欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

重金属污染现状大全11篇

时间:2024-01-06 16:56:52

重金属污染现状

重金属污染现状篇(1)

【摘 要】中药材制品在保证人类健康方面表现出重要意义。而中药材中重金属的限量针对药材是否可以进入国际草药市场发挥着至关重要的作用。本文主要针对中药材重金属污染的相关影响因素进行分析,并且针对当前污染现状研究有效措施进行必要的干预,最终有效确保中药材产业的快速发展。

关键词 中药材;重金属污染;现状统计

我国中草药资源非常丰富,其针对推动经济社会的快速发展具有重要的意义。因为农业污水灌溉以及工业废水排放等因素的影响,导致一系列耕地土壤重金属出现了严重污染的情况,最终导致诸多中药材产品出现了重金属含量超标的现象。对此,当前针对中药材重金属污染情况较为严重,我国在中药出口方面也逐渐表现出一系列问题,为了能够有效确保中药材产业的顺利发展,本文主要针对中药材重金属污染现状予以综述。

1 污染现状

伴随着中药事业的快速发展,中药以及相关制剂因为能够发挥疾病预防的效果以及疾病治疗效果被给予高度关注。当前重金属污染的情况较为普遍,针对重金属污染已成为国内外研究的重点。只有有效达到科学中药质量标准,最终才能够将中药质量可控性有效提高。在研究有效方法将制剂内在质量进行提高的过程中,不但需要针对相关的有效成分的质量进行认真要求,针对制剂中含有的有毒物质以及有害成分,需要进行必要的了解并给予限制。当前对人体表现出有害作用常见的微量元素主要包括铅元素、镉元素、汞元素、砷元素以及铋元素等[1]。对于此类有害元素在食品以及药品中均做出了明确的限制。除此之外,诸多国家在设定重金属限量管理过程中,锌元素、铜元素、锡元素、铬元素以及铝元素也被列入。我国中药材中重金属均表现出程度有所不同的污染,属于长时间并且较为复杂的一项难题,同中药材产地、中药材品种以及药材生长环境等诸多因素均表现出密切的关系,对此需要引起社会的广泛关注。

2 不同类别污染情况

2.1 植物药污染情况

在中药材中,植物药属于至关重要的组成部分,也是当前研究重金属较多的一种药材。因为植物药受到产地、药物品种以及对患者用药部位等诸多因素的影响,从而导致在重金属量方面表现出一定的差别。对于全草类、叶类以及地上部位的中药材,表现出的重金属污染现象较多,分析同全草类药材需要长时间暴露于空气中最终表现出污染现象存在诸多的关系。而对于种子类、花类以及果实类中药材,表现出的重金属污染现象较多,分析同其生长周期相对较短以及重金属于体内只能够进行短时间富集表现出一定的关系[2]。对于根类以及根茎类中药材,表现出的重金属污染水平相对居中,分析导致出现污染的原因为重金属对中药材灌溉用水以及土壤造成污染导致。对于植物药而言,入药部位的不同,表现出的重金属污染情况有所不同,分析除因为中药材同外界环境长时间接触之外,同不同部位针对重金属表现出的富集能力等均存在一定的关联。

2.2 动物药污染情况

动物药主要指的是动物整体以及动物某一部分等供药用的中药。其因为受到生长环境以及相关因素的影响,导致重金属污染的现象逐渐严重。因为动物药来源主要为动物,而对于任何一种动物其生活环境以及生态系统较为恒定,对此无法利用植物药重金属限量标准对动物药进行衡量。所以需要针对动物药中重金属污染情况进行认真分析,能够确定有效的评价标准,为后期动物药使用的安全性做出充分的保障。

2.3 矿物药污染情况

矿物药于我国的应用历史较为长久,诸多中药复方制剂中均含有矿物药成分。但是因为矿物药中重金属的含量问题,导致诸多含有矿物的中成药在市场上出现了排斥问题。因为重金属的问题导致中药产业的发展受到了严重阻碍。对于不同矿物药中,在重金属含量方面表现出一定的差异。针对矿物药中含有的重金属问题需要进行认真研究,确定有效方法对重金属污染问题进行评价,最终有效确保临床用药的安全性[3]。

3 干预措施

伴随着工业化进程的快速推进,中药材中重金属污染的现象日益严重,针对当前重金属污染的情况,提出以下几点干预措施:(1)对中药材GAP 法规体系进行不断完善。将GAP 基地覆盖面积以及中药材种植品种进行有效扩大,在进行中药材种植以及中药材栽培过程中,需要对生长环境进行密切检测,最终保证中药材繁育基地的生态环境良好。(2)研究中药材快速检测方法。有效研究中药材快速检测方法对中药材重金属进行测定,能够做到实地检测以及实时检测。从而针对中药材中包括的重金属进行认真的监督管理,确保患者临床用药的安全性。(3)针对遭受污染的中药材产地实施修复。选择对应的措施对污染产地实施修复。例如选择物理修复的方法、微生物修复的方法以及植物修复方法等。最终能够获得理想的修复效果。(4)对中药材重金属限定标准进行完善。有效创建合理以及科学的重金属限量标准对中药材用药进行准确衡量,能够针对重金属风险进行仔细评估,最终有效确保中药材的用药安全。

4 总结

总而言之,针对中药材重金属安全进行认真评价,对中药材安全用量进行认真分析,最终有效促进中药材产业的快速发展。

参考文献

重金属污染现状篇(2)

土壤重金属污染是指由于人类活动,土壤中的微量金属元素在土壤中的含量超过背景值,过量沉积而引起的含量过高。土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。随着工业的发展、城市化的扩大和农用化学物质的频繁使用,重金属大量进入土壤环境,造成生态环境恶化又由于重金属不可降解,对土壤造成的长期的污染,已经成为现今危害最大的环境问题之一。

一、土壤污染的原因

中国的海陆总面积有1260万平方公里,其中陆地面积就占了960万平方公里,由此说明我们国家有大约2/3的面积都是土地,我们在这片土地上面建设自己的家园,可就因为这快速发展的科技和文化,我们面对的问题也逐渐变多,其中最为严重也最为重要的就是土壤问题,当我们的土壤问题逐步加重,我们将失去我们赖以生存的家园,同时,土壤污染也会给我们的生命造成威胁,经过调查土壤污染可以分为很多种类,根据污染类型可以分为大气污染,污水污染,化学污染等,根据污染种类又可以分为铅,铬汞等污染,本文主要将土壤的污染分为了两大类:工业污染和农业污染。

1.工业污染

(1)污水污染:工业废水里面含有很多种元素,其中包括氮、钾、磷等土壤所需要的元素,所以少量污水排放到土壤中还可以起到增肥的作用,但是如果不经过处理直接排放到土壤中的话,污水中的氰化物和其他重金属物质比如说汞和铅之类的元素则会富集到土壤中,当大量排放后土壤的结构就会被这些重金属物质所破坏,从而不能继续使用。

(2)大气污染:工业排放出来的有毒气体也是致命的打击,工业废气中主要含有二氧化硫、一氧化碳等有毒有害气体,这些气体排放到大气中之后则会引起酸雨等酸性过高的雨水,这些雨水不仅会破坏植株,更会影响到土壤中的酸碱平衡,杀死很多农作物,这些气体以雨水为媒介进入土壤中,而一些颗粒状的物质则因为大量排放而聚集沉淀到土壤中,直接对土壤造成了污染。

2.农业污染

(1)化肥污染

化肥的作用就是通过人工的手法增加农作物的产量,少量的使用氮肥磷肥或者其他的硝化肥料可以增加农作物的产量,但是如果盲目的或者一味的使用这些肥料会使土壤出现富营养化,破坏土壤的结构,使土壤灰化。土壤结构遭到破坏,农作物就不能生长,影响了我们的食物生产,就算还可以得到农作物,也会影响到人体的健康。

(2)农药污染

r药的作用就是防止植物被虫害或者使农作物能够经得起极端条件,恰当的使用可以使农作物增产,但是农药里面含有大量的氰化物,杀虫剂和防腐剂等物质,这些物质大量的使用或者沉积同样也会破坏土壤的组织结构,而且这些农药也会导致一些鸟类或者对植株有益的动物远离,这样不仅破坏了生态环境也减弱了粮食的生产。

二、土壤重金属污染对人体的危害

重金属污染导致土壤中金属离子超标,又因为土壤污染很难自身降解,所以就会不断的积累,这些重金属离子根据生态系统的物质循环进入人体内,这种高浓度的金属会与人体内的蛋白质氨基酸结合被人体吸收,引起重金属中毒。

1.最引人关注的就是铅中毒,相传伟大的罗马帝国就是因为铅中毒而灭亡的,罗马人在生活中大多使用铅制品,大量的摄入铅会使人的神经系统崩溃,消化系统损坏,当铅进入人体血液之后会干扰血红蛋白的合成,从而引起人贫血,铅中毒也会影响生育能力,1931年的日本也因为铅中毒出现了一种名为“痛痛病”的怪病。

2.重金属污染的另一种危害就是镉污染,镉主要是通过肺或者食物进入人体,镉中毒会导致人体的肾功能衰竭或肺水肿等致命疾病。典型的镉污染案例有:湖南省浏阳市镇头镇双桥村事件;广东北江流域镉超标事件;稻米镉超标事件。

3.汞中毒,汞中毒则会引起呼吸道,消化道,肾功能等等功能的衰竭,从而致死。典型的汞污染案例:贵州万山汞污染事件;河南汞污染等等。

4.砷中毒,砷和含砷金属的开采、冶炼,用砷或砷化合物作原料的玻璃、颜料、原药、纸张的生产以及煤的燃烧等过程,都可产生含砷废水、废气和废渣。砷污染主要来自工业生产及含砷农药的使用、煤的燃烧。含砷废水、农药及烟尘都会污染土壤,砷和砷化物一般可通过水、大气和食物等途径进入人体,造成危害。元素砷的毒性极低,砷化物均有毒性,三价砷化合物比其他砷化合物毒性更强。典型的砷污染案例有:湖南岳阳砷污染事件湖南石门砷污染事件等等。

5.铬中毒,主要来源于劣质化妆品原料、皮革制剂、金属部件镀铬部分,工业颜料以及鞣革、橡胶和陶瓷原料等;如误食饮用,可致腹部不适及腹泻等中毒症状,引起过敏性皮炎或湿疹,呼吸进入,对呼吸道有刺激和腐蚀作用,引起咽炎、支气管炎等。工业废水中主要是六价铬的化合物,常以铬酸根离子[(CrO4)2-]存在。煤和石油燃烧的废气中含有颗粒态铬。而六价的铬毒性较强,易被人体吸收,在人体积攒时间一长更容易致癌。典型的铬污染案例:云南铬污染事件;大连某工厂铬污染危害土壤事件等等。

少量的金属元素的吸入对人体是有益的,但是由于排放出来的金属元素价态的改变或者结构的变化就会对人体有致命的打击,过度的吸入有害物质对人们的生长发育也会有阻碍作用,其实土壤对人体危害不仅至来源于农作物,很多时候皮肤的接触也会导致各种疾病,所以如果不加以防治,只会变得越来越严重。

三、土壤重金属污染现行治理方法

1.化学方法

化学修复是利用加入到土壤中的化学修复剂与污染物发生一定的化学反应,使污染物被降解和毒性被去除或降低的修复技术,包括施用有机物料、施用沉淀剂、吸附剂或粘合剂,施用化学改良剂等方法。对于重金属轻度污染的土壤,使用化学改良剂可使重金属转为难溶性物质,减少植物对它们的吸收。常用的化学改良剂有石灰、石膏、磷石膏、硫酸亚铁,硫磺、腐殖酸、腐殖酸钙等。例如,施石灰于酸性土壤,可减弱土壤的酸度,使镉、锌、铜、汞等形成氢氧化物沉淀,从而降低它们在土壤中的浓度,减少对植物的危害。对于硝态氮累积过多并已流入地下水体的土壤,一则大幅度减少氮肥施用量,二是配施脲酶抑制剂、硝化抑制剂等化学抑制剂,以控制硝酸盐和亚硝酸盐的大量累积。

化学治理措施的有点事治理效果和费用适中,缺点是容易再度活化。

2.工程治理方法

工程治理措施主要包括:客土、换土、去表土和深耕翻土等措施。

改变耕作制度会引起土壤环境条件的变化,消除某些污染物的危害。对于污染严重的土壤,采取铲除表土和换客土的方法;对于轻度污染的土壤,采取深翻土或换无污染客土的方法[1]。这些方法适用于小面积改良。但对于大面积污染土壤的改良,非常费事,难以推行。

3.生物治理方法

(1)微生物土壤生态改良剂

能够促进离子交换、调节pH值,具有良好的吸附、代换能力,可以净化土壤,改善土壤年理化性状和生物活性。作物施用后可以有效改善农产品外观,促进可溶性氨基酸、维生素等营养元素的合成,降低硝酸盐、重金属等有害物质含量。

