欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

欧姆定律含义大全11篇

时间:2023-08-30 16:32:30

欧姆定律含义

欧姆定律含义篇(1)

亚里士多德说:“古往今来人们开始探索,都应起源于对自然万物的惊异。”对学生而言,这种惊异无疑会带动兴趣的产生,从而引发认知活动的展开。故事对学生而言,有着不可抵挡的吸引力,若将故事与物理相结合,引入课堂当中,不但能激发学生的学习兴趣,也能让学生在阅读故事、解决故事所包含的物理情境问题中,培养学生的分析、归纳能力与解决问题的能力等等。

新课程强调的探究学习要求学生在主动参与的前提下,根据自己的猜想或假设,在科学理论指导下,运用科学的方法对问题进行研究,在研究过程中获得创新实践能力、获得思维发展,自主构建知识体系。如何将探究过程渗透到课堂教学中,是众多教师亟待考虑的问题。笔者就将一则《如果你是柯南》的破案故事,引入初二下学期“欧姆定律及其应用”的学习中,以激发学生的学习兴趣,将物理问题插入故事情节中,经由学生的独立思考与分组讨论,体会物理问题的探究过程,促进学生对欧姆定律的理解与掌握,培养学生的问题解决能力,并借此开展了一节探究课堂。

一、抛出故事,引发学生的学习兴趣

欧姆定律,是学生在学习了电流、电压和电阻的概念之后所接触的第一条物理规律,也是初中阶段学生第一次应用物理公式通过计算来解决问题。欧姆定律是电学的基础,很多学生因为不能掌握欧姆定律的物理意义、灵活运用公式进行计算,而导致在后期的学习当中越来越困难。理解与灵活应用欧姆定律,是本节课的一个教学重点。

笔者所引入的故事情节中有四个人同时入住旅馆的晚上,店主的钻石不见了,警察介入此事并展开调查,四个人分别提供了不在场的证明,依次是在用电烙铁修收音机、用电热水炉烧水、电炉取暖和电饭锅煮饭,问:如果你是柯南,你能找出谁是小偷吗?

柯南作为一个卡通角色,学生对他追崇源自于柯南通过自己的智慧成功破获了众多案件,让学生为之着迷。本则故事则可以轻而易举打开学生的兴趣大门,吸引学生迫不及待地阅读故事情节,以柯南的角色投入破案,并思考如何解决故事结尾所提出的问题。

二、针对故事情节,提出问题,引发学生的思考

对柯南的故事,学生展现出了极大的兴趣,个别学生会在没读完之前,便迫不及待地说出自己所认为的那个凶手。

学生甲:熊仔是小偷,因为没有人会在旅馆里用电烙铁修收音机。

教师:这只是你自己的感觉而已,如果熊仔是一个修电器的师傅,就可以用电烙铁修收音机。

学生乙:小美是小偷。

教师:为什么?

学生乙:不知道,感觉像是小偷。

对初中生来说,他们的思维已经发展得较为完善,但是对于客观事实的判断,依靠的还是主观判断。对于学生众多的讨论结果,也有细心的学生会发现故事中还存在隐含的条件。此时,引导全体学生再次阅读故事,并告知他们:在故事或者是物理题当中,题目往往会包含隐含的条件,要通过细心的阅读才能发现。适当地引导学生可以让学生体会物理解题的过程及培养学生严谨的科学态度,鼓励学生针对自己的想法与周边的同学进行讨论。

讨论的过程可以更好地发挥学生的主动性、积极性,有利于培养学生的独立思维能力、口头表达能力,促进学生灵活地运用知识。

三、根据欧姆定律,解决问题、验证猜想,归纳并得出结论

学生经过再次阅读之后,在警察观察现场时发现了一个问

题:“家庭旅馆使用220 V的家庭电压,每个房间的电闸都标示房间规定最大电流是5 A。”

教师:房间的最大规定电流是5 A,这是什么意思呢?

不断地给学生提出问题,引发学生的思考。找到5 A所代表的物理意义,那学生就逐渐明白,如果四个人的房间中,谁的电流超过5 A,那么他就是小偷。接下来的问题就是如何计算房间的电流。学生会轻而易举地想到通过欧姆定律可以计算得出房间的电流值。经过一番讨论之后,将全班同学就近分组,引导学生在前面所学过的知识中找到不同电器的电阻值,给予小组适当的时间进行分组讨论与计算,带动小组间的交流与沟通,培养学生合作学习的能力。在讨论完毕后,让每个小组派代表来公布结论与理由,间接锻炼学生的总结归纳能力与语言表达能力。

在整个探究过程中,学生不仅找出了故事中的小偷,并且进一步巩固、应用了欧姆定律,更将其与生活实际紧密结合起来。此时,学生依然保持高涨的学习热情,表现出意犹未尽的感觉,更有学生认为如果多些类似的故事,物理就会变得更有趣,觉得学习物理并不是一件很难的事情。这个时候把握机会,引入关于欧姆定律应用的具体实例,以进一步强化对欧姆定律的运用。

在物理教学中,恰当地引入情景故事,不仅可以激发与提高学生的学习兴趣,还能够在故事中渗透科学的教育思想,引导学生探究并解决问题,锻炼学生的思维能力与自主建构知识的能力,进行有意义的学习。创设教学情境,引入包含物理知识的趣味故事,让学生从物理走向生活,并在生活中学习物理,加深对物理知识的理解与掌握,这也是新课标对物理教学的要求。

参考文献:

[1]褚国庆.在故事中学习物理:基于情境认知与学习理论的初中物理选修课的实践[D].南京师范大学,2007.

[2]林龙源.物理教学中故事式演绎[J].中学物理,2012(4):31-32.

欧姆定律含义篇(2)

二、学习任务分析

本节重点是欧姆定律的内容和公式。通过实验探究,归纳总结出欧姆定律,让学生领悟科学探究的方法,体验科学探究的乐趣,形成尊重事实、探究真理的科学态度,培养学生分析解决问题的能力;理解欧姆定律中电流I、电压U、电阻R的同一性是本节难点,在探究过程中通过适时引导、恰当点拨,利用实物电路使学生达到理解欧姆定律的目的。

三、学习者分析

学习了电路基础知识,学生产生了浓厚的兴趣,多数学生能正确连接电路元件,正确使用电流表、电压表和滑动变阻器,对于控制变量的研究方法也有所了解。学生有较强的好奇心和求知欲,他们渴望自己动手进行科学探究,体验成功的乐趣,但对于U、I、R三者关系知之甚少,规律性知识的概括往往以偏概全。他们的思维方式逐步由形象思维向抽象思维过渡,教学中让学生自主设计研究问题的方案,是发展学生思维的有效途径。

四、教学目标

⑴知识与技能

会用实验的方法探究电流与电压、电阻的关系;

理解欧姆定律的内容、公式;

培养学生的观察、实验能力和分析概括能力。

⑵过程与方法

通过实验探究学习研究物理问题常用的方法──控制变量法。

⑶情感、态度与价值观

通过探究过程,激发学生的学习兴趣。培养学生实事求是的科学态度;认真谨慎的学习习惯。

重点:欧姆定律的内容和公式;

通过实验使学生知道导体中电流与电压、电阻的关系。

难点:理解欧姆定律的内容;

弄清变形公式的含义。

五、教法设计

依据本节课的知识特点、教学目标和学生实际,确定本节主要采用实验探究法。把学生视为学习的主人,教师当好学习的组织者和引导者。探究式学习可以激活学生已有的知识,在探究新问题时使知识活化、重组,形成知识结构并向能力转化;让学生体会科学发现的全过程,从中感悟科学思想和科学方法。

欧姆定律含义篇(3)

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2017)1-0019-3

人教版高中物理选修3-1第二章第七节《闭合电路的欧姆定律》是电学知识的核心内容,其中包含了许多科学思想方法,是学生学习和体会科学思想方法的好素材。作为一节典型的规律探究课,本节内容较抽象,学生在学习时,对电源内电路认识模糊,难以理解电源有内阻;对内外电路的电压与电源电动势的关系及路端电压与负载关系感到疑惑,对其中蕴含的科学方法未能深刻领会。“如何有效突破这些教学难点?”“如何设计好闭合电路欧姆定律的探究过程,有效实施三维目标教学?”一直是广大物理教师研究的重要课题,本文试图通过对本节课的教材、教法的分析,探究形成学生认知困难的主要原因以及在本节课中如何有效实施探究教学,培养学生的核心素养。

1 教材、教法分析

人教版教材是把《闭合电路的欧姆定簟钒才旁诘缭础⒌缍势、欧姆定律、串并联电路、焦耳定律和导体的电阻之后来学习的。很显然,这种安排的意图是在承接“从做功角度认识电动势”的基础上,引导学生从功能关系角度来建立闭合电路的欧姆定律,体现了循序渐进的教学原则。顺应这种构想,教材对本节内容以如下方式呈现:先直接给出闭合电路的概念,然后从功能关系出发, 根据能量守恒,理论推导出闭合电路的欧姆定律和U+U=E,再根据闭合电路的欧姆定律,理论分析路端电压与负载的关系。这种呈现方式的好处是:既充分体现了功和能的概念在物理学中的重要性,又有利于学生从理论角度理解闭合电路的欧姆定律。从教材体系来看这种呈现方式具有一定的合理性和科学性。

笔者曾多次参与“闭合电路的欧姆定律”的观摩教学,领略了执教老师们的各种处理方法,比较有代表性的是以下两种教法:

第一种教法是沿用原教材的思路,采用比较传统的方式,注重理论探究,先从理论上推导得出闭合电路欧姆定律的数学表达式,再应用定律讨论了路端电压随外电路电阻的变化规律,最后引导学生运用规律解题,把立足点放在训练学生的解题能力上。

第二种教法注重突出实验的地位,发挥实验在探究教学中的作用。利用实验创设悬念,引入课题,设计探究实验,让学生在实验中总结归纳出内外电压之间的关系,再利用教材中的图2.7-3实验探究路端电压与负载的关系。

根据课后反馈发现,沿用原教材思路设计的教学,效果并没有达到设计者想象的结果,究其原因,主要有以下几个方面:

1.教材中的闭合电路的欧姆定律是从理论角度得出的,注重于数学推理,比较抽象,缺乏令人信服的探究实验,学生无直接经验感知和相应的认知过程,难以形成深刻的理解。

2.教材对闭合电路,特别是内电路的建构过于直接,无感知过程,学生对教材中为了突出闭合电路而提供的闭合电路中电势高低变化的模型图难以理解,加之学生对部分电路的欧姆定律印象深刻,对电源内部的电路无直观印象,对电源也有内阻心存疑虑,难以突破初中形成的“路端电压不随外电路变化”的思维定势。

3.教材是利用纯电阻电路中的能量守恒关系推导得到IR+Ir=E和U+U=E,这种处理方式,会让学生对U+U=E的普适性产生怀疑:非纯电阻电路还适用吗?

