欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

碳排放论文大全11篇

时间:2022-03-09 02:40:11

碳排放论文

碳排放论文篇(1)

(二)二氧化碳脱钩弹性分解量化模型1.脱钩链式因果分解模型为解决Tapio指标缺乏对二氧化碳“脱钩”内在机理的深入分析和研究的缺陷,以便能为评价和制定准确、全面的低碳经济发展措施、政策及战略提供相应的理论依据。可以加入适当的中间媒介,将公式(1)进行链式因果分解[8][9]。由于工业在甘肃省国民经发展的特殊地位,故将全省能源消费量和工业产值指标作为中间变量,将弹性值分解为减排脱钩、工业节能、产业发展三个指标,公式为。公式(2)中,ΔCO2为二氧化碳排放变化量,ΔE为能源变化量,ΔGIO为工业总产值变化量,ΔGDP为历年地区总产值变化量。虽然通过分解可以找出影响甘肃省经济增长与二氧化碳排放脱钩的相关因素的脱钩弹性状况,便于采取相应的措施进行碳减排。但该式应用的局限性也很明显,很难将其他指标如城镇化等纳入分解式中进行更加细致的分析,故第二步我们引入LMDI分解法。2.LMDI因素分解脱钩模型本文根据扩展的Kaya恒等式将二氧化碳排放量进行因素分解,并参考已有文献[10]的LMDI(Log-MeanDivisiaIndex)分解方法,根据甘肃省实际情况加入工业化和城镇化因素后,构建甘肃省经济增长与二氧化碳排放脱钩分解模型。根据CO2排放量的基本公式可知。公式(3)中,CO2为二氧化碳排放量,主要指化石能源的排放量;E为能源消费总量;GIO为工业生产总值;GDP为地区生产总值;PC为城镇人口数量;P为地区总人口;F=C/E,为能源结构碳强度;I=E/GIO,为能源强度;G=GIO/GDP,为工业化率;A=GIO/PC,为城市人均工业产值;Z=PC/P,为城市化指数;P表示人口数量。公式(4)中:ΔCf为能源结构碳强度因素;ΔCi为能源强度因素;ΔCg为工业化程度因素;ΔCa为经济发展因素;ΔCz为城镇化因素;ΔCp为人口因素;ΔCd为分解余量。它们分别为各因素变化对CO2排放总量变化的贡献值。根据Ang[11]提出的LMDI方法。

二、数据来源与说明

研究采用的基础数据如GDP、人口、能源消费量、工业总产值等均来自历年《甘肃省统计年鉴》和《中国能源统计年鉴》,为了使得出的数据具有可比性,分别将地区国内生产总值按照2000年不变价格表示。其中二氧化碳排放量的计算公式为。

三、计算结果与分析

(一)脱钩横向对比分析总体上来看(表3),甘肃省历年的脱钩弹性平均值为0.629,低于中国总体平均值0.708,二者均为弱脱钩状态,而陕西、宁夏、青海分别为0.958、0.845、1.147,均为增长连接状态。只有新疆为1.719处于增长负脱钩状态。从时间段来看,在“十五”期间,陕西、宁夏、青海、新疆分别为1.048、0.452、0.823、0.636,而甘肃省为0.792,脱钩状态良好。“十一五”期间陕西、宁夏、青海、新疆分别为0.944、0.847、1.333、2.897,甘肃省为0.385,只有甘肃省和陕西省脱钩指标值降低。从甘肃省来看,甘肃省脱钩弹性由“十五”期间的0.792下降到“十一五”期间的0.385。同期中国总体脱钩弹性也由“十五”期间的0.835下降到“十一五”期间的0.569,这说明甘肃省脱钩状态与中国总体水平同步变动,且优于全国平均水平。2001年到2011年间,甘肃省经济增长与二氧化碳排放总体上处于“弱脱钩”状态,二氧化碳排放总量与经济增长呈正相关关系。该期间甘肃省GDP的平均增长速度为12.54%,而二氧化碳排放总量的平均增长速度为8.34%,GDP增速高于二氧化碳排放增速,这使甘肃省总体处于“弱脱钩”状态。其中2009年为强脱钩状态,即经济总量增长的同时,二氧化碳排放量比往年降低了。在甘肃省总体脱钩弹性值降低的情况下,在2011年反弹到1.030呈增长连接状态,即二氧化碳排放的增长率快于经济总量的增长率。

(二)脱钩链式因果分解根据公式(2),计算可得到减排脱钩、工业节能、产业发展三个脱钩效应指标,结果见表4。从减排脱钩指标来看,总体呈增长负脱钩和弱脱钩状态,说明甘肃省能源消费量的变动率低于能源二氧化碳的排放速率,能源碳强度脱钩状态不理想。这一方面是因为甘肃省经济增长主要依赖工业,而工业主要以煤炭、石油等化石能源为主;另一方面也与碳减排技术利用不理想有较大关系。从工业节能指标来看,总体呈现弱脱钩状态,说明甘肃省能源利用效率状况良好,不是影响脱钩指标的主要原因。其中,2009年工业节能弹性为-45.543,为强负脱钩状态,这是因为这一年工业总产值增速远低于能源消耗的增速。从产业发展指标来看,总体呈增长负脱钩状态,工业总产值增速快于甘肃省国内生产总值的增速,表明了甘肃省工业在三次产业中的比重过大是影响脱钩指标变动的另一个重要原因,这与减排脱钩指标计算的结果相一致。

(三)LMDI脱钩弹性分解根据公式(7)计算出能源结构碳强度、能源强度、工业化、经济发展、城镇化以及人口六个效应对应的分解脱钩弹性指标,结果见表1和表5。从历年各指标贡献率的平均值(表5)大小来看,影响经济增长和碳排放脱钩弹性指数的最重要因素是经济发展效应和能源强度效应,其中经济发展脱钩弹性指标影响为正值为0.827、而能源强度脱钩弹性指标影响为负,贡献率均值为-1.086。这说明甘肃省在能源的利用效率上较高,即单位工业产值的能耗指标良好。城镇化、工业化、能源碳强度指标对总体脱钩弹性贡献均值均为正值,分别为0.689、0.402、0.232,而人口数量脱钩弹性的影响不大,仅为0.036。由此可以看出城镇化的加快对甘肃省二氧化碳的排放有较大的促进作用。在已有文献中,对于城镇化与二氧化碳的排放的关系上有两种观点,一种认为城镇化有利于碳减排,另一种却持相反态度。其争论的关键在于城镇化是否真正起到了规模经济效应[12]。2011年底甘肃省城镇化率为36.1%,西部地区为43.0%,全国为51.27%,甘肃省城镇化率水平过低。此外,由于受地理位置、地形地貌、矿产资源、经济实力和历史文化等诸多因素的影响,甘肃生产力布局和城镇分布不均衡,城镇化水平全省差异很大。甘肃省城镇体系不突出,具有单一的行政职能和资源型小城镇过多,基础设施不完善,对区域辐射带动作用较弱,难以形成规模经济和集聚经济优势。故在碳减排上,资源消耗型的小城镇难以负担高昂的成本。故总体来说,甘肃省城镇化质量不高是抑制了经济增长与二氧化碳排放的脱钩的一个重要原因。工业化效应指标贡献率历年趋势不明显,但其均值为正,说明总体对脱钩状态具有抑制作用,这与链式因果分解的结果一致。能源碳强度效应指标均值为正,说明其对脱钩状态具有抑制作用,但其从2001年到2011年对脱钩弹性的贡献率一直在下降,说明甘肃省能源碳排放强度效应对脱钩弹性的抑制作用正在逐渐削弱,反而正在成为有利于脱钩的因素。通过LMDI分解法得出能源强度效应是促进脱钩的主要原因,且能源碳强度效应正在成为促进脱钩的另一个重要原因。这与通过因果链式分解方法,得出的能源强度弹性处在弱脱钩状态、碳强度脱钩弹性和产业结构弹性处在强负脱钩状态一致。

碳排放论文篇(2)

1.2研究方法根据排放来源的不同,家庭碳排放可分为直接和间接两部分。直接碳排放包括家庭用于炊事、取暖、照明、洗浴、交通等活动中对能源商品直接消费所产生的CO2;间接碳排放是家庭生活过程中使用的各项产品与服务在其开发、生产、流通、使用和回收整个生命周期中所产生的CO2。家庭直接碳排放的核算参照《IPCC温室气体排放清单指南》[16]中的表观消费量法,涉及能源类型包括原煤、其他洗煤、型煤、焦炭、焦炉煤气、其他煤气、汽油、煤油、柴油、液化石油气、天然气,部分计算系数根据我国最新标准①进行了调整。家庭间接碳排放的核算参照投入产出法[17-19],涉及食品、衣着、居住、家庭设备、医疗保健、交通通讯、文教娱乐以及其他商品和服务八项消费所产生的碳排放。

2结果与分析

2.1家庭碳排放总量中国正处于城市化快速发展阶段,人们对生活质量的要求逐渐提高,各种能源商品及服务的消费支出相应增加,城乡家庭碳排放总量不断增加(图1)。1995-2011年,我国居民家庭碳排放总量呈现先缓慢上升后快速上升的趋势,从1995年的6.54亿t增至2011年的23.78亿t,增加了263.28%。其中,城镇从1995年的3.30亿t增至2011年的16.31亿t,年均增长9.85%;而农村从1995年的3.24亿t增至2011年的7.47亿t,年均增长5.03%。城镇家庭碳排放增速始终大于农村,城乡家庭碳排放差异从1995的1.02倍增至2011年的2.18倍,差距不断扩大。