(2)植物修复

严重污染的土壤可改种一些非食用的植物如花卉、林木、纤维作物等,具体方法包括植物提取,植物降解,植物稳定,植物挥发。

4.农业治理方法

(1)施加有机肥料

施加有机肥料可增加土壤有机质和养分含量,既能改善土壤理化性质特别是土壤交替性质,又能增大土壤容量,提高土壤净化能力。收到重金属和农药污染的土壤,增施有机肥料可增加土壤交替对其的吸附能力,同事土壤腐殖质可络合污染物质,显著提高土壤钝化污染物的能力,从而减弱其对植物的危害。

(2)改变轮作制度

改变轮作制度会引起土壤环境条件的变化,可消除某些污染物的毒害。据研究,实现水旱轮作是减轻和消除农药污染的有效措施。如DDT农药在棉田中的降解速度很慢,残留量大,而棉田改水之后,可在很大程度上加速DDT的降解[2]。

四、土壤重金属污染的现状

环境保护部和国土资源部公布的《全国土壤污染状况调查公报(2014)》披露,我国部分地区土壤污染较重,耕地土壤环境质量堪忧,工矿业废弃地土壤环境问题突出。

(1)全国土壤总超标率为16.1%,其中重度污染点位比例为1.1%。土壤污染以无机型为主。南方土壤污染重于北方,长三角、珠三角、东北老工业基地等部分区域土壤污染问题较为突出,西南、中南地区土壤重金属超标范围较大。镉、汞、砷、铅4种无机污染物含量分布呈现从西北到东南、从东北到西南方向逐渐升高的态势。

(2)耕地土壤点位超标率为19.4%,其中轻微、轻度、中度和重度污染点位比例分别为13.7%、2.8%、1.8%和1.1%,主要污染物为镉、镍、铜、砷、汞、铅、滴滴涕和多环芳烃。林地点位超标率为10.0%,草地点位超标率为10.4%,未利用地点位超标率为11.4%。

(3)k、汞、砷、铜、铅、铬、锌、镍8种无机污染物点位超标率分别为7.0%、1.6%、2.7%、2.1%、1.5%、1.1%、0.9%、4.8%,其中镉重度污染点位比例为0.5%。六六六、滴滴涕、多环芳烃3类有机污染物点位超标率分别为0.5%、1.9%、1.4%。

(4)在调查的690家重污染企业用地及周边土壤点位中,超标点位占36.3%,主要涉及黑色金属、有色金属、皮革制品、造纸、石油煤炭、化工医药、化纤橡塑、矿物制品、金属制品、电力等行业。调查的工业废弃地中超标点位占34.9%,工业园区中超标点位占29.4%。

(5)在调查的188处固体废物处理处置场地中,超标点位占21.3%,以无机污染为主,垃圾焚烧和填埋场有机污染严重。

调查的采油区中超标点位占23.6%,矿区中超标点位占33.4%,55个污水灌溉区中有39个存在土壤污染,267条干线公路两侧的1578个土壤点位中超标点位占20.3%。

不难看出我们国家的污染现状是多么的恐怖,在我们亲身的实践经历中我们发现,很多地区的土壤颜色各不相同,当我们走访各小区或者街道进行调查的时候,很多人都不了解土壤污染是什么,都不知道土壤污染的严重性,就是这样的无知和不重视才会导致土壤问题越来越严重。而且根据我们测量的数据趋势也不难看出土壤污染正在逐年恶化。

2010年,中国水稻研究所与农业部稻米及制品质量监督检验测试中心《我国稻米质量安全现状及发展对策研究》称,我国1/5的稻米耕地受重金属污染。2011年全国人大常委会会议上,环保部部长周生贤披露的数字是:中国受污染耕地约有1.5亿亩,占18亿亩耕地的8.3%。2013年年底国土资源部副部长王世元在土地调查新闻会上公布中国内地中重度污染耕地大约为5000万亩。2014年4月17日环境保护部和国土资源部公布的《全国土壤污染状况调查公报》中显示全国土壤总超标率为16.1%,其中重度污染点位比例为1.1%。

根据这些数据我们大胆的猜测,在多少年之后我们的土壤将全部被污染,或者换一种说法,我们还有多少时间去浪费?虽然到目前为止,这些大数据后隐藏的信息,受影响的地区和人群,给人们生活带来的影响等等,都还未公布于众。但我们可以看出,土壤污染问题从来都没有消退,他一直存在并且愈加愈烈。

五、展望

国务院关于印发土壤污染防治行动计划的通知指出,要到2020年,全国土壤污染加重趋势得到初步遏制,土壤环境质量总体保持稳定,农用地和建设用地土壤环境安全得到基本保障,土壤环境风险得到基本管控。受污染耕地安全利用率达到90%左右,污染地块安全利用率达到90%以上。到2030年,全国土壤环境质量稳中向好,农用地和建设用地土壤环境安全得到有效保障,土壤环境风险得到全面管控。受污染耕地安全利用率达到95%以上,污染地块安全利用率达到95%以上。到本世纪中叶,土壤环境质量全面改善,生态系统实现良性循环。

这是国家对土壤问题所提出的解决办法,而我们则应该从身边做起。

这是我们赖以生存的土地,他现在已经被我们破坏的千疮百孔,不知道什么时候就会被人类全部毁灭,虽然国家出台了各种法律来保护防治土壤的问题,但是我们更应该从科学的角度来治理土壤,研究出更多的生物化学方面的东西来更加有效的改善土壤问题。

参考文献:

[1]赵美微,塔莉,李萍.土壤重金属污染及防治/修复研究[J].北方环境,2007.

重金属污染现状篇(3)

1 引言

随着我国加入世界贸易组织,经济全球化的迅速发展,含重金属的污染物通过各种途径进入土壤,造成土壤严重污染。土壤重中金属污染不仅对生物的生存有危害,对于人类自身的危害同样十分严重。农村因农药的的大量使用从而导致土壤重金属污染严重,城市则因为工业原因导致土壤重金属污染严重。

而在处理重金属污染方面,目前国内有资质处理重金属污染的公司寥寥无几。由于我国经济的快速发展、工业化的快速发展使得土壤的重金属污染问题越来越严峻,土壤的重金属污染又与人民的生活息息相关,所以我们必须重视土壤重金属污染问题,研究其解决方法。

2 现状

根据我国有关权威相关部门的显示,目前在我国东部发达经济地区为数不多的耕地中,其中有超^七成以上的土地被污染,并且照这个趋势来看,如果不及时采取有效措施,污染的情况还会持续加剧,对地下水资源的质量和人们的身体健康构成严重威胁,影响十分恶劣。

根据国家环境监测中心的调查结果,我国的土壤污染种类多样,从重度金属污染到轻度污染、中度污染、高度污染都有不同程度的涉及,其中尤以重金属污染最为严重,由于重金属近年来在工程使用超标,在严重污染领域已经首当其冲,需要引起人们的高度重视。

镉、砷、汞等有毒重金属所导致的重金属污染比起传统的水污染影响是十分恶劣的,破坏力强,恢复时间久,修复速度慢 在一些重金属超标污染严重的工业区,我国有些城市的大片农田受多种重金属污染,超过十成的的土壤已经基本丧失土地生产力,近十年都无法进行耕种收获。

严峻的问题越来越导致周围环境的恶化和生态的变化,也开始引发人们的思考和行动,早在2005年,我国有关立法机关便通过了对污染的防御和治理的有关条款进行规定,要求企业和公司在生产过程中承担社会责任,减少污染物的排放,为人们的生命健康和生态环境的改善从法律角度提供了理论基础,让企业、公司有法可依。

3 污染来源

从上文的统计结果中我们可以看出,我国的当前主要污染以重金属为主,那么主要是哪些金属构成的呢?它们是怎么来的呢?研究表明,我国目前的重金属污染以镉、铅、铬、铜、锌等为主,其中镉的污染最为严重。而重金属的主要来源是人类的生产生活活动,例如工业污染物的排放、农业用水农药污染以及人类生活污水的排放等。

3.1 铅的来源

铅作为原料应用于蓄电池、电镀、颜料、橡胶、农药、燃料等制造业;铅板制作工艺中排放的酸性废水中铅浓度最高,电镀废液产生的废水铅浓度也很高。

3.2 镉的来源

镉可以为钢、铁等电镀,提供一种抗腐蚀性的保护层,具有吸附性好且镀层均匀光洁等特点,因此工业上90%的镉用于电镀、颜料、塑料稳定剂、合金及电池等行业。

3.3 镍的来源

镍在废水中主要以二价离子存在,主要是硫酸镍、硝酸镍以及与许多无机和有机络合物生成的镍盐。电镀业、采矿、冶金、石油化工、纺织等工业,以及钢铁厂、印刷等行业是含镍废水的工业来源,其中以电镀业为主。

3.4 银的来源

硝酸银是常见银盐中唯一可溶的,废水中含银的主要成分也是硝酸银。硝酸银广泛应用于无线电、化工、机器制造、陶瓷、照相、电镀以及油墨制造等行业硝酸银有着广泛应,电镀业和照相业则是含银废水的主要来源。

4 土壤污染的修复

对于土壤的重金属污染处理方法,目前主要有四大类,即化学方法、工程方法、生物方法以及农业方法。

4.1 化学方法

该方法针对不同的土壤状况,选择合适的化学试剂加入土壤,用以去除土壤中的重金属,降低土壤中重金属的含量。也可抑制污染物质的再次溶出、扩散,从而最终达到降低重金属污染的目的。

4.2 工程方法

该方法是将污染的土壤移除后加入未污染土壤,并且对已污染的土壤进行处理,从而达到修复土壤的目的。可以对已污染土壤通过热处理(将污染土壤加热,使土壤中的挥发性污染物挥发并收集起来进行回收或处理)、淋洗(用淋洗液来淋洗污染的土壤)、电解(使土壤中重金属在电解、电迁移、电渗和电泳等的作用下在阳极或阴极被移走)等方式加以处理。该种方法具有效果彻底、稳定等优点,但同时操作方式较为复杂、治理费用高并且易引起土壤肥力降低等缺点。

4.3 生物方法

该方法通过利用某些生物的特殊习惯以及生理功能来适应、改善土壤的重金属污染状况。利用蚯蚓和鼠类吸收土壤中的重金属,利用微生物的生物功能对土壤中的重金属进行吸附、沉淀、氧化、还原,降低土壤中溶解的重金属含量。该种方法实施简便,投资少,对环境极为友好,但是所需时间极长,短期内治理效果十分不理想。

4.4 农业方法

该方法通过因地制宜的改变一些耕作管理制度、在污染土壤上种植不进入食物链的植物来减轻重金属的危害。农村的土壤重金属污染的主要来源是农药的大量使用,因此改进耕种制度便显得极为重要。选择合理有效科学的耕种方式可以很大程度的降低土壤再次被污染程度,辅以生物方法可以解决长期的污染问题,并且对于环境很友好,非常值得提倡。

5 前景

土壤的重金属污染存在治理难、治理时间长的难题,因而如何有效的在不对土壤肥力造成影响的情况处理重金属污染就显得极为重要。而目前的大部分方法都处于实验室试验阶段,并没有合理有效的处理方式,因此研究出一种优秀的土壤重金属污染处理方式极为重要,目前我国土壤重金属污染形势十分严峻,可以说刻不容缓。

通过对以上一些土壤重金属污染修复技术的介绍,可以预测,在今后的重金属污染治理中,生物方法将发挥巨大作用。同时,修复过程不仅仅局限于一种修复方式,而将成为两种或多种修复方式共同作用的情况。因此,在我们了解各种修复方式的实际操作方法及其优缺点后,在应用过程中取长补短,才能更大的发挥其修复能力。并通过一些新的修复思路和方法的探索,为今后的研究指明方向,这还需要植物生理学、土壤学、生态学、化学、遗传学、环境保护学和生物工程等多个学科的共同努力来实现。

修复的成功和失败经验,特别是结合我国国情,加强研究,将会使我国污染土壤及地下水和地表水的生物修复的工作进入到一个崭新的阶段。

6 结语

重金属复合污染是当前土壤污染研究的重要科学问题。由于土壤中重金属复合污染的普遍性及它们在生态系统中具有多样、复杂的复合效应机制,包括协同作用、拮抗作用以及加和作用等,还有复合污染的复杂性和特殊性,因此,土壤重金属复合污染是很难治理的。因此我们要大力研究其治理方式,尤其是生物方法,在不破坏环境的前提下治理污染问题。

参考文献

[1]重金属污染土壤修复技术述评_何启贤

[2]重金属土壤污染修复技术初探_林帅

[3]土壤的重金属污染及其防治_张国印

[4]重金属污染及其生物修复_诸振兵

重金属污染现状篇(4)

关键词:土壤重金属污染;危害;修复技术

中图分类号:X53 文献标识码:A DOI:10.11974/nyyjs.20170230224

就土壤本身来看,其之所以会产生重金属污染,主要是因为人类在活动期间将重金属物质带入到土壤内部,使得土壤内的重金属含量增多,破坏生态环境。随着农村人口数量的增长和农业生产过程中对化肥和农药使用量的增加,导致土壤中有害物含量增多,自身生态结构和环境质量被破坏。其中,重金属是对土壤生态结构影响最大的一种元素。为了重塑土壤生态结构,提高土壤内部环境质量,解决土壤存在的重金属污染问题势在必行。