4.作为一节规律探究课,本节课包含了许多科学思想方法,教材过于注重理论推导,忽视了实验探究,淡化了猜想、类比、比较、分析等多种科学思想方法教育,这对培养学生的探究能力和体验研究物理问题的方法是不利的,也不利于提高课堂教学的有效性。

第二种“通过设计多个实验来进行实验探究”的处理方法,调动学生学习的主动性和积极性,学生能获得更直观的认识,有效地突破一些教学难点,但由于本节知识点多,思维量大,设计过多的实验(特别是设计繁杂的分组实验)势必会分散学生的注意力,干扰学生的正常思考,挤压学生思考和实践应用的时间,影响了学生主体作用的发挥,效果同样不尽如人意。

2 教学建议

2.1 尊重学生的认知规律,科学设计探究过程

从物理学史来看,欧姆定律是基于实验而发现的,并非演绎推理的结果,教材通过功能关系分析来建立闭合电路的欧姆定律。这种处理方法带来的负面影响是学生缺乏感性认识,没有参与知识发现过程中的情感体验,难以形成深刻的理解,课堂上学生学习的积极性也不高。规避这种负面影响的方法就是在教学设计时,应当尊重学生的心理特点和认知规律,科学地设计探究过程,让学生在亲身探究中理解定律,体验方法。基于这种指导思想,笔者在教学设计时,先用两节新电池和内阻较大的9 V电池组分别给灯泡供电,产生了与学生日常生活经验相矛盾的现象来设置“悬念”――引入新课。然后,引导学生针对“引入实验”中的现象展开探究,让学生在实验探究中分析、思考、归纳,得出电源内电压和外电压之间的关系。接着再引导学生利用功能关系,从理论角度来推导、探究,让实验得出结论在理论上获得支撑。最后,引а生利用所学规律解决引入实验和实际生活中的问题。这种在引入实验为基础的“实验和理论推导相互结合的探究过程”的设计,既避免了设计过多的实验,又让学生亲身体验了探究的过程,加深了对知识的理解,深刻领会到物理学科的严谨性和流畅性,感受到物理的探究之美和应用之美。同时,又能激发学生的学习热情,使物理课堂教学产生无穷的乐趣,进而实现高效的物理课堂教学。

2.2 合理创设问题情境,引导学生质疑探究

作为一节规律探究课,本节课的重点是如何落实探究教学,让学生在探究中理解闭合电路的欧姆定律,感知科学探究的过程和方法。在探究教学中,问题是探究的起点,没有问题就不可能有探究,正是在问题的驱动下,学生才能积极思考,从而产生探究欲望。这就需要教师在深入挖掘规律形成过程的基础上,精心创设问题情境,以问诱思,引导学生融入到探究学习的情境中去。例如:在构建“闭合电路”概念时,用两节新电池和内阻较大的9 V电池组分别给灯泡供电后,可设置如下问题情境:“为什么灯泡接到电动势为9 V的电池时,亮度反而暗了?难道电池坏了?”“为什么电池与灯泡接通时两端的电压变小?减小的电压哪儿去了?”“电池有内阻?可能吗?”“我们来看看电池(触摸电池),电池变热了,什么原因导致工作的电池会变热?”学生在问题的引领下观察、实验、体验,由此认识到“电源内部也有电阻和电流”“电源内部电流的通路,称为内电路”。这种以问题启发学生思考,以实验引导学生体验来构建闭合电路的方法,既弥补了教材对内电路建构的非直观性,也让学生经历了在质疑中分析、探究的过程,学生对闭合电路的认识潜移默化、水到渠成,远比直接灌输效果好。

在引导学生从能量角度验证实验探究结果时,设置如下问题情境:“刚才我们通过实验探究了闭合电路中的电流规律,这个结论可靠吗?”“如果我们能从理论上找到依据,是不是更可靠?如何从理论上来分析呢?”“从能量角度行吗?”“内、外电路在时间 t 内消耗多少电能? ”“这些能量从何而来?”学生在上述问题的引导下,发现也可以从能量角度来推导得出与实验相同的结果。

在引导学生探究路端电压与负载的关系时,设置以下问题情境:“实验表明,灯泡变暗是由于路端电压变小的缘故,你们能说说路端电压与什么有关吗?”“它们之间具体的关系是什么?”“如何设计实验来研究呢?”“从实验数据中能得出什么结论?”“能从理论上分析为什么会发生这样的变化吗?”“如果外电阻断开,路端电压为多少?外电阻短路,路端电压又为多少?”“谁能说说路端电压随外电阻变化的根本原因是什么?”在这一个个问题的引领下,学生从实验探究到理论分析两个方面找到了路端电压与外电阻的关系,不仅体验了科学探究过程,提高了理论分析和实验探究的能力,也养成了乐于探索、勤于动手的好习惯。

2.3 注重渗透科学方法教育,加深对规律本质的认识

作为一根主线,科学探究法贯穿在整个课堂教学过程中,教学中要注意尊重学生的心理特点和认知规律,强化科学探究法的显性教育:以引入实验为线索,引导学生经历“观察实验、提出问题、猜想假设、设计实验、分析论证”等过程,领会科学探究的方法。

“闭合回路中的电势变化”抽象而难以理解,突破这一难点的最重要的方法就是“比法”。教材试图以图1的模型来形象地说明这个问题,但这种模型对学生来说还是比较抽象,难以理解。笔者用如图2所示的“电梯加滑梯”模型和闭合电路加以类比,来说明闭合电路中的电势高低变化情况。这样的方法,既简单又源于学生的生活经验,学生容易接受,教学中应注意引导学生体会类比法的作用。

“演绎推理法”在“闭合电路欧姆定律的推导”和“路端电压与负载的关系推导”中两次用到,教学中要注意借助问题情境,把规律的探究以一个个问题的形式呈现出来,让学生在问题的引领下经历演绎、推理过程,构建对“闭合电路的欧姆定律”和“路端电压与负载关系”的正确理解,体验演绎推理过程中获得成功的愉悦。

另外,本节课中,要特别注意引导学生在了解路端电压与负载电阻的关系的基础上,通过极限法分析和理解电路断路时的路端电压和短路电流的现实意义,体会极限法在物理学习中的作用和意义,有效地训练学生突破思维定势,培养创造性的思维能力。

2.4 注重理论联系实际,物理与生活的联系

研究和学习物理最重要的方法就是理论联系实际,将理论和实际、物理与生活联系起来,可以帮助学生更透彻地理解所学的物理知识,培养学生的创造性思维和逻辑思维能力。欧姆定律与生产、生活联系密切,教学设计时,应注意还原知识的产生背景,注重将知识应用于实际生活。例如:新课引入可以从生活现象来提出问题,引发学生思考探究;在得出路端电压与外电阻R的关系后,引导学生通过将R推向两个极端情况的分析,来理解实际中“为什么电源开路时路端电压就等于电源的电动势”及“为什么电源不能用导线直接相连”;在学完了本节知识后,可引导学生用本节课所学知识分析解决新课引入及生产、生活中的实际问题。让学生充分地感知从生活走进物理、从物理回到生活的过程,培养学生利用物理知识分析解决实际问题的能力,建构对知识(尤其是难点知识)的正确理解,从而真切地感受所学物理知识的实用性,充分理解物理学科对时展的深远意义。

欧姆定律含义篇(4)

《欧姆定律及其应用》这一节在学生学习了电流表、电压表、滑动变阻器的使用方法及电流与电压、电阻的关系之后才编排的。通过这一节的学习,要求学生初步掌握和运用欧姆定律解决实际电学问题的思路和方法,了解运用“控制变量法”研究物理问题的实验方法,为进一步学习电学内容打下一定的基础。

2.教学目标

(1)知识目标

理解掌握欧姆定律及其表达式,能用欧姆定律进行简单计算;根据欧姆定律得出串并联电路中电阻的关系;通过计算,学会解答电学计算题的一般方法,培养学生的逻辑思维能力。

(2)技能目标

学习用“控制变量法”研究问题的方法,培养学生运用欧姆定律解决问题的能力。

(3)情感目标

通过介绍欧姆的生平,培养学生严谨细致的科学态度和探索精神,学习科学家献身科学、勇于探索真理的精神。通过欧姆定律的运用,帮助学生树立物理知识普遍联系的观点以及科学知识在实际中的价值意识。

3.重点和难点

重点:理解欧姆定律的内容及其表达式和变换式的意义,并且能运用欧姆定律进行简单的电学计算。

难点:运用欧姆定律探究串、并联电路中电阻的关系。

二、说学生

1.学生学情分析

在学习这节之前学生已经了解了电流、电压、电阻的概念,并且还初步学会了电压表、电流表、滑动变阻器的使用,具备了学习欧姆定律基础知识的基本技能。但对电流与电压、电阻之间的联系的认识是肤浅的、不完整的,没有上升到理性认识,需要具体的形象来支持。所以在本节学习中应结合实验法和定量、定性分析法。

2.知识基础

要想学好本节,需要学生应具备的知识有:电流、电压、电阻的概念,电流表、电压表、滑动变阻器使用方法,电流与电压、电阻的关系。

三、说教法

结合学生情况和本节特点本人采取以下几个教法:采用归纳总结法、采用控制变量法、采用定性分析法和定量分析法。

四、说教学过程

1.课题导入(采用复习设置疑问的方式,时间3分钟)

复习:电流是如何形成的?导体的电阻对电流有什么作用?

