欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

二氧化碳的排放主要来源大全11篇

时间:2024-01-10 14:55:20

二氧化碳的排放主要来源

二氧化碳的排放主要来源篇(1)

事实上,二氧化碳减排的最有效措施是以重点领域作为突破口和重要抓手。化学工业作为工业部门中高能耗、高污染的行业之一,自然成为了我国减排工作实施的重点领域。据统计,化工行业年排放工业废水30多亿吨,工业废气1.4万亿立方米,产生工业固体废弃物8400多万吨,分别占全国“三废”排放总量的16%、%和5%,位居工业行业的第1、和5位。另一方面,尽管通过新的节能技术和减排技术已使我国化学工业主要耗能产品的单位能耗有不同程度的降低,但单位产品的能耗和排放与国际先进水平相比仍有一定差距。就能源利用效率而言,我国化学工业的能源效率比发达国家低10%-15%左右,一些产品单位能耗比发达国家高10%-20%左右。因此,化学行业二氧化碳减排工作的有效开展对于我国整体节能减排工作的突破和循环经济的发展具有重要现实意义和示范作用。

然而,对化学行业二氧化碳减排政策制定和实施离不开对该行业的碳减排影响因素分析。究竟哪些因素推动了能耗量的增长和碳排量的变动?哪些部门是主要的耗能部门或者是最大的碳排放源?等等,只有充分掌握上述影响碳排放的因素,才能有针对性地制定和实施有效的行业节能减排政策。因此,研究化学行业的二氧化碳排放的影响因素具有重要的理论和现实意义,并能为制定可行的行业节能减排等环境政策提供参考。

二、国内外研究现状

目前与本文研究相关的文献主要集中碳排放强度以及碳排放因素两个方面。

(1)碳排放强度

Greening等(1998)对10个OECD国家(丹麦、芬兰、法国、联邦德国、意大利、日本、挪威、瑞典、英国和美国)的生产部门(1971-1991年)进行了分析,认为生产部门能源强度下降是其碳排放强度下降的主要原因,同时能源价格等一些其他因素对碳排放强度有很大影响0。Zhang(2003)利用没有残差的Laspeyres方法分析了中国工业部门1990-1997年能源消费的变化,研究结果表明1990-1997年工业部门所节约能源的87.8%是由于实际能源强度下降引起的,能源下降主要体现在黑色金属、化学、非金属矿物、机械制造四个部门?。Wu等(2005)根据中国各省的数据,利用一种新的三层分析法研究了1996-1999年中国二氧化碳排放“突然下降”的原因,研究结果表明:工业部门能源强度下降的速度以及劳动生产率的缓慢下降是化石燃料利用二氧化碳排放下降的决定因素5。Fan等(2007)分析了1980-2003年一次能源利用和物质生产部门终端能源利用的碳排放强度变化情况,研究发现能源强度下降是中国碳排放强度下降的主要原因0。魏一鸣等(2008)在《中国能源报告(2008):碳排放研究》中对中国能源消费与碳排放进行了研究指出中国碳排放强度高于世界平均水平,但是下降较快,中国碳排放强度仍存在一定的下降空间,减缓二氧化碳排放增长的重点是降低能源强度、降低能源消费结构中的高碳能源比例、增加低碳能源消费、以及控制人口数量来实现0。

(2)碳排放因素

许多学者利用因素分解方法和投入产出理论,研究了二氧化碳气体排放变化的影响因素以及与环境相关的问题。Gould和Kulshreshtha(1986)首次将最终需求、结构依存以及节约能源与萨斯喀彻温省的能源消费结合起来?。Rose和Chen(1991)运用投入产出结构分解方法来解释1972-1982年美国经济的中间部门的基于燃料和其他投入之间的中间燃料替代0。Chang和Lin(1998)利用投入产出结构分解法分析了1981-1991年台湾二氧化碳排放趋势和工业部门排放二氧化碳的变化M。Fan(2006)等分析了1975-2000年人口、经济、技术对中国、世界、高收入国家、较高的中等收入国家、较低的中等收入国家、低收入国家的二氧化碳排放的影响,研究发现人口、经济、技术对不同收入水平国家二氧化碳排放量的影响是不同的。MichaelDalton等(2008)的研究中指出从长远的角度来看,人口老龄化会减少二氧化碳的排放,人口的年龄结构对二氧化碳的排放和能源利用等产生影响,如果在人口相对较少的情况下,排放量几乎会降低40%12。MinZhao、LirongTan等(2010)基于LMDI方法利用1996年-2007年的历史数据研究了上海工业部门的碳排放影响因素,结果表明经济产出效应是推动碳排放增长的主要因素,而能源强度的降低和能源结构、产业结构的调整成为抑制碳排放增长的因素13。ClaudiaSheinbaum等(2010)米用LMDI方法定量研究了1970-2006年间墨西哥钢铁工业部门的能耗和碳排放情况,他们指出经济活动效应使能耗在所研究时间范围内增长了227%,而结构效应和能源效率效应则分别使能耗减少5%,90%14。SebastianLozano、EsterGutier?rez(2008)运用数据包络分析(DEA)研究了人口、能耗、碳排放和GDP之间的关系M。牛叔文、丁永霞等(2010)以亚太八国为对象,采用面板数据模型,分析了1971-2005年间能耗、GOT和二氧化碳之间的关系,他们的研究显示发达国家的碳排放基数和能源利用率高,单位能耗和单位GDP排放的二氧化碳低,而发展中国家则相反,我国的能耗和碳排放指标所优于其他三个发展中国家,但次于发达国家116。ChengF.Lee、SueJ.Lin(2001)利用投入产出结构分解的方法研究了影响台湾石化行业1984年到1994年二氧化碳排放的关键因素,通过指数分解分析、投入产出理论以及结构分解方法,识别出二氧化碳排放系数,能源强度、能源替代、增值率、中间需求、国内最终需求、最终出口需求等8个因素台湾石化行业的二氧化碳排放变化的影响,并提出了相应的政策建议。

综上可以看出,尽管目前关于碳减排研究较多,但多集中在国家或者区域层面上,且大多关于西方国家和地区,而对在经济领域具有重要地位的特定工业部门研究却不多见,特别是采用定量实证分析化学工业碳排放的研究很少。

三、方法及数据来源

(一)二氧化碳排放量的估算

根据IPCC给出的温室气体排放指导方针目录(1996年修订版),中国化学工业的二氧化碳排放量可以采用以下公式进行估算,如式(1)所示。

(二)化学工业二氧化碳排放量变化的因素分解模型

借鉴Kaya恒等式M,为了分析化学工业的二氧化碳排放量变化的影响因素,可以将化学工业二氧化碳排放总量分解为以下的影响因素:化学工业能源消费总量、化学工业具体部门能源消费比例、化学工业化石能源比例、化学工业化石能源结构以及能源碳排放系数。具体公式如(2)所示,公式(2)中的参数说明如表2。

为了下文叙述方便,将(2)、(3)式分别称为二氧化碳排放模型、能源消费模型。Ang(2004)B9]比较了各种不同的指数分解方法,认为对数平均指数分解法(LMDI)在其理论基础、适用性以及结果解释等方面具有优势,因此本文选择LMDI(Log-MeanDivisiaIndex)方法。根据LMDI分解方法,可以推出如下等式。

(1)二氧化碳排放模型

E表示现期相对基期化学工业能源消费量的变动;AEq、、Eu尾,AEei分别表示化学工业能源消费量的经济增长效应、化学工业产出比例效应、化学工业的部门结构效应、能耗强度效应。同样地,根据LMDI分解方法得到如下分解结果:

对基期二氧化碳排放量的变动;ACEi,ACfe,ACes,ACec、ACQ、ACu、ACss、/AC?分别表示部门能源消费效应、化学工业化石能源比例效应、化石能源结构效应、能源碳排放强度效应、经济增长效应、化学工业产出比例效应、化学工业的部门结构效应、能耗强度效应。

(三)数据来源

本文分析了1996-2007年我国主要化学工业二氧化碳排放量的变动情况。1996-2007年的各部门的工业总产值数据来源于中国工业经济统计年鉴1997、1998、2000、2001、2002、2003、2004、

2006、2007,由于未得到1998年和2004年的工业总产值,因此本文通过前后两年平均得到1998年和2004年的工业总产值。1996-2007年的二氧化碳排放量根据国家发改委能源研究所的数据计算得到。各部门的能源消费量以及煤炭、石油、天然气等的能源消耗来源于中国统计年鉴1996-

2007。在本文中假定三种能源的二氧化碳排放强度保持不变,因此,ACm=0。

四、结果分析及讨论

能源消费、能源强度以及能源结构都与化学工业二氧化碳排放相关,另外,一些经济因素如工年二氣化碳排放模型分解结果累积图业总产值等也会影响化学工业二氧化碳的排放。LMDI方法可以有效地识别这些关键因素的影响程度。本文将化学工业分为化学原料及化学制品制造业、医药制造业、化学纤维制造业、橡胶制品业以及塑料制品业等5个部门。

(一)二氧化碳排放模型结果根据(4)式,以1996年为基年,逐年变动累积得到的结果如图1所示。

结果显示,在1996年至2007年之间,中国化学工业二氧化碳排放量的变动基本上可以由能源消费量的变动来解释,化学工业化石能源结构效应、化学工业化石能源比例效应的影响其次,化学工业具体部门的能源消费效应的影响最小。从整体趋势来看,化学工业能源消费的增长增加了二氧化碳排放量,而化石能源结构效应以及化石能源比例效应的负向变化抑制了二氧化碳的排放。另外,1996年至1999年间,化学工业二氧化碳排放量是逐年减少的,主要是由这几年化学工业能源消费以及化学工业具体部门能源消费的降低所致。随着部门及总体能源消费的增加,二氧化碳排放开始出现明显增长,到2004年,出现大幅度增长,此时则主要缘于化学工业化石能源比例效应及能源消费效应,即能源消耗,尤其是大量的化石能源的消耗直接导致了二氧化碳排放量的增加。

以1996年为基期,2007年为现期,根据4式的分解结果如图2。2007年相对于1996年化学工图2中国化学工业1996年和

业二氧化碳排放量的变动中,能源消费效应的贡献度为172.86%,化石能源比例效应和化石能源结构效应的贡献度分别为-5.08%、-67.43%,而化学工业具体5个部门(包括化学原料和化学制品制造业、医药制造业、化学纤维制造业、橡胶制造业以及塑料制造业)的能源消费效应的贡献率仅为-0.34%。自上世纪90年代中期以后,煤炭在化石能源中的比例有所下降,石油和天然气的比重有所上升。三种化石能源中,煤炭的二氧化碳排放强度最高,石油次之,天然气最低。因此,化学工业化石能源的结构变动有利于减少二氧化碳的排放。在全球气候变暖、温室气体排放不断增加的压力下,除了调整化石能源结构以外,还应大力推进新能源(包括风电、核电和水电)的使用比例。

(二)能源消费模型结果

根据(6)式,以1996年为基年,逐年变动累积得到的结果如图(3)和(4)所示。

从图3可以看出,经济发展和能耗强度变动是影响化学工业能源消费量的最主要的两个因素,其中,经济增长增加了二氧化碳的排放,而能耗强度变动减少了二氧化碳排放。而化学工业经济效应以及化学工业具体部门结构效应的影响较小。

2007年二氣化碳排放模型分解结果

图4从更细致的层面反映了化学工业中具体5个部门能耗强度的变化情况。其中,化学原料和化学制品制造业以及化学纤维制造业的能耗强度下降很快,尤其在2001年以后。医药制造业、橡胶制品业以及塑料制品业的能耗强度减少较缓慢。说明化学原料和化学制品制造业以及化学纤维制造业两个部门是化学工业所有部门中能耗较高、同时经济发展也较高的部门。为了降低化学工业二氧化碳排放量,提高能源效率,应该加强化学原料和化学制品制造业以及化学纤维制造业的经济投入,同时通过改善相应设备,增加清洁能源比重,降低化石能源消费。

根据(6)式,以1996年为基期,2007年为现期,分解结果如图5所示。

(三)叠加结果

在(4)、(6)两式分解结果的基础上,根据(8)式,叠加后的结果如图6所示。

以1996年为基期,2007年为现期,叠加后的结果如图7所示。

图7全面地反映了各影响因素对1996-2007年中国化学工业二氧化碳排放量变动的贡献程度。根据图7及以上的分析,可以得到:

(1)经济活动和能耗强度下降是影响中国化学工业1996-2007年二氧化碳排放的两个最重要的因素。能耗强度的下降明显减少了二氧化碳的排放,但仍无法抵消经济增长导致的二氧化碳排

放量的增加。

(2)中国整体经济增长导致的二氧化碳排放源于经济增长对能源的需求和消耗,这也造成了化学工业二氧化碳减排与其经济发展之间的矛

盾。为了在减少二氧化碳排放的同时不会抑制经济的发展,需要考虑更多的因素,如化石能源的减少,能源结构的优化,部门结构的调整等等。

(3)由图7可以看出,化学工业的经济发展反而会降低其二氧化碳的排放,因此,应继续关注我国化学工业的生产和发展,加大投入。

(4)能耗强度的下降无疑是化学工业二氧化碳减排最有力的贡献因素,因此,为了提高化学工业的能源利用效率,降低二氧化碳排放,需要不断降低能耗强度,可以通过增加研发投入、改进技术以及改善相应设备、增加新能源比重入手。