1 土壤污染现状和危害

1.1 重金属污染现状

在2005年到2013年的12月,我国土地管理局第一次开展了有关全国土壤污染情况的调查研究。按照我国在2014年由国土资源部和环保部共同的有关《全国土壤污染状况调查公报》所公示的调查结果看:当前我国土壤生态环境的状况整体来讲十分严峻,特别是重金属污染问题,更是极为严重。在我国一些废弃工矿所在区域的周边位置,土壤的重金属污染问题十分的突出。其中,我国有16.1%的土壤,重金属污染总超标率相对较重,11.2%超标率属于轻微范围;而轻度超标率和中度以上的超标率分别达到了2.3%和2.6%。

1.2 重金属污染的危害

同其他土壤污染类型相比,重金属污染本身的隐匿性、长期性、不可逆性较强,且这种污染问题一旦出现,则很难消逝。一旦重金属污染存在于土壤中,不仅很难被移动,还会长时间滞留在其产生区域,不断污染周边土壤。与此同时,重金属污染物不仅无法被微生物有效降解,还会借助植物、水等介质,被动植物所吸收,而后进入到人类食物链之中,对人体健康a生威胁。从具体的情况来看,重金属污染主要存在以下几种危害类型:对作物生产造成不利影响。因为重金属污染物在土壤与作物系统迁移的过程中,会对作物正常的生长发育和生理生化产生直接影响,从而降低作物的品质与产量。例如,镉属于对植物生长危害性较大的重金属,如果土壤镉含量较高,植物叶片上的叶绿素结构就会被破坏,根系生长被抑制,阻碍根系吸收土壤中的养分与水分,降低产量;会对人体生命健康带去影响。土壤中存在的重金属污染物可以借助食物链对人体健康造成危害。例如,汞进入人体后被直接沉入到肝脏中,破坏大脑的视神经。

2 解决重金属污染问题的方法

2.1 工程治理法

所谓的工程治理法,是通过利用化学或者是物理学中的相关原理,对土壤中的重金属污染问题展开有效治理的一种方法。现阶段,工程治理法主要包括了热处理法、淋洗法与电解法等[1]。在众多重金属污染处理方法中的处理效果更好、处理工艺的稳定性更高。但该项方法处理过程和处理工艺复杂,需要花费的成本高,且经过该方法处理后的土壤,其本身的肥力会有所降低。

2.2 生物治理法

该方法指的是借助生物在生长过程中的一些习性,来达到改良、抑制、适应重金属污染的目的。在该项治理方法中最为常见的就是微生物、植物和动物治理法。生物治理是利用鼠类和蚯蚓等动物能够吸收重金属的特性;植物治理则是利用植物积累到一定程度可以清除重金属污染,对重金属具有忍耐力的特质。工程治理法相比,生物治理方式投资相对较小、管理便利、对环境破坏性小等优势,但治理时间较长[2]。

2.3 化学治理法

化学治理法是通过向已经被重金属污染的土壤中投入适量的抑制剂和改良剂等其他化学物质的方式,增加有机质、阳离子等在土壤中代换量和粘粒含量,来改变被污染土壤电导、Eh、pH等其他理化性质,使重金属可以通过还原、氧化、拮抗、吸附、沉淀、抑制等化学作用被有效消除[3]。

3 结束语

在社会经济发展水平不断提升,重金属对土壤污染程度逐渐加深的今天,对重金属污染现状,以及其可能会造成的危害等问题展开细致的分析与研究,并利用工程、生物、化学等方式来有效的缓解和治理土壤当前存在的重金属严重污染问题,能够对我国土壤的生态环境和内部结构进行重构,为我国城市发展和社会建设提供充足的土壤资源。

参考文献

重金属污染现状篇(5)

中图分类号 X53 文献标识码 A 文章编号 1007-5739(2013)09-0229-03

重金属是指比重大于5.0 g/cm3的金属元素,包括Cu、Zn、Ni、Pb、Cr、Cd、Hg、As、Fe、Mn、Mo、Co等。通常自然界中重金属元素的背景值很低,其暴露不会对周围环境造成影响。但由于工业生产规模扩大,城镇化迅速发展,在农业生产中,污水灌溉和化肥、农药的使用量加大,导致土壤系统中重金属不断累积,明显高于其背景值,从而恶化了生态环境的质量,并通过食物链直接危害人体健康。据统计,全世界平均每年排放Hg约1.5万t,Cu 340万t,Pb 500万t,Mn 1500万t,Ni 100万t[1]。随着重金属污染问题的日益突出,土壤污染防治工作已在“十一五”期间被提上中国环境保护工作的重要议程,并成为第1个“十二五”国家规划。针对上述情况,笔者结合我国土壤重金属污染的现状,对当前土壤重金属污染的修复技术及其作用机理进行分析,并总结其各自的优势与不足,以期为综合治理土壤重金属污染提供参考依据。

1 我国土壤重金属污染现状

我国面临着相当严峻的土壤重金属污染问题。农业部调查数据显示[2],我国约140万hm2的农业用地采用污水灌溉,受到重金属污染的土地面积占污染总面积的64.8%。据有关资料表明,我国重金属污染的农业土地面积为2 500 hm2左右,导致粮食减产逾1 000万t,并造成1 200万t以上的粮食被重金属污染,将各项经济损失进行合计,至少高于200亿元[3]。污染土地中,严重污染面积占8.4%,中度污染面积占9.7%,轻度污染面积占46.7%。Hg 和Cd 的污染面积最大。如上海农田耕层土壤Hg、Cd含量增加了50%,江西大余县污灌引起的Cd污染面积达5 500 hm2,沈阳张士灌区Cd污染面积达2 533 hm2。我国农田土壤污染除Cd、Hg污染外,Pb、As、Cr和Cu的污染也比较严重。以保定市污水灌区为例,其Zn、Cu、Pb、Cd的检出超标率分别达到100.0%、27.5%、50.0%、87.5%[4]。此外,我国菜地土壤重金属污染也较为严重[5-7]。广州市蔬菜地Pb污染最为普遍,As污染次之;重庆近郊蔬菜基地土壤重金属Hg和Cd出现超标,超标率分别为6.7%和36.7%;珠三角地区近40%菜地重金属污染超标,其中10%属严重超标。近年来,由于工业“三废”、机动车废气和生活垃圾等污染物的排放,我国城市土壤普遍受到不同程度的重金属污染,主要污染元素为Pb、Cd、Hg。且城市土壤中大部分重金属污染含量普遍高于郊区农村土壤,并具有明显的人为富集特点[8]。

2 土壤重金属污染修复技术

2.1 物理修复

物理修复是指通过各种物理过程将污染物从土壤中去除或分离的技术,主要包括土壤淋洗法、工程措施法、电热修复法等。

2.1.1 土壤淋洗法。该方法是应用最多、应用最早、技术最成熟的物理修复方法。采用淋洗液(包括无机溶液清洗剂、复合清洗剂、清水、表面活性剂、有机酸及其盐清洗剂、螯合剂等)对土壤进行淋洗,使固相重金属转化为液相,重金属从土壤中转移到废水,再通过对废水进行回收处理,从而实现土壤的修复。Wasay et al[9]研究发现,EDTA和DTPA能有效地去除土壤中Hg以外的重金属元素,同时也提取出大量土壤营养元素。土壤淋洗法简便、成本低、处理量大、见效快,适用于大面积重度污染土壤治理,尤其是轻质土和砂质土。但这种方法在去除重金属的同时,易造成地下水污染及土壤养分流失。因此,既能提取各种形态重金属又不破坏土壤结构的淋洗液,将为该方法修复重金属污染土壤提供广阔的应用前景。

2.1.2 工程措施法。该方法是较为经典和传统的土壤重金属污染修复方法,包括深耕翻土、换土、客土等。深耕翻土与污土混合,或者通过换土和客土等手段,可以使土壤中重金属的含量有效降低,从而降低其对植物的毒害。不同的方式适宜于不同污染程度的土壤,重污染区的土壤宜使用换土和客土方法改良,而轻度污染的土壤则适宜于采用深耕翻土的方法进行修复。工程措施法的优势在于效果稳定和彻底,但是也存在一定的不足,如费用高、工程量大、易降低土壤肥力和破坏土壤结构,还有换出的污染土壤也存在二次污染的隐患,应妥善处理。据报道,对1 hm2面积的污染土壤进行客土治理,每1 m深土体需耗费高达800万~2 400万美元[10]。因此,工程措施不是一种理想的污染土壤修复方法。

2.1.3 电热修复法。该方法利用高频电压产生电磁波,再通过电磁波作用而产生热能,从而促使土壤中挥发性重金属得以分离,实现土壤的修复和改良。目前,该方法适用于修复受Hg或Se等可挥发性重金属污染的土壤。有研究表明,采用该法可使砂性土、黏土、壤土中Hg含量分别从15 000、900、225 mg/kg降至107、112、115 μg/kg,回收的Hg蒸气纯度达99%[11-12]。这种方法虽然操作简单、技术成熟,但能耗大、操作费用高,也会影响土壤有机质和水分含量,引起土壤肥力下降,同时重金属蒸气回收时易对大气造成二次污染。

2.2 化学修复

化学修复也是一种原位修复技术,即通过向重金属污染土壤中添加改良剂,以调节和改变土壤的理化性质,使重金属发生沉淀、吸附、拮抗、离子交换、腐殖化和氧化还原等一系列化学反应,降低其在土壤中的迁移性和被植物所吸收的可能性,从而达到治理和修复污染土壤的目的。常用的改良剂有石灰性物质[13-15]、磷酸盐化合物[16-17]、硅酸盐化合物[18]、金属及其氧化物[19-20]、黏土矿物[21-23]、有机质[24-26]等,其作用机理见表1。这种方法虽然简单易行,但其不足在于它只是改变了重金属在土壤中的存在形态,却没有把重金属从土壤中真正分离出来,如果土壤环境发生变化,容易造成其再度活化,引起“二次污染”。

2.3 生物修复

生物修复是利用生物(主要是微生物、植物和动物)的新陈代谢作用吸收去除土壤中的重金属或使重金属形态转化,降低毒性,净化土壤。该方法是运用生物技术治理污染土壤的一种新方法,具体包括微生物修复法、植物修复法、动物修复法等。由于该方法效果好、易于操作,日益受到人们的重视,已成为污染土壤修复研究的热点。

2.3.1 微生物修复。该方法是通过微生物进行作用,将土壤中重金属元素进行沉淀、转移、吸收、氧化还原等,从而对污染土壤进行修复。如柠檬酸菌能够与Cd形成CdHPO4沉淀;无色杆菌、假单胞菌能够使亚砷酸盐氧化成砷酸盐,从而降低As的转移和毒性;还有些微生物能够把剧毒的甲基汞降解为毒性小、可挥发的单质Hg[3]。尽管微生物修复引起极大重视,但大多数技术仍局限在科研和实验室水平,很少有实例报道。但随着分子生物学的发展,一些如细菌表面展示技术、噬菌体抗体库技术、酵母表面展示技术等[27],有望在治理土壤重金属污染中发挥重要作用。

2.3.2 植物修复。植物修复广义上是指利用植物提取、吸收、分解、转化、固定土壤、沉积物、污泥或地表、地下水中有毒有害污染物技术的总称;狭义上是指利用耐性和超富集植物将污染土壤中的重金属浓度降低到可接受的水平。根据其修复过程和机理,植物修复法可分为以下4种:①根部过滤[28],即通过耐性植物根系对重金属的吸收并保持在根部。常用的植物有水生植物、半水生植物以及个别陆生植物,如向日葵、耐盐野草、宽叶香蒲等。该法多应用于修复水体的重金属污染。②植物稳定[29],即利用植物根际的一些特殊物质,使土壤中污染物转化为相对无害物质的方法。常用的植物有印度芥菜、油菜、杨树、苎麻等。该法多应用于治理废弃矿场和重金属污染严重地区。③植物挥发[30],即利用植物吸收土壤中的重金属,并将其转化为可挥发状态,通过植物叶片等部位挥发出去,以降低土壤中重金属的含量。常用的植物有印度芥菜以及湿地上的一些植物。该法多应用于修复污染土壤中含有挥发性的重金属(如Hg、Se等),但易造成大气污染。④植物提取[31],即利用超富集植物从土壤中吸取重金属,并将其转移、贮存到地上部,然后通过收获,从而达到去除污染土壤中重金属的目的。目前,已发现超富集植物有700种以上,且广泛分布于约50科中,并主要集中在十字花科。该法适用面广,对于修复多种重金属污染土壤均有效。

植物修复法成本低,对环境扰动小,能绿化环境,具有良好的社会、经济、环境综合效益,适用于大规模污染土壤的修复,属于真正意义上的绿色修复技术。但该方法也有一定的缺点:一是超富集植物生长缓慢,常受土壤类型、气候、水分、营养等环境条件限制,导致修复污染较严重土壤的周期长;二是修复过程局限在超富集植物根系所能伸展的范围内;三是超富集植物只能积累某一种重金属,而土壤污染大多是重金属的复合污染;四是超富集植物需收割并作为废弃物妥善处置,将对生物多样性存在一定的威胁。

2.3.3 动物修复。动物修复是利用土壤中的某些低等动物(如蚯蚓等)吸收重金属的特性,在一定程度上降低受污染土壤的重金属比例,以达到修复重金属污染土壤的目的。有研究表明[32],蚯蚓在其耐受浓度范围内,对重金属的富集量随着重金属浓度的增加而增加,同时对重金属的选择性受其体内酶的影响。但这种修复方法不足在于低等动物吸收重金属后可能再次释放到土壤中,造成二次污染。

2.4 农业生态修复

农业生态修复是近几年新兴的修复技术,它是通过改变耕作制度、调整作物品种、调控土壤化学环境(包括土壤pH值、水分、氧化还原电位等)、改变土地利用类型、增施有机肥(堆肥、厩肥、植物秸秆等)、控施化肥等措施,以减轻重金属对土壤的危害[33]。我国在这一方面研究较多[34-36],并取得了一定的成效。这种方法具有投资少、无副作用等特点,适用于中轻度污染土壤,但也存在修复周期较长、效果不太显著等不利因素。

3 结语

综上所述,目前重金属污染土壤的修复技术很多,但就单一技术来看,任何一种修复技术都有其局限性,难以达到预期效果,进而无法大力推广。而且土壤重金属污染修复作为一项系统工程,不仅需要土壤学、植物生理学、遗传学、环境工程学、分子生物学等多个学科的共同努力,还需要多种修复技术的综合应用,即将物理修复、化学修复、生物修复科学地结合起来,取长补短,才能达到更好的效果。

4 参考文献

[1] 李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态,2003(1):24-26.