设疑思考:电压、电阻和电流这三个量之间有什么样的关系呢?通过简单的回顾、分析,使学生很快回忆起这三个量的有关概念,通过猜想使学生对这三个量的关系研究产生了兴趣,达到引入新课的目的。

2.展开探究活动,自主总结结论(时间37分钟)

根据上节探究数据的基础,让学生自主总结出两个结论:导体的电阻一定时,通过导体的电流与导体两端的电压成正比;导体两端的电压一定时,通过导体的电流与导体的电阻成反比。

为了进一步得出欧姆定律的内容,可采用以下几点做法:各小组在教师指导下,对实验数据进行数学处理,理解数学上“成正比关系”“成反比关系”的意思,从而引入欧姆定律的内容;让学生思考用一个什么样的式子可以将这两个结论所包含的意思表示出来,从而引入欧姆定律的表达式。

3.说明事项

在欧姆定律中有两处用到“这段导体”,其意思是电流、电压、电阻应就同一导体而言,即同一性和同时性。

向学生介绍欧姆的生平,以达成教学目标中的情感目标。学习科学家献身科学、勇于探索真理的精神,激发学生的学习积极性。

欧姆定律应用之一:通过课本第26页例题和第29页习题2和习题3,让学生自己先试做,然后教师再加以点评和补充,使学生理解掌握欧姆定律表达式及变形式的应用,达成教学目标的知识目标,充分体现了课堂上学生的自主地位。

应用欧姆定律解题时应注意以下几点问题:

(1)同一性

即公式中的U、I,必须针对同一段导体而言,不许张冠李戴。

(2)统一性

即公式中的U、I、R的单位要求统一(都用国际主单位)。

(3)同时性

即公式中的U、I,必须是同一时刻的数值。

(4)规范性

解题时一定要注意解题的规范性(即按照已知、求、解、答四个步骤解题)。

欧姆定律应用之二:探究串并联电路中电阻的关系。

(1)实验分析

在演示实验之前,要鼓励学生进行各种大胆的猜想,当学生的猜想与实验结果相同时,他会在实验中体验到快乐与兴奋,有利于激发学生的学习兴趣。

①演示实验

将两个电阻串联起来,让学生观察灯泡的亮度情况(变暗了),并说出原因(电路中的电流变小了,说明总电阻变大了)。

得出结论:串联电阻的总电阻比任何一个分电阻的阻值都大。

②演示实验

将两个电阻并联起来,同样让学生观察灯泡的亮度情况(变亮了),并说出原因(路中的电流变大了,说明总电阻变小了)。

得出结论:并联电阻的总电阻比任何一个分电阻的阻值都小。

(2)定性分析

(提出问题)为什么串联后总电阻会变大?并联后总电阻会变小?

得出结论:电阻串联相当于导体的长度变长了,所以串联电阻的个数越多总电阻就越大;电阻并联相当于导体的横截面积变粗了,所以并联电阻的个数越多总电阻就越小。

(3)定量分析

利用欧姆定律公式以及前面学过的串并联电路中电流和电压的特点推导串并联电路中总电阻的关系得出结论:(1)电阻串联后的总电阻R串=R1+R2+…+Rn;(2)电阻并联后的总电阻=+…+。

4.小结(4分钟)

(1)理解掌握欧姆定律的内容及其表达式

(2)运用欧姆定律解决有关电学的计算题以及探究串、并联电路中电阻的关系

5.布置作业(1分钟)

本节作业的布置主要是针对欧姆定律表达式及其变形公式的运用,并结合前面学习过的串并联电路中电流、电压的特点的一些常见题型加以知识的巩固。

作业:《课堂点睛》17页至18页的习题。

五、说板书设计

欧姆定律的内容:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。

欧姆定律的表达式:I

欧姆定律含义篇(5)

二、教学目标

1.通过对科学家欧姆事迹的介绍,激发学生勇攀科学高峰的斗志;通过欧姆定律的建立,使学生体验自然界各种运动和变化必然遵循一定的客观规律;在科学探究的活动中亲身体验,受到从特殊到一般的科学方法熏陶,以此来培养学生严谨细致、实事求是的科学态度。

2.记录实验数据,知道简单的数据处理方法,提高连接电路及正确使用电流表、电压表、滑动变阻器的技能。

3.使学生初步了解科学实验的设计,培养学生设计实验、控制变量并运用分析、比较、归纳等方法进行科学探究的能力。以此来培养学生初步提出问题的能力及信息的收集和交流能力。

三、教学重点

建立欧姆定律,理解其含义。

四、教学难点

就是实验的设计和探究过程。

五、课时安排

一课时。

六、教学过程

1.提出问题:通过一系列实际问题,引出“探究电流与电压、电阻会不会有定量关系”的问题,体现了从生活走向物理的课程理念。

2.猜想或假设:让学生参与到课堂学习中来,结合已有的电学知识和生活经验让学生作出猜想,并说明猜想的依据。

3.设计实验:小组讨论如何改变电压?如何进行研究?(提出解决问题的思路。要求画出实验的电路图,列出所需器材、实验步骤,设计好数据记录表)

全班交流,许x代表用实物投影仪展示自己的方案,由老师或下面的学生当场提问(如:为什么要使用滑动变阻器等),共同完善实验设计。

4.动手探究:动手准备,根据设计方案进行实验时,该由教师引导,让学生动手操作。

5.分析归纳:将学生的数据用投影仪投影,引导学生分析I与U的关系,将不同组的数据进行比较,引导学生分析I与U的关系。在这中间,穿插介绍欧姆的事迹。

七、布置作业

欧姆定律含义篇(6)

课型:复习课

【教学目标】

一、 知识目标

1. 理解闭合电路的欧姆定律,并用它进行有关电路问题的分析和计算.

2. 理解路端电压与负载的关系.

二、 能力目标

1. 通过对U-I图线的分析培养学生应用数学工具解决物理问题的能力.

2. 利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力.

三、 情感目标

通过本节课教学,加强对学生科学素质的培养,通过探究物理规律培养学生创新精神和实践能力.

【教学重难点】

1. 闭合电路的欧姆定律

2. 路端电压与电流(外电阻)关系的公式表示法及图线表示法.

【考点再现 设疑激思】

一、 电动势

1. 电源是通过非静电力做功把 的能转化成 的装置.

2. 电动势:非静电力搬运电荷所做的功跟搬运的电荷电量的比值,E= ,

单位:V .

3.电动势的物理含义:电动势表示电源 本领的大小,在数值上等于电源没有接入电路时两极间的电压.

电动势与电压有什么区别?

(1、其它形式、电能 2、 Wq 3、将其它形式的转化为电能)

(电动势反映其它形式的能转化为电能的本领,电压形成电场,促使电流做功.)

二、闭合电路欧姆定律

1.定律内容:闭合电路的电流跟电源电动势成 , 跟内、外电路的电阻之和成 .

2.定律表达式为I=

3.适用条件

4.闭合电路欧姆定律的两种常用关系式:

(1)E=

(2)E=

你认为电源的内阻是恒定的还是不断变化?定律表达式怎样推导出来的?

电路中电流一定从高电势流向低电势,对吗?

(1、正比、反比;2、I=ER+r; 3.纯电阻电路;4.E=U内+U外、E=U外+Ir)

(电源内阻短时间可认为不变、定律从能量守恒推导、不对,内电路电流方向从低电势流向高电势)

三、路端电压U与外电阻R的关系

根据U= 知,当外电路电阻R增大时,电路的总电流I ,电源内电压U内 ,路端电压U外 .

(E-Ir 、减小、减小、增大)

四、U-I关系图

由U= 可知,路端电压随着电路中电流的增大而内电压 ;

1.当电路断路即I=0时,纵坐标的截距为 .

2.当外电路电压为U=0时,横坐标的截距为 .

3.图线的斜率的绝对值为电源的 .

注意点:纵轴起点是否为零.

电源的U-I关系图与电阻的U-I关系图有什么不同?

(E-Ir、减小 1.E 2.I短 3.r)

(电源的U-I关系图反映路端电压与电流关系、电阻的U-I关系图反映电阻两端电压与通过它的电流关系)

五、电源的功率

1.电源的总功率P总= .

2.电源的输出功率P出=.

(1.EI 2.UI)

考点说明: 闭合电路欧姆定律是二级要求,常在选择题中出现动态电路分析,实验中常考查U-I图线的有关知识点.

复习考点还须引导学生多阅读教材,多思考,多归纳总结,多联系实际.

【典型例题剖析 学会归纳总结】

题型1闭合电路欧姆定律的动态分析

例1 如图所示,电源电动势E=12 V,内阻r=1 Ω,R1=5 Ω,R2=12 Ω,R3的最大阻值为6 Ω.

(1)求:流过电流表的最小电流?

(2)若R3的阻值减小,其它元件均不变,判断电路中电压表、电流表的示数如何变化?

答案:(1)0.8A;(2)V1、V2减小A增大

方法点拨:支路-干路-支路

学生的疑点:1.总电阻的变化不清;

2.内电压变化忘了分析;

3.路、支路,电压、电流变换搞昏了头.

【当堂巩固1】

如图所示,电源电动势E=8 V,内阻不为零,电灯A标有“10 V,10 W”字样,电灯B标有“8 V 20 W”字样,滑动变阻器的总电阻为6 Ω.闭合开关S,当滑动触头P由a端向b端滑动的过程中(不考虑电灯电阻的变化) ( A )

A.电流表的示数一直增大,电压表的示数一直减小

B.电流表的示数一直减小,电压表的示数一直增大

C.电流表的示数先增大后减小,电压表的示数先减小后增大

D.电流表的示数先减小后增大,电压表的示数先增大后减小

探究:P移动电路总电阻怎样变化?

题型2探究含电容电路的判断与计算

例2 如图所示,E=10 V,r=1 Ω,R1=R3=5 Ω,R2=4 Ω, C=100 F,当S断开时,电容器中带电粒子恰好处于静止状态.求:

(1)S闭合后,带电粒子加速度的大小和方向.

(2)S闭合后流过R3的总电荷量.

答案:(1)10 m/s2向上;(2)400 C

方法点拨 电容器两极电压与R2两端电压关系?R3在电路中有什么作用?

学生疑点:1.电容两端电压变化没搞清;

2.与电容串联的电阻作用不明;

3.电路结构认识不清.

【当堂巩固2】

如图电路中,当滑动变阻器的触头P向上滑动时,则 ( D )

A.电源的总功率变小

B.电容器贮存的电荷量变大

C.灯L1变暗

D.灯L2变亮

题型3 探究 U-I图象的应用

例3 如图所示,直线A为电源的路端电压U与电流I的关系图象,直线B是电阻R的两端电压与通过其电流I的关系图象,用该电源与电阻R组成闭合电路,则电源的总功率为 W,电源的输出功率为 W电源的效率为

.

答案:6 W 4 W 23

探究:图线的交点有什么物理意义?(工作点)

【当堂巩固3】

如图所示,为一个电灯两端的电压与通过它的电流的变化关系曲线.由图可知,两者不成线性关系,这是由于焦耳热使灯丝的温度发生了变化的缘故.参考这条曲线探究下列问题(不计电流表的内阻).