2.2人均家庭碳排放量1995-2011年,我国人均家庭碳排放先缓慢增长后迅速增长(图2),从1995年的0.54t/人增至2011年的1.77t/人。17年来,城镇人均家庭碳排放始终大于农村,但农村增速大于城镇,城乡家庭人均碳排放差异从1995年的2.47倍降至2011年2.07倍。差距逐步减小,体现了我国城乡居民生活水平差距的缩小。

2.3直接碳排放与间接碳排放1995-2011年,城镇家庭直接碳排放增长了132.21%,间接碳排放增长了692.21%(图3),后者增幅远大于前者;直接碳排放比重从1995年的53.48%降至2011年的25.21%,间接碳排放比重从1995年46.52%增至2011年的74.79%,城镇家庭逐步转变为以间接碳排放为主。农村家庭直接碳排放增长了113.98%,间接碳排放增长了152.9%,两者增幅相当;直接碳排放比重从1995年的57.33%降至2011年的53.25%,间接碳排放比重从1995年42.67%增至2011年的46.75%,农村家庭仍以直接碳排放为主。1995年,城镇家庭直接碳排放是农村的0.95倍,2011年为1.03倍,城乡差距较小;1995年城镇间接碳排放是农村的1.11倍,2011年达到了3.49倍,城乡差距不断拉大。

2.4家庭碳排放结构将家庭碳排放分为煤炭(原煤、其他洗煤、型煤)、油品(汽油、柴油、煤油)、液化石油气、天然气、电力、其他能源(焦炭、焦炉煤气、其他煤气)、食品、衣着、居住、家庭设备及用品、交通通讯、文教娱乐、医疗保健、其他商品和服务共十四项。由于我国农村地区天然气暂未普及,使用量极少,故农村家庭不单独列出天然气的碳排放,而将其归于其他能源。城乡家庭在基本生活用能设施、能源类型、消费水平方面差异较大,两者碳排放结构差别显著(图4)。从城镇家庭的角度来看,交通通讯排放比重增幅最大,从1995年的3.03%增至2011年的21.14%,成为目前城镇最主要的排放源,这主要是因为近年来我国城市交通通讯基础设施的逐步完善,以及汽车、摩托车、移动电话等新产品不断的推出以及价格的下降;而煤炭排放比重降幅最大,从1995的32.31%降至2011年的1.94%,这主要是因为煤炭逐步被液化石油气、天然气等能源所替代。从农村家庭的角度而言,电力排放比重增幅最大,从1995年的13.31%增至2011年的32.22%,成为最主要的排放源,归因于农村能源结构的转变;煤炭排放比重虽大幅下降,但比重仍较大;食品排放比重下降幅度紧随其后,归因于农村居民消费结构的升级。

2.5不同收入水平的城乡家庭碳排放收入水平是影响家庭碳排放的重要因素[20,21]。2010年,我国城乡家庭不同收入水平间接碳排放变化情况如图5(直接能耗数据难以获得,因此仅考虑间接碳排放)。分析可知:无论城镇还是农村,随着收入水平的提高,各类型间接碳排放都呈增加趋势,对于城镇家庭,增幅最大的为交通通讯排放,其次为文教娱乐和居住排放;对于农村家庭,增幅最大的为居住排放,其次为交通通讯、文教娱乐、医疗保健排放。同时,随着收入水平的提高,食品排放比重下降,而交通通讯、文教娱乐排放比重上升。

2.6各省区城乡人均家庭碳排放我国幅员辽阔,由于地理位置、自然禀赋以及经济发展等因素,各省区城乡居民能源利用与家庭碳排放必然存在差异。限于数据的可得性,从人均家庭碳排放的角度对2010年我国30省区(不包括港澳台和)城乡家庭碳排放差异进行分析与比较。2010年,我国各省区城镇人均家庭碳排放均大于农村,以全国平均水平所在点为坐标原点,以①和②线为坐标轴,分为四个象限(图6)。其中,位于第一象限的北京、上海、浙江、广东、天津、福建、辽宁、内蒙古8省区的城镇和农村人均家庭碳排放均大于全国平均水平,该地区是节能减排的重点省区,应加强节能减排,且同时兼顾城乡区域;位于第二象限的江苏、黑龙江、山东、吉林、宁夏、河北6省区的农村人均家庭碳排放大于全国平均水平,而城镇小于全国平均水平,该地区应注重农村地区的节能减排;位于第三象限的湖北、陕西、湖南、河南、安徽、四川、广西、山西、新疆、江西、海南、青海、甘肃、贵州14省区的城镇和农村人均家庭碳排放均小于全国平均水平,该地区节能减排工作应在保障当地人民基本生活水平的基础上进行;位于第四象限的云南、重庆2省区城镇人均家庭碳排放大于全国平均水平,而农村小于全国平均水平,该地区节能减排应侧重城镇地区。

3讨论

随着我国经济社会的发展,城乡居民生活水平逐步提高,来自家庭生活消费的碳排放总量不断增加,家庭碳排放占我国碳排放总量的比重也不断上升,以家庭为单元的节能减排工作逐步提上议程。文中通过对1995-2011年我国城乡居民家庭碳排放的评估分析,形成以下认识:(1)我国居民家庭碳排放快速增长,这与我国前期总体排放水平较低、排放增长需求强密不可分。城镇居民家庭碳排放的增速明显高于农村,这与城镇化进程、城镇人口增长和消费能力的差别密切相关。城镇是家庭碳排放的主要贡献者,如何引导城市在快速发展的同时减缓碳排放增长速度,是城市决策者必须考虑的重点;农村能源消费行为逐步与城市接轨,优质能源(如电力)比重逐年增大,传统能源(如煤炭)比重逐年降低,为节能减排带来一定的契机。节能减排政策的制定应从城乡差异的实际出发。(2)文中研究表明,17年来,家庭碳排放的重点向电力、油品、交通通讯等方面转移。其中,城镇家庭交通通讯排放增长迅速,成为主要排放源,而煤炭排放比重快速下降;农村家庭电力排放增幅最大,替代煤炭排放成为最大排放源。科学利用家庭碳排放结构动态变化规律及其趋势预测对节能减排工作进行合理部署。(3)在文中分析的全国30省区中,城镇和农村的人均家庭排放均低于全国平均水平的有14个,而高于全国平均水平的仅有8个,低水平排放省区主要分布在中西部地区,且中西部省区的城乡排放差距更大,这意味着不同省区城乡人均家庭排放的现状、减排基础、排放增长需求等均有较大差别。应广泛考虑区域实际发展需求,使不同地区享有同等的发展权,同时关注城乡差距,将农村家庭的节能减排工作与脱贫发展互动结合。

碳排放论文篇(3)

(二)基于波尔兹曼熵的企业碳排放配额分配模型在区域碳排放量分配给区域内各行业后,将行业碳排放总量分配给行业内各个企业是落实碳分配和碳减排目标的关键。本文基于波尔兹曼分布,将熵最大化的原理应用于同行业下各个企业之间碳排放量的分配。在这里,包含多个企业的单个减排工业行业类比于物质系统,单位分配碳排放量类比于物质颗粒,参与减排企业的历史碳排放量和上报未来碳排放量几何平均类比于物质单态。假设所有的单位碳排放量在同一个企业k内都产生相同的碳排放量,那么企业k的碳排放强度ek即类比于物质单态i的单态能量Ei。在这样的类比下,分配给企业k的单位碳排放量的概率和跟企业k的历史排放量和未来排放量成正比,跟企业k的碳排放强度成反比,既兼顾了历史排放责任、未来发展需求,又鼓励提高排放效率。

二、样本选取与数据来源

昆山市张浦镇位于上海、苏州、昆山之间的黄金三角地带,是“全国经济百强县”之首昆山市的经济强镇。改革开放以来,张浦镇实施外向带动战略,先后成立了德国工业园、海峡两岸食品产业园、N维空间文化产业园等特色园区,累计吸引了3400多家企业注册落户,形成了以加工制造业为主的工业城镇。2012年,张浦镇规模以上工业企业达到220家,其能源消耗占全部企业能源消耗的95%。通过对张浦镇规模以上工业企业碳排放量进行定量分配,给予企业明确碳排放量约束,不但推进了碳交易市场的建立和工作的开展,也促进了张浦镇“十二五”期间节能减排目标的实现。本文选取张浦镇规模以上工业企业为样本,考虑到张浦镇自2012年才进行规模以上工业企业网上能耗统计,本文选取2012年和2013年规模以上工业企业历史排放数据,分配2013年规模以上工业企业碳排放量。2012年张浦镇规模以上工业企业220家,2013年增加至255家,选取张浦镇2012—2013年不变的217家规模以上工业企业作为碳排放权分配企业。通过计算分析,2012—2013年期间,此217家工业企业在政府行政命令下减排11%,完全达到政府规划要求,因此本文直接使用2013年规模以上企业实际排放量作为分配总量,同时也方便对比分析分配结果的满意度。企业能耗和工业产值数据来源于张浦镇经促局统计科提供的《2012年张浦镇规模以上工业企业能耗明细》和《2013年张浦镇规模以上工业企业能耗明细》;碳排放数据以各企业各类能源消费量为依据,根据各类能源发热系数、排放系数和碳氧化率计算得到,相关系数取自《上海市温室气体排放核算与报告技术文件》推荐标准,各个分品种能源的碳排放系数如表2所示。

