本的数控发展史

日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出于蓝而胜于蓝。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。

4.我国的现状

我国数控技术的发展起步于二十世纪五十年代,中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。在1958~1979年间为第一阶段,从1979年至今为第二阶段。第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。主要存在的问题是盲目性大,缺乏实事求是的科学精神。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。 

 在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。存在的主要问题包括:缺乏象日本“机电法”、“机信法”那样的指引;严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。

2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,1999年,我们国家机械加工设备数控华率是5-8%,目前预计是15-20%之间。一、什么是数控机床车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。我们一般所说的数控设备,主要是指数控车床和加工中心。我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年,但如果国家支持,追赶起来也不是什么问题,例如:去年,沈阳机床集团收购了德国西思机床公司,意义很大,如果大力消化技术,可以缩短不少差距。大连机床公司也从德国引进了不少先进技术。上海一家企业购买日本著名的机床制造商池贝。,近几年随着中国制造的崛起,欧洲不少企业倒闭或者被兼并,如马毫、斯滨纳等。日本经济不景气,有不少在80年代很出名的机床制造商倒闭,例如:新泻铁工所。二、数控设备的发展方向六个方面:智能化、网络化、高速、高精度、符合、环保。目前德国和瑞士的机床精度最高,综合起来,德国的水平最高,日本的产值最大。美国的机床业一般。中国大陆、韩国。台湾属于同一水平。但就门类、种类多少而言,我们应该能进世界前4名。三、数控系统 由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界最大的三家厂商是:日本发那客、德国西门子、日本三菱;其余还有法国扭姆、西班牙凡高等。国内由华中数控、航天数控等。国内的数控系统刚刚开始产业化、水平质量一般。高档次的系统全都是进口。华中数控这几年发展迅速,软件水平相当不错,但差就差在电器硬件上,故障率比较高。华中数控也有意向数控机床业进军,但机床的硬件方面不行,质量精度一般。目前国内一些大厂还没有采用华中数控的。广州机床厂的简易数控系统也不错。我们国家机床业最薄弱的环节在数控系统。

四、机床精度1、机械加工机床精度分静精度、加工精度(包括尺寸精度和几何精度)、定位精度、重复定位精度等5种。2、机床精度体系:目前我们国家内承认的大致是四种体系:德国VDI标准、日本JIS标准、国际标准ISO标准、国标GB,国标和国际标准差不多。3、看一台机床水平的高低,要看它的重复定位精度,一台机床的重复定位精度如果能达到0.005mm(ISO标准.、统计法),就是一台高精度机床,在0.005mm(ISO标准.、统计法)以下,就是超高精度机床,高精度的机床,要有最好的轴承、丝杠。;4、加工出高精度零件,不只要求机床精度高,还要有好的工艺方法、好的夹具、好的刀具。五、目前世界著名机床厂商在我国的投资情况1、2000年,世界最大的专业机床制造商马扎克(MAZAK)在宁夏银川投资建了名为“宁夏小巨人机床公司”的机床公司,生产数控车床、立式加工中心和车铣复合中心。机床质量不错,目前效益良好,年产600台,目前正在建2期工程,建成后可以年产1200台。2、2003年,德国著名的机床制造商德马吉在上海投资建厂,目前年组装生产数控车床和立式加工中心120台左右。3、2002年,日本著名的机床生产商大隈公司和北京第一机床厂合资建厂,年生产能力为1000台,生产数控车床、立式加工中心、卧式加工中心。4、韩国大宇在山东青岛投资建厂,目前生产能力不知。5、台湾省的著名机床制造商友嘉在浙江萧山投资建厂,年生产能力800台。5、民营企业进入机床行业情况1、浙江日发公司,2000年投产,生产数控车床、加工中心。年生产能力300台。2.2004年,浙江宁波著名的铸塑机厂商海天公司投资生产机床,主要是从日本引进技术,目前刚开始,起点比较高。3.2002年,西安北村投产,名字象日本的,其实老板是中国人,采用日本技术。生产小型仪表数控车床,水平相当不错。六、军工企业技改情况军工企业得到国家拨款开始于当年“大使馆被炸”,后来台湾上台后,大规模技改开始了,军工企业进入新一轮的技改高峰,我们很多军工企业开始停止购买普通设备。尤其是近3年来,我们的军工企业从欧洲和日本买了大批量的先进数控机床。也从国内机床厂哪里采购了大批普通数控机床,国内机床厂商为了迎接这次大技改,也引进了不少先进技术,争取军工企业的高端订单。听在军工企业的朋友讲,如果再能“顶”三年,我们的整体水平会上一个台阶。 其实,总书记掌权以来,已经把国防事业提到了和经济发展一样的高度上,他说,我们要建立和经济发展相适应的国防能力,相信再过10年,随着我国国防工业和汽车行业的发展,我们国家会诞生世界水平的机床制造商,也将会超越日本,成为世界第一机床生产大国。