(1) 若把一个这样的电灯串联,接到电动势为6 V,内阻为10 Ω的电源上,如图甲所示求流过灯泡的电流和灯泡的电阻?

(2) 若将两个这样的电灯并联后接在这个电源上,如图乙所示,则通过电流表的电流值和每个灯泡的电阻?

方法点拨:写出U=E-Ir其中I为通过电源的电流,并作图找交点.

答案:(1)0.35 A 7.1Ω (2)0.24 A 17.5Ω(提示写出U=E-2Ir其中2I为通过电源的电流,并作图找交点)

学生难点:

1.图像特别是曲线,不会找具体信息;

欧姆定律含义篇(7)

物理是一门以观察和实验为基础的自然学科,物理的概念、定律、定理、结论都是实验结果的体现,也需要经过实验来验证。实验是物理教学中实施探究教学的良好载体。让学生在实验中去解决问题,从而获得科学规律尤为重要,它有着文字教学不可替代的作用,但在现实的教学中,由于初中学生年龄小、自制力不强,又没有实验基础,有时实验教学只是流于形式,有些学生在实验中只是依葫芦画瓢,有些甚至认为实验只是玩玩而已,根本不能领会实验的原理和思想。不利于学生创新思维的培养和对知识的理解。那么如何才能使实验在教学过程中发挥其独有的作用,更有效的帮助学生自主学习呢,我个人认为:“指导学生实验预习,让其明确实验目的、理解实验原理和思想尤为重要。

任何一个实验都应该有它的主要目的。没有目的,实验就没有指向性,实验就毫无意义,更谈不上实验的有效性。只有明确了实验主要目的,教学设计和实施才有据可依,才可能发挥实验的最大效益。

实验预习又是保证学生进行正确操作并获得正确结果的前提,通过实验前的预习,学生对实验的目的、原理、方法、步骤以及仪器的使用有了正确的认识,在实验过程中心中有数,目的明确,从而提高实验的质量和效率。

例如在进行欧姆定律复习时,我发现部分学生只知道欧姆定律的表达式,并会根据欧姆定律公式进行一些简单的计算。但是对实验的理解和表达式的含义却是含含糊糊。不知道是电阻一定时,“电流与电压成正比”还是“电压与电流成正比”。究其原因,就是,开始教学过程中,学生预习不到位,部分学生不明确实验目的,没有领会实验的原理和思想,做实验只是依葫芦画瓢。为了使学生在实验能获取更多的知识,此后,在上这节课前。我都会让学生做充分预习,并留有预习作业,让学生注意分析这节课的课题“探究‘电流跟电压和电阻的关系’”,题目中有几个任务,每个任务分别是什么?明确实验目的。在学生明确两个任务分别是探究“电流与电压的关系”和“电流与电阻的关系”之后,继续提问,既然电流与电压、电阻都有关系,那么我么在研究电流与电压关系时候应该怎么做,是研究电流变化时如何影响电压还是电压变化时候如何影响电流……。通过这样的指导,学生明确了实验目的和思路,做起实验不再盲目,使实验结论的得出、记忆和理解更加容易。

所以教师在让学生进行实验前,必须让学生对该实验的目的认真分析研究,找出实验的主要目的所在,并且对实验原理做到真正的理解。只有这样,学生知道了要做什么,怎么做,学生做实验实验才能做到真正的避免依葫芦画瓢;也只有这样,学生才能在实验中有效的进行探究学习,通过自我分析、合作交流、教师引导等手段获得新的知识;也只有这样才能让实验在自主学习过程中发挥其独有的作用。

欧姆定律含义篇(8)

1.1 图象用于规律探究

探究“加速度与力、质量的关系”,最后的数据处理和规律的得到就是借助于图象进行分析的,尤其是“加速度与质量的关系”,学生很难直接从数据上看出两者成反比关系,不过当作出如图1所示的a-m函数图象时,学生从经验出发很容易猜测其是双曲线,继而猜测是反比,是不是呢?再进一步变化坐标,作出如图2所示的a-1[]m图象,得到一条过原点的直线,归纳出结论:得到当合力一定时,加速度与质量成反比的结论.

1.2 提取图象信息解运动学问题

从图象中找出解题信息,把图象与物理图景相联系,应用牛顿运动定律及其相关知识解答.

1.3 借助于v-t图象切线斜率的变化比较加速度

x-t图象切线的斜率表示瞬时速度,同样可以推理得v-t图象切线的斜率能表示加速度a,切线斜率的变化可以反映加速度大小的改变.

例2 木块A、B质量相同,现用一轻弹簧将两者连接置于光滑的水平面上,开始时弹簧长度为原长,如图4所示,现给A施加一水平恒力F,弹簧第一次被压缩至最短的过程中,有一个时刻A、B速度相同,试分析此时A、B的加速度谁比较大?

解析 在弹簧压缩过程中,隔离A、B进行受力分析,对A有:F-kx=maA,弹簧形变量变大,A做加速度减小的加速运动;对B有:kx=maB,B做加速度增大的加速运动.接着定性画出A、B运动的v-t图象如图5所示,交点为C表示两者速度相同,直观地呈现该处B切线的斜率大于A的斜率,即aB>aA.[HJ1.5mm]

2 电路中的图象问题

2.1 U-I图象问题

导体的伏安特性曲线能直观的体现导体电流随所加电压的变化关系.线性元件对应的伏安特性曲线是斜直线,直线的斜率k=I/U,物理意义是电阻的倒数.对于非线性元件来说,伏安特性曲线是曲线,任意一点对应坐标的比值k=I/U,物理意义也是电阻的倒数.计算阻值时两者有很大的区别.但任意一点对应坐标的乘积P=UI的物理意义是元件的实际功率,这个结论对两种元件都适用.

电源的路端电压与干路电流的关系图象也是考查的重点.根据闭合电路欧姆定律的变形式:E=U+Ir,可得出路端电压与电流的关系式为:U=E-Ir.作出此图象可以得出是一个一次函数的图象.斜率物理意义k=-r,纵截距的物理意义b=E.

[TP9GW879.TIF,Y#]

例3 小灯泡通电后其电流I随所加电压U变化的图线如图6所示,P为图线上一点,PN为图线的切线,PQ为U轴的垂线,PM为I轴的垂线,则下列说法中正确的是

A.随着所加电压的增大,小灯泡的电阻增大

B.对应P点,小灯泡的电阻为R=U1[]I2

C.对应P点,小灯泡的电阻为R=U1[]I2-I1

D.对应P点,小灯泡的功率为图中矩形PQOM所围的面积

解析 坐标的比值等于电阻的倒数,所以A选项正确,B选项正确.因为是非线性元件,欧姆定律不再适用,所以不能用切线的斜率等于电阻,C选项错误.坐标的乘积代表实际功率D正确.

点评 本题即为伏安特性曲线的数形结合考查,根据R=U1[]I2,得出图象上点的坐标比值为电阻倒数,根据P=UI得出图象上点的坐标的乘积为实际功率.

2.2 闭合电路中的常见的功率的图象问题

闭合电路中经常遇到的三个功率:电源总功率P=EI,电源的输出功率P=EI-I2r,电源的内热功率:P=I2r.

例4 某同学将一直流电源的总功率PE、输出功率PR和电源内部的发热功率Pr随电流I变化的图线画在了同一坐标上,[TP9GW880.TIF,Y#]如图7中的a、b、c所示,根据图线可知

A.反映Pr变化的图线是c

B.电源电动势为8 V

C.电源内阻为2 Ω

D.当电流为0.5 A时,外电路的 [LL]电阻为6 Ω

解析 a为P总-I关系图象,根据P=EI,可得E=4 V,b为P出-I关系图象根据P=EI-I2r,可得r=2 Ω;c为Pr-I关系图象.再根据闭合电路欧姆定律可得R=6 Ω,正确答案:A、C、D.

点评 根据图象和表达式的数形结合,待定系数法可以求出电源的电动势和内阻结合闭合电路欧姆定律求出外电阻的大小.

2.3 电源电动势和内阻测定的常见图象问题

欧姆定律含义篇(9)

昨天下午,我怀着学习与鉴赏的心态观摩了四节好课。现只对其中的第1节和第3节课发表一下个人不成熟的看法。

由于两节课的执教者都是市级优质课的获得者,所以他们的教学设计和基本素质都很高,学生的表现也很好。本人只是一名普通的乡镇中学物理老师,由于水平有限,不敢过多地进行评判,点评只从个人角度出发,不当之处,敬请各位专家、同行和授课者批评!

先说一下这两节课的内容,第1节宋老师执教的是一节新授课,引导学生学习了功的概念和计算等内容;第3节徐老师执教的是一节复习课,引导学生梳理了欧姆定律一章的重点知识。

下面,我从教师素质、教学理念、教学目标、教学设计与实施四个方面分别评一个这两节课。

第1节 功

一、教师素质

宋老师的教学基本功扎实,语言规范,普通话好,教态自然,有较强的课堂驾驭能力。板书简洁,能熟练运用多媒体技术辅助教学。能将物理教学与生活实际相联系并且效果良好。

二、教学理念

综观整节课,可以看出宋老师在授课过程中基本能够面向全体学生,以学生为主体,体现了"从生活走向物理,从物理走向社会"的课标基本理念。如教学伊始,宋老师引导学生利用身边的物品,如书本、文具盒等感受做功,使学生在体验中思考、交流,领会什么是力学中的功。这些器材易得,效果良好。

宋老师授课过程中,突出了学生的主体地位,尽可能地发挥学生了的聪明才智。教学中主要使用了"问题引导学生活动问题引导学生活动"这样的模式组织教学,使学生的思维不停步,逐步将学习引向深入,实现了高效教学。为大家提供了一个概念课的高效教学样板。

三、教学目标

课程标准是确定教学目标的依据,根据学生特点和本地教学实际将教学目标细化是教学设计的第一步。

课程标准中对"功"这一知识的要求:

3.1.3结合实例,认识功的概念。

3.2.2知道机械功。用生活中的实例说明机械功的含义。

针对本节教学内容,宋老师制定的教学目标是:

1.知道力学中做功的含义。能说出做功包含的两个必要因素,并能判断出力是否对物体做功。

2.明确计算功的大小的表达式,以及表达式中每个物理量的物理意义和单位。

3.能应用公式W=Fs进行简单的计算。

目标的制定基本上是科学的,虽然没有点明"结合实例,认识功的概念。"但在教学中确实是结合实例进行的。

对教学重点、难点的确立也非常合理。

四、教学设计与实施

本节课的教学中,宋教师以故事引入,激趣引新,然后利用问题引导学生自主合作,探究交流。设计了前后连贯的五个活动:感受功、描述功、分析功、计算功、深化功,利用学案和问题引导学生逐步走进功的世界。这些活动突出体现了概念的形成过程,学生的活动比较充分,符合概念课的设计理念。最后盘点收获,进行总结。

整节课的教学结构合理,教学思路清晰,各环节的设计符合以学生为主体教师为主导的教学理念。每个教学环节的设计均以实现本节课的某个小的教学目标为基础,基本实现了教学目标。

疑惑1:引课的故事是否合理?这个故事越听越像个故事,不论是将30斤大米运回家,还是将一大桶水提回家,从物理学角度来分析,"大米"和"大桶水"的位置改变都是因为受到了力的作用,这个改变物体位置的力肯定做了功。所以说,"从力学的角度来看,基本上没有做功"这一说法是不严谨的,甚至可以说是错误的。

疑惑2:物理符号和语言是否范?物理量应该是斜体,而单位应该是正体,课件中忽而正体忽而斜体。教学中的语言"W2做的功多?"应该是"力F做的功".