三、分配结果分析

(一)基于信息熵的行业碳排放配额分配结果分析本文基于信息熵理论,以2012年和2013年张浦镇规模以上工业企业碳排放数据均值,计算各行业碳排放减排系数,进而对2013年张浦镇规模以上工业行业碳排放总量进行分配。通过基于信息熵的行业碳排放分配模型公式的计算,可得各指标的信息熵值、信息量值和熵权重值,这3个参数是计算减排因子的基础。具体减排影响因素指标参数计算值如表3所示。从各个影响因素指标的信息熵值来看,工业产值信息熵值最大,熵值为0.707,说明工业产值信息量较小,行业减排能力对碳总量减排作用较小;能源结构熵值最小,熵值0.470,说明能源结构信息量较大,原煤减少使用对碳总量减排作用较大。其他因素如历史排放量、能源强度和排放强度在碳减排分配中影响越来越小。结合张浦镇2013年规模以上工业碳分配总量,通过信息熵行业碳分配模型计算可得张浦镇2013年规模以上工业各个行业碳排放配额。根据碳减排结果(图1)显示,各行业的碳减排量相对于2012年,各行业减排幅度从17.17%~0.02%不等,全行业碳减排量相对于基期2012年减排了11.01%,基本符合张浦镇发展需求和节能减排形势。如图1所示,一方面,化学原料和化学制品制造业(行业26)分配到碳减排量16.81万吨,减幅17.17%,对以煤为主的化工行业,施以严格的减排约束,有利于促进化工行业调整能源结构。其中,中盐昆山有限公司耗能占总化工行业耗能96.5%,其“十二五”期间实施节能技改可以节能21.45%,所以化工行业的碳排放减排降幅符合了行业节能潜力,该减排量切实可行。另一方面,非金属矿物制品业(行业30)分配到碳减排量8.40万吨,降幅9.27%,这对碳排放强度较高的非金属行业提出较高要求,督促企业节能减排,提高能源效率。其中,台玻集团耗能占总行业耗能81.81%,其能源审计报告显示台玻集团“十二五”期间实施节能技改项目,可以节能8.98%,考虑到中盐锅炉项目实施,台玻集团等企业将使用中盐的锅炉蒸汽,则台玻集团可以进一步节能减排,所以非金属矿物制品业碳排放降幅是合理且可行的。通过对比基于信息熵的碳排放总量行业分配和基于历史排放的碳排放总量行业分配结果如图2所示。以化工行业为例,若是基于历史排放进行碳排放量分配,其可获得87.118万吨的分配量,多出5.207万吨。这种情况下,虽然分配标准考虑到行业发展需求,但是分配存在不公平性,政府仿佛在变相鼓励高排放企业进行碳排放,此碳分配量可能得不到其他企业认同;另外,企业获得高排放权利,其节能减排动力不足,企业不会主动提高能源效率,行业碳排放强度难以下降,难以完成全行业的节能减排目标。基于信息熵的分配方法考虑了化工行业历史责任和行业减排潜力,分配结果使化工行业的碳排放量更加合理。进一步通过对比基于信息熵的碳排放总量行业分配和基于按比例分配的碳排放总量行业分配减排占比,如图3所示。经计算发现,按相同碳减排比例(本文的减排分配比例是11.01%)分配得到的各行业碳排放量和按历史排放分配得到的分配量结果是一致的。在按等减排比例分配情况下,此分配标准没有考虑各个行业的异质性,各个行业的减排能力和减排潜力是不一致的,对于能源效率低下的化工行业和能源效率相对较高的通信电子行业都采取一刀切的分配方法,是粗放不合适的。综上,基于信息熵的碳排放量分配相对于基于历史排放和基于等减排比例的分配更加公平有效,主要是由于信息熵方法基于行业异质性,客观考虑了行业发展需求、减排能力和减排潜力,其分配结果更加符合实际。

(二)基于波尔兹曼熵的企业碳排放配额分配结果分析基于上述行业碳排放配额分配结果,通过玻尔兹曼熵,计算张浦镇规模以上工业企业2013年碳排放量分配额。鉴于数据可得性,C0i使用企业2012年和2013年碳排放量的几何平均;ei使用企业2013年碳排放强度,以体现企业最新排放效率,贴合企业实际需求和要求;β由2012年和2013年历史碳排放量,通过最小二乘法模拟计算取得(即使Y值最小),各个行业β计模拟结果如表4所示。根据各行业的最优β值,进一步计算得出各个行业内企业的碳排放配额。根据各个行业内企业的碳排放量分配结果看出,各个企业获得的碳排放分配量相对于基期2012年排放量,减排幅度不等,不仅由于行业异质性,也考虑行业内企业的发展需求和碳排放效率。对于化学原料和化学制品制造业(行业26),对该行业下15家企业碳排放量的分配中,通过最小二乘法的β模拟最优值为0。通过计算,如图4所示,分配结果与历史排放均值成正比,分配结果相对于企业2013年实际排放值和2012年历史排放值比较没有很大波动。此时β取值为0,企业分配到的碳排放配额基本满足企业自身生产需要,企业之间碳交易成本最低。若适当提高β取值,可以进一步奖励高排放效率企业,惩罚低排放效率企业,不过增加了本行业下企业的碳交易成本。本文此处β取值为0,中盐公司虽然碳排放强度高,但是作为国营企业,已经进行节能改造,能源效率迅速提高,若减排后多出的碳排放配额,既可以用于进一步扩大生产,提高行业高效率产能占比,从而改善了行业的资源配置,提高了整个行业的碳排放效率;也可以通过碳交易市场出售给其他减排成本较高企业,获得利润,进一步改善生产结构。其他化学制品公司碳排放强度不高,在政府部分鼓励和补贴下,可以积极申报政府节能技改项目,以进一步提高碳排放效率。对于橡胶和塑料制品业(行业29),在对该行业下16家企业碳排放量的分配中,通过最小二乘法的β模拟最优值为0.514。通过计算可得各个企业2013年碳排放配额,相对于企业2012年和2013年历史排放几何平均值,分配减排量比从-22.77%~13%不等,由图5所示,在总量控制下,橡胶和塑料制品业下各企业分配到的减排比例和企业排放强度成正向关系,企业碳排放强度越高,企业分配得到减排量越大。此时的β取值,不仅使得企业碳交易成本最低,同时奖励了高排放效率企业,惩罚了低排放效率企业。随着β值取值越小于0.514,则企业分配到的碳排放量更接近历史排放均值;随着β值取值越大于0.514,企业因碳排放强度受到的惩罚和奖励就更大。β取值0.514,企业间碳交易成本最小。分配到较少碳排放配额的企业需要通过提高能源效率,降低碳排放需求,或者通过碳交易市场购买碳排放配额;分配到较多碳排放配额的企业,可以通过碳交易出售给减排成本较高的企业,也可以自己储备用来扩大优质生产力。例如,和进塑胶电子有限公司,2013年碳排放强度为0.686吨CO2/万元,碳排放效率行业最低,分配获得13%的碳排放减量;而贺升电子有限公司,2013年碳排放强度为0.016吨CO2/万元,碳排放效率行业最高,分配获得22.77%的碳排放增量。在此情况下,和进塑胶电子有限公司必须进行节能减排工程项目实施,提高碳排放效率,降低碳交易成本;而贺升电子有限公司则可以出售碳配额获益。综上,在同一个行业下使用基于玻尔兹曼熵的企业碳排放配额分配法,以最小交易成本为目标,考虑了企业未来发展需求,达到奖励高排放效率企业,惩罚低排放效率企业,分配结果更易被企业接受,也推动了张浦镇节能减排工作顺利完成。

碳排放论文篇(4)

二、文献回顾

目前,国内外关于城市家庭碳排放的研究可以归纳为以下三个方面。一是家庭基本特征和家庭能源消费方式对碳排放的影响。国外学者帕乔里(Pachauri)借助家庭微观调查的研究,结果表明,家庭收入是家庭碳排放的重要影响因素;杰克逊(Jackson)的研究表明,家庭规模、住房面积、成员结构、消费水平等家庭特征是家庭碳排放的主要影响因素。弗林格尔(Vringer)等发现,户主年龄在40-50岁的高收入群体,其家庭能源消耗最大。杨选梅等以南京为例认为常住人口、交通出行、住宅面积是影响家庭碳排放的显著因子。杨瑞华等对全国不同地域9个城市的家庭碳排放情况进行跟踪调查,对城市家庭碳排放特点和不同地域城市碳排放差异进行了实证研究,结果表明,家庭碳排放量与家庭经济文化水平和家庭常住人口数呈正相关,沿海经济发达城市家庭的碳排放量高于内陆城市和经济欠发达城市。威尔森(Wilson)等研究了家庭成员的环境认知、能源消费行为对家庭碳排放的影响。二是家庭碳排放的空间分布差异研究。阿尔蒙德(Almond)等研究发现,在中国,秦岭-淮河以北地区由于需要家庭集中供暖,其碳排放量特别高。卡恩(Kahn)通过使用1993年美国居住能源消费调查数据,研究发现居住郊区化对能源消费的显著影响以及其环境后果。黄茹等通过广州市3个不同区位类型社区家庭的问卷调查,结果发现郊区社区家庭碳排放量最高,市区社区家庭碳排放量居中,城乡结合部家庭碳排放最低。张馨等研究了城乡居民家庭能源消费的碳排放,结果表明,从2000-2007年城镇居民家庭的直接能耗和间接能耗碳排放都呈上升趋势,农村居民家庭的直接能耗碳排放逐年增加而间接能耗碳排放有所下降。三是从时间序列分析家庭规模的变化对碳排放的影响。蒋耒文等认为,相对于个人而言,家庭是消费的主要单位,在人口总量保持稳定的情况下,家庭规模变化导致的家庭户总量的变化有可能对碳排放产生明显的影响。陈佳瑛等就中国1978-2007年家庭模式变化对碳排放的影响情况进行了实证分析,发现家庭规模与总户数对于碳排放具有较大影响力,家庭户单位体现出对人均单位未能包括的家庭消费行为模式的包容,因而可能成为更合适的居民能源消费产生碳排放的分析单位。王钦池认为根据边际效应递减规律,在一定的经济社会条件下,应该存在一个能源利用效率最高的家庭规模,称之为最优家庭规模。当家庭规模大于或者小于最优规模时,都会导致能源利用效率的降低和碳排放量的增加。总体说来,家庭碳排放的研究视角从开始较多地集中在宏观层面逐渐转向家庭微观层面。随着我国新型城市化建设的加速推进,人们生活方式将发生巨大变化,城市居民生活水平也将不断提高,城市生活能耗消费量将不断增长,导致城市家庭能耗碳排放对环境的影响更加明显。因此,有必要对某一区域或省域的家庭碳排放特点及变化特征做详细调查研究,这样可以针对不同研究区域的家庭特征、低碳消费行为分别研究碳排放的影响因素,从而制定更有针对性的区域、社区及微观家庭成员的减排政策。本文将以微观家庭调查数据为基础,以经济发达的东部沿海省份江苏作为研究对象,主要研究江苏城市家庭碳排放的结构特征和区域差异性,并分别对调查城市家庭的基本特征、家庭成员低碳消费行为与家庭碳排放的相关性作回归分析,最后得出江苏城市家庭碳排放的主要影响因素。