(5)化学工业具体部门结构的变动会增加能

年和2007年叠加分解结果

源的消费量,因此需要调整各部门的结构,关注高耗能部门(化学原料和化学制品制造业以及化学纤维制造业)的能源消费,增加较低耗能部门的投入,以期降低能源消耗。

二氧化碳的排放主要来源篇(2)

摘 要:全球变暖与环境污染日益引起来世界各国的高度关注,并引起理论界的探索研究。采用IPCC计算方法,对中国碳排放量进行估算,并定量研究了碳排放量与GDP,碳排放强度与能源消费结构、环境治理水平的关系。研究表明,碳排放量与GDP显著正相关,碳排放强度与环境治理水平显著负相关,最后,从调整能源消费结构等角度提出促进中国低碳发展的政策措施。

关键词 :碳排放数据;碳排放强度;环境治理

中图分类号:X784 文献标识码:A doi:10.3969/j.issn.1665-2272.2015.06.021

基金项目:教育部人文社会科学研究规划项目“基于CGE模型的我国低碳发展政策构建研究”(项目编号:12YJA790214);河南省高等学校哲学社科研究“三重”重大专项“新常态下河南省产业经济发展的机遇、挑战和对策”(项目编号:2014-SZZD-07)

收稿日期:2014-12-26

0 引言

根据联合国(NGO)世界和平基金会世界低碳环保联盟总会公布的数据显示,中国碳排放量已超过美国,成为世界第一大碳排放国家,但人均碳排放却远远低于美国。中国是发展中国家,现在正处于工业化、城镇化的重要阶段内,对于能源消费数量庞大,而且能源消费结构不合理。然而,随着全球气候变暖问题日益引起世界关注以及国内越来越严重的环境污染现象引起人民关注,减少二氧化碳等废弃物排放,加快发展低碳经济已经受到中国政府的重视。2009年中国在哥本哈根举行的全球气候大会中作出庄严承诺“到2020年,中国每单位GDP中碳排放比2005年下降40%~45%”。减少二氧化碳排放,首先要明确影响二氧化碳产生的因素,较为经济、准确地获得二氧化碳排放数据。本文将估算中国碳排放数据,为低成本、高质量获取二氧化碳排放数据以及减少二氧化碳排放提供参考依据。

国内外有关估算碳排放数据的方法的研究主要有,Druckman等采用类多维区域投入产出模型,结果显示英国碳排放量与收入水平、居所、职位和家庭组成有关;Ramakrishnan应用DEA方法研究了了GDP、能源消费、碳排放三者之间的联系;Ugur Soytas运用VAR 模型研究了美国能源消耗、GDP与碳排放量之间的因果关系。魏楚通过研究发现GDP增长与能源利用效率对碳排放影响较大;许士春采用LMDI加和分解法得出我国碳排放的最大驱动因素经济产出效应而最大的抑制因素为产业结构效应的结论;赵敏利用IPCC二氧化碳排放量计算方法估算出上海居民城市交通碳排放数据,并分析了碳排放强度;叶震参考了RAS双向平衡方法,利用投入产出表,估算出我国1995-2009年数据。现有文献研究结果表明,碳排放量与能源消耗、能源利用技术以及能源消费结构有重要的关系,然而现有研究方法有些过于复杂,所需要的参数较多,结果未必更真实接近真实碳排放量。

1 碳排放数据的估算方法

二氧化碳排放量的估算方法多种多样,常见的有如投入产出法、碳足迹计算器法、IPPC计算法等。IPCC 计算碳排放的方法是联合国气候变化委员会提出的,为世界通用的计算方法,IPCC的评估报告阐明大气中二氧化碳的来源主要为人工排放,而人工排放的途径主要来源能源消费。尽管各国减排技术或资源禀赋存在诸多差异,但是这种方法依然可以通过变换相应参数进行调整,这种方法为研究者提供了所需要的各种能源的参数以及排放因子的缺省值,计算十分简单。

采用IPCC碳排放计算指南中的计算方法,假设各类能源的碳排放系数为固定数值,将其结合能源消费数据:

式(1)中,A为通过能源消费向空气中排放的碳排放总量;Bi为能源i消费量; i为能源种类;i=1,2,3,估算的是由煤、石油、天然气三种能源产生的二氧化碳量;Ci为能源i的碳排放系数。

上述IPCC碳排放计算方法在连续进行时间序列数据估算时存在一个缺陷,即如果选定基年的碳排放系数,那么基年以后年份同样选择相同的碳排放系数,则明显没考虑废弃物循环利用和综合治理的因素,因为随着人类环境保护意识水平的提高,循环利用或综合利用产生的二氧化碳等废弃物的力度也在加大。但是很难获得二氧化碳回收等方面的数据,因此,选择“环境污染治理投资总额占国内生产总值比重”这一指标修正碳排放系数。

取某一种能源基年的碳排放系数为Ci1,基年环境污染治理投资总额占国内生产总值比重的值为,则基年以后任一年份碳排放系数为:

本文选择2000年为基年,利用以上公式估算中国2000-2012年碳排放总量(文中数据来源历年《中国统计年鉴》和《中国能源统计年鉴》),GDP以2012年价格计算,估算结果如表1和图1。

从表1和图1中可以看出,中国碳排放量总体呈现增长趋势,在总体增长的趋势中,出现几次阶段性下降现象,主要原因不是能源消费总量下降,而是环境污染治理投资总额占国内生产总值比重上升。中国碳排放量主要由煤炭产生,而石油和天然气所产生的二氧化碳较少,这主要是因为中国能源消费结构中煤炭所占比重较大,而其他所占比重较小,产生单位热量煤炭排放的二氧化碳多。碳排放强度的变化趋势见图2。

碳排放强度是单位GDP的碳排放量,其大小直接反映了经济发展对环境影响的大小。从图2可以看出,碳排放强度呈现出下降的趋势,这表明中国在节能减排上取得的成效,然而应该认识到中国碳排放强度依然较高,而且最近几年下降速度变慢。

2 碳排放量与GDP关系

中国经济正在处于高速发展之中,能源消费结构和环境治理水平也在不断变化,经济的快速发展依赖于能源消费的快速增长,能源消费的快速增长促进了碳排放量的增长,而能源消费结构优化和环境治理水平提高又减少了碳排放量。因此,有必要研究碳排放量与GDP关系以及碳排放强度与能源消费结构、环境治理水平的关系。

为解释变量,以2012年不变价格计算,碳排放量被为被解释变量,模型中参数采用普通最小二乘法(OLS)估计,则中国二氧化碳碳排放量与的线性回归模型如下:

用2000-2012年时间序列数据估计模型中的参数,则2000-2012年中国二氧化碳碳排放量与的关系为:

从上述建立的一次线性回归模型各参数可以看出,GDP对碳排放量显著,回归系数显示为正值,表明中国GDP显著正向影响碳排放量,随着GDP增长,二氧化碳排放量也将与之同步增长的趋势,并且GDP每增加1亿元,二氧化碳排放量增加0.24万t。由于GDP增长和二氧化碳排放量呈长期的单调递增关系,随着中国经济的不断发展,中国将面临着更多更大的减排压力。

用CI表示碳排放强度,f1、f2分别代表煤炭、石油占能源消费总量的比重,用表示环境污染治理投资总额占国内生产总值比重,2000-2012年,中国碳排放强度能源利用结构以及环境治理水平的回归如下:

括号中数据为相应参数的t检验值,1%显著。

碳排放强度和煤炭、石油占能源消费总量的比重变化的正向关系说明,煤炭、石油占能源消费总量的比重的提高都会使碳排放强度增加,但是从回归结果来看,煤炭占能源消费总量的比重提高1%要比石油占能源消费总量的比重提高1%促进碳排放强度增加得快一些,因此,从这个角度可以说,提高石油占能源消费总量的比重有利于降低碳排放强度。环境污染治理投资总额占国内生产总值比重的符号为负,表明环境治理水平能显著降低碳排放强度,系数的绝对值较大,表明在中国提高环境污染治理将会显著降低碳排放强度。

3 促进中国低碳发展的政策措施

3.1 转变经济发展方式,形成全社会参与低碳发展的局面

要把加快低碳发展作为贯彻落实科学发展观的重要内容,在全社会广泛开展宣传,使全社会认识到中国由于经济发展引起的过多碳排放量面临的国际减排压力,以及由于大量碳排放量引起的气候变化和环境污染问题,要明确中国作为发展中大国在碳排放方面享有的权利和应承担的义务。要牢固确立低碳发展意识,让转变经济发展方式以及保护环境等成为各级政府和企业的重要发展理念。要区别经济增长与经济发展,经济增长是经济发展的部分内容,经济发展不仅有经济总量的增加,更需要有经济效益、环境治理以及人民水平的提高。中国要避免走西方先污染后治理的模式就必须加快转变经济发展方式,加快低碳发展。

3.2 优化产业结构

当前中国产业结构不合理,主要表现在第二产业比重较大,第三产业比重较小,由于不同产业生产相同价值的产品其消耗的能源是不同的,一般来说,生产等值产品第二产业消耗的能源最多,排放的二氧化碳也最多,第三产业消耗的能源最少,排放的二氧化碳也最少。中国要想完成在哥本哈根举行的全球气候大会中作出的承诺,就必须加大产业结构调整力度,加快第三产业发展,力争在快速发展经济的同时,使碳排放总量最少。

3.3 调整能源消费结构

碳排放强度与能源利用结构显著相关,一般来说,产生等热煤碳排放的二氧化碳最多,石油次之,天然气最少,而清洁能源排放更少。长期以来,中国能源消费结构形成以煤炭为主,清洁能源较少的局面,在一定程度造成了碳排放量的快速增加。因此,要加大对风能、核能、水电等清洁能源的开发与利用,不断调整能源消费结构。另外,开发新的清洁能源在改善国内能源消费结构,降低碳排放量的同时,又可以显著促进经济增长。

3.4 加大环境治理力度

中国碳排放量的增加,影响因素很多,由前面研究可以看出环境治理能显著降低碳排放强度。从统计数据可以看出,中国环境污染治理投资总额占国内生产总值比重一直较低,而且其值一直难以稳定,处于不断变化中。当前,中国面临诸多问题,其中大部分问题都与环境污染治理投资力度不够相关,因此,有必要加大环境治理力度。加大环境治理力度可以逐步引入碳税制度。碳税可以迫使企业因为沉重的税收而放弃碳排放量较多的一些产品生产,从而降低二氧化碳排放量,它是最具有市场效率的减少碳排放的经济政策手段之一。

3.5 增加碳汇

减少二氧化碳除了减少二氧化碳的排放外,还应该尽量吸收已经排放的二氧化碳。碳汇的目的就是从大气中除去二氧化碳的一些方法过程、活动以及机制,主要依靠森林吸收并储存二氧化碳。陆地生态系统中森林是最大的碳库,通过树木和花草等植物的光合作用,吸收大气中的二氧化碳,制造出氧气并向外排出,这样会降低大气中的二氧化碳含量、减缓气候变暖的效果。当前,中国森林面积和森林覆盖率较低,需要继续增加森林面积。中国是能源消费大国,排放的空气中的二氧化碳十分庞大,要想保证空气质量,减缓二氧化碳对气候的影响,需要扩大森林面积来吸收空气中的二氧化碳。另外,国土的绿化会使国家的形象得到大幅提升,吸引更多的游客来旅游观光,不仅有利于降低二氧化碳,同时也可以加快发展第三产业,促进中国产业结构调整和经济发展。

参考文献

1 Angela Druckman. The Carbon Footprint of UK Households 1990-2004[J]. Ecological Economics, 2009(68)

2 Ramakrishnan. Factor Efficiency Perspectiveto the Relationships among World GDP, Energy Consumption and Carbon Dioxide Emissions[J]. Technological Forecasting & Social Change, 2006(73)

3 Ugur Soytas. Energy Consumption, income, and Carbon Emissions in the United State[J]. Ecological Economics, 2007(62)

4 蒋金荷.中国碳排放量测算及影响因素分析[J].资源科学,2011(4)

5 许士春,习蓉,何正霞.中国能源消耗碳排放的影响因素分析及政策启示[J].资源科学,2012(1)

二氧化碳的排放主要来源篇(3)

随着2009年11月25日中国宣布了“碳减排”目标,“低碳经济”的提法在2009年年底迅速兴起,“碳减排”也在2010年年初渐渐成为了最热的新闻关键词之一。然而,长期以来媒体“碳减排”的相关报道存在若干误区。笔者择其较为典型的部分,试辨析如下。

一、二氧化碳不是大气污染物

在媒体报道中不难见到这样的新闻标题:《商用车二氧化碳污染严重》、《“清洁煤炭”技术可减少二氧化碳污染》、《降低污染,把二氧化碳埋藏在海底》……这些文章中都把二氧化碳和二氧化硫等作为大气污染物来看待。实际上,从法律角度分析,目前在我国二氧化碳还并不是大气污染物。我国《大气污染防治法》没有明确列举大气污染物的种类,按照该法第七条规定,我国法定大气污染物的种类,实际是由国家《大气污染物综合排放标准》 (GB16297―1996)以及地方大气污染物排放标准、行业性大气污染物排放标准具体规定的。《大气污染物综合排放标准》规定了33种大气污染物的排放限值,“二氧化碳”并不在其列。而其他标准虽有的与规定略有不同,也都没有列入“二氧化碳”。如《广东省大气污染物排放限值标准》中规定了37种大气污染物,把“一氧化碳”列入其中,但是也没有把二氧化碳作为大气污染物加以限制。其实,二氧化碳是否应列入大气污染物名单,在法学理论界依然有争议。作为自然界不可或缺的物质,把二氧化碳简单地看成是一种污染物,也确实是值得商榷的。