[2] 崔德杰,张玉龙.土壤重金属污染现状与修复技术研究[J].土壤通报,2004,35(3):366-370.

[3] 骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.

[4] 谢建治,刘树庆,王立敏,等.保定市郊土壤重金属污染现状调查及其评价[J].河北农业大学学报,2002,25(1):38-41.

[5] 茹淑华,孙世友,王凌,等.蔬菜重金属污染现状、污染来源及防治措施[J].河北农业科学,2006,10(3):88-91.

[6] 唐书源,李传义,张鹏程,等.重庆蔬菜的重金属污染调查[J].安全与环境学报,2003,3(6):74- 75.

[7] 魏秀国,何江华,陈俊坚,等.广州市蔬菜地土壤重金属污染状况调查及评价[J].土壤与环境,2002,11(3):252-254.

[8] 和莉莉,李冬梅,吴钢.我国城市土壤重金属污染研究现状和展望[J].土壤通报,2008,39(5):1210-1216.

[9] WASAY S A,BARRINGTON S,TOKUNAGA anic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns[J].Water,Air,and Soil Pollution,2001(3):301- 314.

[10] CHANEY R L,LI Y M,ANGLE J S,et al.Phytoremediation of soil metals[J].Current Opinion in Biotechnology,1997(8):279-284.

[11] KAWACHI T,KUBO H.Model experimental study on the migration behavior of heavy metals in electric to kinetic remediation process for contaminated soil[J].Soil Sci Plant Nutr,1999,45(2):259-268.

[12] 刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报:自然科学版,2009,10(1):73-78.

[13] CHEN Z S,LEE G J,LIU J C.The effects of chemical remediation treatments on the extractability and speciation of cadmium and lead in contaminated soils[J].Chemosphere,2000,41(1-2):235-242.

[14] 廖敏,黄昌勇,谢正苗.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,17(3):101-103.

[15] 陈宏,陈玉成,杨学春.石灰对土壤中Hg、Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.

[16] SEAMAN J C,AREY J S,BERTSCH P M.Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition[J].J Environ Qual,2001,30(2):460-469.

[17] 周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展[J].生态学报,2007,27(7):3043- 3050.

[18] DA CUNHA K P V,DO NASCIMENTO C W A,DA SILVA A J.Silicon alleviates the toxicity of cadmium and zinc for maize(Zea mays L)grown on a contaminated soil[J].Journal of Plant Nutrition and Soil Science,2008,171(6):849-853.

[19] GRAFE M,NACHTEGAAL M,SPARKS D L.Formation of metal-arsenate precipitates at the goethite-water interface[J].Environmental Science and Technology,2004,38(24):6561-6570.

[20] KUMPIENE J,ORE S,RENELLA G,et al.Assessment of zerovalent iron for stabilization of chromium,copper,and arsenic in soil[J].Environ-mental Pollution,2006,144(1):62-69.

[21] 娄燕宏,诸葛玉平,顾继光,等.粘土矿物修复土壤重金属污染的研究进展[J].山东农业科学,2008(2):68-72.

[22] 柯家骏,陈淑民,胡向福,等.膨润土粘土矿物吸附重金属的研究[J].重庆环境科学,1993,15(1):4-6.

[23] MAHABADI A A,HAJABBASI M A,KHADEMI H,et al.Soil cadmium stabilization using an Iranian natural zeolite[J].Geoderma,2007(137):388-393.

[24] VACA-PAULIN R,ESTELLER-ALBERICH MV,LUGO-DE LA FUENTE J,et al.Effect of sewage sludge or compost on the sorption and distribution of copper and cadmium in soil[J].Waste Management,2006, 26(1):71-81.

[25] 陈世俭,胡霭堂.有机物质种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(1):38-40.

[26] 华珞,陈世宝,白玲玉,等.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59,62.

[27] 李宏,江澜.土壤重金属污染的微生物修复研究进展[J].贵州农业科学,2009,37(7):72-74.

[28] DUSHENKOV S,VASUDEV D,KAPULNIK Y,et al.Removal of uranium from water using terrestrial plants[J].Environ Sci Technol,1997, 31(12):3468-3474.

[29] 敖子强,熊继海,王顺发,等.植物稳定技术在金属矿山废弃地修复中的利用[J].广东农业科学,2011(20):139-141,147.

[30] MITCH L,NICOLE P,DEBORAH D,et al.Zinc phytoextraction in Thlaspi caerulescens[J].International Journal of Phytoremediation,2001, 3(1):129-144.

[31] 丁华,吴景贵.土壤重金属污染及修复研究现状[J].安徽农业科学,2011,39(13):7665-7666,7756.

[32] 伏小勇,秦赏,杨柳,等.蚯蚓对土壤中重金属的富集作用研究[J].农业环境科学学报,2009,28(1):78-83.

[33] 刘候俊,韩晓日,李军,等.土壤重金属污染现状与修复[J].环境保护与循环经济,2012(7):4-8.

重金属污染现状篇(6)

中图分类号 X53;X56 文献标识码 A 文章编号 1007-5739(2012)20-0247-02

蔬菜是人们生活中不可缺少的副食品,为人体提供所必需的多种维生素和矿物质,城镇化速度的加快及工业的迅速发展,使得环境污染问题日益加重,致使蔬菜中重金属和农药残留含量急剧增加,给人类健康造成了严重伤害。重金属积累特点及其对环境的污染是目前蔬菜重金属研究的重点。城市及其郊区是重金属污染的重要区域,了解和掌握土壤和蔬菜重金属的污染现状,对指导当前和以后蔬菜无公害化生产和环境保护等方面具有重要指导意义。

1 杭州市土壤重金属污染现状

谢正苗等[1]调查杭州市4 个蔬菜基地土壤中Pb、Zn、Cu的含量,结果发现蔬菜基地土壤中重金属的含量虽然未超过国家土壤重金属环境质量标准,符合无公害蔬菜的发展要求,但已超过其自然背景值。4个调查区中拱墅区土壤中重金属含量大于其他3个区;江干区蔬菜基地土壤—蔬菜中重金属的空间变异很大。老城区近50%的土壤属于Ⅲ类以上,几乎无Ⅰ类土壤,有些特色产品的种植土壤甚至存在一定的环境风险[2]。城市土壤中的磁性物质对重金属有显著的富集作用,杭州市土壤的磁性物质含量分别是0.20%~2.75%(平均值0.75%),磁性物质对重金属的富集系数大小为Fe>Cr>Cu>Mn>Pb>Zn[3]。

郭军玲等[4]研究发现杭州市蒋村土壤已受到Zn 的明显污染,污染等级为轻污染,乔司和下沙土壤重金属为高度累积,七堡和蒋村土壤重金属达到严重累积程度。李 仪等[5]研究发现杭州市区表土Pb、Cd和Hg含量随离城市距离增加而下降,土壤中重金属Pb、Cd和Hg的积累主要与大气沉降有关;同一区块中茶园表土重金属Cu和Zn含量明显高于附近林地土壤,施肥等农业措施对茶园土壤Cu和Zn的积累有较大的影响。

2 杭州市蔬菜重金属污染情况

杭州市野外常见野生蔬菜铅的超标率达87.5%,镉的超标率为12.5%,铜和锌无超标现象[6]。小青菜和小白菜中Pb超标,但Zn、Cu未超标,其富集系数顺序为Zn>Pb>Cu,且小青菜更易受重金属污染,其重金属含量均大于小白菜[1]。

宋明义等研究发现,根茎类蔬菜中Cd、Pb常超标,叶菜类蔬菜中除Cd、Pb常超标外,Hg也常超标,豆类和茄果类情况相对较好,未发现超标现象。其中,半山附近蔬菜中Cd、Zn含量接近国家食品卫生规定的标准限值,蔬菜和水稻中以Pb超标情况较严重;江干区蔬菜基地的蔬菜重金属污染也较为普遍,不同蔬菜品种中均有重金属超标现象[2]。王玉洁等[3]研究发现蔬菜的可食部位和非可食部位Pb含量均出现严重超标现象,样本超标率达100%;但是4种蔬菜可食部位含Cu量和含Zn量均未出现超标现象,部分蔬菜根系含Cu量和含Zn量却出现超标现象。

3 蔬菜重金属的吸收与富集规律

3.1 不同区域的差异性

北方地区蔬菜重金属污染相对南方地区轻,南方地区污染形势最为严峻的为Cd,这可能是由于南方土壤pH值低、有机质含量等决定的重金属存在形态、活性有关。由于土壤中Cd的化学活性最强,全国范围内Cd污染最为严重[7]。

重庆市小白菜中的As质量比在南岸区菜市场中可达0.068 mg/kg,但在渝中区只有0.012 mg/kg,二者相差5.7倍;渝中区菜市场藕中Hg质量比为0.189 1 mg/kg,但在北碚区菜市场中只有0.056 7 mg/kg,二者相差3.34倍[8]。

3.2 不同种类的差异性

基因型差异使得同一种蔬菜对重金属元素的吸收、累积特点各不相同。此外,土壤粘粒含量、有机质含量、pH值等土壤环境条件都会导致蔬菜中重金属含量差异[9]。

重金属污染以镉和铅为主,根茎类和瓜果类较为突出;镉污染最严重,排序为:根茎类、瓜果类、豆类、叶菜类;芋头和葱中镉污染均超标,最大超标倍数分别达到1.9倍和5.1倍[10]。叶菜类蔬菜中锌、铜、铅平均含量均高于瓜豆类蔬菜,只有镉的平均含量低于瓜豆类蔬菜[11]。不同种类和类型的蔬菜对重金属的富集能力不同,Zn:叶菜类>瓜果类>根茎类;As:叶菜类>根茎类>瓜果类;Hg:根茎类>瓜果类>叶菜类[8]。

3.3 同种蔬菜对不同重金属的吸收和富集差异性

蔬菜对Cu、Zn、Pb的相对富集能力基本一致,其富集系数顺序为Pb>Cu>Zn[3]。同一种蔬菜吸收不同重金属的能力不同,富集元素的规律是Cd>Zn、Cu>Pb、Hg、As、Cr。也有发现当Zn、Cd、Cu混施时,Cd的存在促进了大豆叶片中Zn的积累,而Cu的存在则使Zn和Cd的浓度降低[12]。

3.4 不同部位的差异性

重金属在植株体内各部位的分布状况不同。一般在进入器官积累多。菠菜Cd的积累量为叶片、根>茎,而Cd和Cu的积累量依次为叶片>根>茎杆,Pb的积累量则依次为根>茎>叶片;青菜叶片中的Cr、Cd、Pb、Cu等的含量均高于茎[12]。铜和锌含量地下部要比地上部高,蒲公英地上部的铜和镉含量明显高于地下部,地上部分别是地下部的2.80倍和1.92倍;野三七地上部的铅含量也比地下部高,是地下部的1.21倍;水芹地上部的镉含量也高于地下部,是后者的1.53倍[6]。

4 评价方法

对重金属污染评价方法有很多,主要以指数法最多,其中指数法分单项因子污染指数法和综合污染指数法。

某样点蔬菜的污染程度单项污染指数Pi是根据蔬菜中污染物含量与相应评价标准进行计算,其计算式为Pi=Ci/Si。式中,Ci表示污染物实测值;Si表示污染物评价标准。Pi1 为污染。

综合污染指数法主要考察高浓度污染物对环境质量的影响,可以全面反映各污染物对土壤的不同作用。目前,内梅罗综合污染指数法在国内应用较为普遍。

5 参考文献

[1] 谢正苗,李静,徐建明,等.杭州市郊蔬菜基地土壤和蔬菜中Pb、Zn和Cu含量的环境质量评价[J].环境科学,2006,27(4):742-747.