疑惑3:焦耳简介是否过简,展示文字介绍后没等我读完一行,教师即可始问:你从焦耳身上学到了什么?

第2节 欧姆定律复习

一、教师素质

徐老师的教学基本功扎实,语言规范,普通话好,教态自然,具有较强的亲合力,擅于使用肢体语言,有较强的课堂驾驭能力,特别是对学生活动的组织和引导能力。徐老师特别注重对学生的鼓励和尊重,注重启发引导,注重利用学生已有知识开展教学。能熟练运用实验和多媒体技术辅助教学。

二、教学理念

徐老师这节课,以学生为中心,突出了学生的主体地位,能够做到有效引导,对于学生活动敢放擅收,培养了学生的学习兴趣和能力,展现了较好的课堂调控能力。

本节课,以电学中的两大实验为中心进行展开,体现了物理课以实验为基础的特点,注重了培养学生的思维能力和合作交流意识。

三、教学目标

课程标准中对"欧姆定律"这一知识的要求:

3.4.2通过实验,探究电流与电压、电阻的关系。理解欧姆定律。

针对本节教学内容,徐老师制定的教学目标是:

1.知道电流和电压、电流和电阻的关系。

2.理解欧姆定律。

3.会利用伏安法测小灯泡的电阻。

目标的制定基本上是科学的,虽然没有说明"通过实验,探究电流与电压、电阻的关系。"但本节课是复习课,徐老师在教学中对两大实验的细致分析已体现了这一要求。

通过本节课的复习,虽然不能实现"理解欧姆定律"这一目标,但本节课已解决了一部分,后面跟上的习题课就会继续解决这一问题。

四、教学设计与实施

从目前教学来看,很多学生对电学实验复习的认识是浅层次的,不经教师引导,很难深入达标。

目前中考对电学实验的考查要求,不仅让学生知道实验目的、实验原理、实验器材、实验电路图、实验步骤和实验结论,还要求学生能明确实验目的,能理解实验原理和方法,会观察、分析实验现象,会记录、处理实验数据,并得出结论,对结论进行分析和评价;能运用已学过的物理理论、实验方法和实验仪器去处理问题,包括简单的设计性试验;能发现问题、提出问题,制定解决方案,并对方案进行评价。

徐老师这节课,通过精心设计的问题,一步一步,一步二步,引导学生深入思考两大实验,加深对实验的理解,使学生能够达到课标和中考对这两大实验的考查要求。

现在初中的复习课很难上,一是因为时间短,内容多;二是没有一个好的模式供借鉴。徐老师利用这节课,为大家提供了一节复习课的样板课,纯干货!这样的知识复习课,后面再加上一节习题课,效果肯定棒!

疑惑1:欧姆定律的内容和公式复习时,是否应该对适用条件"同一导体或同一段电路"进行强调?这可是学生在解题过程中容易出错的关键部位!

欧姆定律含义篇(10)

【正文】

20世纪早期可谓科学史上罕有的黄金时代。其间,现代物理学的两大支柱——相对论和量子力学相继创立,由此不仅为物理学提供了新的范式,而且为人类的整个自然观带来了重大变革。赞叹之余,我们更应细察这些科学思想的源流,从而发现通向未来的重要启迪。这就必然把我们带到19世纪后半叶这一令德国人为之骄傲的时代,尤其是在被誉为“德国科学的帝国首相”的亥姆霍兹身上,我们将会发现导向20世纪物理学革命的一系列重要思想。

一 追踪“先天”空间形式的世俗血统

在人类文明史上,数学因其在我们的整个知识体系中的特殊地位而与哲学有着非同寻常的关系。对数学基本问题的思考不仅是推动数学发展的重要动力,而且也使数学的内容不断深化和发展。从柏拉图到康德的哲学唯理论流派就把数学当作自己重要的理论基石,欧氏几何学曾被康德看作是存在先天综合判断的根本依据之一。“经验论哲学家们则反对这一论证,结果都失败了;唯理论者有数学家站在他的一边,要反对他的逻辑,似乎是没有希望的。非欧几何发现之后,情况为之逆转。”[1]经验主义思潮随开始盛行。对于认识论的这次重大革命,亥姆霍兹功不可没。

从其科学生涯的早期,亥姆霍兹就致力于对数学、物理学基本概念的哲学分析和批判考察。在他看来,自然科学与逻辑学在思维方式上是根本不同的。因为在作为“哲学的一部分的逻辑学中,关于大前提及小前提的起源问题一般是没有说明的,……传统逻辑把自己限于那种方式、方法,由这种方式、方法你就能从已知的和给定的命题推出新命题,即一个人如何从三段论中推出命题。它并没有给出我们如何达到最初命题的大前提和小前提的任何信息。一般说来,这正是由一位未知的权威所给的命题。”[2]而自然科学的程序则恰恰相反,它的目的在于获得先前未知的知识,这些知识是不能由任何权威给出的。正是那些先前不知道的命题,形成了自然科学的主要部分及最重要的部分。按照这种精神,对于一个理论来说,亥姆霍兹最为关注的必然是对其前提及基本原理的批判性审查,并进而揭示出它们的“世俗血统”,这正是他科学与哲学研究的突出特色,也是一切富有创造性的杰出科学家及哲学家所共有的优秀品格。因此,从其对生理光学的研究到对一般空间知觉的起源和本性的沉思,再到对几何学及算术公理之基础的批判性考察就成了亥姆霍兹科学与哲学探索的必然发展趋势。

早在1857年给其父亲的信中,亥姆霍兹就明确谈到:“我正感到某些问题急需特别处理的必要性。就我所知,还没有任何一位现代哲学家着手处理这些问题,它们全部属于康德所探讨的先验概念的范围。例如几何学原理和力学原理的起源问题,以及我们必须逻辑地把实在归诸于物质和力这两个抽象概念的理由。其次是来自类比的无意识推理的规律,由此规律我们才从感觉进到知觉。我清楚地认识到这些只有通过哲学探讨才能被解决,也才是可能解决的,以致我感到对更深奥的哲学知识的迫切需要。”[3]但另一方面,他也深知解决这些重大问题决不能像前人那样单靠纯思辨的方法,否则就会重蹈覆辙。随之,亥姆霍兹对感官生理学、特别是生理光学及知觉的起源与本性进行了长期的深入研究,直到1866年才真正转向几何学公理及算术公理之基础的研究。

在亥姆霍兹看来,像几何学这样的科学可以存在,而且按它的方式被建构起来这一事实,已经必然地引起每个对认识论问题感兴趣的人的关注。我们的知识中没有别的学科像几何学那样似乎是现成地出现的。在这方面,它完全避开了其它的自然科学学科必须做的那种收集经验材料的繁琐任务,以致它的程序的形式是唯一地演绎的,结论来自结论,并且谁都不最终地怀疑这些几何定理对现实世界的有效性,从而使得几何学总是被当作令人叹服的例子去证明,不必借助经验我们也能获得关于实在内容的命题的知识,特别是被康德当成了存在先天综合判断的根据,这是不符合批判精神的。亥姆霍兹要进一步对这些所谓的“自明公理”进行批判考察,其目标在于“给出有关几何公理,它们与经验的关系以及用其他公理代替原有公理的逻辑可能性的最新研究成果的一种解释。”[4]

那么,欧氏几何所隐含的基本事实是什么呢?亥姆霍兹的分析表明,欧氏几何的所有证明的基础都在于确立相关的线、角、平面图形及立体图形的叠合。只有当两个图形完全重合时,它们才是相等的。对之作进一步的分析将会发现,为了使两个图形相等,必须把一个图形移向另一个图形。但是如何移动呢?答案无疑是要保证移动过程中图形保持不变,这相当于移动一个不变的刚体。显然,这里隐含的公设是不变刚体的存在,而这个概念是来自对自然物体所显现的物理的或化学的特性的抽象。如果刚体或质点系统不能形状不变地相互移动,如果几何图形的叠合不是一个独立于一切运动的事实,我们就不能谈论全等,也不会有空间测量的可能性。因而,对欧氏几何来说,首要的是全等概念,而不是两点间的最短线,这就是亥姆霍兹基于事实的分析而非解析的准则所得到的一个重要结论。正如他在谈到这一点时所说:“我的出发点是一切最初的空间测量都是基于对全等的观察。显然,光作为直线的性质是一个物理事实,它受到其它领域的特定实验的支持,对于可以获得对几何公理的精确性充分确信的盲人来说,光的这一特性是绝对不重要的。”[5]因为盲人不借助光的直线性也能理解欧氏几何学,但盲人并非通过触觉没有领悟全等。

亥姆霍兹认为,riemann的解析方法的不足之处在于它没有反映出我们的空间概念所必须的经验部分。而他自己的目标则在于以确立重合为起点,去假定空间测量的可能性并进而探求多维空间的一般解析表达式,这就意味着经验地得到了几何公理。在谈到与riemann的研究思路的重大区别时,亥姆霍兹指出:“我自己达到同样的考虑部分地来自对于颜色的空间描述的研究,部分地通过对以视野中的测量为目的的视觉估计之起源的研究。riemann从描述空间中无限接近的两点间距离的一般解析表达式开始,由此导出了关于不变的空间结构的自由运动定理,而我则从观察事实出发,这一事实即不变的空间构形在我们空间中运动的自由性是可能的,并且我由这一事实导出了较riemann当作公理的解析表达式的必然性。以下就是我的计算所基于的假定:(a)关于空间的连续性和维数;(b)可动刚体的存在,它是通过叠合而进行空间测量的比较时所必需的;(c)这种刚体的可自由运动特性,由(b)(c)两点可保证两个空间图形的叠合与其所在的空间位置无关;(d)刚体的旋转不变性。”[6]亥姆霍兹认为,这四个假定都是普通几何所具有的,“尽管以上假定没有关于直线和平面的存在的公理及平行线公理,它也是完备的和自足的,并且从理论上看,它具有完备性和易于检验的优点。”[7]