参考文献:

1.《机床与液压》20041No171995-2005TsinghuaTongfang OpticalDiscCo¸,Ltd¸Allrightsreserved

4.《机床数控系统的发展趋势》黄勇陈子辰浙江大学

5.《中国机械工程》

6.《数控机床及应用》作者:李佳

7.《机械设计与制造工程》2001年第30卷第1期

8《机电新产品导报》2005年第12期

数控机床论文篇(11)

前言

提高机床精度有两种方法。一种是通过提高零件设计、制造和装配的水平来消除可能的误差源,称为误差防止法(errorprevention)。该方法一方面主要受到加工母机精度的制约,另一方面零件质量的提高导致加工成本膨胀,致使该方法的使用受到一定限制。另一种叫误差补偿法(errorcompensation),通常通过修改机床的加工指令,对机床进行误差补偿,达到理想的运动轨迹,实现机床精度的软升级。研究表明,几何误差和由温度引起的误差约占机床总体误差的70%,其中几何误差相对稳定,易于进行误差补偿。对数控机床几何误差的补偿,可以提高整个机械工业的加工水平,对促进科学技术进步,提高我国国防能力,继而极大增强我国的综合国力都具有重大意义。

1几何误差产生的原因

普遍认为数控机床的几何误差由以下几方面原因引起:

1.1机床的原始制造误差

是指由组成机床各部件工作表面的几何形状、表面质量、相互之间的位置误差所引起的机床运动误差,是数控机床几何误差产生的主要原因。

1.2机床的控制系统误差

包括机床轴系的伺服误差(轮廓跟随误差),数控插补算法误差。

1.3热变形误差

由于机床的内部热源和环境热扰动导致机床的结构热变形而产生的误差。

1.4切削负荷造成工艺系统变形所导致的误差

包括机床、刀具、工件和夹具变形所导致的误差。这种误差又称为“让刀”,它造成加工零件的形状畸变,尤其当加工薄壁工件或使用细长刀具时,这一误差更为严重。

1.5机床的振动误差

在切削加工时,数控机床由于工艺的柔性和工序的多变,其运行状态有更大的可能性落入不稳定区域,从而激起强烈的颤振。导致加工工件的表面质量恶化和几何形状误差。

1.6检测系统的测试误差

包括以下几个方面:

(1)由于测量传感器的制造误差及其在机床上的安装误差引起的测量传感器反馈系统本身的误差;

(2)由于机床零件和机构误差以及在使用中的变形导致测量传感器出现的误差。

1.7外界干扰误差

由于环境和运行工况的变化所引起的随机误差。

1.8其它误差

如编程和操作错误带来的误差。

上面的误差可按照误差的特点和性质,归为两大类:即系统误差和随机误差。

数控机床的系统误差是机床本身固有的误差,具有可重复性。数控机床的几何误差是其主要组成部分,也具有可重复性。利用该特性,可对其进行“离线测量”,可采用“离线检测——开环补偿”的技术来加以修正和补偿,使其减小,达到机床精度强化的目的。

随机误差具有随机性,必须采用“在线检测——闭环补偿”的方法来消除随机误差对机床加工精度的影响,该方法对测量仪器、测量环境要求严格,难于推广。

2几何误差补偿技术

针对误差的不同类型,实施误差补偿可分为两大类。随机误差补偿要求“在线测量”,把误差检测装置直接安装在机床上,在机床工作的同时,实时地测出相应位置的误差值,用此误差值实时的对加工指令进行修正。随机误差补偿对机床的误差性质没有要求,能够同时对机床的随机误差和系统误差进行补偿。但需要一整套完整的高精度测量装置和其它相关的设备,成本太高,经济效益不好。文献[4]进行了温度的在线测量和补偿,未能达到实际应用。系统误差补偿是用相应的仪器预先对机床进行检测,即通过“离线测量”得到机床工作空间指令位置的误差值,把它们作为机床坐标的函数。机床工作时,根据加工点的坐标,调出相应的误差值以进行修正。要求机床的稳定性要好,保证机床误差的确定性,以便于修正,经补偿后的机床精度取决于机床的重复性和环境条件变化。数控机床在正常情况下,重复精度远高于其空间综合误差,故系统误差的补偿可有效的提高机床的精度,甚至可以提高机床的精度等级。迄今为止,国内外对系统误差的补偿方法有很多,可分为以下几种方法:

2.1单项误差合成补偿法

这种补偿方法是以误差合成公式为理论依据,首先通过直接测量法测得机床的各项单项原始误差值,由误差合成公式计算补偿点的误差分量,从而实现对机床的误差补偿。对三坐标测量机进行位置误差测量的当属Leete,运用三角几何关系,推导出了机床各坐标轴误差的表示方法,没有考虑转角的影响。较早进行误差补偿的应是Hocken教授,针对型号Moore5-Z(1)的三坐标测量机,在16小时内,测量了工作空间内大量的点的误差,在此过程中考虑了温度的影响,并用最小二乘法对误差模型参数进行了辨识。由于机床运动的位置信号直接从激光干涉仪获得,考虑了角度和直线度误差的影响,获得比较满意的结果。1985年G.Zhang成功的对三坐标测量机进行了误差补偿。测量了工作台平面度误差,除在工作台边缘数值稍大,其它不超过1μm,验证了刚体假设的可靠性。使用激光干涉仪和水平仪测量得的21项误差,通过线性坐标变换进行误差合成,并实施了误差补偿。X-Y平面上测量试验表明,补偿前,在所有测量点中误差值大于20μm的点占20%,在补偿后,不超过20%的点的误差大于2μm,证明精度提高了近10倍。

除了坐标测量机的误差补偿以外,数控机床误差补偿的研究也取得了一定的成果。在1977年Schultschik教授运用矢量图的方法,分析了机床各部件误差及其对几何精度的影响,奠定了机床几何误差进一步研究的基础。Ferreira和其合作者也对该方法进行了研究,得出了机床几何误差的通用模型,对单项误差合成补偿法作出了贡献。J.Nietal更进一步将该方法运用于在线的误差补偿,获得了比较理想的结果。Chenetal建立了32项误差模型,其中多余的11项是有关温度和机床原点误差参数,对卧式加工中心的补偿试验表明,精度提高10倍。Eung-SukLeaetal几乎使用了同G.Zhang一样的测量方法,对三坐标Bridgeport铣床21项误差进行了测量,运用误差合成法得出了误差模型,补偿后的结果分别用激光干涉仪和Renishaw的DBB系统进行了检验,证明机床精度得以提升。

2.2误差直接补偿法

这种方法要求精确地测出机床空间矢量误差,补偿精度要求越高,测量精度和测量的点数就要求越多,但要详尽地知道测量空间任意点的误差是不可能的,利用插值的方法求得补偿点的误差分量,进行误差修正,该种方法要求建立和补偿时一致的绝对测量坐标系。

1981年,Dufour和Groppetti在不同的载荷和温度条件下,对机床工作空间点的误差进行了测量,构成误差矢量矩阵,获得机床误差信息。将该误差矩阵存入计算机进行误差补偿。类似的研究主要有A.C.Okaforetal,通过测量机床工作空间内,标准参考件上多个点的相对误差,以第一个为基准点,然后换算成绝对坐标误差,通过插值的方法进行误差补偿,结果表明精度提高了2~4倍。Hooman则运用三维线性(LVTDS)测量装置,得到机床空间27个点的误差(分辨率0.25μm,重复精度1μm),进行了类似的工作。进一步考虑到温度的影响,每间隔1.2小时测量一次,共测量8次,对误差补偿结果进行了有关温度系数的修。这种方法的不足之处是测量工作量大,存储数据多。目前,还没有完全合适的仪器,也限制了该方法的进一步运用和发展。

2.3相对误差分解、合成补偿法

大多数误差测量方法只是得到了相对的综合误差,据此可以从中分解得到机床的单项误差。进一步利用误差合成的办法,对机床误差补偿是可行的。目前,国内外对这方面的研究也取得一定进展。

2000年美国Michigan大学JunNi教授指导的博士生ChenGuiquan做了这样的尝试,运用球杆仪(TBB)对三轴数控机床不同温度下的几何误差进行了测量,建立了快速的温度预报和误差补偿模型,进行了误差补偿。Christopher运用激光球杆仪(LBB),在30分钟内获得了机床的误差信息,建立了误差模型,在9个月的时间间隔内,对误差补偿结果进行了5次评价,结果表明,通过软件误差补偿的方法可

以提高机床的精度,并可保持精度在较长时间内不变。

误差合成法,要求测出机床各轴的各项原始误差,比较成熟的测量方法是激光干涉仪,测量精度高。用双频激光干涉仪进行误差测量,需时间长,对操作人员调试水平要求高。更主要的是对误差测量环境要求高,常用于三坐标测量机的检测,不适宜生产现场操作。相对误差分解、合成补偿法,测量方法相对简单,一次测量可获得整个圆周的数据信息,同时可以满足机床精度的检测和机床评价。目前也有不少的误差分解的方法,由于机床情况各异,难以找到合适的通用数学模型进行误差分解,并且对测量结果影响相同的原始误差项不能进行分解,也难以推广应用。误差的直接补偿法,一般以标准件为对照获得空间矢量误差,进行直接补偿,少了中间环节,更接近机床的实用情况。但获得大量的信息量需要不同的标准件,难以实现,这样补偿精度就受到限制。