三、数据来源与研究方法

1.数据来源

研究采用2013年南京邮电大学大学生实践创新训练计划项目“江苏城市家庭碳排放调查”研究小组对江苏省城市家庭活动的调查数据。该调查按照江苏南北区域经济发达与不发达等特点选取了苏南的南京市、苏中的南通市以及苏北的连云港市,由于三个城市2012年的城镇居民家庭人均消费性支出分别与所在区域的平均水平最接近,且南京市是江苏城市化程度最高的城市,南通市是苏中地区三个市中人口最多的城市,连云港市2012年人均GDP排在江苏13个地级市的倒数第二位,因此,选取这三个城市体现了江苏区域经济发展的差异性和典型代表性,可以代表不同区域的城市家庭碳排放基本情况。研究在每个城市选择三个社区(市区社区),为了使数据收集更具广泛性和灵活性,并且提高问卷收集速度,在每个社区选择150户家庭采用入户随机发放和现场填写问卷的方式进行调查,要求每个家庭18周岁以上成员填写调查问卷。研究共发放问卷1350份,收回有效问卷1288份,问卷有效率为95.4%。调查问卷包括三个部分:家庭基本特征、家庭低碳消费行为和家庭碳排放结构。家庭基本特征包括家庭的人口统计特征、消费特征(居住面积)、出行特征、文化特征、经济特征(家庭收入)五个方面,其中人口统计特征包括:家庭常住人口数、被调查者的性别、年龄。家庭低碳消费行为包括家庭成员的每周购物频率、在外就餐频率、垃圾分类情况、空调温度调控、自备购物袋以及“一次性”用品的使用六项内容。家庭碳排放结构包括家庭能耗(家庭用电、水、天然气或罐装液化气)、交通出行(飞机、火车(动车)、长途汽车、地铁、公交车、小汽车、电动车)、家庭生活垃圾三个方面。

2.研究方法

比娜等提出了消费者生活方式方法(ConsumerLifestyleApproach,CLA),该方法是从家庭外部环境、个人决策因素、家庭基本特征、消费者行为以及消费行为产生的后果五个方面研究家庭碳排放。该模型首先被用于美国家庭碳排放研究中,随后该模型被众多学者引用。此模型中消费者是指为满足其生活需要购买产品和服务的个人或家庭的实体;生活方式影响并决定了消费者的个体消费行为。该模型的目的是通过理解消费者的个体行为以便制定出更好的公共政策。由于各种影响因素的相互交织,并且其中一些因素随着环境的变化而不断变化,因此,了解“消费者”变得很复杂。本文在此方法的基础上加以修改和补充,绘制了基于家庭消费行为特征的家庭碳排放影响因素技术路线图。

碳排放论文篇(5)

1.2碳排放模型按照汽车燃料消耗分类主要有汽油、柴油、天然气,则他们不同排放公式(4)。同时城市电动车辆在使用过程中无排放,只在源头中产生排放。则源头碳排放计算公式(5)。Fv和lv为y类能源消耗碳排放量(柴油、汽油、参数可以通过IPCC获取,天然气参数通过二氧化排放系数和每公里能源消耗等价关系获得(Haoetal.2009)[7]。Ee是交通电力能耗(kWh);χ占国热能发电的比率(中国电力联合会获取);λ热转电能碳排放系数(Ma2002)[8]基础参数如表1所示,碳排放模型参数如表1所示。

2实例测算

城市道路汽车、公共汽车、出租车、货车和其他类型车辆及道路设施能耗量估计,可以通过城市统计年鉴,及主管部门年报数据中获得。城市交通能耗测算,各类能源消耗:柴油,汽油,天然气,电力换算标准煤系数由(GB/T2589-2008)获取。其碳排放转化系数分别为2.73kg/L、3.07kg/L、2.26kg/L、1.019kg/kWh。城市各类能源年消耗量可通过统计数据查找,同时给出相关计算参数。可获得某城市碳排放量数据。同时本文以合肥市为查找相关数据例采用excel统计数据计算结果如表2。由此可看出城市交通常用出行方式中人均能耗,人均碳排放各项数据,而私家无论是人均能耗和人均碳排放都是远远高于出租车和公交车。

碳排放论文篇(6)

2不同结构建筑的隐含能与隐含碳

关于建筑产品生产、运输和安装阶段所消耗的隐含能和排放的隐含碳,AlcornandBaird[29]、BuchananandHoney[30]、Bjorklund[6]、lawson[31]、CWC等做过前期研究,有研究成果数据.Guggemos[18]的研究边界是美国中西部2栋面积为4400m2的5层办公建筑的全生命周期,但针对案例的隐含能和隐含碳,Guggemos得出混凝土结构分别是8300MJ/m2和550kg/m2,钢结构分别是9500MJ/m2和620kg/m2.日本学者Ari-ma[21]根据《京都议定书》计算不同回收方式时结构的碳排放.台湾学者Li在统计建筑所需钢材、混凝土、木材、胶合板需要量后,采用基于过程的LCA分析方法,得出混凝土结构、钢结构和木结构建筑隐含能与隐含碳成果.Rossi对布鲁塞尔某居住建筑进行研究时,使用Pleaides+软件进行模拟,结合手工计算,得出混凝土结构和钢结构的隐含碳成果.2013年,Griffin[25]采用Hammond和Jones的ICE数据库研究某大学礼堂大跨度结构的隐含能和隐含碳.结构系统的隐含能和隐含碳在计算时分原始材料和非原始材料2类.混凝土结构分桁架混凝土结构和预应力混凝土结构.桁架混凝土结构和预应力混凝土结构采用原始材料时对应的隐含能分别为808MJ/m2和1036MJ/m2,对应的隐含碳为100kg/m2和133kg/m2.Kim[27]采用投入产出法,根据不同结构建筑主要材料的消耗量和韩国经济基础数据计算建筑能耗与碳排放.研究特别分析了螺纹钢、型钢占建筑总能耗与碳排放的比例。表2,3反映多数研究者认为木结构建筑比混凝土结构建筑和钢结构建筑有更低的隐含能和隐含碳.另一方面,单从隐含能的角度,CORRIM[33]、UN-HABITAT[34]、BuchananandLevine[35]的研究也显示,木结构住宅相较混凝土结构住宅有更低的隐含能.BorjessonandGustavsson[36]考虑土地使用和替代的影响,得出同样结论.瑞典和挪威学者PetesonandSolberg[37]依赖建筑材料、废弃物管理和森林碳汇流,也得出同样结论.LenzanandTreloar[38]参考澳大利亚材料价格采用投入产出法分析了BorjessonandGustavsson的研究数据,得出隐含能是BorjessonandGustavsson研究结果的2倍,但也有同样的结论.从结构的环境影响角度,日本Gerilla用全球变暖潜力来描述建筑的环境影响,认为混凝土结构比之木结构有更高的环境影响(多23%).其他方面,Li研究木结构替代混凝土结构以及木结构替代钢结构的替代效应因子.Arima认为木结构建筑有碳储存功能,由于碳储存的原因,Arima把城市木建筑群称为“城市森林”,指出日本城市中的碳储存为1.5×108t碳,超过日本森林6.8×108t碳储存的20%.从建筑结构类型看,木结构碳排放的减量是混凝土结构的1/2,是钢结构的2/3.Griffin认为木结构在隐含能、隐含碳和重量方面有利,但木结构有很差的隔声性能,同时需要配备石膏板防火系统和自动喷淋系统以满足防火的要求.Schmidt在Gagono、Pirun及Crespell、Gagnon研究的基础上以某高层住宅为例,研究CLT交叉层积材结构在美国使用的潜力.研究指出CLT结构的防火性能可以满足法律的要求.相较混凝土结构而言,由于CLT结构采用了更少的劳力及材料成本更低,有更低的隐含能和隐含碳.关于混凝土结构和钢结构,Guggemos认为钢结构和混凝土结构建筑在使用阶段的能源消耗没有区别.尽管在建设阶段钢结构的能源消耗指标比混凝土结构要小很多,然而需要注意的是,钢结构材料在生产过程中的能耗一定程度上超过了其在建设阶段、废弃阶段相对于混凝土结构的能源节约.所以Guggemos认为从全生命周期的角度来看,钢结构并不会比混凝土结构更优越.Kim认为混凝土结构相较钢结构具有减少能耗、减少建设成本(含碳排放成本)的优势.Griffin认为钢结构如果考虑足够高的回收率的话,它的隐含能与混凝土结构是有可比性的,但钢结构的隔热性能不好,隔声和防火性能也是最差的.简言之,Guggemos认为混凝土结构和钢结构在生产阶段和工程建设阶段的能耗与碳排放高低互补,以致2种结构隐含能与隐含碳近似.而Kim和Griffin的研究结论比较一致,即在同等边界条件下混凝土结构比钢结构有更低的隐含能和隐含碳.但如果考虑钢材的回收利用,则钢结构与混凝土结构的能耗与碳排放亦相当.图2,3反映了不同时期、不同学者对木结构、混凝土结构和钢结构建筑隐含能与隐含碳研究的数据集群.从图2,3可知,研究成果不具有随着时间增加或减少的趋势,而且数据成果差异度较大.研究成果主要与研究者的研究边界、研究方法以及采用的数据来源(数据库)密切相关.但总体上,木结构建筑的隐含能与隐含碳低于混凝土结构建筑和钢结构建筑,混凝土结构建筑的隐含能与隐含碳在同等边界条件下低于钢结构建筑.