从以上四个假设出发,亥姆霍兹达到了riemann的研究起点,即n维空间中扩展了的毕达哥拉斯定理。如令维数为三,并假定空间是无限扩展的,就只有欧氏空间是可能的。也就是说,欧氏空间只是满足叠合条件的不同类型的空间中的一种。这些空间包括球面空间和伪球面空间,它们也是可设想的无矛盾的几何学。

那么,为什么我们接受了欧氏几何,而没有接受其它可能形式的非欧几何呢?为此,亥姆霍兹认为必须首先研究可想象的和可知觉的东西之间的关系,并进一步从中发现新的准则,以便用于有关几何学的特殊考虑,从而区别出空间知觉中的先天因素和后天因素。他先后研究了假想的二维生物在平面、球面及椭球面上所产生的几何学。从而得出结论:欧氏几何学之所以是我们周围实在世界的几何学,这没有什么可奇怪的,因为我们的视觉观念已经变得与这一环境相适应,因而也服从欧氏几何定律。如果生活在另一种几何结构不同的环境中,我们就会与新的环境相适应,学会看非欧几里德式的三角形,会觉得三角形的内角和不等于180度是正常的,我们也将学会用被那个世界的刚体所定义的一致性来测量距离。也就是说,欧氏几何的优先权是古老习惯的产物,它的基础在于我们的物质环境的欧几里德特性,我们由之认识几何关系的物理实体——刚体和光线在结构上是与欧氏几何定律相一致的,这种经验事实正是这类习惯的源泉。因而,康德意义上的终极范畴是不存在的,它所被赋予的确定性和固有的必然性也是虚幻的。由此,空间直观的“世俗血统”显然无疑其基础受到了根本性的动摇。一场新的认识论革命即将到来,它的目标正是对那些被赋予先天性的基本概念进行彻底地批判和清洗。马赫及赫兹的力学批判正是这一革命的重要组成部分,相对论的创立则是这一认识论革命的重大成果。在爱因斯坦看来,如果没有亥姆霍兹的非欧几何思想,就不可能通向相对论。

二 爱因斯坦:“时间是可疑的”

众所周知,爱因斯坦是完成人类时空观根本变革的伟大哲人——科学家。他的青年时期正值追寻科学原理之基础的英雄时代,而善于从思想起源对基本概念进行批判性考察恰是爱因斯坦成功的关键,这与亥姆霍兹不无重大关系。

正如爱因斯坦多次谈到的那样:还在苏黎世联邦工业大学学习时,他就利用课余时间认真研读了亥姆霍兹、玻耳兹曼、赫兹等人的论著,特别是亥姆霍兹的五卷本《理论物理学讲义》使他受益匪浅。其中的第一卷有一半讲的都是哲学和认识论,具体实验却很少提及,甚至连那个在他的赞同下首次完成的迈克尔逊实验都未提及。正是这套讲义加强了爱因斯坦的批判意识及研究认识论的自觉性。当谈及这段经历时,爱因斯坦不无感慨地说:“在那里我有几位卓越的老师(比如胡尔维兹(a.hurwitz)、明可夫斯基(h.minkowski)),所以照理说,我应在数学方面得到深造。可是我大部分时间却是在物理实验室里工作,迷恋于同经验直接接触。其余时间,则主要用于在家里阅读基尔霍夫(g.r.kirchhoff)、亥姆霍兹(h.l.f.von helmholtz)、赫兹(h.r.hertz)等人的著作。”[8]大学毕业后,在伯尔尼专利局做试用检验员的爱因斯坦与c·哈比希特、m·索洛文三人组成了奥林比亚科学院,其中研读和讨论包括亥姆霍兹在内的大师们的著作是科学院的主要活动之一。因而,亥姆霍兹对于几何学、数学及力学基本概念的批判对爱因斯坦的认识论及其对康德哲学的看法有着直接影响。

在爱因斯坦看来,康德哲学中最重要的东西是他所说的构成科学的先验概念,而承认先验综合判断的存在则是他设下的圈套。[9]事实上,康德在那些作为任何思维的必要前提的基本概念与来自经验的概念间所作的根本性区分是不正确的,其原因在于康德只强调了那些基本概念的有效性而忘记了它们的世俗来源,从而它们就会被看作是一成不变的既定的东西,并打上“思维的必然性”、“先验地给予”等等烙印。康德正是这样去看欧氏几何的。正如爱因斯坦在“物理学与实在”一文中所指出的那样:“欧几里德几何的纯逻辑的(公理学的)表示,固然有较大的简单性和明确性这个优点,可是它为此所付出的代价是放弃概念构造同感觉经验之间的联系,而几何学对于物理学的意义仅仅是建筑在这种联系之上的。致命的错误在于:认为先于一切经验的逻辑必然性是欧几里德几何的基础,而空间概念是从属于它的。这个致命错误是由这样的事实所引起的:欧几里德几何的公理构造所依据的经验基础已被遗忘了。”[10]既然“先天”空间形式已不可能,“先天的”时间形式还成立吗?这便是相对论的诞生必须突破的一道难关。在放弃了许多无效的尝试之后,爱因斯坦终于醒悟到:“时间是可疑的。”谈到这一点时,爱因斯坦特别强调了休谟和马赫的影响,在他看来:“只要时间的绝对性或同时性的绝对性这条公理不知不觉地留在潜意识里。那么任何想令人满意地澄清这个悖论的尝试,都是注定要失败的。清楚地认识这条公理以及它的任意性,实际上就意味着问题的解决。对于发现这个中心点所需要的思想,就我的情况来说,特别是由于阅读了戴维·休谟和恩斯特·马赫的哲学著作而得到决定性的进展。”[11]这里并未提到亥姆霍兹的作用。的确,亥姆霍兹由于认识到“时间”观念的复杂性而更关注于空间观念的批判性考察。但这种批判对相对论的创立同样有着至关重要的作用。其影响并不亚于马赫那“坚不可摧的怀疑论”。[12]在谈到非欧几何与物理学时爱因斯坦也指出:“物理世界的几何究竟是怎样的?它究竟是欧几里德式的还是任何别种的?许多人都争论过这个问题有没有意义。为了说明这种争论,必须在下面两种观点中彻底坚持一种。第一种观点,同意几何‘体’实际上体现着物理固体,当然,这只要固体遵守那些关于温度、机械应力等等已知的规定就行了。这是从事实际工作的实验物理学家的观点。如果几何的‘截段’,同自然界的一定客体相对应,那么几何的一切命题也都具有说明现实物体的性质。这种观点亥姆霍兹说得最明白,可以补充一句:要是没有这种观点,实际上就不可能通向相对论”。[13]对此应怎样理解呢?如果我们深入考察亥姆霍兹的非欧几何思想,我们将发现,其中不仅仅有对先天空间形式的批判,而且包含着关于“空间”相等的一种操作定义,从而为建立新的时空观指明了方向。

在有关空间知觉的早期研究中,亥姆霍兹就指出,我们对各种空间形状、距离及空间关系的知识的获得都是通过我们的身体或简单仪器的操作及实验而达到的。他关于非欧几何的探讨是通过空间中刚体的运动而进行的,而其中的相等关系正是由刚体向它的比较对象发生的真实运动来作出操作定义的。关于空间间隔的测量,必须首先对作为测量标准的刚体的某些特性给出明确规定,此后测量的意义就由这个作为标准的刚体的重复操作而确定。也就是说,康德意义上的那种绝对普遍而必然的几何学并不存在,只有与关于等同性的操作定义相关的几何学。按着这一观点,爱因斯坦在长时间的沉思之后,对时间概念提出了类似思考:同时性也没有任何绝对意义,它只能在一个确定的操作定义之上讨论,即同时性的爱因斯坦定义。

在“论动体的电动力学”这一划时代论文中,爱因斯坦基于对电动力学所导致的不对称现象的深刻分析和长达十年之久的追光悖论的沉思,首先提出了相对性原理和光速不变原理这两个公设。在随后的运动学部分,爱因斯坦首先给出了同时性的操作定义,从而使得“同时性”概念不仅摆脱先验色彩和直觉性,而且使它与经验建立了密不可分的联系,其结论是同时性的相对性。这个突破之后,先前的极大困难就迎刃而解了,时间的相对性和空间的相对性以及新的时空变换都不过是同时性的相对性的必然结果。这便是该文的运动学部分所提供的狭义相对论的完整的基本原理。

三 从亥姆霍兹到爱因斯坦:富有批判精神的优良传统

科学哲学家赖欣巴哈在谈到相对论的哲学意义时曾指出:“我们把几何学问题的哲学说明归功于亥姆霍兹。他看出物理几何依赖于刚体全等的定义,并因此推得,物理几何本质的清楚说明在逻辑上比几十年之后发展起来的彭加勒的约定论更优越。又是亥姆霍兹,借助于形象化是有关固体和光线的经验结果这一发现,澄清了非欧几何的直观说明。……亥姆霍兹不能成功地劝服他的同代人脱离康德的时空先验论并不是他的错误。只有很少的专家知道他的哲学观点。当由于爱因斯坦的理论使公众的兴趣转向这些问题时,哲学家便开始让步并脱离了康德的先验论”。[14]我们认为,其中的“哲学说明”是指亥姆霍兹的思维和方法在本质上是哲学的,即对基本概念和理论前提进行彻底的批判考察,这正是康德哲学所富有的批判精神。正如海涅谈到康德的《纯粹理性批判》在德国引起的哲学热潮时所说:“康德引起这次巨大的精神运动,与其说是通过他的著作的内容,倒不如说是通过在他著作中的那种批判精神,那种现在已经渗入于一切科学之中的批判精神。所有学科都受到了它的侵袭。……德国被康德引入了哲学的道路,因此哲学变成了一件民族的事业。一群出色的大思想家突然出现在德国的国土上,就像用魔法呼唤出来的一样。”[15]的确,在康德之后,出现了费希特、谢林和黑格尔,他们沿着唯心主义道路进一步发展了康德哲学。与之不同的是,稍后的一大批德国杰出的科学家走的是另外一条以实证科学去解释和发展康德哲学的道路,其结果是康德哲学的许多结论得到了改造,但就其精神本质而论,则是对康德哲学的精神——批判精神的真正继承与发扬,这也正是德国科学的优秀传统的突出特点。这后一条道路的开拓者正是亥姆霍兹,他也因而被看作新康德主义的领导者和科学哲学的先驱者。赫兹、普朗克、爱因斯坦则是他的直接传人。他们的思维在本质上是哲学的思维,他们既是科学家,也是哲学家。在此,富有批判精神的文化传统发挥着重要的助长剂和催化剂的作用。爱因斯坦对此深有感触,他认为:“使青年人发展批判的独立思考,对于有价值的教育也是生命攸关的。”[16]

以上探讨不免使我们联想到中国教育的现状。我们的课堂、教材灌入给青少年的都是无血无肉的死的东西,知识技能化的倾向愈演愈烈,科学精神、科学思想丧失殆尽。由此,怎么能培育出世界级的科学大师呢?这或许可算作我们从本文得到的一个重要启示吧!