[2] 宋明义,刘军保,周涛发,等.杭州城市土壤重金属的化学形态及环境效应[J].生态环境,2008,17(2):666-670.

[3] 王玉洁,朱维琴,金俊,等.杭州市农田蔬菜中Cu、Zn和Pb污染评价及富集特性研究[J].杭州师范大学学报:自然科学版,2010,9(1):65-70.

[4] 郭军玲,张春梅,卢升高.城市污染土壤中磁性物质对重金属的富集作用[J].土壤通报,2009,40(6):1421-1425.

[5] 李仪,章明奎.杭州西郊茶园土壤重金属的积累特点与来源分析[J].广东微量元素科学,2010,17(2):18-25.

[6] 杨晓秋,丁枫华,孔文杰,等.几种野生蔬菜重金属积累状况的调查研究[J].广东微量元素科学,2005,12(7):12-16.

[7] 刘景红,陈玉成.中国主要城市蔬菜重金属污染格局的初步分析[J].微量元素与健康研究,2004(5):42-44.

[8] 张宇燕,陈宏.重庆市市售蔬菜中锌、砷、汞的污染现状评价[J].三峡环境与生态,2012(1):47-51.

[9] 郑小林,唐纯良,许瑞明,等.湛江市郊区蔬菜的重金属含量检测与评价[J].农业环境与发展,2004(2):34.

重金属污染现状篇(7)

中图分类号:X24文献标识码:A文章编号:1674-9944(2015)12-0226-03

2土壤重金属污染现状

随着社会经济的发展,越来越多的工矿企业被建立。资源的紧张也导致越来越多的污水被灌溉到农田中。污灌区的污水是经过简单处理的日常用水以及工业废水,其中大部分是来自于附近厂区的工业用水。随着我国城镇建设的不断增强,各个大中小城市对污水的处理也得到了进一步的改善。但是其中潜在的污染风险也一直是人们研究的对象,尤其是近年来粮食安全问题层出不穷,长期累计的土壤问题开始显露,并呈现不断加强的趋势。

近年来,在全国土壤调查的基础上我国研究学者对部分地区农用地土壤展开了调查研究。其中天津、沈阳、保定、兰州等工业城市的污灌区表层土壤呈现不同程度的重金属污染[6~10]。张丽红等[11]以国家土壤环境质量标准为标准,采样调查分析了100个河北省清苑县及清苑县附近的农田土壤样品,结果显示:土壤中Cd污染最为严重,超标率65%,达中度污染水平;Pb、Zn、Cu超标率分别为37%、44%和33%,达到轻度污染水平,足以引起各位学者关注。茹淑华等[12]对河北石家庄典型污灌区进行取样调查,结果显示:污灌区Cu 、Zn 、Pb 、Cd 和Cr存在不同程度的富集现象,而清灌区仍处于清洁水平。虽然污灌区土壤重金属含量总体上均未超过我国农产品产地土壤环境质量标准,但土壤样品仍有个别样点的Cd出现超标现象。因此,对污灌区土壤重金属修复迫在眉睫。

3土壤中重金属污染的植物修复措施

针对环境污染,越来越多的污染修复方式被人类利用。其中植物修复是以清除污染,修复或治理为目的利用绿色植物从环境中转移容纳或转化污染物的环境污染治理技术[13~15]。其根据修复植物的特点和功能用于重金属污染土壤等接种的植物修复技术主要有4种类型:植物挥发、提取、过滤以及稳定或固化[16]。

3.1普通植物对土壤重金属的修复

近年来,我国对植物修复重金属污染土壤作出了很多研究。陈同斌等[17]试验小组分别发现在我国湖南、广西南方等地存在大面积的蜈蚣草等蕨类植物,并指出其具有超富集砷能力,且其植物体内氮磷养分的含量远远低于其叶片含砷量。刘金林等[18]对一年蓬进行实验研究发现,该原产自北美的一年蓬对土壤中重金属的富集能力较强。同时lin等[19]以汞污染的稻田为实验材料,研究了改作苎麻对土壤中重金属的净化作用,研究显示改作苎麻能净化汞污染的稻田,其中年净化率达41%,并连种稻田土壤的自净时间缩短了8.5倍。黄会一等[20]也发现杨树对汞和镉有很好的耐性和净化功能。

3.2花卉植物对土壤重金属的修复

随着经济和社会的不断发展,越来越多的研究学者也将目光转向花卉植物。花卉植物具有一定的观赏性,而且种类繁多。同时花卉植物对重金属有一定能力的积累转移作用。周霞等[21]对鸭脚木、小叶黄杨等8中花卉植物进行研究发现:花卉植物对重金属的转移能力大小顺序为Zn>Cd>Cu>CrPb 。对重金属的积累能力大小顺序为Cr>Zn>Cu>Cd>Pb。其中,亮叶忍冬、小叶黄杨、金叶假连翘对土壤中Cd的修复效果较为理想;鸭脚木、亮叶忍冬、小叶黄杨对土壤中Zn的修复效果较好;鸭脚木、金光变叶木、细叶鸡爪槭、胡椒木、等花卉植物对土壤中Cr的富集能力均较高,且根部积累系数都大于1,这说明对土壤中Cr的修复效果较好。

3.3草本能源植物对土壤重金属的修复

草本能源植物作为生物生长和人类发展的生物能源基础在社会发展及人类生存过程中占有重要地位[22,23]。同时在倡导低碳经济的当今社会,草本能源植物作为草本植物的一种,其同样具有非常高的应用生态价值及经济价值[24~27]。最重要的是,部分草本能源植物具有较强的生态适应能力使其在污染土地的治理中具有一定的应用潜力。侯新村等[28]对柳枝稷、荻、芦竹、杂交狼尾草、四种草本能源植物的规模化种植并对其积累重金属作用进行研究,研究结果表明:草本能源植物对砷汞铜铬铅镉等重金属的绝对富集量较为可观。对于砷铜铅镉均以杂交狼尾草的绝对富集量最高,柳枝稷、荻、芦竹次之;杂交狼尾草对污染土壤中污染物汞的绝对富集能力最高;芦竹对铬的绝对富集能力最高,最高达1 333.37 g/hm2,这说明草本能源植物可以作为重金属污染植物修复的一类修复植物,其具有一定的修复潜力。

4结语

土壤的重金属污染危及粮食生产、食物质量、生态安全、人体健康以及区域可持续发展。以预防为主[29],预防、控制和修复相结合的土壤保护政策迫在眉睫。我国虽然在植物修复上起步较晚,但是仍然发展迅速。植物修复是利用具有修复性能的植物的生命活动对重金属污染土壤进行积累修复的一项新技术。与此同时,我国很多的研究学者也就此问题展开过多种研究且证明植物修复是一种极具有潜力的土壤重金属修复方式。因此接下来仍需要在找到具有较强积累能力的植物之后对其生长发育规律及发育调控措施进行研究从而不断提高植物修复的效率以加快对土壤重金属污染的修复进程。

参考文献:

[1]汪小勇.被农药污染的土壤植物修复研究进展[J].中国农学通报,2005,21(7):382~382.

[2]徐磊,周静,崔红标,等.重金属污染土壤的修复与修复效果评价研究进展[J].中国农学通报,2014,30(20):161~167.

[3]杨军,陈同斌.北京市再生水灌溉对土壤、农作物的重金属污染风险[J].自然资源学报,2011,26(2):209~217.

[4]胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展[J].中国农学通报,2007,23(6):519~523.

[5]杨旭,向昌国,刘志霄.重金属污染对土壤动物的影响[J].中国农学通报,2008,24(12):

[6]龚钟明,曹军,朱学梅,等.天津市郊污灌区农田土壤中的有机氯农药残留 [J].农业环境保护,2002,21 (5):459~461.

[7]张乃明,刑承玉,贾润山,等.太原污灌区土壤重金属污染研究[J].农业环境保护,1996,15(1):21~23.

[8]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182~186.

[9]谢建治,刘树庆,刘玉柱,等.保定市郊土壤重金属污染对蔬菜营养品质的影响[J].农业环境保护,2002,21(4):325~327.

[10]王国利,刘长仲,卢子扬,等.白银市污水灌溉对农田土壤质量的影响[J].甘肃农业大学学报, 2006,41(1):79~82.

[11]张丽红.河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价[J].农业环境科学学报,2010,29(11):2139~2146.

[12]茹淑华,张国印.河北省典型污灌区土壤和植物重金属累积特征研究[J].河北农业科学,2008,12(10):78~81.

[13]邢艳帅,乔冬梅,朱桂芬,等.土壤重金属污染及植物修复技术研究进展[J].中国农学通报,2014,30(17):208~214.

[14]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,2006.

[15]毕君,郭伟珍,高红真.9种植物对镉的忍耐和富集能力研究[J].中国农学通报,2013,29(34):12~16.

[16]白向玉,韩宝平.花卉植物修复重金属污染技术的国内外研究进展[J].徐州工程学院学报,2010,25(3):56~60.

[17]陈同斌,韦朝阳.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3).

[18]Liu Jin lin.The research of absorption and accumulation of higher aquatic vascular plants to heavy metals[J].Chinese Environmental Science.1986,52:24~28.

[19]Lin Zhi qing , Huang Hui yi. Study on the tolerance of woody\|plants to mercury [J].Acta Ecology Sinical.1989,9(4):316~319.

[20]Huang Hui yi, Jiang De ming, Zhang Chun xing, et al. Study on control of cadmium polluted soil by forestry eco\|engineering [J].Chian encironmental science.1989,9(6):419~426.

[21]周霞,林庆昶.花卉植物对重金属污染土壤修复能力的研究[J].安徽农业科学,2012,40(14) :8133~8135.

[22]石元春.生物质能源主导论[N].科学时报.2010-12-09(3).

[23]谢光辉,郭兴强,王鑫,等.能源作物资源现状与发展前景[J].资源科学.2007,29(5):74~80.

[24]贺庭,刘婕,朱宇恩,等.重金属污染土壤木本-草本联合修复研究进展[J].中国农学通报,2012(11):237~242.

[25]云锦凤.低碳经济与草业发展的新机遇[J].中国草地学报.2010,32(3):1~3.

[26]章力建,刘帅.保护草原增强草原碳汇功能[J].中国草地学报.2013,32(2):1~5.

重金属污染现状篇(8)

中图分类号:X53 文献标识码:A DOI 编码:10.3969/j.issn.1006-6500.2016.07.002

Abstract: The application of pesticide, fertilizer and industrial waste emission result in heavy metals to the environment. And it`s hard to transfer by food chain and also not easy to degradation. So it caused serious influence to human and environmental. The method of fixing and passivation of heavy metals in soil by applying the modifier is widely used because of its simple operation and economical and practical characteristics. At present, the improved agent types mainly include organic matter, alkaline substances, and clay minerals. The effect of the improved agent was mainly derived from the soil pH and the adsorption, complexation and precipitation of the modified agent itself and heavy metals. In the region where the soil heavy metal pollution is serious, the effect of the application of single modified agents is not very ideal, using the modified agent mixed with different agent can increase the effect to a certain extent.

Key words: heavy metal;soil improvement;improvement agent

1 土壤重金属污染途径

随着工业化进程的逐步深入,农业发展加速,废弃物逐步增多且相关处理措施不当,这导致农田中土壤重金属含量逐步增加。农业部曾对全国土壤调查发现,重金属超标农产品占污染物超标农产品总面积80%以上[1],土壤重金属超标率更是达到了12.1%[2]。据国外相关研究得知,土壤重金属含量已经达到影响作物生长的地步[3-4]。而龙新宪等人的研究发现:土壤重金属离子含量达到一定程度,这些重金属离子将通过被植物吸收而进入食物链,最终威胁人类身体健康[5-7]。同时,重金属污染的表层土还会通过风力和水力等作用进入大气引发大气污染、地表水污染等生态环境问题[8]。

1.1 大气运动

大气运动是土壤重金属污染来源的一个重要途径[9]。大气成分并不是一直不变而是随着地球演化而变化,大气中的成分做周而复始的循环,这其中就包括某些重金属。近年来工业飞速发展,大量化石燃料被燃烧,其释放的酸性气体和某些重金属粒子参与到大气循环当中。

大气运动主要有2个方面体现。一方面来自工业、交通的影响,Bermudied等[10]研究发现,工业、交通影响重金属的大气沉降,如阿根廷尔多瓦省的小麦和农田地表中的Ni、Pb、Sb等来自于此。Kong[11]通过对抚顺市不同类型大气PM10颗粒中的Cr、Mn、Co等多种重金属含量检测发现,机动车排放、工业废气向大气中排放重金属而后进行大气沉降。另一方面来自矿山开采和冶炼[9]所带来的大气沉降也是土壤重金属的重要来源,常熟某电镀厂附近土地发现Zn和Ni的污染现象,该污染随着距离增加而污染减轻,同时Zn的污染逐年加剧[12]

1.2 污水农用

污水农用指的是利用下水道污水、工业废水、地面超标污水等对农田灌溉。据我国农业部的调查,发现灌溉区内重金属污染面积占灌溉总面积的64.8%,其中轻度污染占46.7%,中度占9.7%,重度占8.4%[13]。天津种植的油麦菜有60%受到污染[14]。昊学丽等[15]调查发现,沈阳市浑河、细河等河渠周边农田中Hg、Cd含量分数高于辽宁土壤背影值,更是严重高出国家二级土壤标准。根据相关人员对保定、西安、北京等地调查,发现上述地区的污灌区表层土出现不同程度的重金属污染现象[16-17]。不仅国内如此,国外也同样有此问题,如伦敦、米兰等地一直使用污水灌溉[18]。在缺水地区污水农灌更是应用广泛,巴基斯坦26%的地方使用污水灌溉,加纳则约有11 500 hm2使用污水灌溉,而墨西哥则达到了2.6×105 hm2[19]。杜娟等[20]模拟污灌的研究发现,表层土中的Zn、Cd、As等含量均有增加,同时还发现土壤中的盐分含量逐步累积

[2]傅国伟. 中国水土重金属污染的防治对策[J]. 中国环境科学,2012, 2(2): 373-376.