3不同结构建筑的环境影响

图4主要材料能耗占建筑能耗的百分比结构形式的不同并不意味着材料的单一性.Buchanan和Honey的研究显示,混凝土结构住宅中含有钢材和木材,钢结构住宅中含有混凝土和木材,木结构住宅中含有钢材和混凝土.表4为Buchanan和Honey研究木结构、混凝土结构和钢结构建筑能耗时,得出的不同材料能耗在建筑能耗中所占的百分比.由图4可知,钢材、混凝土和木材能耗分别在钢结构、混凝土结构和木结构建筑能耗中的比例都是最高的.从材料的能耗分配看,钢结构中钢材能耗占3种结构钢材全部能耗的50%以上,混凝土结构中混凝土能耗占3种结构混凝土能耗约50%,木结构中木材能耗占3种结构木材能耗的80%。考虑建筑运营阶段,Rossi认为50年生命周期混凝土结构运营碳排放加隐含碳是200~1500kg/m2,钢结构运营碳排放加隐含碳是180~1250kg/m2.Rossi强调运营阶段的环境影响占建筑全生命周期环境影响的62%~98%,而能源结构强烈影响着运营阶段的碳排放.将现有的能源结构向可再生能源结构转变,是Rossi提出的可持续建筑的发展之道,只有当能源结构更环保以后,结构隐含能在建筑全生命周期中才更具有代表性.关于颇具争议的“盈余森林”和“负碳排放”,中瑞典大学Gustavsson指出,木结构建筑由于采用了生物燃料替代了化石燃料,有更高的“负碳排放”.混凝土结构建筑全生命周期的碳排放是负值,原因是“盈余森林”的存在,即混凝土结构建筑由于需要更少的木材,提高了建筑生命周期的生物质能.从建筑的能量平衡和碳平衡看,Gustavsson指出木结构建筑的能量平衡及碳平衡除了不考虑木材加工残留物或废弃木材作为燃料再恢复使用外都是负的.木结构建筑比混凝土结构建筑有更低的碳排放.表5是Gustavsson案例在最佳情境和最不利情境下的能量平衡和碳平衡(某公寓住宅建筑面积为1190m2).图5,6是Gustavsson案例最佳情境时能量平衡与碳平衡的过程示意图.

4不同墙体建筑的碳排放

美国硅酸盐水泥协会MedgarL.Marcean[15]等研究2种不同结构墙体(木框架墙和混凝土隔热墙)住宅的生命周期评估.图7,8为2种墙体不同的结构构造,二者差异在于木框架樯以合板为主要材料,混凝土隔热墙以混凝土为主.报告采用Simapro软件[39]对某2层住宅案例进行模拟,并考虑住宅分布在美国的5个城市(代表美国5种不同的气候)以对比分析.案例住宅设计满足美国1998年国际能源保护法(IECC)[40]的需要.在软件模拟中采用了Eco-indicator99(荷兰和瑞士),EDIP/UMIP96(丹麦),EPS2000(瑞典)3种不同的准则.并在Eco-indicator99中采用了不同的权重设置(共有3种情境).在建筑的运营阶段,采用VisualDOE2.6软件[41]模拟家庭能源消费,因为该软件在模拟家庭能源消耗方面比其他软件更精确.该报告的LCA评估在ISO14040框架[42]下执行.研究案例的系统边界包括能源和材料的输入和输出、使用和维护,但不包括废弃情境和废弃物处理.LCA评估中使用的LCI数据来源于公开发表的报告和可获取的商业数据.同一住宅在5种不同准则(情境)下的环境影响被归一化和加权为一个没有单位的环境负荷分数.研究数据显示,几乎在5种准则(情境)所有情况下,木框架墙住宅的环境影响指标比混凝土隔热墙住宅的环境影响指标要大,混凝土隔热墙住宅有更低的环境影响分数.如果仅考虑建筑材料,木材和铜管的环境影响排放第1位和第2位,以水泥为基础的材料排第3.

碳排放论文篇(7)

1987年Enger和Granger提出了协整理论和误差修正模型,指出一些经济变量虽然是非平稳序列,但变量间的线性组合却可能是平稳的,这些变量之间可能存在着协整关系。当变量之间存在着协整关系时,还可以用误差修正模型分析变量间的短期波动关系[13-14]。

1.2指标选取与模型构建

(1)指标选取从上述文献可以看出,影响我国交通运输业碳排放的因素可能有交通发展水平、交通能源强度、交通运输结构、人均GDP、居民收入等因素。根据蔡博峰等人的研究,和国外不同,我国交通部门CO2排放量和人均GDP之间并不显著相关(判定系数R2=0.214),这可能是由于我国交通领域的CO2排放主要受工业生产和经济活动驱动,而不是家庭收入的驱动;我国道路交通CO2排放与居民收入的相关性很低(判定系数R2=0.147),这可能是我国道路运输的CO2排放并非像一些发达国家以私家车排放为主,而很可能主要以货车、出租车、公司商务车和政府用车为主[15]。因此人均GDP、居民收入不是影响我国交通运输业碳排放的主要因素。由于如何量化交通运输结构存在一定的分歧,因此本文重点研究交通发展水平和交通能源强度对我国交通运输业碳排放的影响。选取交通运输业碳排量为因变量,交通发展水平和交通能源强度为自变量,用能源消耗法计算交通运输业碳排放,交通发展水平用换算周转量指标表征,交通能源强度用单位换算周转量的能源消耗表征。(2)模型构建基于上述研究方法和指标,本文构建了交通运输业影响因素的计量经济模型:y=u+αx1+βx2,(1)式中,μ为随机误差项;y为交通运输业碳排量值;x1为交通运输业换算周转量;x2为交通能源强度;α,β为回归系数。

1.3数据处理

(1)交通运输业碳排量测算模型及结果根据《IPCC2006国家温室气体清单指南》,移动源(交通部门)的CO2排放核算方法可以分为两种。方法一是自上而下,基于交通工具燃料消耗的统计数据计算;方法二是自下而上,基于不同交通类型的车型、保有量、行驶里程、单位行驶里程燃料消耗等数据计算燃料消耗,从而计算CO2排放。由于获取我国不同类型机动车行驶里程和油耗等数据比较困难,因此基于公开数据完全采用第2种方法的可行度较低。考虑我国成品油生产和供应的垄断性很高,因而采用第1种方法基于交通工具燃料消耗的计算精度高。本文根据第1种方法构建交通运输业CO2排放测算模型:EQ=EQp+EQc+EQg+EQe+EQh,(2)式中,EQ为交通运输业总CO2排放量;EQp为消耗石油燃料的CO2排放量;EQc为消耗煤炭的CO2排放量;EQg为消耗然气的CO2排放量;EQe为消耗电能折算的CO2排放量;EQh为消耗热能折算的CO2排放量。①消耗石油燃料的CO2排放量交通运输业中使用石油燃料的主要有汽油、煤油和柴油等。EQp=∑(不同燃油消耗量×CO2排放系数),其中燃油、煤炭、燃气等各种能源CO2排放因子取《IPCC2006国家温室气体清单指南》第2卷能源中的表2-2所规定的值。终端电的消耗不直接产生CO2,但电厂发电过程中会产生CO2,属于间接碳排放。在火电、水电和核电3类电厂中,水电和核电厂产生很少的CO2排放,可以忽略不计,因此本文主要计算火电厂产生的CO2排放。(2)交通运输业换算周转量计算公式及结果交通运输业换算周转量TR为客运周转量和货运周转量之和。采用客/货运周转量转换系数(如表2所示),将客运周转量转换成货运周转量,并与原来的货运周转量相加,最后得到换算周转量,如表3所示。各运输方式周转量数据来源于我国历年的统计年鉴。(3)交通能源强度计算公式及结果交通能源强度EN用单位换算周转量所消耗的能源量表征。由于能源的种类众多,因此能源消耗按发热量折算成标准煤表示,即:交通能源强度=能源消费量换算周转量。