【参考文献】

[1]赖欣巴哈.科学哲学的兴起[m].北京:商务印书馆,1983.112.

[2]helmholtz: vorlesungen uber theorerische phydsik, bd.i, leipzig,1897.s.5-6.

[3]l.koenigsberger:hermann von helmholtz, oxford,1906.p.160.

[4][5]helmholtz: epistemological writings,boston,1997,p.2;p.39.

[6][7]helmholtz: wissenschaftliche abhandlungen,leigzig,1868,s.621.s.616.

[8][9][10][11][13]爱因斯坦文集(第一卷)[m].北京:商务印书馆,1983.7、104、349、24、207.

[12]a·i·米勒.科学思维中的意象[m].武汉:湖北教育出版社,1991.104.

欧姆定律含义篇(11)

【正文】

20世纪早期可谓科学史上罕有的黄金时代。其间,现代物理学的两大支柱——相对论和量子力学相继创立,由此不仅为物理学提供了新的范式,而且为人类的整个自然观带来了重大变革。赞叹之余,我们更应细察这些科学思想的源流,从而发现通向未来的重要启迪。这就必然把我们带到19世纪后半叶这一令德国人为之骄傲的时代,尤其是在被誉为“德国科学的帝国首相”的亥姆霍兹身上,我们将会发现导向20世纪物理学革命的一系列重要思想。

一追踪“先天”空间形式的世俗血统

在人类文明史上,数学因其在我们的整个知识体系中的特殊地位而与哲学有着非同寻常的关系。对数学基本问题的思考不仅是推动数学发展的重要动力,而且也使数学的内容不断深化和发展。从柏拉图到康德的哲学唯理论流派就把数学当作自己重要的理论基石,欧氏几何学曾被康德看作是存在先天综合判断的根本依据之一。“经验论哲学家们则反对这一论证,结果都失败了;唯理论者有数学家站在他的一边,要反对他的逻辑,似乎是没有希望的。非欧几何发现之后,情况为之逆转。”[1]经验主义思潮随开始盛行。对于认识论的这次重大革命,亥姆霍兹功不可没。

从其科学生涯的早期,亥姆霍兹就致力于对数学、物理学基本概念的哲学分析和批判考察。在他看来,自然科学与逻辑学在思维方式上是根本不同的。因为在作为“哲学的一部分的逻辑学中,关于大前提及小前提的起源问题一般是没有说明的,……传统逻辑把自己限于那种方式、方法,由这种方式、方法你就能从已知的和给定的命题推出新命题,即一个人如何从三段论中推出命题。它并没有给出我们如何达到最初命题的大前提和小前提的任何信息。一般说来,这正是由一位未知的权威所给的命题。”[2]而自然科学的程序则恰恰相反,它的目的在于获得先前未知的知识,这些知识是不能由任何权威给出的。正是那些先前不知道的命题,形成了自然科学的主要部分及最重要的部分。按照这种精神,对于一个理论来说,亥姆霍兹最为关注的必然是对其前提及基本原理的批判性审查,并进而揭示出它们的“世俗血统”,这正是他科学与哲学研究的突出特色,也是一切富有创造性的杰出科学家及哲学家所共有的优秀品格。因此,从其对生理光学的研究到对一般空间知觉的起源和本性的沉思,再到对几何学及算术公理之基础的批判性考察就成了亥姆霍兹科学与哲学探索的必然发展趋势。

早在1857年给其父亲的信中,亥姆霍兹就明确谈到:“我正感到某些问题急需特别处理的必要性。就我所知,还没有任何一位现代哲学家着手处理这些问题,它们全部属于康德所探讨的先验概念的范围。例如几何学原理和力学原理的起源问题,以及我们必须逻辑地把实在归诸于物质和力这两个抽象概念的理由。其次是来自类比的无意识推理的规律,由此规律我们才从感觉进到知觉。我清楚地认识到这些只有通过哲学探讨才能被解决,也才是可能解决的,以致我感到对更深奥的哲学知识的迫切需要。”[3]但另一方面,他也深知解决这些重大问题决不能像前人那样单靠纯思辨的方法,否则就会重蹈覆辙。随之,亥姆霍兹对感官生理学、特别是生理光学及知觉的起源与本性进行了长期的深入研究,直到1866年才真正转向几何学公理及算术公理之基础的研究。

在亥姆霍兹看来,像几何学这样的科学可以存在,而且按它的方式被建构起来这一事实,已经必然地引起每个对认识论问题感兴趣的人的关注。我们的知识中没有别的学科像几何学那样似乎是现成地出现的。在这方面,它完全避开了其它的自然科学学科必须做的那种收集经验材料的繁琐任务,以致它的程序的形式是唯一地演绎的,结论来自结论,并且谁都不最终地怀疑这些几何定理对现实世界的有效性,从而使得几何学总是被当作令人叹服的例子去证明,不必借助经验我们也能获得关于实在内容的命题的知识,特别是被康德当成了存在先天综合判断的根据,这是不符合批判精神的。亥姆霍兹要进一步对这些所谓的“自明公理”进行批判考察,其目标在于“给出有关几何公理,它们与经验的关系以及用其他公理代替原有公理的逻辑可能性的最新研究成果的一种解释。”[4]

那么,欧氏几何所隐含的基本事实是什么呢?亥姆霍兹的分析表明,欧氏几何的所有证明的基础都在于确立相关的线、角、平面图形及立体图形的叠合。只有当两个图形完全重合时,它们才是相等的。对之作进一步的分析将会发现,为了使两个图形相等,必须把一个图形移向另一个图形。但是如何移动呢?答案无疑是要保证移动过程中图形保持不变,这相当于移动一个不变的刚体。显然,这里隐含的公设是不变刚体的存在,而这个概念是来自对自然物体所显现的物理的或化学的特性的抽象。如果刚体或质点系统不能形状不变地相互移动,如果几何图形的叠合不是一个独立于一切运动的事实,我们就不能谈论全等,也不会有空间测量的可能性。因而,对欧氏几何来说,首要的是全等概念,而不是两点间的最短线,这就是亥姆霍兹基于事实的分析而非解析的准则所得到的一个重要结论。正如他在谈到这一点时所说:“我的出发点是一切最初的空间测量都是基于对全等的观察。显然,光作为直线的性质是一个物理事实,它受到其它领域的特定实验的支持,对于可以获得对几何公理的精确性充分确信的盲人来说,光的这一特性是绝对不重要的。”[5]因为盲人不借助光的直线性也能理解欧氏几何学,但盲人并非通过触觉没有领悟全等。

亥姆霍兹认为,Riemann的解析方法的不足之处在于它没有反映出我们的空间概念所必须的经验部分。而他自己的目标则在于以确立重合为起点,去假定空间测量的可能性并进而探求多维空间的一般解析表达式,这就意味着经验地得到了几何公理。在谈到与Riemann的研究思路的重大区别时,亥姆霍兹指出:“我自己达到同样的考虑部分地来自对于颜色的空间描述的研究,部分地通过对以视野中的测量为目的的视觉估计之起源的研究。Riemann从描述空间中无限接近的两点间距离的一般解析表达式开始,由此导出了关于不变的空间结构的自由运动定理,而我则从观察事实出发,这一事实即不变的空间构形在我们空间中运动的自由性是可能的,并且我由这一事实导出了较Riemann当作公理的解析表达式的必然性。以下就是我的计算所基于的假定:(a)关于空间的连续性和维数;(b)可动刚体的存在,它是通过叠合而进行空间测量的比较时所必需的;(c)这种刚体的可自由运动特性,由(b)(c)两点可保证两个空间图形的叠合与其所在的空间位置无关;(d)刚体的旋转不变性。”[6]亥姆霍兹认为,这四个假定都是普通几何所具有的,“尽管以上假定没有关于直线和平面的存在的公理及平行线公理,它也是完备的和自足的,并且从理论上看,它具有完备性和易于检验的优点。”[7]

从以上四个假设出发,亥姆霍兹达到了Riemann的研究起点,即N维空间中扩展了的毕达哥拉斯定理。如令维数为三,并假定空间是无限扩展的,就只有欧氏空间是可能的。也就是说,欧氏空间只是满足叠合条件的不同类型的空间中的一种。这些空间包括球面空间和伪球面空间,它们也是可设想的无矛盾的几何学。

那么,为什么我们接受了欧氏几何,而没有接受其它可能形式的非欧几何呢?为此,亥姆霍兹认为必须首先研究可想象的和可知觉的东西之间的关系,并进一步从中发现新的准则,以便用于有关几何学的特殊考虑,从而区别出空间知觉中的先天因素和后天因素。他先后研究了假想的二维生物在平面、球面及椭球面上所产生的几何学。从而得出结论:欧氏几何学之所以是我们周围实在世界的几何学,这没有什么可奇怪的,因为我们的视觉观念已经变得与这一环境相适应,因而也服从欧氏几何定律。如果生活在另一种几何结构不同的环境中,我们就会与新的环境相适应,学会看非欧几里德式的三角形,会觉得三角形的内角和不等于180度是正常的,我们也将学会用被那个世界的刚体所定义的一致性来测量距离。也就是说,欧氏几何的优先权是古老习惯的产物,它的基础在于我们的物质环境的欧几里德特性,我们由之认识几何关系的物理实体——刚体和光线在结构上是与欧氏几何定律相一致的,这种经验事实正是这类习惯的源泉。因而,康德意义上的终极范畴是不存在的,它所被赋予的确定性和固有的必然性也是虚幻的。由此,空间直观的“世俗血统”显然无疑其基础受到了根本性的动摇。一场新的认识论革命即将到来,它的目标正是对那些被赋予先天性的基本概念进行彻底地批判和清洗。马赫及赫兹的力学批判正是这一革命的重要组成部分,相对论的创立则是这一认识论革命的重大成果。在爱因斯坦看来,如果没有亥姆霍兹的非欧几何思想,就不可能通向相对论。