二、“节能减排”中的“减排”,其实并不是“碳减排”

“节能减排”几乎成为有关“低碳”新闻报道中最常见的词语之一。实际上,作为我国一项政策的“节能减排”,现阶段是指实现《国民经济和社会发展第十一个五年规划纲要》中“单位国内生产总值能耗降低20%左右,主要污染物排放总量减少10%的约束性指标”。“节能减排”中的“减排”一词根本不是指“碳减排”,而是指“主要污染物减排”。“节能减排”作为政策名称出现时,“减排”的含义是非常明确的。如2007年11月17日《国务院批转节能减排统计监测及考核实施方案和办法的通知》,通知中的“减排”对象,就专门是指“十一五规划”确定实施排放总量控制的两项污染物:化学需氧量(COD)和二氧化硫。虽然,“污染物和温室气体主要源于化石燃料的燃烧,两者具有一定的同源性,其控制手段也有一定的一致性”、“以二氧化硫为主的污染物减排对温室气体减排有明显协同作用”①。但是,把法律上不是大气污染物的二氧化碳,当成了着眼于“主要污染物排放总量减少”的“节能减排”政策中的“减排”对象,无疑是一种误读。

三、节能未必减排、减排未必节能

现在,很多“碳减排”新闻报道默认了这样一个前提:“碳减排”是“节约能源”的必然结果。甚至认为“节约能源”和“碳减排”是一体的。于是,不少报道也就专注于《节约能源法》等法律法规和相关政策的实施,将之视为实现“碳减排”的“不二法门”。实际上,消耗的能源较少,不代表二氧化碳排放较少。以中美能源消耗和“碳排放”情况比较为例:美国2008年能源消费总量为2299.0百万吨标准油当量,中国为2002.52百万吨标准油当量②,美国消耗的能源远多于中国。但是,2008年 “中国和美国的二氧化碳排放总量大体相当”③。中国能源消耗少于美国的情况下,碳排放却与美国“大体相当”,主要原因是“以煤为主”的能源结构(煤炭的“单位热量二氧化碳碳排放量”高于石油和天然气),低碳能源使用偏少。通过比较也揭示了这样的事实:节约能源只是实现“碳减排”的途径之一。能源结构不调整的情况下,很有可能出现“节能不减排”的情况;而扩大能源结构中低碳能源的比例之后,消耗能源增多,碳排放未必增多。寻求“碳减排”的政策路径,不能视野单一,只在节约能源方面下功夫。

值得注意的是,其实存在“减排不节能”的情况――把排放的二氧化碳收集起来,用各种方法储存以避免其排放到大气中的“碳捕集与封存”(CCS)技术,是现阶段公认的短期实现“碳减排”最重要的技术之一。但是碳捕集与封存技术却是“一项高耗能、高成本的技术”,按我国目前火电厂的情况,使用这项技术“增加了1/4的耗电量、耗煤量”,“发一度电几乎要增加30%~50%的能耗”④。为了实现“碳减排”,在这种情况下其实和“节约能源”背道而驰了。■

参考文献

①《中国污染物减排显著带动二氧化碳减排》,新华网,09年12月15日

②《气候变暖变冷对中国都是巨大挑战》,中国能源网,2010年1月25日

③《中美二氧化碳排放总量大体相当》,《中国经济导报》,2008年10月30日

二氧化碳的排放主要来源篇(4)

 

1 二氧化碳排放清单

 

1.1 清单对象的确定

 

二氧化碳排放清单是包括所有能够产生二氧化碳的能源消耗行为[3,4],在编制高校碳排放清单时,突出影响碳排放量的主要因素,忽略次要因素。不同于其他能耗企业,高校能源种类、消耗方式较为集中,所以在编制二氧化碳排放清单时主要考虑水、电、化石能源、食物四个方面的消耗所产生的二氧化碳排放。在高校中,化石能源的消耗主要用于燃烧、实验需要及设备驱动,所以只考虑天然气、燃煤、汽油、柴油。食物方面分为主食、肉类、果蔬类。具体计算碳排放量时,利用公式:二氧化碳排放量=消耗量×对应的碳排放因子。

 

1.2 二氧化碳排放清单编制方法的选择

 

根据IPCC清单指南和《北京市企业单位二氧化碳核算和报告》,本研究编制的原则相同,只是在编制方法、技术路线上更多地体现出高校的特色,使清单更能反映出其实际情况。二氧化碳清单编制方法基于物料平衡原理,计算出各类能源消耗量与相关排放因子乘积之和。其中化石能源的碳排放因子=燃料热值×单位热值含碳量×碳氧化率×CO2与碳原子量比。

 

2 二氧化碳排放量测算方法

 

基于《北京市企业单位二氧化碳核算和报告指南》中的相关碳排放因子[5]的计算公式,由水、电、食物及能源的用量数据,采取物料平衡法,可以计算出相应的二氧化碳排放量。其中高校总碳排放量=用水隐含碳排放量+用电隐含碳排放量+食物消耗碳排放量+其它能源直接碳排放量。

 

(1)用水隐含二氧化碳排放量计算式:

 

Ed1=D×fg1 (TY-1)

 

式中,Ed1是二氧化碳排放量,单位为tCO2;D是校园用水消耗量,单位为MWh;fg1是水的间接排放系数,采用的最近年份排放系数0.19t/kg。

 

(2)用电隐含二氧化碳排放量计算式:

 

Ed2=D×fg2 (TY-2)

 

式中,Ed2是二氧化碳排放量,单位为tCO2;D是校园电力消耗量,单位为MWh;fg2是电的间接排放系数,采用的最近年份排放系数。

 

(3)食物消耗产生的二氧化碳计算式:

 

式中,Ai是食物的类别的重量,单位为t;Fi是对应食物的二氧化碳排放系数,单位是tCO2/t。

 

(4)化石燃料燃烧产生的二氧化碳排放量计算式:

 

式中,E是化石燃料燃烧二氧化碳排放量,单位为tCO2;Ai是化石燃料燃烧活动水平数据,单位为tJ;Fi是第i种燃料的排放因子,单位为tCO2/tJ;

 

故企业第i种化石燃料消费量的热量按公式(TY-5)计算。其中排放因子的确定:第i种燃料二氧化碳直接排放的排放因子按公式(TY-5)计算得到。

 

Fi=Ciρ (TY-5)

 

式中,Fi是燃料i的排放因子,单位为 tCO2/tJ;Ci是燃料i的单位热值含碳量,单位为tC/tJ;αi是燃料i的碳氧化率;ρ是二氧化碳与碳的分子量之比,为一常数3.667。

 

3 软件可视化输出

 

高校碳排放测算软件[6]是基于“C#”与“Access”开发的、具有数据计算功能的软件,它能够根据各类能源消耗量计算出高校碳排放总量和各个建筑功能区的碳排放量,从而实现在时间、空间上对高校碳排放量的全局掌控。

 

计算软件包括4个模块:全校CO2总量计算、各建筑功能区CO2计算、统计分析以及个人应用。相应地CO2计算公式通过源程序编译给出,只需在对应的CO2清单中输入使用量参数,软件会自动计算出该时间段学校所产生的CO2量。同时,我们把学校分成了8个建筑功能区,各个建筑功能区的CO2清单不尽相同,输入对应的能源参数后,软件可以计算出该区域的CO2排放情况。

 

4 结果分析

 

利用上述CO2测算方法,可以得出水、电以及各类能源的测算结果。本次研究选取2010年用电、用水、能源(能源选取煤为代表)来分析结果。

 

由表1清单结果可以看出,2010年碳排放量中以用电消耗最大,其次是用水,煤的碳排放量最少,且碳排放总量数值巨大,存在很大的节能减排潜力。由2010年各区用电量比例进行进一步的分析,并得出各建筑功能区用电碳排放占比如图1。

 

由各区总量比例可以看出,宿舍用电碳排放量最大,其次是教学楼和食堂。而原因在于学生是学校用电的主体,学生活动的最主要场所为宿舍,对用电的需求最大;教学办公区是学校的重要功能区,是学生学习和教职工教学活动的主要场所,故其用电量在学校总体用电量中也占有一定比例。无论是宿舍还是教学办公区中电力消耗主要来源于照明,但是学生节约用电的意识不高,用电浪费情况比较严重,同时教学区自习室用电也缺乏规范管理,这些现象都在一定程度上导致学校用电碳排放量增加。

 

5 结论与讨论

 

二氧化碳的排放主要来源篇(5)

中图分类号:X24 文献标识码:A 文章编号:1007-3973(2012)001-130-02

1 引言

全球气候变暖对地球生态和人类生活构成了严重威胁, 是全人类面临的共同挑战,这既是环境问题,也是发展问题,因此成为各国政府和人民共同关注的焦点。碳减排是国际社会尤其是发达国家及碳排放大国共同承担的责任,但要完成一国理应承担的减排责任,需要一国内部各区域协调联动,从而顺利实现减排目标,为自身以及人类可持续发展做出相应贡献。

本文以云南省为研究对象,对其1998~2008年的能源碳排放量、万元GDP碳排放量和人均碳排放量进行了估算,同时对估算结果进行了分析评价,以期得出富有参考价值的结论及减排措施。碳排放是温室气体排放的一个简称。温室气体中最主要的气体是二氧化碳,因此用碳一词作为代表。本文的碳排放特指的是二氧化碳的排放。

2 估算方法

2.1 能源碳排放量

由人类社会经济活动所产生的二氧化碳等温室气体的排放是致使全球气温变暖的最主要原因,而二氧化碳主要是来源于能源的消耗。我国是能源消费大国,特别是煤、石油和天然气等化石能源的消费比例较高,三者之和占我国能源消费总量的92.8%,因此二氧化碳的排放主要来自于化石能源的消耗。本文所说的能源碳排放量,特指煤炭、石油和天然气这三种化石能源的碳排放量。

注:数据来源于《中国能源统计年鉴2007》《中国可持续发展能源暨碳排放情景分析》。

确定的碳排放量计算方法来源于2050中国能源和碳排放研究课题组编写的《2050中国能源和碳排放报告》,计算公式为:

Ai =Si Pi Ci 4/12 (2-1)

式(2-1)中,Ai表示某种能源的年碳排放量,计算结果为碳的年排放量,需要乘以44/12换算成二氧化碳的年排放量,单位为万吨;Si表示某种能源折算标准煤参考系数,具体见表2-1;Pi表示某种能源的年消费量;Ci表示某种能源的碳排放系数,具体见表1;i表示能源种类,即原煤、原油和天然气这三种能源,取值为1、2、3。(在计算时根据数据的可获取性,煤炭和石油的数据,分别用原煤和原油的数据来代替)见表1。

2.2 万元GDP碳排放量

万元GDP碳排放量的估算公式为:

AGDP =(A1+A2+A3)/GDP (2-2)

AGDP表示万元GDP年碳排放量,单位吨/万元;A1表示原煤的年碳排放量,单位为万吨;A2表示原油的年碳排放量,单位为万吨;A3表示天然气的年碳排放量,单位为万吨;GDP的单位为亿元。

2.3 人均碳排放量

人均碳排放量的估算公式为:

AP=(A1+A2+A3)/P (2-3)

AP表示人均年碳排放量,单位为吨/人;P表示常住人口数,单位为万人。

3 估算结果

云南省能源碳排量、万元GDP碳排放量和人均碳排放量,根据公式(2-1)可得估算结果见表2、图1、图2、图3和图4。

4 分析评价

4.1 原煤碳排放量最大,且三种能源碳排放量都呈现波动上升的趋势

根据表2和图1、图2和图3来看,11年中,云南省原煤、原油和天然气的碳排放量呈现上升的趋势,三大能源中原煤的碳排放量巨大。原煤累计碳排放量占能源累计碳排放总量的90.0%,原油累计碳排放量占能源累计碳排放总量的9.0%,天然气累计碳排放量只占能源累计碳排放总量的1.0%。巨大的原煤碳排放量对实现减排目标造成了很大的障碍。

原油在消费过程产生的二氧化碳远小于原煤产生的二氧化碳量,虽然原油产生的二氧化碳量不多,但在一定程度上对能源的年碳排放总量产生影响。

天然气的碳排放量从1998~2008年都有波动,但波动中变化的量并不太大。天然气较以上的原煤和原油来看,消费中产生的二氧化碳量最少。

4.2 万元GDP碳排放量有波动,但总的趋势在下降

根据表2和图4来看,11年中,万元GDP碳排放量出现波动变化的状态,但总的趋势是在下降,出现波动的原因可能是与某些年份的产业结构调整,大量耗能工业的调整有关。在工业化的不同阶段,对能源的消费需求是不同的,导致了碳排放量的不同。但随着经济的发展,技术的进步,能源利用效率的提高,万元GDP碳排放量会逐渐呈现下降的态势。

4.3 人均碳排放量呈现逐年上升的态势,且受人口消费习惯的影响较大

根据表2和图4可以看出,从1998年~2008年,云南省人均碳排放量逐年上升。人口因素对碳排放量的影响,主要从人口数量因素和人口消费习惯因素两个方面对其产生影响。11年中,云南省的常住人口变化不大,但人均碳排放量却逐年上升,可以看出人口消费习惯对二氧化碳排放产生了较大的影响,因为生产产品并消费其最终目的是为了满足人类的消费需求。由于在消费过程中缺乏合理引导,导致人们在消费过程中形成了很多不良的消费习惯,这些消费习惯和行为产生了一定的碳排放量。

5 云南省减少碳排放量的措施

5.1 将重心放在提高能源利用效率和改进能源利用结构上

云南目前正处于经济发展的关键时期,综合实力逐步增强的同时对能源的需求也与日俱增,与此相伴随的是二氧化碳等温室气体排放量的持续增加,但这恰恰是经济发展的必然现象,并不违背历史规律。然而,为了减轻环境压力和维护人类的生存安全,提高能源利用效率和改进能源消费结构是其不可推卸的责任和义务。

5.2 提高经济增长的质量和促进产业结构升级可以有效抑制二氧化碳排放量的增长

粗放式经济增长的特点是高投入、高消耗、高污染和低产出,严重影响了区域经济发展的质量和内涵,与此相对应的低投入、低消耗、低污染和高产出的集约型的高质量的绿色发展模式便成为必然选择和追求目标,而这其中的关键又是产业结构的升级和效益的提高。

5.3 转变消费观念

人口基数的大小与二氧化碳排放量之间并不存在必然的因果联系,反而消费习惯、消费结构对二氧化碳排放的影响更为直接,因此正确引导人们的消费习惯、倡导文明消费以及培养消费责任心就成为重点所在,只有坚持消费的低碳化和可循环,才能实现“高碳”经济向“低碳”经济的转变。

5.4 政府政策的正确约束和引导

政府的政策在一个区域的发展中,起着重要的作用。所以政策的约束和引导作用无疑将促进低碳经济的发展,为二氧化碳减排提供政策保障作用。所以,各级政府应把碳减排政策放在突出地位,切实保障社会经济发展的成果,以实现经济又好又快发展。

参考文献:

[1] 陈文颖,高鹏飞,何建坤.用中国MARKAL-MACRO模型研究碳减排对中国能源系统的影响[J].清华大学学报(自然科学版),2004,44(3):342-346.