2实证结果分析

2.1数据预处理

为了避免时间序列数据出现伪回归的现象,对EQ,TR,EN数据进行对数变换,这种处理不会影响数据的统计性质,对数变换后的序列分别用LNEQ,LNTR,LNEN表示,检验均由EVIEW6.0完成。

2.2单位根检验

本文的平稳性检验采用常见的ADF单位根检验,得到相关数据序列的单整性阶数如表5所示。原序列和其一阶差分序列的ADF单位根检验表明,LNEQ,LNTR,LNEN均为一阶单整序列I(1),满足对其进一步进行协整检验的要求,变量彼此之间可能存在协整关系。

2.3Johnsen协整检验及标准化协整方程

(1)迹检验和最大特征值检验对3个变量LNEQ,LNTR,LNEN进行Johnsen协整检验,检验结果如表6、表7所示。表6和表7的结果均表明,LNEQ,LNTR,LNEN在0.05的显著水平下拒绝了没有协整关系的假设,接受了至多存在一个协整关系的假设。这说明在0.05的显著水平下序列LNEQ,LNTR,LNEN间存在一个协整关系,能够建立向量误差修正模型。(2)标准化协整方程Johnsen协整检验除给出协整关系的检验外,还给出了协整关系式。本案例的无限制条件下的协整关系如表8所示。为了使序列间的更为明显直观,一般将排序第一的序列前的系数标准化为1,这样表示的协整关系称为标准化协整关系,如表9所示。因此,最终的协整方程为:LNEQ=1.429165×LNEN+0.985885×LNTR,se=(0.07462)(0.01502)。(3)式(3)揭示了LNEQ与LNTR,LNEN间的长期均衡关系:交通能源强度每增长1个单位将导致交通运输业碳排放上升1.429165个单位,交通运输换算周转量每增长1个单位将导致交通运输业碳排放上升0.985885个单位。

2.4VECM模型及检验结果

协整关系只能说明各序列间的长期均衡关系,为了分析EQ与TR和EN的短期动态关系,需要建立将短期波动与长期均衡联系在一起的误差修正模型(VECM)。通过Eview6.0估算出误差修正模型:D(LNEQt)=-0.681440×ECMt-1-0.467110×D(LNEQt-1)+0.249810×D(LNENt-1)+0.200329×D(LNTRt-1)-0.064671,(4)式中,LNEQt,LNEQt-1分别为第t年和第t-1年交通运输业碳排量的对数变换;LNENt-1为第t-1年交通运输业换算周转量的对数变换;LNTRt-1为第t-1年交通能源强度的对数变换;ECMt-1为误差修正项。由式(4)可以看出,交通运输业碳排放的短期波动可以分为3个部分:第1部分是前一期碳排放变动的影响,第2部分是前一期能源强度和交通发展水平的影响,第3部分是前一期碳排放偏离长期均衡关系的影响。上年度LNEQ增加1个单位,本年度LNEQ反方向变动0.467110个单位。上年度LNEN增加1个单位,本年度LNEQ正方向变动0.249810个单位。上年度LNEQ增加1个单位,本年度LNTR正方向变动0.200329个单位。上年度的非均衡误差以68.144%的比率对本年度碳排放增量做出修正,即以-68.144%的调整力度将非均衡状态拉回均衡状态。

碳排放论文篇(8)

2建筑项目的全生命周期理论

我国也在运用不同的政策评价工具来衡量低碳政策的有效性。例如投入产出模型,凯恩斯系数等,希望能够证明低碳建筑与社会经济之间的积极关系。笔者认为,建筑的碳排放量表现在建筑全寿命周期的一次性能源消耗中,因此可以以建筑项目的全生命周期理论为基础计算建筑各阶段的碳排放量,通过各阶段的碳排放量对比,使决策者明确低碳建筑。生命周期理论是指产品从兴起到结束,即从自然中来再回归自然的一个过程。建筑工程的生命周期是从建筑的起步设计、施工,再到使用,最后废弃拆除为止的一个过程。由于建筑项目的技术复杂,建造周期较长,并且风险高,因此,对建筑进行生命周期划分是至关重要的。本文将建筑划分为4个阶段,规划设计阶段,施工阶段,运营维护,拆除阶段。规划设计阶段,包括了建造前期的图纸设计,建材选择,交通运输。施工阶段和拆除阶段可以由不同的施工方式来计算,运营维护阶段包括了建筑使用过程中对各种类能源的消耗。近年来,国内相关领域通过运用生命周期碳排放量的计算方法,基本对四个周期做出了一定的评估。大多数学者认为建筑的整个生命周期中运营维护过程中的碳排放量是最高的,大约在81%左右,此阶段的碳排放量大多集中于供暖,照明和燃气等设备的运行。而其他阶段所占的碳排放比例相对较低,规划和施工阶段,大约占10%~15%,而拆除阶段的碳排比率不超过20%。低碳建筑的核心就在于碳排放量比普通建筑少,建筑材料也大多运用环保绿色材料。通过该种计算方式可以有效的证明一个建筑是否符合低碳建筑标准,以及低碳建筑的优势所在。如果一个建筑在建造过程中运用了绿色环保材料,并且对其运营维护进行合理管理使得它的碳排放量低于其他的普通建筑,那么就可以有效证明该建筑属于环保低碳建筑。因此以生命周期为理论基础,可以帮助我们计算出每个环节的碳排放量,从而针对实际指标来研究相应的技术,制定相应政策法规。

3基于全生命周期理论的碳排放量计算

我们可以通过一栋建筑四个阶段的碳排放量之和来计算该栋建筑的二氧化碳的排放总量。假设CO2排放总量是E,周期内的四个阶段的碳排放量分别为设计规划阶段Em,建筑施工阶段Ec,运行维护阶段Eo和拆除阶段Ed,那么就能得出:E=Ep+Ec+Eo+Ed由此可以得出单位面积的年碳排放量,即CO2排放量评价指标C:C=E/(S*Y)其中,S代表某栋建筑的建筑面积,Y代表使用年限。(大多数资料表示,我国普通房屋的使用年限均为50年,即Y=50)以上两个等式,不仅可以让决策者明晰的看出每一阶段的碳排放量,并且根据此数据制定相关政策,同时也可以作为衡量普通建筑和低碳建筑差异的标准之一。由于低碳建筑的碳排放量比普通建筑要小,等式中的总排放量和单一阶段的排放量成正比关系,所以假如在某一阶段融入了低碳技术使得碳排放量下降,建筑的总碳排放量也会随之下降。建筑周期过程中四个阶段均属于变量,我们可以通过针对每一个阶段的碳排放量进行详细的计算,来推断出建筑的哪个阶段需要引用低碳技术,可以得到更多的政策扶持。首先,在第一阶段设计规划中,我们可以将其Ep分为两个部分,由于设计规划阶段主要包括建筑材料的选择和运输,因此,我们可以使:EP=Em+Et其中Em代表各种建筑材料在用量选择上的CO2排放量,例如水泥,玻璃,混凝土等。Em=Σδmi*δiδmi表示第i种建筑材料的用量,表示第i中建材单位CO2的排放系数。由于运输过程中,与材料的重量,运输工具类型和运输距离相关。因此Et代表运输过程中运输工具所释放的CO2量。Em=Σδmi*Li*ηδmi同样表示第i中建筑材料的用量,Li代表第i种建材的运输距离,而η则表示建材相对应的运输工具的CO2排放系数。第二阶段,是建筑的施工制造阶段,我们可以通过建筑施工量,以及建造过程中不同建筑方式的碳排放量来计算第二阶段的碳排放总量,而此处的不同建筑方式是指在建造过程中所需的不同工种,例如打地基,施工地照明,楼层建设等。由此得出:Em=Σβci*σci表示该工程的建筑施工量,σci相应施工方式的单位CO2排放系数。第三阶段则是当建筑建设完成之后,开始正式运营维护的阶段。由于运营过程中,CO2的排放主要取决于建筑运行过程中的能耗,因此我们可以将能耗划分为两大类,第一类是电能消耗量,即针对照明,电器运行等一系列的消耗。另一类则是化石能源消耗量,即采暖,燃气等一系列能源消耗。由此可以得出:Eo=Y*(Qe*fe+Qg*fg)Qe代表年耗电量,fe表示电力所产生的碳排放系数;Qg表示年耗气量,同样fg代表能源的碳排放系数。最后一个阶段是拆除阶段,与上述同理,也可以通过不同的拆除方式来划分并且计算。Ed=Σβdi*σdi其中,βdi代表拆除建筑所需的施工量,σdi代表不同的拆除方式的单位CO2排放系数。

碳排放论文篇(9)

二、模型构建和实证检验

(一)计量模型设定本文的计量模型首先将碳排放作为因变量,服务贸易开放度(服务贸易进出口额占GDP比重)作为自变量。为检验二者的非线性关系,加入服务贸易开放度的平方项作为自变量。其中,poll为环境污染,用二氧化碳排放量(人均公吨数)代替,X为影响碳排放的其他控制变量,为误差项。根据已有研究,影响一国环境的因素包括经济规模、技术进步、产业结构等。因此,添加外商直接投资占GDP比重(fdi)、技术水平(tech)、工业规模(scale)、收入水平(lngdp)作为控制变量。为减小异方差,对人均GDP取自然对数,其余指标为百分比,不做对数处理。因此,模型(1)扩展如下。