[3]GRANT C A, BACKLEY W T, BAIKEY L D, et al. Cadmium accumulation in crops[J]. Canadian Joumal of Plant Science, 1998,78:1-17.

[4] MCLAUGHLIN M J, PARKER D R, CLARKE J M. Metals and micronutrients-food safety issues [J].Field Crops Rensearch,1991,60:143-163

[5]BRZISKA M M, MONIUSZKO-JAKONIUK J. Ineractions between cadmium and zinc in the organism[J]. Food and Chemical Toxicology,2001,19:967-980.

[6]SPONZA D, KARAOGLU N. Environment L geochemistry and pollution studies of A liaga metal industry district [J] Environment International,2002,27:541-533.

[7]龙新宪, 杨肖娥, 倪吾钟. 重金属污染土壤修复技术研究的现状与展望[J]. 应用生态学报, 2002, 13(6): 757- 62.

[8]毛绍春,李竹英.土壤污染现状及防治对策初探[J].云南农业,2005,13:26-27.

[9] 樊霆,叶文玲,陈海燕,等,农田土壤重金属污染状况及修复技术研究[J] . 生态环境学报 2013,22(10):1727-1736.

[10] BERMUDEZ M A, JASAN R C, Rita Plá et al. Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition[J]. Journal of Hazardous Materials, 2012, 30(213/214): 447-456

[11] KONG S F, LU B, JI Y Q, et al. Levels, risk assessment and sources of PM10 fraction heavy metals in four types dust from a coal-based city[J]. Microchemical Journal, 2011, 98(2): 280-290.

[12] HANG X S, WANG H Y, ZHOU J M. Soil heavy-metal distribution and transference to soybeans surrounding an electroplating factory[J]. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2010, 60(2): 144-151.

[13]王海慧, 郇恒福, 罗瑛,等. 土壤重金属污染及植物修复技术[J]. 中国农学通报, 2009, 25(11): 210-214.

[14]王婷, 王静, 孙红文,等. 天津农田土壤镉和汞污染及有效态提取剂筛选[J]. 农业环境科学学报, 2012, 31(1): 119-124.

[15]吴学丽, 杨永亮, 徐清,等. 沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J]. 农业环境科学学报, 2011, 30(2): 282-288.

[16]王国利, 刘长仲, 卢子扬,等. 白银市污水灌溉对农田土壤质量的影响[J]. 甘肃农业大学学报, 2006, 41(1): 79-82.

[17]杨军, 陈同斌, 雷梅,等. 北京市再生水灌溉对土壤、农作物的重金属污染风险[J]. 自然资源学报, 2011, 26(2): 209-217.

[18] Australian Academy of Technological Sciences and Engineering. Water recycling in Australia[M]. Victoria, Australia: AATSE,2004.

[19] MASONA C, MAPFAIRE L, MAPURAZI S, et al. Assessment of heavy metal accumulation in wastewater irrigated soil and uptake by maize plants (Zea mays L) at firle farm in Harare[J]. Journal ofSustainable Development, 2011, 4(6): 132-137.

[20]杜娟, 范瑜, 钱新. 再生水灌溉对土壤中重金属形态及分布的影响[J]. 环境污染与防治, 2011, 33(9): 58-65.

[21]NZIGUHEBA G, SMOLDERS E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries[J]. Science of the Total Environment, 2008, 390(1): 53-57.

[22]CARBONELL G, DE IMPERIAL R M, TORRIJOS M, et al. Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.)[J]. Chemosphere, 2011, 85 (10): 1614-1623.

[23]崔德杰, 张玉龙. 土壤重金属污染现状与修复技术研究进展[J]. 土壤通报, 2004, 35(3): 365-370.

[24] LUO L, MA Y B , ZHANG S Z, et al. An inventory of trace element inputs to agricultural soils in China[J]. Journal of Environmental Management, 2009, 90 (8): 2524-2530.

[25] HLZEL C S, MLLER C, HARMS K S, et al. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance[J]. Environmental Research, 2012, 113: 21-27.

[26] 陈苗, 崔岩山. 畜禽固废沼肥中重金属来源及其生物有效性研究进展[J]. 土壤通报, 2012, 43(1): 251-256.

[27]叶必雄, 刘圆, 虞江萍,等.施用不同畜禽粪便土壤剖面中重金属分布特征[J]. 地理科学进展, 2012, 31(12): 1708-1714.

[28]包丹丹, 李恋卿, 潘根兴, 等.垃圾堆放场周边土壤重金属含量的分析及污染评价[J]. 土壤通报, 2011, 42(1): 185-189.

[29] TANG X J, CHEN C F, SHI D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China[J]. Journal of Hazardous Materials, 2010, 173(1/3): 653-660.

[30]林文杰, 吴荣华, 郑泽纯, 等.贵屿电子垃圾处理对河流底泥及土壤重金属污染[J]. 生态环境学报, 2011, 20(1): 160-163.

[31]王文兴,童莉,海热提.土壤污染物来源及前沿问题[J]. 生态环境, 2005,14(1):1-5.

[32]《中国环境年鉴》编委会. 中国环境年鉴[M]. 北京: 中国环境年鉴社, 2001.

[33] RASHID M A. Geochemistry of marine humic compounds[M]. NewYork: Springe,1985.

[34]NARWAL R P, SINGH B R. Effect of organic materials on partitioning extractabilityandplant up takeoff metals in analum shale soil, water[J]. Air Soil Poll,1998, 103(1):405-421.

[35]WALKER D J, CLEMENTE R, BEMA M P. Contrasting effects of manere and compost on solPh heavy metal availability and growth of Chenopodium abum L in a soil contaminated nu pyritic mine[J].Waste Chemosphere,2004,57(3):215-224.

[36]BASTA N T, MOGOWEN S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter contaminated soil[J]. Environ Pollut,2004, 127(1):73-82.

[37]BROWN S, CHRISTENSEN B, LOMBI E, et al. An inter laboratory study to test the ability of amendments to reduce the availability of Cd Pb and Zn in situ[J].Environ Pollut, 2005,138(1):34-35.

[38]WALKER D J, CLEMENTE R, ROIG A, et al. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils[J]. Environ Pollut,2003,122(2):303.

[39]高卫国,黄益宗.堆肥和腐殖酸对土壤锌锅赋存形态的影响[J].环境工程学报,2009,3(3 ):550-552.

[40]IBRAHIM S M, GOH T B. Changes in macroaggregation and associated characteristics in mine tailings amended with humic substances communication[J].Soil Sci Plant,2004,35(19/14):1905-1922.

[41]ROSS S M.Retention, transformation and mobility of toxic metals in soils[M]//Ross S M. Toxic metalsin soil-plant systems. Chichester: John Wiley and Sons Ltd, 1994:63-152.

[42]白厚义.试验方法及统计分析[M].北京:中国林业出版社,2005: 110-112.

[43]陈恒宇,郑文,唐文浩.改良剂对Pb污染土壤中Pb形态及植物有效性的影响[J].农业环境科学学报,2008,27(1):170-173.

[44]李瑞美,王果,方玲.钙镁磷肥与有机物料配施对作物镉铅吸收的控制效果[J].土壤与环境,2002,11 (4): 348-351.

[45]陈晓婷,王果,梁志超,等.韩镁z肥和桂肥对Cd、Pb、Zn污染土壤上小白菜生长和元素吸收的影响[J].福建农林大学学报,2002, 31 (1): 109-112.

[46]周启星,宋玉芳.污染土壤修复原理与方法[M].北京:科学出版社,2004:317-319.

[47]杨超光,豆虎,梁永超,等.硅对土壤外源镉活性和玉米吸收镉的影响[J].中国农业科学,2005,38(1):116-121.

[48]徐明岗,张青,曾希柏,等.改良剂对黄泥土镉锌复合污染修复效应与机理研究[J].环境科学,2007,28(6):1361-1366.

[49]杜彩艳,祖艳群,李元.施用石灰对Pb、Cd、Zn在土壤中的形态及大白菜中累积的影响[J].生态环境,2007,16(6):1710-1713.

[50]李国胜,梁金生,丁燕,等.海泡石矿物材料的显微结构对其吸湿性能的影响[J].硅酸盐学报,2005,33(5):604-605.

[51]罗道成,易平贵,陈安国,等.改性海泡石对废水中Pb2+、Hg2+、Cd2+吸附性能的研究[J].水处理技术,2003,29(2):89.

[52]SLAVICA L,IVONA J C J. Adsorption of Pb2+,Cd2+,and Sr2+ions onto natural and acid-activated sepiolites[J]. Applied Clay Science,2007,37:47-57.

[53] 徐应明, 梁学峰, 孙国红,等. 海泡石表面化学特性及其对重金属Pb2+,Cd2+,Cu2+吸附机理研究[J].农业环境科学学报, 2009, 28(10):2057-2063.

重金属污染现状篇(9)

【中图分类号】R15 【文献标识码】A 【文章编号】1004-7484(2012)13-0630-02

食品中的重金属污染物主要来源于某些地区特殊自然环境中的高本底含量,由于人为的环境污染而早于有毒有害金属对食品污染,食品生产过程中含有重金属材料污染食品。摄入有害重金属元素污染食品对人体产生多方面的危害[1]。因此,为掌握绵阳市食品重金属污染程度,我们在2011年对我市城区和部分区县市场中销售食品进行监测,以期了解各种食品重金属污染水平,有针对性地为政府监管提供依据,为预防食品污染,控制食源性疾病和食品安全提供依据。

1 材料与方法

1.1 样品来源

按照国家食品安全风险监测计划的要求在绵阳市涪城区、游仙区、梓潼县、安县、三台县和北川县的大型批发市场、农贸市场和超市随机抽取粮食类、蔬菜类、水果类、蛋类、肉类、奶及奶制品类、鱼类和藻类水产品等种类样品,每份样品约500克。采集样品根据绵阳市居民日常消费状况,以本地产品为主,采用具有代表性的样品。

1.2 监测指标

重金属污染物包括铅、镉、汞。

1.3检测方法

取食品可食部分,按照以下方法进行检测。铅:按照GB/T 5009.12-2003《食品中铅的测定》石墨炉原子吸收光谱法。镉:按照GB/T 5009.15-2003《食品中镉的测定》石墨炉原子吸收光谱法。汞:按照GB/T 5009.17-2003《食品中总汞及有机汞的测定》原子荧光光谱分析法。

1.4 判定依据

测定结果根据GB2762-2005《食品中污染物限量》所规定的各项指标判定。检出值高于标准规定值的结果判定为“超标”。

2 结果

2.1 食品中铅污染情况

2011年绵阳市共抽取10类食品共230份,铅含量范围在0.02~2.67 mg/kg 之间,均值为0.41mg/kg,超标98份,超标率为42.61%。超标率中以猪肾超标率最高, 达72.22%,其次是皮蛋(66.67%)、藻类水产品(61.11%)、蔬菜(60.71%)和水果(41.79%)。其他类样品也存在不用程度的超标,见表1。

2.2 食品中污染情况

含量范围在

2.3 食品中汞污染情况

汞含量范围在

3 讨论

重金属污染现状篇(10)