二氧化碳的排放主要来源篇(6)

    林业是减排二氧化碳的重要手段。部分研究认为,林业减排是减排二氧化碳的重要手段。首先,通过抑制毁林、森林退化可以减少碳排放;其次,通过林产品替代其他原材料以及化石能源,可以减少生产其他原材料过程中产生的二氧化碳,可以减少燃烧化石能源过程中释放的二氧化碳[2]。1.1毁林、森林退化与碳排放近年来,大部分的毁林活动都是由人类直接引发的,大片的林地转变成非林地,主要活动包括大面积商业采伐以及扩建居住区、农用地开垦、发展牧业、砍伐森林开采矿藏、修建水坝、道路、水库等[3]。在毁林过程中,部分木材被加工成了木制品,由于部分木制品是长期使用的,因此,可以长期保持碳贮存,但是,原本的森林中贮存了大量的森林生物量,由于毁林,这些森林生物量中的碳迅速的排放到大气中,另外,森林土壤中含有大量的土壤有机碳,毁林引起的土地利用变化也引起了这部分碳的大量释放。因此,毁林是二氧化碳排放的重要源头。毁林已经成为能源部门之后的第二大来源,根据IPCC的估计,从19世纪中期到20世纪初,全世界由于毁林引起的碳排放一直在增加,19世纪中期,碳排放是年均3亿t,在20世纪50年代初是年均10亿t,本世纪初,则是年均23亿t,大概占全球温室气体源排放总量的17%。因此,IPCC认为,减少毁林是短期内减排二氧化碳的重要手段。

    1.2林木产品、林木生物质能源与碳减排①大部分研究认为,应将林产品碳储量纳入国家温室气体清单报告,主要理由是林产品是一个碳库,伐后林产品是其中一个重要构成部分[4]。通过以下手段,可以减缓林产品中贮存的碳向大气中排放:大量使用林产品,提高木材利用率,扩大林产品碳储量,延长木质林产品使用寿命等。另外,也可以采用其他有效的手段来减缓碳的排放,降低林产品的碳排放速率,如合理填埋处置废弃木产品等方式,这样,甚至可以让部分废弃木产品实现长期固碳。在森林生态系统和大气之间的碳平衡方面,林产品的异地储碳发挥了很大的作用。②贾治邦认为,大量使用工业产品产生了大量的碳排放,如果用林业产品代替工业产品,如减少能源密集型材料的使用,大量使用的耐用木质林产品就可以减少碳排放。秦建华等也从碳循环的角度分析了林产品固碳的重要性,林产品减少了因生产钢材等原材料所产生的二氧化碳排放,又延长了本身所固定的二氧化碳[5]。③以林产品替代化石能源,也可以减少因化石能源的燃烧产生的二氧化碳排放。例如,木材可以作为燃料,木材加工和森林采伐过程中也会有很多的木质剩余物,这些都可以收集起来用以替代化石燃料,从而减少碳的排放;另外,林木生物质能源也可以替代化石燃料,减少碳的排放。根据IPCC的预计,2000—2050年,全球用生物质能源代替的化石能源可达20~73GtC[6]。相震认为,虽然通过分解作用,部分林产品中所含的碳最终重新排放到大气中,但因为林业资源可以再生,在再生过程中,可以吸收二氧化碳,而生产工业产品时,由于需要燃烧化石燃料,由此排放大量的二氧化碳,所以,使用林产品最终降低了工业产品在生产过程中,石化燃料燃烧产生的净碳排放[7]。林产品通过以下两个方面降低碳排放量:一是异地碳储燃料,二是碳替代。这两方面可以保持、增加林产品碳贮存并可以长期固定二氧化碳,因此,起到了间接减排二氧化碳的作用。从以上分析可知,林业是碳源,因此在直接减排上将起到重大作用;林业可以起到碳贮存与碳替代的作用,可以间接减排二氧化碳。因此,林业是减排二氧化碳的重要手段。有些研究认为林业在直接减排二氧化碳方面的作用不大。这是基于较长的时间跨度来考察的,认为林业并不是二氧化碳减排的最重要手段,工业减排是发展低碳经济的长久之计;但是从短时间尺度来考察,又由于CDM项目的实施,林业是目前中国碳减排的一个重要的不可或缺的手段。

    2森林碳汇在发展低碳经济中发挥的作用巨大绝大部分的研究认为,林业是增加碳汇的主要手段。

二氧化碳的排放主要来源篇(7)

税收作为一种有效的经济手段,具有宏观调控和聚集财富的功能。许多西方发达国家已经建立起了一整套完善的二氧化碳税收制度,并取得了良好的节能减排效果。面对日益严重的环境问题,如何借鉴西方国家的成功经验,在我国建立起一套实用、完善的二氧化碳税收体系就成为一个亟待解决的重要问题。

一、二氧化碳税在国际上的发展趋势

(一)全球气候变暖与绿色税制

由于人类活动和自然变化的共同影响,全球气候正经历一场以变暖为主要特征的显著变化。人类活动通过改变地球大气层中温室气体、气溶胶(气体中的悬浮微粒,如烟、雾等)以及阴暗度来引起气候变化。其中,产生最大影响的活动是化石燃料燃烧,关键温室气体二氧化碳(CO2)就是通过这一途径被释放到大气中。这些气体聚积在大气中,引起大气浓度的与时俱增,进而导致全球气候变暖。国际社会和科学界已对全球变暖高度关注,采取各项措施应对这一趋势。

经济与合作发展组织(OECD)1972年就提出了“污染者付费”(PolluterPaysPrinciple,PPP)原则,从而引发了世界税制绿化浪潮,并为包括二氧化碳税在内的绿色税制的实施确立了基础。20世纪70年代以来。OECD成员国以及欧洲多国纷纷推行二氧化碳税政策,并结合已有税制的结构调整,取得了十分明显的延缓全球变暖与保护环境的环境效果。1992年6月通过的联合国《里约环境与发展宣言》也要求名国政府加强财政以及经济政策的补充性作用,把环境费用纳入生产者和消费者的决策过程。

除了以环境为出发点外,绿色税制的运用,更对国家经济与民生有整体的影响。因此,在税制绿化改革的背景下,二氧化碳税的运用正获得越来越多的支持,这也反映了国际环境经济手段和税收结构的最新发展。

(二)二氧化碳税的概念与特性

二氧化碳税最早由英国经济学家阿瑟·皮苟(ArthurCecilPious)在《福利经济学》一书中提出。二氧化碳税可以通过对燃煤和石油等化石燃料产品的含碳量进行征税来实现减少化石燃料消耗和二氧化碳这一主要温室气体的排放。二氧化碳税是与全球气候变化紧密联系在一起的,其特性可以归纳为以下四点:(1)二氧化碳税的实质是为了保护全球温度这一公共产品,而对二氧化碳这一温室气体所开征的一项税负,目的是使排放二氧化碳的生产过程和消费所产生的外部成本内部化。(2)二氧化碳税是一种间接税,是在生产或者消费的过程中征收的。而且二氧化碳税具有固定税率,对国民经济发展的副作用相对较小。(3)二氧化碳税是一种调节税。随着越来越多的国家完成工业化进程,可供给的廉价燃料也在逐步减少。环境税制相对成熟的发达国家都将二氧化碳税作为一种调节税,因为二氧化碳税能够发挥激励作用,促进节能,促使风能、太阳能、地热能等可再生能源的使用。(4)二氧化碳税影响广泛而深远。征收二氧化碳税涉及社会经济和人民生活诸多方面,影响远比一般特许权税(如烟草专卖税)更加广泛深远。实施国在征收过程中,不仅要考虑经济效率、环境效果,还要考虑到社会效益、国际竞争力等问题,从而根据商品的收入弹性、收入替代效应,慎重选择征税品种和税率。

二、瑞典二氧化碳税制实证分析

(一)瑞典二氧化碳税制简介

瑞典与其北欧邻国一起,是欧盟第一批在环境保护领域发展和实施经济手段的国家,在环境保护中广泛运用了环境税、费和其它众多的经济手段。根据OECD2004年对其成员国做出的评估,瑞典实行了约70项以市场为基础的手段,是在环境保护方面运用最多经济手段的国家。

瑞典于1991年开征二氧化碳税,征税范围是所有种类的燃料油,该税是对现行能源税的补充。开征二氧化碳税的同时,能源税率降低了50%。从那之后,能源税体系几经变革,但是不变的是对于工业和电力产品的税率一直低于其它部门。目前,工业消费者不支付能源税,二氧化碳税也只需支付一半。电力产品不需要交纳任何能源税和二氧化碳税。瑞典目前二氧化碳税率为0.36瑞典克朗/千克CO2(合150美元/吨CO2)。征收二氧化碳税最显著的效果是有机物在瑞典直接供暖系统中的大量应用,如今瑞典约50%的供暖系统利用生物燃料等作为热能供给,而不再是用煤炭和石油来提供热能。

瑞典能源税体系于1991年进行了改革。改革后的能源税体系以二氧化碳税和对燃料征收的能源税为基础,而且对燃料征收的能源税不与燃料的含碳成分挂钩。开征二氧化碳税的同时,一般能源税率下降了50%。为了避免对瑞典工业的国际竞争力产生影响,工业部门的税率低于私人家庭,对于一些能源密集型产业进一步给予减免。目前瑞典对于化石燃料,尤其是对汽油征收的二氧化碳税非常高。

(二)瑞典征收二氧化碳税对温室气体的减排效果

根据德国著名环境组织Germanwach的统计资料表明,瑞典于2006年和2007年两次荣登“拯救地球国家名单”榜首,成为世界各国应对全球气候变暖行动中最有成效的国家。

2007年9月,瑞典政府的统计表明将近90%的减排效果归功于税收体系改革。瑞典环境部部长An—dreasAlgren称,如果没有征收二氧化碳税,国内的排放量将比现在高出20%。因为二氧化碳税的征收使得污染的成本升高,从而使全国都开始关注环保能源的开发与利用。因此,征收二氧化碳税是减排最有效的途径,而且基本不会影响到良好的经济增长势头。在1990~2006年间,瑞典的二氧化碳排放量减少了9%,远远超过了《京都议定书》所规定的发达国家减排目标。与此同时,瑞典的经济保持了44%的固定价格增长。

三、我国开征二氧化碳税的必要性

(一)开征二氧化碳税是国际大势所趋

根据联合国政府间气候变化专门委员会(IPCC)在其第四次评估报告的结论,近50年的全球气候变暖主要是由人类活动大量排放的二氧化碳、甲烷(CH4)等温室气体的增温效应造成的。如今二氧化碳减排已经成为一种国际趋势。

到2007年底,国际社会已经制定了雄心勃勃的温室气体减排计划。一个总的共识是“80—20”原则,即在20年内力争把以二氧化碳为首的温室气体排放量降低80%。继欧盟成员国成功运用税收手段抑制二氧化碳排放量之后,加拿大、澳大利亚、日本等发达国家也纷纷响应应对全球变暖的号召,开始酝酿制定二氧化碳税制。气候变化已经成为主要的国际性议程,迅速和积极地减排将降低调整环境适应的代价。

但要达到“80-20”目标,以中国为首的发展中大国也肩负着巨大的减排压力。在2007年国际能源机构(IEA)的最新《全球能源展望》中,预测2030年世界能源需求将增长50%,其中40%是由中国和印度拉动的。联合国秘书长潘基文也在联合国气候变化会议上特别强调,在气候变化的情况下,未来20年预期的经济发展和增长的能源需求,特别需要发展中国家采取紧急行动以减缓气候变化的趋势。