二爱因斯坦:“时间是可疑的”

众所周知,爱因斯坦是完成人类时空观根本变革的伟大哲人——科学家。他的青年时期正值追寻科学原理之基础的英雄时代,而善于从思想起源对基本概念进行批判性考察恰是爱因斯坦成功的关键,这与亥姆霍兹不无重大关系。

正如爱因斯坦多次谈到的那样:还在苏黎世联邦工业大学学习时,他就利用课余时间认真研读了亥姆霍兹、玻耳兹曼、赫兹等人的论著,特别是亥姆霍兹的五卷本《理论物理学讲义》使他受益匪浅。其中的第一卷有一半讲的都是哲学和认识论,具体实验却很少提及,甚至连那个在他的赞同下首次完成的迈克尔逊实验都未提及。正是这套讲义加强了爱因斯坦的批判意识及研究认识论的自觉性。当谈及这段经历时,爱因斯坦不无感慨地说:“在那里我有几位卓越的老师(比如胡尔维兹(A.Hurwitz)、明可夫斯基(H.Minkowski)),所以照理说,我应在数学方面得到深造。可是我大部分时间却是在物理实验室里工作,迷恋于同经验直接接触。其余时间,则主要用于在家里阅读基尔霍夫(G.R.Kirchhoff)、亥姆霍兹(H.L.F.vonHelmholtz)、赫兹(H.R.Hertz)等人的著作。”[8]大学毕业后,在伯尔尼专利局做试用检验员的爱因斯坦与C·哈比希特、M·索洛文三人组成了奥林比亚科学院,其中研读和讨论包括亥姆霍兹在内的大师们的著作是科学院的主要活动之一。因而,亥姆霍兹对于几何学、数学及力学基本概念的批判对爱因斯坦的认识论及其对康德哲学的看法有着直接影响。

在爱因斯坦看来,康德哲学中最重要的东西是他所说的构成科学的先验概念,而承认先验综合判断的存在则是他设下的圈套。[9]事实上,康德在那些作为任何思维的必要前提的基本概念与来自经验的概念间所作的根本性区分是不正确的,其原因在于康德只强调了那些基本概念的有效性而忘记了它们的世俗来源,从而它们就会被看作是一成不变的既定的东西,并打上“思维的必然性”、“先验地给予”等等烙印。康德正是这样去看欧氏几何的。正如爱因斯坦在“物理学与实在”一文中所指出的那样:“欧几里德几何的纯逻辑的(公理学的)表示,固然有较大的简单性和明确性这个优点,可是它为此所付出的代价是放弃概念构造同感觉经验之间的联系,而几何学对于物理学的意义仅仅是建筑在这种联系之上的。致命的错误在于:认为先于一切经验的逻辑必然性是欧几里德几何的基础,而空间概念是从属于它的。这个致命错误是由这样的事实所引起的:欧几里德几何的公理构造所依据的经验基础已被遗忘了。”[10]既然“先天”空间形式已不可能,“先天的”时间形式还成立吗?这便是相对论的诞生必须突破的一道难关。在放弃了许多无效的尝试之后,爱因斯坦终于醒悟到:“时间是可疑的。”谈到这一点时,爱因斯坦特别强调了休谟和马赫的影响,在他看来:“只要时间的绝对性或同时性的绝对性这条公理不知不觉地留在潜意识里。那么任何想令人满意地澄清这个悖论的尝试,都是注定要失败的。清楚地认识这条公理以及它的任意性,实际上就意味着问题的解决。对于发现这个中心点所需要的思想,就我的情况来说,特别是由于阅读了戴维·休谟和恩斯特·马赫的哲学著作而得到决定性的进展。”[11]这里并未提到亥姆霍兹的作用。的确,亥姆霍兹由于认识到“时间”观念的复杂性而更关注于空间观念的批判性考察。但这种批判对相对论的创立同样有着至关重要的作用。其影响并不亚于马赫那“坚不可摧的怀疑论”。[12]在谈到非欧几何与物理学时爱因斯坦也指出:“物理世界的几何究竟是怎样的?它究竟是欧几里德式的还是任何别种的?许多人都争论过这个问题有没有意义。为了说明这种争论,必须在下面两种观点中彻底坚持一种。第一种观点,同意几何‘体’实际上体现着物理固体,当然,这只要固体遵守那些关于温度、机械应力等等已知的规定就行了。这是从事实际工作的实验物理学家的观点。如果几何的‘截段’,同自然界的一定客体相对应,那么几何的一切命题也都具有说明现实物体的性质。这种观点亥姆霍兹说得最明白,可以补充一句:要是没有这种观点,实际上就不可能通向相对论”。[13]对此应怎样理解呢?如果我们深入考察亥姆霍兹的非欧几何思想,我们将发现,其中不仅仅有对先天空间形式的批判,而且包含着关于“空间”相等的一种操作定义,从而为建立新的时空观指明了方向。

在有关空间知觉的早期研究中,亥姆霍兹就指出,我们对各种空间形状、距离及空间关系的知识的获得都是通过我们的身体或简单仪器的操作及实验而达到的。他关于非欧几何的探讨是通过空间中刚体的运动而进行的,而其中的相等关系正是由刚体向它的比较对象发生的真实运动来作出操作定义的。关于空间间隔的测量,必须首先对作为测量标准的刚体的某些特性给出明确规定,此后测量的意义就由这个作为标准的刚体的重复操作而确定。也就是说,康德意义上的那种绝对普遍而必然的几何学并不存在,只有与关于等同性的操作定义相关的几何学。按着这一观点,爱因斯坦在长时间的沉思之后,对时间概念提出了类似思考:同时性也没有任何绝对意义,它只能在一个确定的操作定义之上讨论,即同时性的爱因斯坦定义。

在“论动体的电动力学”这一划时代论文中,爱因斯坦基于对电动力学所导致的不对称现象的深刻分析和长达十年之久的追光悖论的沉思,首先提出了相对性原理和光速不变原理这两个公设。在随后的运动学部分,爱因斯坦首先给出了同时性的操作定义,从而使得“同时性”概念不仅摆脱先验色彩和直觉性,而且使它与经验建立了密不可分的联系,其结论是同时性的相对性。这个突破之后,先前的极大困难就迎刃而解了,时间的相对性和空间的相对性以及新的时空变换都不过是同时性的相对性的必然结果。这便是该文的运动学部分所提供的狭义相对论的完整的基本原理。

三从亥姆霍兹到爱因斯坦:富有批判精神的优良传统

科学哲学家赖欣巴哈在谈到相对论的哲学意义时曾指出:“我们把几何学问题的哲学说明归功于亥姆霍兹。他看出物理几何依赖于刚体全等的定义,并因此推得,物理几何本质的清楚说明在逻辑上比几十年之后发展起来的彭加勒的约定论更优越。又是亥姆霍兹,借助于形象化是有关固体和光线的经验结果这一发现,澄清了非欧几何的直观说明。……亥姆霍兹不能成功地劝服他的同代人脱离康德的时空先验论并不是他的错误。只有很少的专家知道他的哲学观点。当由于爱因斯坦的理论使公众的兴趣转向这些问题时,哲学家便开始让步并脱离了康德的先验论”。[14]我们认为,其中的“哲学说明”是指亥姆霍兹的思维和方法在本质上是哲学的,即对基本概念和理论前提进行彻底的批判考察,这正是康德哲学所富有的批判精神。正如海涅谈到康德的《纯粹理性批判》在德国引起的哲学热潮时所说:“康德引起这次巨大的精神运动,与其说是通过他的著作的内容,倒不如说是通过在他著作中的那种批判精神,那种现在已经渗入于一切科学之中的批判精神。所有学科都受到了它的侵袭。……德国被康德引入了哲学的道路,因此哲学变成了一件民族的事业。一群出色的大思想家突然出现在德国的国土上,就像用魔法呼唤出来的一样。”[15]的确,在康德之后,出现了费希特、谢林和黑格尔,他们沿着唯心主义道路进一步发展了康德哲学。与之不同的是,稍后的一大批德国杰出的科学家走的是另外一条以实证科学去解释和发展康德哲学的道路,其结果是康德哲学的许多结论得到了改造,但就其精神本质而论,则是对康德哲学的精神——批判精神的真正继承与发扬,这也正是德国科学的优秀传统的突出特点。这后一条道路的开拓者正是亥姆霍兹,他也因而被看作新康德主义的领导者和科学哲学的先驱者。赫兹、普朗克、爱因斯坦则是他的直接传人。他们的思维在本质上是哲学的思维,他们既是科学家,也是哲学家。在此,富有批判精神的文化传统发挥着重要的助长剂和催化剂的作用。爱因斯坦对此深有感触,他认为:“使青年人发展批判的独立思考,对于有价值的教育也是生命攸关的。”[16]

以上探讨不免使我们联想到中国教育的现状。我们的课堂、教材灌入给青少年的都是无血无肉的死的东西,知识技能化的倾向愈演愈烈,科学精神、科学思想丧失殆尽。由此,怎么能培育出世界级的科学大师呢?这或许可算作我们从本文得到的一个重要启示吧!

【参考文献】

[1]赖欣巴哈.科学哲学的兴起[M].北京:商务印书馆,1983.112.

[2]Helmholtz:VorlesungenuberTheorerischePhydsik,Bd.I,Leipzig,1897.S.5-6.

[3]L.Koenigsberger:HermannvonHelmholtz,Oxford,1906.P.160.

[4][5]Helmholtz:EpistemologicalWritings,Boston,1997,P.2;P.39.

[6][7]Helmholtz:WissenschaftlicheAbhandlungen,Leigzig,1868,S.621.S.616.

[8][9][10][11][13]爱因斯坦文集(第一卷)[M].北京:商务印书馆,1983.7、104、349、24、207.

[12]A·I·米勒.科学思维中的意象[M].武汉:湖北教育出版社,1991.104.