中图分类号 X52 文献标识码 A 文章编号 1007-7731(2016)13-0097-05

重金属是指相对密度在4.5g/cm3以上,或比重大于5的金属。与有机物不同,重金属无法被微生物降解,且能够富集在生物体内,因此重金属污染物潜在危害性大。由泥沙、黏土、有机质及各种矿物混合形成的底泥,经过一系列物理化学、生物、水体传输等作用而沉积于水体底部形成。重金属一旦进入水体,可通过吸附、络合、沉淀等作用,富集在河床表层底泥中,其在底泥中的含量可超过上覆水体含量数个数量级,成为水体重金属的储存库和归宿[1]。当环境条件变化时,部分重金属可能会通过解吸、溶解、氧化还原等作用,从底泥中释放,引起水体二次污染[2]。底泥中重金属的不断积累不仅对水生生物、沿河居民饮用水和农田安全灌溉构成严重威胁,还可能通过食物链危害人体健康。因此,对重金属污染底泥安全处置显得尤为必要。

当前国内外对于底泥中污染物的修复方法主要有4种,分别是原位固定、原位处理、异位固定和异位处理[3]。原位固定或处理是指对污染的底泥不进行疏浚而直接采用固化/稳定化或者生物降解等手段消除底泥污染的行为;异位固定或处理是指将污染的底泥疏浚后再进行处理,消除污染物对水体的危害的行为。原位处理的效率一般情况下低于异位处理的效率,且工艺过程控制较困难,不能彻底消除其毒性,所以原位处理技术并未在实际工程中广泛应用[4]。

固化主要是指向土壤或底泥中添加固化剂而形成石块状固体,并将污染物转化为不易溶解、迁移能力弱和毒性小的状态的过程[5];或投加固化剂使底泥由颗粒状或者流体状变为能满足一定工程特性(如路基填料)的紧密固体,并将重金属包裹在固化体中,减少重金属向外界的迁移[6];稳定化是指在底泥中投加螯合剂使重金属由不稳定态(水溶态、离子交换态)转变成稳定态(残渣态),显著降低重金属的生物活性[7]。利用固化/稳定化技术处理重金属污染底泥,是现阶段比较合理的处理方式[8-9]。本文将从当前我国底泥重金属污染现状及固化/稳定化修复技术发展进行综述,为底泥重金属污染综合治理与修复提供科学依据。

1 我国底泥重金属污染现状

1.1 底泥重金属污染物的来源 底泥中重金属的来源包括自然源和人为源2个方面。自然源中,成土母质及成土过程对底泥中重金属的含量影响较大;而人为源则是底泥中重金属的最重要来源。重金属通过各类废水、土壤冲刷、地表径流、大气降尘、大气降水及农药施用等途径进入水体后[10],通过复杂的物理、化学、生物和沉积过程在底泥中逐渐富集。

1.1.1 各类废水 工业废水和城市生活污水是造成底泥重金属污染的重要原因。通常,河流沿岸分布着大大小小的企业,如印染厂、制衣厂、皮革厂等等。一方面,一些未经(充分)处理的废水直接进入水体;另一方面,尽管一些废水重金属污染物浓度未超标,但由于废水排放量巨大,使得水体和底泥吸纳了大量污染物,呈现缓慢污染的现象。同时,很多地方的生活污水没有连接到排污管网而直接排放入水体,当进入水体的污染物数量超过了水体的自净能力,导致水体质量下降和恶化,进而造成水体和底泥的污染。

1.1.2 固体废弃物 靠近城镇的河流周边经常随意堆放大量的建筑垃圾、生活垃圾,自然降水(尤其是酸雨)和排水使固体废弃物中所含的重金属元素以废弃堆为中心向四周环境扩散,进入水体,被底泥富集。另外,大型工矿企业的矿渣场(如馇、钢渣等)、灰渣场、粉煤灰场等,在雨水和地表径流的冲刷下,重金属会通过地表径流进入附近水体底泥中。

1.1.3 土壤冲刷 2014年国家环境保护部和国土资源部的《全国土壤污染状况调查公报》显示,我国耕地质量堪忧,Cd成为首要污染物(点位超标率7.0%),其含量呈从西北到东南、从东北到西南逐渐增加的趋势。2015年《中国耕地地球化学报告》显示,我国污染或超标耕地约0.076亿hm2,主要分布在湘鄂赣皖区、闽粤琼区和西南区。土壤中的重金属可通过降雨、地表径流等方式转移到底泥中。如磷肥中重金属Cd的含量较高,长期施用磷肥,会造成土壤中重金属Cd含量增大;规模化养殖场使用的有机肥料中大都含有重金属添加剂(如Zn、Cu等),这些有机肥料在农田施用时,会导致Zn、Cu等重金属元素含量增加。

1.1.4 大气沉降 交通运输、能源产业(发电厂)、冶金和建筑材料生产产生的气体和粉尘,金属矿山的开采和冶炼、电镀等是大气中重金属污染物的主要来源。这类污染源中的重金属基本上是以气溶胶的形态进入大气中,通过干沉降(主要是颗粒物)或湿沉降(主要是雨水)的方式进入水体、土壤,进而沉积到底泥中并最终影响人类健康[11-12]。

1.2 底泥重金属污染现状 滑丽萍等[13]通过搜集我国不同区域湖泊底泥重金属含量背景值发现,我国湖泊底泥重金属污染程度不均,临近工矿企业及人类经济活动区的湖泊底泥重金属污染较重,远离这些区域的湖泊则保持比较洁净的水体环境。张颖等[14]采用潜在生态风险指数分析法对松花江全江段表层沉积物调查发现,松花江表层沉积物中重金属Hg和As的空间分布离散性较大,Cd和Pb相对较均匀,整体上松花江重金属污染处于低度风险水平,仅个别断面处于中度风险水平。戴秀丽等[15]通过对太湖沉积物重金属含量的分析发现,太湖Cu的污染级别高于其他污染金属,且集中在太湖北部地区;Cr属轻度污染,但其空间分布较广且均衡,与周边污染点源关系密切。李鸣等[16]通过测定鄱阳湖湖区、入湖口及出湖口水体及底泥中重金属含量发现,鄱阳湖水体中重金属含量较低(远低于国家标准),但鄱阳湖底泥中重金属积累较严重,Zn、Cu、Pb、Cd的含量均超过背景值。张鑫等[17]对安徽铜陵矿区水系沉积物中重金属进行潜在生态危害评价表明,沉积物中Cu、Pb和Zn的含量变化大,Hg和Cr变化小,除Hg、Cr和Zn外,其他重金属都为强和极强生态危害。

2 固化/稳定化修复技术

底泥重金属污染按修复原理可分为物理、化学、生物及联合修复技术。由于目前尚缺乏经济高效的手段将重金属从底泥中直接去除,因此,通过化学手段降低重金属活性,减小污染物向食物链的迁移是进行底泥重金属污染修复的重要方法。固化/稳定化的目的是封闭污染物,最大程度地减少污染物释放到环境中,同时提高废物的物理力学性质。相比于微生物和植物修复的低效率、长周期以及物理修复高成本的缺点,固化/稳定化技术具有操作简单、成本低、效率高等优点。

固化剂的选择是重金属固化/稳定化修复技术的关键,固化/稳定化所用的惰性材料称为固化剂[18],常用的固化剂类型为无机固化剂、有机固化剂和复配固化剂。无机固化剂主要有磷矿石、磷酸氢钙、羟基磷灰石等磷酸盐类物质以及硅藻土、膨润土、天然沸石等矿物;有机固化剂主要有草炭、农家肥、绿肥等有机肥料[27]。固化材料有水泥、粉煤灰、石灰和石膏粉等。

水泥固化主要产生起胶结作用的水化硅酸钙;粉煤灰与水泥混合使用产生水化铝酸钙和水化硅酸钙;粉煤灰主要起充填作用;石灰固化产生碳酸钙,具有一定的脱水作用;石膏固化产生钙矾石,具有充填作用[20],具体如表1。

2.2 磷酸盐类固化剂 羟基磷灰石和磷酸氢钙等磷酸盐类固化剂效果好、性价比较高,磷酸盐将重金属元素吸附在其表面或与重金属发生反应生成沉淀或矿物[19]。陈世宝[21]等为了研究含磷化合物对固化/稳定化土壤中有效态铅的影响,向重金属污染的土壤中施加了不同性质的含磷化合物,结果表明,在重金属污染的土壤中加入羟基磷灰石、磷酸氢钙和磷矿粉能明显降低土壤表层的有效态铅含量,并且发现有效态铅的含量随施入的磷含量的增加而显著降低。

2.3 含铁类固化剂 一些研究表明,针铁矿、铁砂FeSO4、Fe2(SO4)3、FeCl3和石灰对As有良好的固定作用[25-27]。在碱性和氧化条件下,铁主要以Fe3+存在,水解生成Fe(OH)3。Fe(OH)3既能吸附不稳定扩散状态的胶体,起到水质净化的作用,又可以利用其自身带有正电荷的特性,强烈地吸附磷,降低底泥磷的释放。此外,Fe(OH)3还能与磷反应生成磷酸铁以及络合物(FeOOH-PO4)的形态而去除磷[28]。但含铁类固化剂的处理效果容易受氧化还原电位和pH值的影响,通常都需结合其他的辅助措施[5]。近年来出现的复合铁盐与高分子聚合铁盐,如复合亚铁、聚硫酸铁等被逐渐应用于重金属污染底泥的固化处理中且效果较好[29]。

2.4 铝盐类 作为底泥固化/稳定化应用最早和最广泛的铝盐,主要有硫酸铝(明矾)、氯化铝和聚合氯化铝等,其水解后形成的A1(OH)3絮状体,既能去除水体中的颗粒物并吸附底泥中溶出的磷[5],又可以吸附水体中的重金属离子,如铬、铜、铅、锌等[30]。铝盐用于底泥钝化效果较稳定,不受氧化还原电位影响,成本低,且有效时间长。如在美国佛蒙特州的Morey lake,投加铝酸钠和明矾来控制底泥磷的释放,5年后该湖上层水体总磷浓度由20~30μg/L下降至10μg/L以下[31]。

2.5 天然矿物类固化剂 海泡石、沸石等天然矿物材料,颗粒小、比表面积大,矿物表面富集负电荷,具有较强的离子交换能力和吸附性。章萍等[32]向苏州河的污染底泥中加入了膨润土,结果表明,钙基膨润土对铜、铅和锌均具有较大的吸附性能,且溶液pH值升高时,对这3种重金属的吸附效果增强。

2.6 有机物料 农家肥一类的有机质用于固化/稳定化底泥中的重金属,作用机理主要是含有的胡敏素和胡敏酸等能够与底泥中的重金属离子发生络合作用,形成难溶物,以此降低重金属毒性及生物可利用性[19]。华珞[33]等向重金属污染的土壤中施加了猪厩肥进行固化/稳定化研究,结果显示,施入猪厩肥可以使土壤中的碳酸盐态锌和有效态锌的含量升高,而铁猛氧化物结合态镉、有效态镉及铁猛氧化物结合态锌的含量降低。Houben等[34]向重金属污染底泥中施加有机肥后,可交换态的铅、镉和锌的含量均有大幅度的减少,固化/稳定化效果明显。

2.7 复配固化剂 底泥和土壤中重金属污染多为复合污染,多种重金属之间有相互作用,且不同固化剂对不同重金属的固化效果存在差异。现阶段,通常将多种固化剂复配后再使用,以此达到对多种重金属污染高效修复的效果[19]。曾卉[22]等用海泡石、膨润土、硅藻土、沸石分别与石灰石以不同的质量比进行复配,对重金属污染的底泥进行固化试验,结果表明,石灰石与硅藻土以质量比2∶1复配时固化效果最好。

3 展望

近年来,水体污染治理力度不断加大,2015年2月《水污染防治行动计划》的颁布后,与水体水质密切相关的底泥重金属污染的治理也越来越得到人们的关注。2016年3月17日,中华人民共和国国民经济和社会发展第十三个五年规划纲要提出开展66.67万hm2受污染耕地治理修复和266.67万hm2受污染耕地风险管控,深入推进以湘江流域为重点的重金属污染综合治理。这些条例和规划纲要的,都有助于我国大气、土壤和水体环境质量的改善。因此,当前底泥重金属污染治理重要的是进一步减少进入水体和底泥的污染物,达到“控源”目的,以及针对历史遗留的重度污染底泥区进行修复和治理,减少底泥污染物的总量,实现“减存”目标。

然而,当前能够实现底泥污染物“减存”的方法成本高,操作复杂,少有推广应用。更多的是采用固化方法,降低污染物的活性,减少污染物对其他生物的毒性,且目前已经有一些实际应用案例。如1996年长春南湖湖区内用硫酸铝钝化底泥,显著增加了底泥中可溶性磷酸盐的去除率[35]。2006年,为了解决香港城门河水质恶臭问题,特区政府按照“生化处理为主,疏浚为辅”的原则,疏浚底泥29×104m3,采用投加硝酸钙原位钝化方法从根本上治理城门河淤泥,改善了城门河的生态环境[36]。

尽管如此,固化方法当前还存在很多不足。首先,对于固化剂材料本身,需要满足高效、不产生二次污染、低成本且操作便捷;其次,由于底泥性质差异大,对于多种重金属复合污染,既要考虑到重金属之间的相互作用,又要考虑到不同固化剂所针对不同重金属的固化效果的不同(如能够较好固定Cu、Cd、Pb的碱性固化剂,往往会增加As的活性),将多种固化剂复配之后使用,以达到高效修复的效果。

当前已经有不少学者在重金属底泥固化方面进行了大量的研究,但在实际的底泥固化中,仍存在固化效率不稳定、底泥固化速率差异大等现象,尤其是酸雨的作用可能会导致固化后底泥污染物的二次释放,可能会危害水生生物生存,甚至导致鱼类死亡。关于底泥固化修复技术的实施,国内还缺少自主生产的机械设备,如固化剂造粒设备、机械化投加固化剂设备等),需要加强研发,降低修复工程中对施工人员的健康的危害,提高可操作性。

因此,今后的一段时间内,在固化剂产品的研发上,要加强复合固化剂的研发力度,研发出高效、绿色、低成本、效果持久的新产品。同时,要加强固化机理的研究,明确固化剂产品的最佳投加环境条件,加强对固化修复技术装备的研发投入,降低对国外机械的依赖程度。最后,结合国内底泥重金属污染形势(如湖南湘江流域、广西环江流域、江西鄱阳湖流域),适当选取部分严重污染区,开展重金属污染底泥的固化修复示范试点,总结好的经验,进行更大范围的推广示范。

参考文献

[1]包建平,朱伟,汪顺才,等.固化对淤泥中重金属的稳定化效果[J].河海大学学报(自然科学版),2011,39(1):24-28.