(二)开征二氧化碳税是国家政策所向

近百年内中国年平均气温升高了0.5~0.8℃,已经略高于同期全球增温的平均值。从1986~2007年,中国已经连续经历了22个全国性暖冬。中国气象局局长郑国光也指出,适应和减缓气候变化是中国适应全球变暖的当务之急。

2006年,中国政府的“十一五”规划确立了节能减排工作的硬性指标:到2010年主要污染物排放总量减少10%。2007年5月国务院颁布的《中国应对气候变化国家方案》中,我国政府承诺将控制温室气体排放,确保实现2010年单位国内生产总值能耗比2005年降低20%左右这一约束性目标。2007年6月国务院颁布的《节能减排综合性工作方案》中,明确要制定和完善鼓励节能减排的税收政策,研究开征包括二氧化碳税在内的环境税。2007年11月,由财政部科研所孙钢研究员和许文博士完成的研究报告中提出的三种环境税可选方案中指出,二氧化碳税可以作为一种污染物排放税在中国适时开征。”在环境规划院课题组提出的独立环境税实施方案中,可供选择的税种包括:重要资源税、汽车污染税、能源消费税、二氧化硫税、二氧化碳税和废水排放税。2008年11月5日,由环保部中国环境文化促进会和中国发展战略学研究会社会战略专业委员会,中科院首席科学家牛文元教授牵头组织撰写的《中国碳平衡交易框架研究》报告,建议积极运用政策手段开征碳税,促使企业减少二氧化碳排放。

显然,随着中国政府节能减排的政策措施的落实和环境税制改革的推进,为了实现可持续发展的长久国策,需要开征二氧化碳税这一新税种来完善税收制度的环保功能,提高污染环境行为的税收负担。这也是树立我国作为发展中大国的环境保护立场和建设和谐世界的外交政策主张的一个契机。

(三)开征二氧化碳税有助于优化我国能源消费结构

众所周知,中国的一次能源结构以煤为主。由此可见,我国二氧化碳排放量高是由我国的能源结构特征决定的。

由于煤炭消费比重较大,就造成了我国能源消费的二氧化碳排放强度也相对较高。根据世界银行年刊《2007绿色年鉴》中对1980~2004年世界主要温室气体排放国化石燃料所排放的二氧化碳量的统计数据,2004年中国温室气体排放总量约为61亿吨二氧化碳当量,其中二氧化碳排放量约为50.7亿吨。2007年中国二氧化碳排放量已占世界总量的16%,仅次于美国。

现阶段,我国燃油的需求价格弹性处于较高水平,及时研究设计开征碳税将十分有利于促进我国能源消费结构的转变,从而避免进一步依赖于煤炭这样的化石燃料消费。海外经验表明,二氧化碳税的开征可以有效优化能源消费结构。瑞典自1991年开征二氧化碳税之后,由于二氧化碳税的征收导致燃料油和生物燃料的价格产生差异,国家的区域供热部门和许多企业为了追求生产成本最小化,对生物燃料的应用大为增加。在1991~1995年间,生物燃料在瑞典区域供暖系统中所占的比重从25%增长到了42%。目前,生物燃料、泥炭等提供了瑞典区域供热体系中能源供应的50%以上。

因此,中国如果能够及时开征二氧化碳税,必将有利于促进我国能源消费结构的转变,逐步淘汰落后的高能耗产业和技术,避免社会经济滑向不可持续的深渊。

(四)开征二氧化碳税有利于经济社会的发展

二氧化碳税是一种间接税,具有固定的税率而且不会改变分配结构,对经济发展的负面作用相对较小。这一点在国际上已经得到了广泛的认可。而且,一个国家或者地区在确定排放限额以及减排目标的情况下,在国家或者区域的层面实施碳税具有相当的优越性。如果中国开征二氧化碳税,这部分税收收入还将为我国财政收入做出巨大贡献。

全球气候变暖对中国来说远远超出了一般意义上的气候问题和环境问题,对我国经济社会发展已经带来十分严峻的挑战,在我国开征二氧化碳税已显得尤为紧迫。开征二氧化碳税对于在全社会增强节能减排意识,提高企业、个人等社会各方面对全球气候变暖问题的认识水平,积极应对气候变化,不断提升气候、生态、环境保护的层次和水平都有着重要意义;既是全面落实科学发展观,建立社会主义和谐社会的必然要求和重要内容,也是中国政府、公众和科学界的共同愿望。

四、我国开征二氧化碳税应注意的问题

(一)依据国情设计二氧化碳税

从我国现阶段的国情来看,环境税的税种设计要反映当前环境问题的主要矛盾。具体讲,就是要有利于促进“十一五”规划确定的单位国内生产总值能源消耗降低20%目标的实现。目前我国环保措施主要是以收取各项费用为主,征税为辅,并且这些少量的税收措施还是零散地存在于资源税、消费税、增值税等有关规定中,很难发挥遏制并减少环境污染的合力作用。

相关研究表明,虽然开征二氧化碳税能够显著降低我国温室气体排放量,但是也会对我国经济产生较大负面影响。因此,考虑到我国国情的制约,目前还未开征二氧化碳税。中国幅员辽阔,区域发展水平悬殊,考虑到社会公平问题和落后地区的发展问题以及税收对经济结构的影响,就需要谨慎设计开征二氧化碳税,以照顾不同地区和不同行业之间的分配问题。

二氧化碳税这一新税种的设立,与众多企业的税收负担直接联系在一起。因此我们在研究设计二氧化碳税时必须在不同地区实行差别税率,且初始税率应设置得较低,以使企业能尽快适应这一新税种。根据国际经验,二氧化碳税的征税对象应定位为化石燃料(主要包括煤炭、石油、天然气等),其税收收入应纳入一般财政收入。而且二氧化碳税收入应实行专款专用,利用税收收入进行绿色清洁能源开发与研究,降低我国温室气体排放量。

(二)完善税收优惠减免政策

国外的经验证明,通过政策改变市场的基础,政府政策的积极作用可以促使节能减排的实现更具成本效益。OECD国家环境税种多样,税率也较高,本应该取得较多的财政收入,但是事实却恰恰相反,原因就是这些国家为了保证其工业产品和服务在国际市场上的竞争力,在实施严苛的环境税的同时,也施行了比较宽松的环境税费减免与返还措施。除此之外,不加重微观经济主体税负的理念,也是OECD国家在实行环境税过程中所奉行的。尤其值得我们借鉴的是,其在开征新的环境税的同时,降低企业的其他税收负担(如所得税负担)。

我国政府应对一些关键行业实行税收优惠或者同时降低其其他税收税负水平,适量增加国家财政补贴,以免对我国经济发展造成负面影响。通过对税收实行减免的政策优惠,使企业、个人等经济主体有意识地开发、保护和有效利用环境资源,并推动整个社会的科技进步,促进社会环境的改善和资源的有效利用。对企业发展低碳能源和可再生能源给与更多的税收优惠,特别是对企业采取措施减少二氧化碳等温室气体排放的行为加大税收优惠力度。

(三)加强宣传力度,建立公众基础

虽然税收的征收主体是代表国家的各级税务机关,具有强制性、稳定性和制度成本节约优势,但是民间的公众呼声也是不容忽视的。任何改革都需要调动各级政府和群众的积极性,二氧化碳税的开征也不例外。因此,在二氧化碳税推出的前期阶段,除了通过在税务部门和环保部门建立完善的协调机制,以及对相关企业实施税收优惠,确保二氧化碳税顺利地推出与征收之外,还必须通过各类媒体向社会公众宣传开征二氧化碳税的必要性与重要性,以获得广大群众的支持和广泛的社会效应。

我们必须通过积极广泛的宣传,让公众明确二氧化碳税的立税目标是改善环境质量,而不是税收的增长。征收二氧化碳税的根本在于把环境污染和生态破坏的外部成本内化到生产成本和产品价格中,通过市场机制优化配置环境资源。通过调整税收和外汇政策、货币发行等综合配套措施,将外在的企业成本适当分解,让社会承担的成本转为由企业自身承担,加强宏观调控。

(四)引进先进技术,提高污染源监测水平

中国能源生产和利用技术落后是造成能源效率较低和温室气体排放强度较高的一个主要原因。开征二氧化碳税也涉及到污染源的监测技术与人力资源问题。

企业二氧化碳排放量的监测需要大量的专业技术人员和先进的监测设施。《中国应对气候变化国家方案》显示,在气候变化观测、监测技术上中国仍需要国际社会的技术帮助。在污染源监测方面的主要技术需求包括:大气、海洋和陆地生态系统观测技术,气象、海洋和资源卫星技术,气候变化监测与检测技术,以及气候系统的模拟和计算技术等,其中各种先进的观测设备制造技术、高分辨率和高精度卫星技术等都是中国在气候系统观测体系建设方面所急需的,是该领域技术合作需求的重点。中国政府应及时获得上述技术与能够运用该技术的专业人才,并在污染排放企业进行推广,这将有助于对二氧化碳的排放形成有效的监测,从而在我国有效实施二氧化碳税制。新晨

(五)加强第三部门的政策推进作用

第三部门指的是介于政府部门与企业部门之间或之外的社会部门,它是除政府机构和营利机构以外的社会组织,它与政府部门以及企业部门共同构成现代社会的三大支柱。第三部门能够帮助政府唤醒公众的环保意识并与其良好互动,潜移默化地改变企业和个人对节能减排的态度,从而推进二氧化碳税的实施。

二氧化碳的排放主要来源篇(8)

林业是减排二氧化碳的重要手段。部分研究认为,林业减排是减排二氧化碳的重要手段。首先,通过抑制毁林、森林退化可以减少碳排放;其次,通过林产品替代其他原材料以及化石能源,可以减少生产其他原材料过程中产生的二氧化碳,可以减少燃烧化石能源过程中释放的二氧化碳[2]。

1.1毁林、森林退化与碳排放近年来,大部分的毁林活动都是由人类直接引发的,大片的林地转变成非林地,主要活动包括大面积商业采伐以及扩建居住区、农用地开垦、发展牧业、砍伐森林开采矿藏、修建水坝、道路、水库等[3]。在毁林过程中,部分木材被加工成了木制品,由于部分木制品是长期使用的,因此,可以长期保持碳贮存,但是,原本的森林中贮存了大量的森林生物量,由于毁林,这些森林生物量中的碳迅速的排放到大气中,另外,森林土壤中含有大量的土壤有机碳,毁林引起的土地利用变化也引起了这部分碳的大量释放。因此,毁林是二氧化碳排放的重要源头。毁林已经成为能源部门之后的第二大来源,根据IPCC的估计,从19世纪中期到20世纪初,全世界由于毁林引起的碳排放一直在增加,19世纪中期,碳排放是年均3亿t,在20世纪50年代初是年均10亿t,本世纪初,则是年均23亿t,大概占全球温室气体源排放总量的17%。因此,IPCC认为,减少毁林是短期内减排二氧化碳的重要手段。

1.2林木产品、林木生物质能源与碳减排①大部分研究认为,应将林产品碳储量纳入国家温室气体清单报告,主要理由是林产品是一个碳库,伐后林产品是其中一个重要构成部分[4]。通过以下手段,可以减缓林产品中贮存的碳向大气中排放:大量使用林产品,提高木材利用率,扩大林产品碳储量,延长木质林产品使用寿命等。另外,也可以采用其他有效的手段来减缓碳的排放,降低林产品的碳排放速率,如合理填埋处置废弃木产品等方式,这样,甚至可以让部分废弃木产品实现长期固碳。在森林生态系统和大气之间的碳平衡方面,林产品的异地储碳发挥了很大的作用。②贾治邦认为,大量使用工业产品产生了大量的碳排放,如果用林业产品代替工业产品,如减少能源密集型材料的使用,大量使用的耐用木质林产品就可以减少碳排放。秦建华等也从碳循环的角度分析了林产品固碳的重要性,林产品减少了因生产钢材等原材料所产生的二氧化碳排放,又延长了本身所固定的二氧化碳[5]。③以林产品替代化石能源,也可以减少因化石能源的燃烧产生的二氧化碳排放。例如,木材可以作为燃料,木材加工和森林采伐过程中也会有很多的木质剩余物,这些都可以收集起来用以替代化石燃料,从而减少碳的排放;另外,林木生物质能源也可以替代化石燃料,减少碳的排放。根据IPCC的预计,2000—2050年,全球用生物质能源代替的化石能源可达20~73GtC[6]。相震认为,虽然通过分解作用,部分林产品中所含的碳最终重新排放到大气中,但因为林业资源可以再生,在再生过程中,可以吸收二氧化碳,而生产工业产品时,由于需要燃烧化石燃料,由此排放大量的二氧化碳,所以,使用林产品最终降低了工业产品在生产过程中,石化燃料燃烧产生的净碳排放[7]。林产品通过以下两个方面降低碳排放量:一是异地碳储燃料,二是碳替代。这两方面可以保持、增加林产品碳贮存并可以长期固定二氧化碳,因此,起到了间接减排二氧化碳的作用。

从以上分析可知,林业是碳源,因此在直接减排上将起到重大作用;林业可以起到碳贮存与碳替代的作用,可以间接减排二氧化碳。因此,林业是减排二氧化碳的重要手段。有些研究认为林业在直接减排二氧化碳方面的作用不大。这是基于较长的时间跨度来考察的,认为林业并不是二氧化碳减排的最重要手段,工业减排是发展低碳经济的长久之计;但是从短时间尺度来考察,又由于CDM项目的实施,林业是目前中国碳减排的一个重要的不可或缺的手段。