二)数据和变量解释本文的计量分析数据使用的是1995~2009年50个国家的面板数据,其中包括高收入国家20个,中等收入国家30个,样本总容量为750。选择1995~2009年这个区间是因为1995年《服务贸易总协定》正式生效,服务贸易开始进入大发展时期。碳排放包括二氧化碳、一氧化碳等碳氧化物,本文选择二氧化碳作为因变量(人均公吨),基于两方面考虑:一是二氧化碳是最常见和最主要的温室气体,具有代表性;二是根据数据可获得性原则。服务贸易开放度(open)用各国服务贸易进出口额占GDP比重代替。一般而言,一国服务贸易开放度指数越高,其第三产业在三次产业中的占比会越高,从而对环境的影响会越小。但是,服务贸易中的运输服务所需的交通工具以及旅游服务等劳动密集型行业均会产生二氧化碳等气体,对环境构成影响。fdi表示外商直接投资占GDP比重。国内外学者如郭沛等(2013)、Acharyya(2009)、Hajkova和Nicoletti(2006)、Grosse和Trevino(2005)等研究发现,FDI对环境具有影响,且以间接影响为主。如一国或地区所吸引的外资投向化工等易产生污染的行业,对环境造成影响;再比如,一国或地区吸引外资投向清洁行业,由于该行业的发展,带动下游原材料或中间产品的发展,但其原材料或中间产品却易对环境造成污染。因此,本文将FDI占GDP比重纳入模型。技术水平tech用GDP单位能源消耗代替,指平均每千克石油当量的能源消耗所产生的按购买力平价计算的GDP。一般而言,技术水平的提高能够有效地减少环境污染(曾波等,2006;李从欣,2009;李国璋等,2010)。收入水平用人均GDP代替,是国内生产总值除以年中人口数。现有研究结果趋于一致,即收入水平的提高能有效改善环境(陈红蕾等,2007),但是在不同收入水平国家其作用并不一致(黄顺武,2010)。经济规模scale用工业增加值(占GDP比重代替),因为此处考虑的是经济规模对环境的影响,因而工业增加值能很好地满足模型的要求。此处的工业与《国际标准行业分类》(ISIC)第10~45项相对应,增加值为所有产出相加再减去中间投入得出的部门的净产出。这种计算方法未扣除装配式资产的折旧或自然资源的损耗和退化,增加值来源是根据ISIC修订本第3版确定的。本文所有数据均来自世界银行网站()和世界贸易组织统计数据库(),数据的统计描述如表2。

(三)实证检验首先利用stata软件对二氧化碳排放量(CO2)与服务贸易开放度(trade)、外商直接投资占GDP比重(fdi)、工业增加值占GDP比重(scale)、收入水平(gdp)、GDP单位能源消耗水平(tech)之间的关系进行了线性拟合。发现二氧化碳排放量与trade、scale、gdp呈显著的正向线性关系,而与fdi的线性斜率则较小,与scale则呈负向的线性关系。由此形成如下预期:第一,服务贸易开放度与二氧化碳排放量呈正向线性关系。当加入服务贸易开放度的二次项时,预期呈倒U形,即服务贸易开放度与二氧化碳排放量之间符合环境库兹涅茨曲线的关系。第二,GDP单位能源消耗水平、收入水平和外商直接投资占GDP比重对二氧化碳排放量具有正向影响,即tech、gdp、fdi的增加会引起二氧化碳排放量的增加。第三,工业增加值占GDP比重对二氧化碳排放量具有负向影响,即scale的增加会减少二氧化碳的排放。接下来,本文分别从全样本、依收入水平分组的样本对各变量之间的关系进行回归分析,以检验是否与预期一致。1.全样本面板数据的实证检验本部分利用软件stata11.0对服务贸易开放度与碳排放之间的关系进行实证检验。依据前面设定的模型(2),对1995~2009年的跨国面板数据进行计量分析。我们在服务贸易开放度和服务贸易开放度平方项的基础上逐步加入控制变量进行回归。在计量方法上,经Hausman检验,拒绝采用随机效应模型的原假设,因而采用固定效应模型。同时,我们还依次检验了模型的异方差、序列相关性和截面相关性,发现方程(1)~(5)均存在异方差、序列相关和截面相关。为消除上述影响,最终统一使用D-K①校正的固定效应模型对方程进行估计(易行健等,2013)。估计结果如表3所示。由表3可知,尽管不断加入控制变量,但服务贸易开放度系数一直为正,并且在10%水平下均显著,表明服务贸易开放度的提高对二氧化碳排放量的影响为正。这一结果与刘华军和闫庆悦(2011)利用我国1995~2007年省级面板数据对贸易开放与二氧化碳排放的协整检验结果一致。可见,服务贸易并非传统观念中所认为的“清洁行业”,它与货物贸易一样会对环境造成污染。服务贸易开放度平方项的系数在5个方程中均为负数,且都在1%水平下显著,说明服务贸易开放度与二氧化碳排放量之间是倒U型的非线性关系。即在服务贸易开放度较低时,随着服务贸易开放度的提高,二氧化碳的排放量也会随之上升;当达到一定临界点时,服务贸易开放度的提高会减少二氧化碳的排放量。技术水平的系数为负,均在1%水平下显著,这与我们线性拟合结果预期相左,但是与现实更趋一致,因为一国技术水平的提高会有效地降低碳排放。收入水平和经济规模的系数均在1%水平下显著为正,前者与我们的线性拟合预期一致,而经济规模与预期相反。事实上,本文选取的衡量经济规模的指标是工业增加值占GDP比重,因而占比越高,二氧化碳排放量也随之增加,这是符合现实的。外商直接投资的系数为正,但是不显著。2.依收入水平分组的实证检验本部分在计量方法上首先直接采用固定效应模型①进行实证检验,分高收入国家、中高收入国家和中低收入国家3组。此外,为检验模型的稳健性,本文在固定效应模型回归的基础上,还加入了OLS回归。由表4可知,高收入国家服务贸易开放度对二氧化碳排放量有正向影响,但是不显著,而服务贸易开放度的平方项却与其呈显著的负相关。可见,高收入国家的服务贸易与碳排放是非线性关系,且服务贸易能显著地改善这些国家的碳排放。原因可能是高收入国家一般而言都是服务贸易进出口的大国,而且一般处于服务贸易的上游,即提供资本、技术密集型的服务,而传统服务贸易占比较低。对中高收入国家而言,服务贸易开放度与二氧化碳排放量呈显著的倒U型关系,即随着中高收入国家服务贸易开放度的提高,其二氧化碳排放量呈先增后减的趋势。对中低收入国家而言,服务贸易开放度对二氧化碳排放量的影响不显著,但是经济规模、收入水平和技术水平均在1%水平下显著影响。这一结果与我们的预期是一致的,因为中低收入国家一般还处于工业化时期,与高收入国家相比,无论是在服务贸易的规模还是技术水平上均存在较大差距,影响其二氧化碳排放量的主要是工业,因而服务贸易开放度对其影响尚不显著。此外,从稳健性检验可知,OLS回归的结果与固定效应模型回归的结果基本一致,表明本文回归结果是稳健的,偏差较小。

碳排放论文篇(10)

(1)实测法。通过标准连续计量设施对现场燃烧设备有关参数进行实际计量,得到排放气体的流速、流量和浓度数据,据此计算碳排放。实测法结果较为准确,但耗费的人工和费用成本较高,一般应用于量大面广的碳排放测量。

(2)投入产出法。投入产出法又称物料衡算法,它的原理是遵循质量守恒定律,即生产过程投入某系统或设备的燃料和原料中的碳等于该系统或设备产出的碳。投入产出法可用于计算整个或局部生产过程的碳足迹,但其无法区别出不同施工工艺和技术的差异,且获得结果的准确性有偏差。

(3)过程法。过程法在工程建设领域又叫作施工工序法。它是基于产品生命周期整个过程的物质和能源流动消耗来测算碳排放量,其思路是将施工阶段进行划分,列出分部分项工程的机械清单,然后用单位量乘以量就得到各分部分项工程的施工碳排放。过程法简便易行、精确性较高,但基于过程的物质和能源消耗数据不易获得,在一定程度上限制了该方法的应用。

(4)清单估算法。清单估算法采用IPCC政府间气候变化专门委员会公布的《IPCC温室气体排放清单》计算碳排放,主要原理是用各种能源的实际消耗量乘以碳排放因子加总得到总的碳排放量。碳排放因子指生产单位产品所排放的CO2的当量值,根据正常作业及管理条件,生产同一产品的不同工艺和规模下温室气体排放量加权平均得到,可在相关数据库中查得。清单估算法简单可行、应用面广,关键是要确定温室气体的排放清单并选择适当的碳排放因子。几种碳排放计算方法对比。本文的工程建设碳排放量计算是基于生命周期评价理论,将过程法和清单估算法有机结合而成的混合计算方法。具体过程为:首先,采用过程法,按照工程图样列出材料机械消耗清单,也可直接采用清单计价时的分部分项工程材料机械清单;其次,采用清单估算法,将各个材料和机械的消耗量进行汇总并选择合适的碳排放因子;最后,将消耗量数据与对应碳排放因子相乘并加总,即得到整个工程建设阶段的碳排放量。基于工程造价的工程建设碳排放计算。这种混合碳排放计算模型集合了过程法和清单估算法的优点,具有更强的可操作性和准确性,能够方便地应用于实际工程。同时,采用的工程量清单数据可直接套用工程造价数据,大大减少了碳排放计算工作量,在工程建设的同时,还可随工程造价进行碳排放的动态管理和控制。