[2]Pejman A,Bidhendi G N,Ardestani M,et al.A new index for assessing heavy metals contamination in sediments:A case study[J].Ecological Indicators,2015,58:365-373.

[3]楚维国.污染底泥重金属去除技术研究进展[J].广东化工,2013,40(12):95-96.

[4]何光俊,李俊飞,谷丽萍.河流底泥的重金属污染现状及治理进展[J].水利渔业,2007,27(5):60-62.

[5]贾陈蓉,吴春芸,梁威,等.污染底泥的原位钝化技术研究进展[J].环境科学与技术,2011,34(7):118-122.

[6]刘军,刘云国,许中坚.湘江长株潭段底泥重金属存在形态及生物有效性[J].湖南科技大学学报,2009,24(1):116-121.

[7]Dermatas D,Meng X G.Utilization of fly ash for stabilization/solidification ofheavy metal contaminated soils[J].EngineeringGeology,2003,(70):377-394.

[8]谢华明,曾光明,罗文连,等.水泥、粉煤灰及 DTCR 固化/稳定化重金属污染底泥[J].环境工程学报,2013,7(3):1121-1127.

[9]王川,杨朝晖,曾光明,等.DTCR 协同水泥固化/稳定化重金属污染底泥的研究[J].中国环境科学,2012,32(11):2060-2066.

[10]王华,冯启言,郝莉莉.我国底泥重金属污染防治[J].污染防治技术,2004,17(1):75-78.

[11]吴辰熙,祁士华,方敏,等.福建省泉州湾大气降尘中的重金属元素的沉降特征[J].环境科学研究,2006,19(6):27-30.

[12]龚香宜,祁士华,吕春玲,等.福建省兴化湾大气重金属的干湿沉降[J].环境科学研究,2007,19(6):31-34.

[13]滑丽萍,华珞,高娟,等.中国湖泊底泥的重金属污染评价研究[J].土壤,2006,38(4):366-373.

[14]张颖,周军,张宝杰,等.松花江表层沉积物有毒重金属污染评价[J].湖南大学学报:自然科学版,2015,42(6):113-118.

[15]戴秀丽,孙成.太湖沉积物中重金属污染状况及分布特征探讨[J].上海环境科学,2001,20(2):71-75.

[16]李鸣,刘琪Z.鄱阳湖水体和底泥重金属污染特征与评价[J].南昌大学学报:理科版,2010,34(5):486-489.

[17]张鑫,周涛发,等.铜陵矿区水系沉积物中重金属污染及潜在生态危害评价[J].环境化学,2005,24(1):106-107.

[18]张春雷.基于水分转化模型的淤泥固化机理研究[D].南京:河海大学,2007.

[19]王猛.重金属污染底泥羟基磷灰石复配固定化技术研究[D].济南:山东建筑大学,2014.

[20]范昭平,朱伟,张春雷.有机质含量对淤泥固化效果影响的试验研究[J].岩土力学,2005,26(8):1327-1334.

[21]陈世宝,朱永官,马义兵.不同磷处理对污染土壤中有效态铅及磷迁移的影响[J].环境科学学报,2006,26(7):1140-1144.

[22]曾卉,徐超,周航,等.几种固化剂组配修复重金属污染土壤[J].环境化学,2012,31(9):1368-1374.

[23]苏良湖,梁美生,赵由才.不同固化剂对底泥重金属稳定化效果的研究[J].环境工程学报,2010(7):1655-1658.

[24]周雪飞,张亚雷,章明,等.金山湖底泥重金属稳定化处理效果及机制研究[J].山东建筑大学,2008,29(6):1705-1712.

[25]Moore TJ,Rightmire CM,Vempati RK,et al.Ferrous iron treatment of Soils contaminated with arsenic-containing wood-preserving solution[J].Soil and Sediment Contamination,2000,9(4):375-405.

[26]Hartly W,Edwards R,Lepp NW.Arsenic and heavy metal mobility in iron oxide-amended soils as evaluated by short-and long-term leaching tests[J].Environment Pollution,2004,131(3):495-504.

[27]雷鸣,曾敏,等.3种含铁材料对重金属和砷复合污染底泥稳定化处理[J].环境工程学报,2014,8(9):3983-3988.

[28]黄建军.城市河道底泥营养盐释放及化学修复研究[D].天津:天津大学,2009.

[29]雷晓玲,巫正兴,冉兵,等.原位钝化技术及其在环保疏浚中的应用[J].环境科学与技术,2014,37(3):200-204.

[30]王绿洲,管薇,李维平,等.富营养化湖泊中沉积物原位治理技术进展[J].陕西师范大学学报(自然科学版),2006,34:76-81.

[31]Smeltzer EA.Successful alum/aluminate treatment of lake MoreyVermont[J].Lakeand Reservoir Management,1990,6:9-19.

[32]章萍,钱光冬,周文斌,等.膨润土对底泥重金属的抑制效果及机制探讨[J].南昌大学学报(工科版),2012,34(4):43-48.

[33]华珞,白铃玉,韦东普,等.有机肥镉锌交互作用对土壤镉锌形态和小麦生长的影响[J].中国环境科学,2002,22(4):346-350.

重金属污染现状篇(11)

[中图分类号] P618.42 [文献码] B [文章编号] 1000-405X(2014)-3-220-1

0前言

威宁县的铅锌冶炼业历史悠久,据《大方府志》记载:在唐朝五代就有铅锌冶炼业,在近现代,清末民国时期和1958年的时期都有铅锌冶炼业。威宁县铅锌冶炼业发展较快、规模较大,污染最为严重的是上世纪末20年。威宁铅锌冶炼业以土法炼锌为主,主要采用土制马弗炉、马槽炉、横罐、小竖罐、六角炉等简易土高炉进行焙烧、简易冷凝设施进行收尘等落后方式炼锌或氧化锌制品。生产工艺主要是用煤与锌矿按比例装罐后经燃煤加热,在煤还原作用下产出粗锌,资源、能源消耗消耗量大,锌的回收率低,浪费现象严重,产生的燃烧烟气和还原烟气直接排入大气,废渣随意倾倒,对生态和环境造成了严重的破坏和影响。因此,为改善生态环境质量,减轻废渣对环境的影响,为人民群众创造一个良好的生产、生活环境,对该区域冶炼废渣及时进行污染治理迫在眉睫。

1铅锌废渣重金属的污染现状及危害分析

1.1废渣分布状况

经过对全县炼锌区废渣堆放场点的初步了解,在近几十年的土法炼锌生产过程中未同步采取相应的环保措施,废渣乱堆乱放随意倾倒。据原毕节地区环境监测中心站调查,威宁县炼锌废渣总量为432万吨,主要分布在炉山镇、东风镇、草海镇、二塘镇、盐仓镇、金钟镇等15个乡镇,废渣总占地面积约4500亩,占地性质为耕地26.0%,荒坡、沟谷、洼地50.2%,河道23.8%。其具体分布情况如下:

(1)沿公路两侧分布

炼锌业大多沿交通发达的乡镇分布,主要有威赫线的盐仓镇盐仓村,威水线金钟段草海镇白马村、鸭子塘村、金钟镇冒水井村,水煤线猴场镇穿洞村、倮未村、发纠村等。

(2)沿荒坡、沟谷、洼地分布

二塘镇的果花村(大红山)、铁营村(湖南坡)、中山村、金钟镇的格兜井,东风镇红花岭村、格书村。

(3)沿河道分布

主要是沿乌江水系三岔河上游支流大河分布。在炉山镇的16个炼锌村几乎在炉山河两侧的沟谷,东风镇的拱桥村、黄泥村、竹林村、文明村在二塘河的支流拱桥小河上的支流拖倮河上。另外,羊街河两岸也有铅锌废渣的分布点。

1.2废渣重金属污染的危害

1.2.1对地表水、地下水水质的影响

炼锌废渣堆受地表径流及雨水的冲刷等作用,使炼锌废渣或其中的重金属、悬浮物等进入地表水,也有相当数量的废渣是直接倒入沟谷、河床污染地表水。大量的炼锌废渣堆积在河道,淤积、堵塞河道或造成河道改道,抬升了河床。这些废渣及其中的重金属、悬浮物等污染物进入地表水后,造成的污染相当严重,凡是在炼锌集中区的地表水,其水质基本都劣于《地表水环境质量标准》(GB3838-2002)Ⅴ类,污染主要是以铅、锌、镉为特征污染物,铅的污染尤为突出。炼锌废渣堆受地表径流及雨水的冲刷,从地表、溶洞渗透,将渣中的有毒有害物质转移到地下水中,从地下水的水质监测状况来看,基本都劣于《地下水环境质量标准》(GB/T14848-93)Ⅲ类,特征污染物仍然是重金属铅、镉、锌。

1.2.2对土壤的影响

铅锌废渣堆放区土壤污染是由炼锌废渣经雨水和地表径流的冲刷、淋溶,废渣中的污染物渗入土壤,造成的土壤污染。土壤重金属污染可影响农作物产量和质量的下降,并可通过食物链危害人类的健康,也可以导致大气和水环境质量的进一步恶化。

从以上几方面的环境影响分析可以看出,铅锌废渣对环境的污染是严重的,受污染的空气、水和土壤直接危害到生活在渣场周围农民的身体健康和植物的生长。

2铅锌废渣重金属污染的防治对策

铅锌废渣重金属污染较难治理,这与它的特性是分不开的,同时也是它越来越受关注的原因,因此在治理重金属污染时必须充分考虑到它的特性。铅锌渣中的重金属(以铅、锌为主)通过雨水淋溶、空气氧化以及微生物作用后进入环境,对周围土壤、水体和生态环境构成威胁。由于重金属污染物属于持久性污染物,具有长期性、隐匿性、不可逆性以及不能完全被分解或消逝的特点,无法从环境中彻底清除,只能改变其存在的位置或存在的形态。

针对威宁县铅锌废渣的堆存特点和废渣重金属污染的特征,我们主要是考虑对废渣中的重金属污染物采取稳定固化的措施,实现铅锌渣的物理稳定、化学稳定和生态安全。铅锌渣(或铅锌尾矿)的堆积性质与沙砾十分相似,具有比较好的渗水性能。铅锌废渣中的重金属主要包括铅、锌,此外还含有少量的汞和砷等。目前,国内外常用的重金属稳定化药剂主要包括无机药剂和有机药剂。无机药剂类型主要包括硫化物、磷酸盐、硫酸盐、碳酸盐等等与重金属反应生成沉淀物质的化学物质,这些物质单独使用均会出现各种问题,如硫化物的毒性和臭味、硫酸盐沉淀的可溶性、碳酸盐对pH值的要求以及磷酸盐对汞稳定化的无效等等。有机药剂主要包括长链烷基胺和长链烷基硫,不溶于水,无法实现药剂与铅锌渣的充分混合,而且价格昂贵,是无机药剂价格的10倍以上。所以,我们主要将多种可溶性无机药剂按照优化比例组合而成,从而解决了各种药剂单独使用时可能产生的问题。

3结束语

威宁县历史炼锌区的土地污染严重,生态环境遭到严重的破坏,所以,清除当地的土地重金属污染也是一项十分迫切而重要的任务。威宁县炼锌废渣历史遗留重金属污染防治工程已列为贵州省炼锌区生态恢复及环境治理的示范项目,是贵州省“十二五”环境规划中污染治理的重点。项目是对炼锌废弃地的重金属污染物进行控制和植被恢复,是对被破坏的生态系统的恢复与重建,可以弥补、充实和丰富当地原有的自然界,从而可以促进当地社会、经济和环境的协调发展。但由于威宁县目前经济总量偏小,财政收入有限,建设资金筹措已成为制约该项目建设的一个主要因素。目前,威宁县人民政府正在积极向国家和省市在该项目建设资金上争取更大的支持。