2森林碳汇在发展低碳经济中发挥的作用巨大

绝大部分的研究认为,林业是增加碳汇的主要手段。谢高地认为,中国的国民经济体系和人类生活水平都是以大量化石能源消耗和大量二氧化碳排放为基础。虽然不同地区、不同行业单位GDP碳排放量有所差别,但都必须依赖碳排放以求发展。这种依赖是长期发展形成的,是不可避免的,我国现有的技术体系还没有突破性的进展,在这之前要突破这种高度依赖性非常困难,实行减排政策势必会影响现有经济体系的正常运行,降低人们的生活水平,也会产生相应的经济发展成本[8]。谢本山也认为,中国还处于城镇化和工业发展的阶段,需要大量的资金和先进的技术才能使这种以化石能源为主要能源的局面有所改变,而且需要很长的周期,目前的条件下,想要实现总体低碳仍然存在较大的困难。与工业减排相比,通过林业固碳,成本低、投资少、综合收益大,在经济上更具有可行性,在现实上也更具备选择性[9]。从碳循环的角度上讲,陶波,葛全胜,李克让,邵雪梅等认为,地球上主要有大气碳库、海洋碳库、陆地生态系统碳库和岩石圈碳库四大碳库,其中,在研究碳循环时,可以将岩石圈碳库当做静止不动的,主要原因是,尽管岩石圈碳库是最大的碳库,但碳在其中周转一次需要百万年以上,周转时间极长。海洋碳库的周转周期也比较长,平均为千年尺度,是除岩石碳库以外最大的碳库,因此二者对于大气碳库的影响都比较小。陆地生态系统碳库主要由植被和土壤两个分碳库组成,内部组成很复杂,是受人类活动影响最大的碳库[10]。从全球不同植被类型的碳蓄积情况来看,森林地区是陆地生态系统的碳蓄积的主要发生地。森林生态系统在碳循环过程中起着十分重要的作用,森林生态系统蓄积了陆地大概80%的碳,森林土地也贮藏了大概40%的碳,由此可见,林业是增加碳汇的主要手段。聂道平等在《全球碳循环与森林关系的研究》中指明,在自然状态下,森林通过光合作用吸收二氧化碳,固定于林木生物量中,同时以根生物量和枯落物碎屑形式补充土壤的碳量[11]。在同化二氧化碳的同时,通过林木呼吸和枯落物分解,又将二氧化碳排放到大气中,同时,由于木质部分也会在一定的时间后腐烂或被烧掉,因此,其中固定的碳最终也会以二氧化碳的形式回到大气中。所以,从很长的时间尺度(约100年)来看,森林对大气二氧化碳浓度变化的作用,其影响是很小的。但是由于单位森林面积中的碳储量很大,林下土壤中的碳储量更大,所以从短时间尺度来看,主要是由人类干扰产生的森林变化就有可能引起大气二氧化碳浓度大的波动。根据国家发改委2007年的估算,从1980—2005年,中国造林活动累计净吸收二氧化碳30.6亿t,森林管理累计净吸收二氧化碳16.2亿t。李育材研究表明,2004年中国森林净吸收二氧化碳约5亿t,相当于当年工业排放的二氧化碳量的8%。还有方精云等专家认为,在1981—2000年间,中国的陆地植被主要以森林为主体,森林碳汇大约抵消了中国同期工业二氧化碳排放量的14.6%~16.1%。由此可见,林业在吸收二氧化碳方面具有举足轻重的作用。

二氧化碳的排放主要来源篇(9)

由于人类活动和自然变化的共同影响,全球气候正经历一场以变暖为主要特征的显著变化。人类活动通过改变地球大气层中温室气体、气溶胶(气体中的悬浮微粒,如烟、雾等)以及阴暗度来引起气候变化。其中,产生最大影响的活动是化石燃料燃烧,关键温室气体二氧化碳(CO2)就是通过这一途径被释放到大气中。这些气体聚积在大气中,引起大气浓度的与时俱增,进而导致全球气候变暖。国际社会和科学界已对全球变暖高度关注,采取各项措施应对这一趋势。

经济与合作发展组织(OECD)1972年就提出了“污染者付费”(PolluterPaysPrinciple,PPP)原则,从而引发了世界税制绿化浪潮,并为包括二氧化碳税在内的绿色税制的实施确立了基础。20世纪70年代以来。OECD成员国以及欧洲多国纷纷推行二氧化碳税政策,并结合已有税制的结构调整,取得了十分明显的延缓全球变暖与保护环境的环境效果。1992年6月通过的联合国《里约环境与发展宣言》也要求名国政府加强财政以及经济政策的补充性作用,把环境费用纳入生产者和消费者的决策过程。

除了以环境为出发点外,绿色税制的运用,更对国家经济与民生有整体的影响。因此,在税制绿化改革的背景下,二氧化碳税的运用正获得越来越多的支持,这也反映了国际环境经济手段和税收结构的最新发展。

(二)二氧化碳税的概念与特性

二氧化碳税最早由英国经济学家阿瑟·皮苟(ArthurCecilPious)在《福利经济学》一书中提出。二氧化碳税可以通过对燃煤和石油等化石燃料产品的含碳量进行征税来实现减少化石燃料消耗和二氧化碳这一主要温室气体的排放。二氧化碳税是与全球气候变化紧密联系在一起的,其特性可以归纳为以下四点:(1)二氧化碳税的实质是为了保护全球温度这一公共产品,而对二氧化碳这一温室气体所开征的一项税负,目的是使排放二氧化碳的生产过程和消费所产生的外部成本内部化。(2)二氧化碳税是一种间接税,是在生产或者消费的过程中征收的。而且二氧化碳税具有固定税率,对国民经济发展的副作用相对较小。(3)二氧化碳税是一种调节税。随着越来越多的国家完成工业化进程,可供给的廉价燃料也在逐步减少。环境税制相对成熟的发达国家都将二氧化碳税作为一种调节税,因为二氧化碳税能够发挥激励作用,促进节能,促使风能、太阳能、地热能等可再生能源的使用。(4)二氧化碳税影响广泛而深远。征收二氧化碳税涉及社会经济和人民生活诸多方面,影响远比一般特许权税(如烟草专卖税)更加广泛深远。实施国在征收过程中,不仅要考虑经济效率、环境效果,还要考虑到社会效益、国际竞争力等问题,从而根据商品的收入弹性、收入替代效应,慎重选择征税品种和税率。

二、瑞典二氧化碳税制实证分析

(一)瑞典二氧化碳税制简介

瑞典与其北欧邻国一起,是欧盟第一批在环境保护领域发展和实施经济手段的国家,在环境保护中广泛运用了环境税、费和其它众多的经济手段。根据OECD2004年对其成员国做出的评估,瑞典实行了约70项以市场为基础的手段,是在环境保护方面运用最多经济手段的国家。

瑞典于1991年开征二氧化碳税,征税范围是所有种类的燃料油,该税是对现行能源税的补充。开征二氧化碳税的同时,能源税率降低了50%。从那之后,能源税体系几经变革,但是不变的是对于工业和电力产品的税率一直低于其它部门。目前,工业消费者不支付能源税,二氧化碳税也只需支付一半。电力产品不需要交纳任何能源税和二氧化碳税。瑞典目前二氧化碳税率为0.36瑞典克朗/千克CO2(合150美元/吨CO2)。征收二氧化碳税最显著的效果是有机物在瑞典直接供暖系统中的大量应用,如今瑞典约50%的供暖系统利用生物燃料等作为热能供给,而不再是用煤炭和石油来提供热能。

瑞典能源税体系于1991年进行了改革。改革后的能源税体系以二氧化碳税和对燃料征收的能源税为基础,而且对燃料征收的能源税不与燃料的含碳成分挂钩。开征二氧化碳税的同时,一般能源税率下降了50%。为了避免对瑞典工业的国际竞争力产生影响,工业部门的税率低于私人家庭,对于一些能源密集型产业进一步给予减免。目前瑞典对于化石燃料,尤其是对汽油征收的二氧化碳税非常高。见图1。

(二)瑞典征收二氧化碳税对温室气体的减排效果

根据德国著名环境组织Germanwach的统计资料表明,瑞典于2006年和2007年两次荣登“拯救地球国家名单”榜首,成为世界各国应对全球气候变暖行动中最有成效的国家。

2007年9月,瑞典政府的统计表明将近90%的减排效果归功于税收体系改革。瑞典环境部部长An—dreasAlgren称,如果没有征收二氧化碳税,国内的排放量将比现在高出20%。因为二氧化碳税的征收使得污染的成本升高,从而使全国都开始关注环保能源的开发与利用。因此,征收二氧化碳税是减排最有效的途径,而且基本不会影响到良好的经济增长势头。在1990~2006年间,瑞典的二氧化碳排放量减少了9%,远远超过了《京都议定书》所规定的发达国家减排目标。与此同时,瑞典的经济保持了44%的固定价格增长。

三、我国开征二氧化碳税的必要性

(一)开征二氧化碳税是国际大势所趋

根据联合国政府间气候变化专门委员会(IPCC)在其第四次评估报告的结论,近50年的全球气候变暖主要是由人类活动大量排放的二氧化碳、甲烷(CH4)等温室气体的增温效应造成的。如今二氧化碳减排已经成为一种国际趋势。

到2007年底,国际社会已经制定了雄心勃勃的温室气体减排计划。一个总的共识是“80—20”原则,即在20年内力争把以二氧化碳为首的温室气体排放量降低80%。继欧盟成员国成功运用税收手段抑制二氧化碳排放量之后,加拿大、澳大利亚、日本等发达国家也纷纷响应应对全球变暖的号召,开始酝酿制定二氧化碳税制。气候变化已经成为主要的国际性议程,迅速和积极地减排将降低调整环境适应的代价。

但要达到“80-20”目标,以中国为首的发展中大国也肩负着巨大的减排压力。在2007年国际能源机构(IEA)的最新《全球能源展望》中,预测2030年世界能源需求将增长50%,其中40%是由中国和印度拉动的。联合国秘书长潘基文也在联合国气候变化会议上特别强调,在气候变化的情况下,未来20年预期的经济发展和增长的能源需求,特别需要发展中国家采取紧急行动以减缓气候变化的趋势。

(二)开征二氧化碳税是国家政策所向

近百年内中国年平均气温升高了0.5~0.8℃,已经略高于同期全球增温的平均值。从1986~2007年,中国已经连续经历了22个全国性暖冬。中国气象局局长郑国光也指出,适应和减缓气候变化是中国适应全球变暖的当务之急。

2006年,中国政府的“十一五”规划确立了节能减排工作的硬性指标:到2010年主要污染物排放总量减少10%。2007年5月国务院颁布的《中国应对气候变化国家方案》中,我国政府承诺将控制温室气体排放,确保实现2010年单位国内生产总值能耗比2005年降低20%左右这一约束性目标。2007年6月国务院颁布的《节能减排综合性工作方案》中,明确要制定和完善鼓励节能减排的税收政策,研究开征包括二氧化碳税在内的环境税。2007年11月,由财政部科研所孙钢研究员和许文博士完成的研究报告中提出的三种环境税可选方案中指出,二氧化碳税可以作为一种污染物排放税在中国适时开征。”在环境规划院课题组提出的独立环境税实施方案中,可供选择的税种包括:重要资源税、汽车污染税、能源消费税、二氧化硫税、二氧化碳税和废水排放税。2008年11月5日,由环保部中国环境文化促进会和中国发展战略学研究会社会战略专业委员会,中科院首席科学家牛文元教授牵头组织撰写的《中国碳平衡交易框架研究》报告,建议积极运用政策手段开征碳税,促使企业减少二氧化碳排放。

显然,随着中国政府节能减排的政策措施的落实和环境税制改革的推进,为了实现可持续发展的长久国策,需要开征二氧化碳税这一新税种来完善税收制度的环保功能,提高污染环境行为的税收负担。这也是树立我国作为发展中大国的环境保护立场和建设和谐世界的外交政策主张的一个契机。

(三)开征二氧化碳税有助于优化我国能源消费结构

众所周知,中国的一次能源结构以煤为主。由此可见,我国二氧化碳排放量高是由我国的能源结构特征决定的。

由于煤炭消费比重较大,就造成了我国能源消费的二氧化碳排放强度也相对较高。根据世界银行年刊《2007绿色年鉴》中对1980~2004年世界主要温室气体排放国化石燃料所排放的二氧化碳量的统计数据,2004年中国温室气体排放总量约为61亿吨二氧化碳当量,其中二氧化碳排放量约为50.7亿吨。2007年中国二氧化碳排放量已占世界总量的16%,仅次于美国。(见图2)

现阶段,我国燃油的需求价格弹性处于较高水平,及时研究设计开征碳税将十分有利于促进我国能源消费结构的转变,从而避免进一步依赖于煤炭这样的化石燃料消费。海外经验表明,二氧化碳税的开征可以有效优化能源消费结构。瑞典自1991年开征二氧化碳税之后,由于二氧化碳税的征收导致燃料油和生物燃料的价格产生差异,国家的区域供热部门和许多企业为了追求生产成本最小化,对生物燃料的应用大为增加。在1991~1995年间,生物燃料在瑞典区域供暖系统中所占的比重从25%增长到了42%。目前,生物燃料、泥炭等提供了瑞典区域供热体系中能源供应的50%以上。