在国内,许多研究机构与高校近几年也进行了机床误差补偿方面的研究。1986北京机床研究所开展了机床热误差的补偿研究和坐标测量机的补偿研究。1997年天津大学的李书和等进行了机床误差补偿的建模和热误差补偿的研究。1998年天津大学的刘又午等采用多体系统建立了机床的误差模型,给出了几何误差的22线、14线、9线激光干涉仪测量方法,1999年他们还对数控机床的误差补偿进行了全面的研究,取得了可喜的成果。1998年上海交通大学的杨建国进行了车床热误差补偿的研究。1996到2000年在国家自然科学基金和国家863计划项目的支持下,华中科技大学开展了对数控机床几何误差补偿以及基于切削力在线辩识的智能自适应控制的研究,取得了一些成果。

综上所述:进行数控机床的误差补偿,误差测量是关键,误差模型是基础。通过误差的补偿,可以有效的提高机床的精度,为提升我国制造业水平作贡献。

参考文献

[1]倪军.数控机床误差补偿研究的回顾与展望[J].中国机械工程,1997,8(1):29~32.

[2]RameshR,MannanMA,PooAN.Errorcompensationinmachinetools—areviewpartI:geometric,cutting-forceinducedandfixture-dependenterrors.InternationalJournalofMachineTools&Manufacture,2000,40:1235~1256.

[3]J.Ni,Studyononlineidentificationandforecastingcompensatorycontrolofvolumetricerrorsformultipleaxismachinetools.PhDdissertation,UniversityofWisconsin-Madison,1987.

[4]RameshR,MannanMA,PooAN.Errorcompensationinmachinetools—areviewPartII:thermalerrors.InternationalJournalofMachineTools&Manufacture,2000,40:1257~1284.

[5]LeeteDJ.Automaticcompensationofalignmenterrorinmachinetools.InternationalJournalofMachineToolDesignandResearch,1961,1:293~324.

[6]HockenR,Simpson,A.J.,etat.Threedimensionalmetrology.AnnalsoftheCIRP,1977,26(2):403~408.

[7]ZhangG,VealeR,CharltonT,BorchardtB,HockenR.Errorcompensationofcoordinatemeasuringmachines.AnnalsoftheCIRP,1985,34(1):445~448.

[8]SchultschikR.Thecomponentsofthevolumetricaccuracy.AnnalsoftheCIRP,1977,25(1):223~228.

[9]KiridenaV,FerriraP.Kinematicmodelingofquasi-staticerrorsofthree-axismachinecenters.Int.J.Mach.ToolsManufact.,1994,34(1):85~100.

[10]NiJ.andS.M.Wu.Anon-linemeasurementtechniqueformachinevolumetricerrorcompensation.Journalofengineeringforindustry,1993,115:85~92.

[11]ChenJS,YuanJ,NiJ,WuSM.Real-timecompensationfortime-variantvolumetricerrorsonamachiningcenter,TransactionsoftheASME,journalofEngineeringIndustry,1993,115:472~479.

[12]Eung-SukLee,Suk-HwanSuhandJin-WookShon.Acomprehensivemethodforcalibrationofvolumetricpositioningaccuracyofcnc-machines.Advancedmanufacturingtechnology,1998,14(1):43~49.

[13]DufourP,puteraidedaccuracyimprovementinlargerNCmachinetools.M.T.D.R.ConferenceProceedings,1988,22:611~618.

[14]A.C.Okafor,YalcinM.Ertekin.Derivationofmachinetoolerrormodelsanderrorcompensationprocedureforthreeaxesverticalmachiningcenterusingrigidbodykinematics.InternationalJournalofMachineToolsandManufacturing,2000,40:1199~1213.

[15]HoomanTajbakhsh,ZainulAbadinandPlacidM.Ferreira.L∞Parameterestimatesforvolumetricerrorinmodelsofmachinetools.PrecisionEngineering,1997,20:179~187.

[16]ChenGuiquan.Rapidvolumetricerrormappingandcompensationforathree-axismachinecenter.Ph.D.thesis,MichigenUniversity,USA,2000.

[17]ChristopherD.MizeandJohnC.Ziegert.Durabilityevaluationofsoftwareerrorcorrectiononamachinecenter.InternationalJournalofMachineToolsandManufacturing,2000,40:1527~1534.

[18]李书和.数控机床误差补偿的研究[D].天津:天津大学,1996.