因此,中国如果能够及时开征二氧化碳税,必将有利于促进我国能源消费结构的转变,逐步淘汰落后的高能耗产业和技术,避免社会经济滑向不可持续的深渊。

(四)开征二氧化碳税有利于经济社会的发展

二氧化碳税是一种间接税,具有固定的税率而且不会改变分配结构,对经济发展的负面作用相对较小。这一点在国际上已经得到了广泛的认可。而且,一个国家或者地区在确定排放限额以及减排目标的情况下,在国家或者区域的层面实施碳税具有相当的优越性。如果中国开征二氧化碳税,这部分税收收入还将为我国财政收入做出巨大贡献。

全球气候变暖对中国来说远远超出了一般意义上的气候问题和环境问题,对我国经济社会发展已经带来十分严峻的挑战,在我国开征二氧化碳税已显得尤为紧迫。开征二氧化碳税对于在全社会增强节能减排意识,提高企业、个人等社会各方面对全球气候变暖问题的认识水平,积极应对气候变化,不断提升气候、生态、环境保护的层次和水平都有着重要意义;既是全面落实科学发展观,建立社会主义和谐社会的必然要求和重要内容,也是中国政府、公众和科学界的共同愿望。

四、我国开征二氧化碳税应注意的问题

(一)依据国情设计二氧化碳税

从我国现阶段的国情来看,环境税的税种设计要反映当前环境问题的主要矛盾。具体讲,就是要有利于促进“十一五”规划确定的单位国内生产总值能源消耗降低20%目标的实现。目前我国环保措施主要是以收取各项费用为主,征税为辅,并且这些少量的税收措施还是零散地存在于资源税、消费税、增值税等有关规定中,很难发挥遏制并减少环境污染的合力作用。

相关研究表明,虽然开征二氧化碳税能够显著降低我国温室气体排放量,但是也会对我国经济产生较大负面影响。因此,考虑到我国国情的制约,目前还未开征二氧化碳税。中国幅员辽阔,区域发展水平悬殊,考虑到社会公平问题和落后地区的发展问题以及税收对经济结构的影响,就需要谨慎设计开征二氧化碳税,以照顾不同地区和不同行业之间的分配问题。

二氧化碳税这一新税种的设立,与众多企业的税收负担直接联系在一起。因此我们在研究设计二氧化碳税时必须在不同地区实行差别税率,且初始税率应设置得较低,以使企业能尽快适应这一新税种。根据国际经验,二氧化碳税的征税对象应定位为化石燃料(主要包括煤炭、石油、天然气等),其税收收入应纳入一般财政收入。而且二氧化碳税收入应实行专款专用,利用税收收入进行绿色清洁能源开发与研究,降低我国温室气体排放量。

(二)完善税收优惠减免政策

国外的经验证明,通过政策改变市场的基础,政府政策的积极作用可以促使节能减排的实现更具成本效益。OECD国家环境税种多样,税率也较高,本应该取得较多的财政收入,但是事实却恰恰相反,原因就是这些国家为了保证其工业产品和服务在国际市场上的竞争力,在实施严苛的环境税的同时,也施行了比较宽松的环境税费减免与返还措施。除此之外,不加重微观经济主体税负的理念,也是OECD国家在实行环境税过程中所奉行的。尤其值得我们借鉴的是,其在开征新的环境税的同时,降低企业的其他税收负担(如所得税负担)。

我国政府应对一些关键行业实行税收优惠或者同时降低其其他税收税负水平,适量增加国家财政补贴,以免对我国经济发展造成负面影响。通过对税收实行减免的政策优惠,使企业、个人等经济主体有意识地开发、保护和有效利用环境资源,并推动整个社会的科技进步,促进社会环境的改善和资源的有效利用。对企业发展低碳能源和可再生能源给与更多的税收优惠,特别是对企业采取措施减少二氧化碳等温室气体排放的行为加大税收优惠力度。

(三)加强宣传力度,建立公众基础

虽然税收的征收主体是代表国家的各级税务机关,具有强制性、稳定性和制度成本节约优势,但是民间的公众呼声也是不容忽视的。任何改革都需要调动各级政府和群众的积极性,二氧化碳税的开征也不例外。因此,在二氧化碳税推出的前期阶段,除了通过在税务部门和环保部门建立完善的协调机制,以及对相关企业实施税收优惠,确保二氧化碳税顺利地推出与征收之外,还必须通过各类媒体向社会公众宣传开征二氧化碳税的必要性与重要性,以获得广大群众的支持和广泛的社会效应。

我们必须通过积极广泛的宣传,让公众明确二氧化碳税的立税目标是改善环境质量,而不是税收的增长。征收二氧化碳税的根本在于把环境污染和生态破坏的外部成本内化到生产成本和产品价格中,通过市场机制优化配置环境资源。通过调整税收和外汇政策、货币发行等综合配套措施,将外在的企业成本适当分解,让社会承担的成本转为由企业自身承担,加强宏观调控。

(四)引进先进技术,提高污染源监测水平

中国能源生产和利用技术落后是造成能源效率较低和温室气体排放强度较高的一个主要原因。开征二氧化碳税也涉及到污染源的监测技术与人力资源问题。

企业二氧化碳排放量的监测需要大量的专业技术人员和先进的监测设施。《中国应对气候变化国家方案》显示,在气候变化观测、监测技术上中国仍需要国际社会的技术帮助。在污染源监测方面的主要技术需求包括:大气、海洋和陆地生态系统观测技术,气象、海洋和资源卫星技术,气候变化监测与检测技术,以及气候系统的模拟和计算技术等,其中各种先进的观测设备制造技术、高分辨率和高精度卫星技术等都是中国在气候系统观测体系建设方面所急需的,是该领域技术合作需求的重点。中国政府应及时获得上述技术与能够运用该技术的专业人才,并在污染排放企业进行推广,这将有助于对二氧化碳的排放形成有效的监测,从而在我国有效实施二氧化碳税制。

(五)加强第三部门的政策推进作用

第三部门指的是介于政府部门与企业部门之间或之外的社会部门,它是除政府机构和营利机构以外的社会组织,它与政府部门以及企业部门共同构成现代社会的三大支柱。第三部门能够帮助政府唤醒公众的环保意识并与其良好互动,潜移默化地改变企业和个人对节能减排的态度,从而推进二氧化碳税的实施。

从发达国家的经验来看,政府对二氧化碳税的开征与节能减排政策的有效实施都离不开第三部门的积极协助。在美国,诸如Pew研究中心、美国环保协会等非政府组织,能够为政府提供关键的知识以及完成政策目标的手段。与口碑良好的非政府组织合作还能提升政府形象,形成良好的公众舆论,也有利于二氧化碳税的开征。如美国的著名经济学家CharlesKomanoff和DanRosenblum律师共同倡议成立的美国碳税中心(CarbonTaxCenter,CTC),就是一个专门为各级地方政府提供减排智囊服务和倡导碳税开征的非政府组织。

第三部门与企业的合作更能促进节能减排目标的实现。例如,Cinergy公司在首次制定基准排放指标时,就得到了美国环保协会的协助。该协会重新审查了Cinergy公司对排放的定义,批准了衡量温室气体减排量的方法,评估了该公司温室气体基金的落实情况。现在美国环保协会是Cinergy公司温室气体管理委员会的一名成员。

二氧化碳的排放主要来源篇(10)

[中图分类号]F207 [文献标识码]A [文章编号]1671-8372(2013)03-0084-04

一、引言

与同类城市相比,青岛的农村大、城市小,农民多、市民少,县域面积占全市总面积的90%,农业人口占全市总人口的60%。2011年青岛市的万元GDP能耗0.71吨标准煤,已居全国前列;一、二、三次产业结构的比重为4.6:47.6:47.8,能耗较高的工业比重依然大于当年的全国平均水平46.8%。因此,本文运用实证分析的方法,考量青岛市二氧化碳排放状况,分析驱动碳排放量增长的因素,及各个因素的影响程度。

目前我国对二氧化碳排放及其驱动因素的研究成果,大部分集中于某个区域或省份二氧化碳及驱动因素。李卫兵、陈思(2011)对中国中、东、西部三个经济带的碳排放驱动因素进行了分析,并通过区域对比研究发现,中部地区与东、西部在碳排放驱动因素的影响方向和影响程度上有很大的不同[1]。叶晓佳、孙敬水、董立峰(2011)测算了浙江省1996—2008年碳排放及各驱动因素对碳排量的贡献[2]。张超、任建兰(2012)利用1990—2009年的数据对山东省能源消费二氧化碳排放及驱动因素分析[3]。王兆君、李婷婷(2012)利用KAYA模型,分析了2001—2010年黑龙江国有林区碳排放量与人口数量、经济发展、单位能耗碳排放、单位GDP能源强度的关系,提出了减少林区碳排放的建议[4]。本文利用KAYA模型对青岛市二氧化碳排放及其驱动因素进行研究,以期为青岛市低碳经济发展政策的制定提供依据。

二、碳排放模型的构建及指标解释

(一)模型构建

KAYA模型是由日本学者Kaya Yoichi(1990)提出的,专门用于研究二氧化碳排放及其驱动因素,揭示二氧化碳排放量的推动力[5]。他认为一个国家或地区的碳排放量受到人口数量、人均GDP、单位GDP能源强度以及单位能耗碳排放量四个因素的影响,反映的是碳排放与人口数量、经济发展和能源利用的关系。利用KAYA模型,可对一个国家或地区碳排放量驱动因素分析,以找出降低碳排放的有效措施。模型的具体形式如下:

二氧化碳排放量=人口数量×人均GDP×单位GDP能源强度×单位能耗碳排放量 (1)

在KAYA模型原始表达式(1)的基础上,构建青岛市二氧化碳排放及驱动因素分析的模型:

其中,CO2为青岛市二氧化碳排放量,P为青岛市人口数量,GDP为青岛市生产总值,E为青岛市单位GDP能源强度,K为青岛市单位能耗二氧化碳排放量。

本文基于上述模型,测定青岛市2001—2010年二氧化碳排放量及变动趋势,分析各个驱动因素对碳排放总量的影响方向和影响程度。数据主要来源于2001—2011年《青岛市统计年鉴》、《山东省统计年鉴》。这10年正值国家“十五”计划(2001—2005)和“十一五”规划(2006—2010)的重要时期,也是青岛市经济快速发展时期。

(二)指标解释

1.人口数量

人口数量是影响碳排放的一个重要指标。在社会经济、技术条件不变的情况下,一般来讲人口数量增长对资源和能源的需求量就越大,碳排放量会增加。

2.人均GDP(GDP/P)

人均GDP是一个国家或地区,在核算期内(通常为一年)实现的生产总值与所属范围内的常住人口的比值,是衡量各国人民生活水平的一个标准。一般来讲,在高碳经济模式下,人均GDP越大,碳排放量越多;而在低碳经济模式下,人均GDP的增长可能不会带来碳排量的增加,低碳或无碳能源和低碳产业是推动经济的主要力量。

3.单位GDP能源强度(E)

单位GDP能源强度是指每单位GDP消耗能源的数量。单位GDP能耗越大,说明经济发展对能源的依赖程度越强,它是衡量能源经济效率的重要指标。

4.单位能耗碳排放量(K)

单位能耗碳排放量是指每消耗一单位的能源排放的二氧化碳量,是衡量碳能源结构的一项重要指标。由于热值和燃烧效率有所差异,不同的能源产生的二氧化碳排放量有很大的不同。单位能耗碳排放量的计算模型如下:

其中,Ui表示第i种能源消耗量,i表示第i种能源的碳排放系数,n表示能源的种类。参照2001—2010年的山东省能源消费结构,根据《2006年IPCC国家温室气体清单指南》的不同能源二氧化碳排放系数,计算得到各年的二氧化碳排放总量及单位能耗二氧化碳排放量。

三、青岛市碳排放计算结果及分析

(一)模型计算结果

为了保证数据的前后可比性,本文以2000年为基期,用GDP平减指数对GDP数据进行处理。在完成模型构建和原始数据收集汇总工作以后,利用Excel对数据进行处理、计算和分析。

根据模型(2)得到青岛市2001—2010年二氧化碳排放总量和增长速度(见表1)。可见,青岛市二氧化碳排放的增长速度总体上呈降低趋势,10年间的平均增长速度为7.16%,排放总量缓慢增加。

(二)结果分析

1.二氧化碳排放规模与速度分析

由表1可知,青岛市二氧化碳排放总量呈上升趋势,期间年平均增长速度为7.16%。从发展轨迹上来看,青岛市二氧化碳排放大致经历了三轮的螺旋式攀升阶段:2001—2004年环比增长速度较高,2005—2006年增长速度有所减缓,2007—2010年增长速度进一步放缓。2001—2004年正处在国家第十个五年计划的发展时期,经济发展进入了新一轮的快速增长,这一时期青岛市GDP(可比价)平均增长速度维持在14%左右的高水平上,能耗水平较高的工业比重在47%~51%之间,工业经济的增长速度在17%~24%之间,此阶段人们对高碳排放的认识不足,单位GDP碳排放水平较高,这种高能耗的产业结构和落后的耗能设备技术,是二氧化碳排放快速增长的主要原因。2005—2006年,工业经济比重依旧在51%~52.4%的高水平上,但增长的速度明显放慢,增速在20%左右。2007—2010年青岛市的产业结构调整速度加快,能耗高的工业比重由2006年的52%,降低到2010年的48.7%,工业的增长速度进一步放慢,在15%上下波动。“十一五”规划中国家节能减排的政策力度不断加强,青岛市在发展经济的同时,加强产业结构调整,加大节能减排力度,使碳排放增长速度趋于平缓。

2.碳生产力分析

碳生产力是衡量碳排放效率的重要指标,指一段时期内每单位二氧化碳排放创造了多少GDP,反映了单位碳排放所产生的经济效率,因为涵盖了“低碳”和“经济发展”两大目标,所以它成为衡量低碳经济发展水平的一个最具代表性的指标。碳生产力的提高意味着单位物质能源消耗创造了更多的社会财富,碳生产力的增长率也常被用于衡量一个国家或区域在降低二氧化碳排放量、应对气候变化方面所取得的成效。根据原始数据,计算2001—2010年青岛市、山东省碳生产力及增长情况(见表2,图1)。

由表2、图1可见,2001—2010年青岛市碳生产力在循环波动中不断提高,2001—2010年碳生产力增加总量1.28万元/吨,年均增长速度约为7.57%,其中,2004年、2007年、2010年的增长速度最快。碳生产力的发展趋势大致经历了两个阶段:第一阶段(2001—2003年),青岛市碳生产力缓慢提高,增速在2.2%~3.5%,即每吨碳排放产生的经济效益增加额为246.66万元;第二阶段(2004—2010年),青岛市碳生产力增速不断提高,增速最低的2009年也达到4.18%。从总体趋势来看,10年间青岛市碳生产力不断提高,意味着碳排放效率不断增强。

与山东省总体水平比较,不管是碳生产力还是其增长速度,青岛市的水平高于全省平均水平,主要是因为青岛市的产业结构优于全省的产业结构。2010年山东省工业比重为48.2%,其中重工业比重高达67.61%,青岛市工业比重为48.7%,其中重工业比重为61%。同时,青岛市在节能减排、生态城市建设等方面的成绩比较突出。

3.碳排放驱动因素分析

根据因素分析法计算可得,人口数量、人均GDP、单位GDP能源强度以及单位能耗二氧化碳排放量对青岛市二氧化碳排量的影响方向和影响程度(见表3,图2)。

由表3、图2数据,可以对人口数量、人均GDP、单位GDP能源强度以及单位能耗碳排放量四个因素做以下分析:

(1)人口效应。人口数量对青岛市碳排放量基本产生正向影响,影响程度总体来看相对较小,2003—2006年相对显著。从原始数据来看,主要是青岛市10年间人口总数波动不大,不会造成碳排放量的显著变化。

(2)经济发展效应。人均GDP的变化对碳排放量产生重要的正向影响,在四个影响因子中,人均GDP的影响程度最大。其历年对碳排放量的影响无论是在数量上还是从比重上都是最大的,且每年影响程度除2003年、2004年为87.85%、97.77%外,多数年份的影响比重均在116%以上,2008年达到顶峰值246.31%。10年经济发展共产生了增量二氧化碳4508.16万吨,占10年二氧化碳增量总量的近146%,这主要是由青岛市目前发展的高碳产业结构导致的。据相关研究,第三产业的二氧化碳排放强度远低于第二产业,而在第二产业中,先进制造业的二氧化碳排放强度也远低于以电力、石油加工为代表的传统能源加工转换部门以及以钢铁、化工为代表的能源密集型工业部门。因此,青岛市在未来经济发展中,应通过不同层面的结构调整,进一步降低二氧化碳的排放强度,实现低碳发展。

(3)单位GDP能源强度效应。该指标对青岛市碳排放产生了显著的负向影响,单位GDP能源强度的降低对抑制碳排放量有着重要意义。从GDP结构上来看,2001—2010年第二产业在青岛市GDP中的比重大致在47%—52%之间波动,2004—2008年都在50%以上,高碳经济的特征明显。因此,青岛市如何优化经济结构,加快低碳和零碳能源的开发利用,加快高能耗设备的技术改造,直接影响到青岛市低碳城市和蓝色经济发展目标的实现。

(4)单位能耗碳排放效应。该指标对青岛市碳排放有正向作用,但影响程度不大,只有少数年份出现负影响。这主要是受当年的能源结构变化的影响,从青岛市2001—2010年的一次能源消费结构来看,原煤和原油的消耗量占近99%以上,天然气比重不到1%。这种能源结构不仅会增加碳排放还会制约经济发展。因此,如何优化能源结构,发展和利用新能源成为青岛市发展低碳经济的关键。

四、研究结论与建议

本文运用KAYA模型,对青岛市碳排放及其驱动因素进行了实证分析。实证结果显示,2001—2010年青岛市碳排放总量持续增加,碳生产力不断提高,以煤炭、石油为主的高碳经济发展模式仍然没有根本改观。四个影响因素中,人口数量、经济发展、单位能耗碳排放三个因素对青岛市碳排放量基本为正向影响,即如果当前经济发展模式不变,人口增长、人均GDP增长、单位能耗碳排放增长都会导致青岛市碳排放量的增加。单位GDP能源强度则主要为负向影响,体现出青岛市能源利用效率的提高,一定程度上减少了碳排放水平。从影响程度上看,经济发展和单位GDP能源强度是影响青岛市碳排放的主要因素,而人口数量和单位能耗碳排放对碳排放影响较低。从最终结果来看,总的正向驱动效应大于总的负向驱动效应,从而使青岛市碳排放量呈现不断上升的趋势。

青岛市的经济结构和能源消费结构是影响碳排放的主要因素。未来青岛市低碳经济的发展应依据长期的碳强度控制目标,制定低碳发展战略。以调整经济结构为突破点,改变目前的高碳发展模式;提高低碳技术创新能力和能源利用效率,优化能源消费结构,构建低碳能源体系;通过机制创新和相关政策体系的完善,营造良好的低碳经济发展环境,并逐步建立起“低碳交易市场”,在政府、企业、市场“三位一体”监管机制的约束下,实现低碳经济的发展目标。

[参考文献]

[1]李卫兵,陈思.我国东中西部二氧化碳排放的驱动因素研究[J].华中科技大学学报,2011(3):111-116.

二氧化碳的排放主要来源篇(11)

作者简介:杨晓军,男,博士,中南财经政法大学经济学院讲师(湖北 武汉 430073);陈浩,男,中南财经政法大学经济学院教授,博士生导师(湖北 武汉 430073)

中图分类号:F299.23 文献标识码:A 文章编号:1671-0169(2013)01-0032-06 收稿日期:2012-10-26

一、引 言

城镇化是农村人口转变为城镇人口、传统农业社会向工业社会转变的自然历史过程。新中国成立后,城镇化发展呈现稳步上升的趋势,据统计,1949年城镇化率为10.64%,2010年城镇化率为49.95%,年均增长率为2.56%,估计今后中国城镇化还将保持较快发展的趋势,以年均提高1个百分点左右的速度推进[1](P28-39)。城镇化发展与能源消费之间存在紧密的逻辑关系。城镇化快速增长阶段的能源消费特征是增长速度快和能源需求刚性。城镇化与工业化发展一般同步进行,工业化发展体现为高耗能产业的发展,因此城镇化发展会增加能源消费速度;与此同时,城镇化进程中会伴随大规模的基础设施建设,加剧对能源消费的刚性需求。从我国现有能源消费结构来看,主要是以煤炭为主,石油、天然气为辅,新能源与可再生能源的比例较低。2010年全国能源消费总量为32.49亿吨标准煤,其中,煤炭消费量占比为68%,石油消费量占比为19%,天然气占比为4.4%,其他新能源与可再生能源占比仅为8.6%。在能源尤其是化石能源消费过程中会伴随着大量二氧化碳(CO2)排放。因此,城镇化发展是驱动二氧化碳排放的重要因素。

考虑到经济增长与二氧化碳排放之间的关系,在研究城镇化对二氧化碳排放影响的同时也要考虑到经济增长对二氧化碳排放的影响,而环境库兹涅茨曲线是一个有效的工具。另外,STIRPAT模型也描述了经济增长和环境污染之间的关系。为此,在结合STIRPAT模型和简单环境库兹涅茨曲线基础上,参考现有研究成果,建立城镇化与二氧化碳排放的实证模型,利用1997―2009年的省级面板数据,研究中国城镇化对二氧化碳排放的影响效应。

二、文献综述

城镇化对能源消费和碳排放的冲击是非常明显的,特别是城镇化进程中的高耗能增长特征,是影响能源需求与二氧化碳排放的重要因素。Parikha等[2](P87-103)利用发展中国家面板数据实证分析城镇化对能源消费和二氧化碳排放具有显著影响。York等[3](P351-365)运用1996年146个国家数据研究发现城镇化与二氧化碳排放呈现非线性关系。Cole等[4](P5-21)利用1975―1998年全球86个国家数据分析人口因素对空气污染的影响,发现高城市化率会增加二氧化碳排放。Fan等[5](P377-395)利用1975―2000年面板数据分析发现高收入国家城镇化对二氧化碳排放贡献最大,依次是低收入和中等收入国家。York[6](P855-872)通过选取1960―2000年14个欧盟成员国数据分析发现城镇化对能源消费变动的贡献较大,进而产生更多的碳排放。Liddle等[7](P317-343)利用修改后的STIRPAT模型分析发现:发达国家城镇化与二氧化碳排放总体上呈现正相关。Poumanyvong等[8](P434-444)运用1975―2005年99个国家的面板数据和STIRPAT模型实证分析发现城市化对能源利用和二氧化碳排放的影响随着经济发展阶段呈现不同特征:在低收入国家城市化会减少能源利用,而在中高收入国家会增加能源利用;城市化对二氧化碳排放影响在所有收入水平国家上均显著,尤其是中等收入国家。Martínez-Zarzos等[9](P1344-1353)运用1975―2003年发展中国家数据分析城市化对二氧化碳排放效应,结果显示:城市化和二氧化碳排放呈现倒U型关系。

随着中国城镇化进程加快和二氧化碳排放的高速增长,也出现以中国为研究对象来研究城镇化对二氧化碳排放影响的相关文献。Wei等[10](P46-50)研究表明:中国城镇化率每增加1%将引起总能源需求增加1%和二氧化碳排放增加1.2%。孙慧宗等[11](P32-38)采用1978―2006年的相关统计数据对中国城市化与含碳能源消费发生的二氧化碳排放量进行协整分析,研究发现城市化与二氧化碳排放量之间存在着长期稳定的均衡关系。林伯强等[12](P66-78)引入城市化因素对Kaya恒等式做出适当修正以研究碳排放的影响因素,结果说明城市化的确对碳排放有重要影响,加入城市化变量可以更为准确地捕获这一特殊发展阶段对能源需求和碳排放的影响,以及城市化进程本身对碳排放的影响。许泱等[13](P1304-1309)根据1995―2008年我国30个省市的面板数据,采用STIRPAT模型分析城市化对碳排放的影响。结果显示:我国城市化的推进导致碳排放量的增加,碳排放增加速度高于城市化本身的增加速度,城市化进程会继续放大碳排放量的增加;地区的城市化水平基数越低,城市化进程对碳排放的影响也就越大;地区的城市化推进速度越快,城市化进程对碳排放的影响也就越大。肖周燕[14](P139-145)认为虽然1949―2007年城市化与二氧化碳排放并不存在长期均衡关系,但改革开放前后城市化和二氧化碳排放量都呈现出长期稳定的比例关系。

现有研究中关于二氧化碳排放指标多种多样,包括总量指标(CO2排放总量)、人均排放指标(人均CO2排放量)、排放强度指标(单位GDP的CO2排放量),这些指标均存在一定的不足之处,因此本文同时采用这三种指标来研究城镇化对中国二氧化碳排放的影响效应,确保获得更加稳健的研究结论。

[5] Fan,Y., L.C.Liu, G.Wu, et al.Analyzing impact factors of CO2 emissions using the STIRPAT model[J].Environmental Impact Assessment Review,2006, 26(4).

[6] York,R.Demographic trends and energy consumption in European Union Nations:1960―2025[J].Social Science Research,2007, 36(3).

[7] Liddle,B.,S.Lung.Age-structure, urbanization, and climate change in developed countries:Revisiting STIRPAT for disaggregated population and consumption-related environmental impacts[J].Population and Environment,2010, 31(5).

[8] Poumanyvong,P.,S. Kaneko.Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis[J].Ecological Economics,2010, 70(2).

[9] Martínez-Zarzoso,I.,A.Maruotti.The impact of urbanization on CO2 emissions:Evidence from developing countries[J].Ecological Economics,2011, 70(7).

[10]Wei,B.,H.Yagita,A.Inaba,et al.Urbanization impact on energy demand and CO2 emission in China[J].Journal of Chongqing University(English Edition), 2003,(2).

[11]孙慧宗,李久明.中国城市化与二氧化碳排放量的协整分析[J].人口学刊,2010,(5).

[12]林伯强,刘希颖.中国城市化阶段的碳排放:影响因素和减排策略[J].经济研究,2010,(8).

[13]许泱,周少甫.我国城市化与碳排放的实证研究[J].长江流域资源与环境,2011,(11).

[14]肖周燕.中国城市化发展阶段与CO2排放的关系研究[J].中国人口・资源与环境,2011,(12).

[15]Grossman,G.M ,A.B.Krueger.Environmental impacts of the North American Free Trade Agreement[Z].NBER working paper No.3914, 1991.

[16]孟昭利.企业能源审计方法(第2版)[M].北京:清华大学出版社,2002.