2案例实证

本文选取铁路工程某建设项目进行工程建设阶段碳排放实例分析,由于该工程的特殊性质,在此不便对工程概况进行介绍,只运用工程造价数据进行计算分析。

2.1清单汇总

按照工程造价文件中的分部分项工程量清单,汇总出本工程材料和机械消耗量,用大写字母Q表示。根据工程造价文件中的机械台班消耗量和2005年《铁路工程机械台班费用定额》中的单位台班消耗指标,二者相乘即得到总的机械能源消耗量。汇总后,本文选取燃料和电力消耗总量最大的20种机械列举。

2.2碳排放因子确定

碳排放因子(CarbonEmissionFactor)是计算碳排放的基础数据,指消耗单位质量能源所产生的温室气体转化为二氧化碳的量。能源的碳排放因子包括了单位质量能源从开采、加工、使用各个环节中排放的温室气体量转化为二氧化碳量的总和。目前,关于碳排放因子的选用尚无统一标准,不同国家、组织和地区算得的碳排放因子往往有很大差别,在一定程度上影响到计算结果的准确性。本文总结并借鉴了现有碳排放因子,选择其常用值或平均值作为工程建设阶段碳排放计算的参考,各能源或材料的碳排放因子用F表示。

2.3碳排放量计算

根据上文数据,可利用以下公式求得工程建设不同阶段总的碳排放量CE。工程建设不同阶段碳排放量汇总。

碳排放论文篇(11)

生命周期评价(LifeCycleAssessment,简称LCA)由4部分组成:目标与范围定义、清单分析、影响评价和结果解释[8-10]。目标定义是定义评价的环境类型,需要根据评价对象的环境影响特点进行目标选择。范围定义,即系统边界设置,需要在既有研究条件(时间、费用)下,定义适用、合理的研究范围。清单分析和影响评价是研究的主要内容,清单分析是在目标和边界确定的基础上,针对研究对象的过程特点,建立与之相关的环境影响数据清单。影响评价又是在清单数据的基础上进行与评价目的有关的计算和分析。最后需要对分析结果进行解释,提供改善环境影响的建议。本文采用LCA方法对沥青混凝土路面在建设期的能耗与碳排放进行分析计算评价。

1.2研究对象、范围

本文的研究对象与范围为建设期的半刚性基层沥青混凝土路面,不包含路基及路面其他相关辅助设施(如标志标线、护栏、照明设施等)。

1.3过程法、边界条件及假设

过程法(P-LCA)是对分析范围内每个与系统相关联的离散过程中的消耗和排放进行逐一量化,而后累计各个离散过程的数据得到总的环境影响[4]。然而,产品的每一个阶段过程都包含复杂的上游过程,如材料运输阶段,除运输过程以外,还包括运输设备的生产,运输设备生产又包括设备制造原料的开采、加工和运输等。若进行如此深入细致的过程分析势必费时费力,而这部份计算结果又仅占有极小的比例,分析效率低下,因此,需要把握分析重点,设定合理研究边界及假设,舍弃细枝末节,提高分析效率。

1.4环境类型和功能单位

沥青混凝土路面生命周期清单分析的环境影响类型为碳排放(以t当量CO2计)以及能耗(以GJ当量热计)。功能单位设定为1km车道,车道道面宽度为3.75m。

2分析模型

2.1原材料生产阶段

(1)生产阶段能耗Ep。沥青混凝土路面建材包括基本的筑路材料和道路辅助设施建材,如沥青、水泥、碎石等,建材开采生产阶段的总能耗计算模型见式(1)。再利用材料视为原材料,材料再利用过程即为其生产过程,并以使用归属为前提进行计算,即当考虑一种再利用材料、工艺或方法的能耗与排放是否计入某项工程时,以该种材料、工艺或方法是否使用于该工程来判定。例如,沥青混凝土路面再利用包括旧路铣刨、旧料粉碎、筛分、运输等工艺过程,由于铣刨形成新的工作面用于旧路施工,整个铣刨过程计入施工中,而旧料粉碎、筛分和运输至堆放地的能耗和排放则视为其旧料的生产能耗及排放,有多少旧料得到再生利用则计入多少能耗与排放,其他工程使用本工程产生的旧料时,应将旧料生产的能耗与排放计入其他工程中。(2)生产阶段排放Ipr。原材料生产阶段排放的计算方法与其能耗计算方法相似,计算模型见式(2)。Ipr=∑i(1+φi)VirMi(2)式中:Vir为开采和生产单位材料时第r种污染物的排放质量;其他符号意义见式(1)。

2.2施工阶段

施工阶段的能耗和排放由两个部分组成:一是原材料、废弃材料的运输;另一是施工机具设备的运行。(1)运输能耗Ect和环境排放Ictr。施工过程中的运输要分为长距离运输和短距离运输,长距离运输包括原材料自产地到现场,以及废弃材料由现场到处置地的运输,短距离运输是材料在施工现场的转运。本文将长距离运输归入施工运输过程中,短距离运输归入施工机具设备分析中。运输过程考虑运输方式、运输距离、燃料类型、运输质量以及返程运输。铁路和水路运输不考虑返程,公路运输考虑返程,设定返程运输的基本流为满载运输的70%[1]。废弃材料运输一般采用公路运输,处置场地固定,运输距离设定为50km。(2)施工机具设备能耗Ece和环境排放Icer。沥青混凝土路面施工的机具设备包括拌和设备、摊铺机、压路机等,施工过程能耗和环境排放的实质是各种机具设备运行能耗与排放的总和。机具运行的能源类型主要有三种:柴油、汽油和电能。计算中将各机具设备按单位工作量换算其能耗强度(MJ/工作量)和排放强度(t/工作量)。如拌和楼的能耗强度单位为MJ/t混合料,压路机的能耗强度为MJ/m2。

3路面结构、分析清单及计算软件

3.1沥青混凝土路面结构

参照我国沥青混凝土路面设计规范[11,12]以图1所示的半刚性基层沥青混凝土路面结构为典型路面结构,分析该路面结构在建设期的能耗及环境碳排放。

3.2分析清单

分析清单即计算所需的各类原材料、施工机具设备的能耗与碳排放强度数据,是通过对过程流的划分及数据的收集和处理,得到的过程流中组成要素的环境数据。过程流的划分一般采用过程法,将材料的生产和施工过程逐一分解至可计算的过程流。以沥青为例:沥青制炼和生产的流程主要由原油开采、运输、提炼加工、存储四个环节组成。根据前述确定的研究范围,分析沥青制炼加工的能耗与排放。我国道路沥青生产用的原油主要来自国内和中东,2010年,我国约开采原油19000万t,进口原油24000万t,假定两类原油用于生产道路沥青的比例是相等,而国产原油的沥青收率(即单位质量原油产出沥青的比率)为25%,进口原油的收率为40%。原油提炼沥青的生产能耗参考《清洁生产标准-石油炼制业(沥青)》(HJ443-2008),该标准适用于以石油为原料用连续氧化法(养护沥青装置)和溶剂法。其中清洁等级三级为我国沥青生产能耗的基本水平,取表3中清洁等级三级的平均值代表我国沥青制炼的平均水平,得沥青生产的平均能耗为34kg标油/t原油,按能耗将标油换算为标准煤,1kg标油=1.43kg标准煤,由标准煤的排放换算标油的排放。文献[13]中采用上述过程法,收集并计算得到我国70余类相关原材料和施工机具设备的能耗与排放清单,为沥青混凝土路面的LCA评价奠定了数据基础。3.3计算软件计算采用由上海市城市建设设计研究总院编制的《沥青路面建设期能耗与碳排放计算软件》软件(软件著作权号:2013R11L142356)。该软件由网络服务器、数据处理后台和输入页面组成,输入页面为网页形式,目前可供局域网用户进行使用,后台处理器为EXCEL软件,结果以EXCEL文件形式输出,清单数据主要来源于文献[13]。

4计算结果与分析

4.1典型结构与材料组合的能耗、碳排放分析

将路面结构和材料参数输入软件中,各结构层在生产、运输和施工阶段的能耗与碳排放。典型沥青混凝土路面结构中沥青混凝土面层由上至下建设能耗占比分别为8.6%、11.2%和15.6%,基层由上至下能耗占比分别为27.9%、23.7%和11.9%,其中水稳碎石上基层能耗占比最大,基层材料能耗与碳排放整体占比约62%,面层材料占比约38%,层间材料能耗占比最小约1.4%,如图2所示。路面各层在碳排放占比方面与能耗占比分布相似,但基层材料尤其是水稳碎石材料的碳排放占比明显高于其能耗占比,水稳碎石基层的碳排放占比高达65%,表明以水泥为结合料的半刚性基层材料是沥青混凝土路面建设期碳排放的主要来源,如图3所示。各阶段能耗与碳排放分布分析,原材料生产阶段的能耗与碳排放占建设期能耗与碳排放的比例分别为65.0%和77.0%,施工阶段占比分别为27%和18%,运输阶段的能耗与碳排放占比最小,分别为8%和5%,如图4和图5所示。说明原材料生产期间的能耗与碳排放是沥青混凝土路面建设期能耗与碳排放的主要组成部分。而在原材料生产阶段能耗与碳排放占比最高的是水泥,能耗占比为57.1%,碳排放占比达到73.4%,而集料和沥青类结合料在这两项指标中的占比分别为17.2%、25.7%以及10.5%、16.1%。水泥生产期能耗与碳排放,在沥青混凝土路面建设期占比分别达到37.1%和56.6%,水泥掺量是影响半刚性基层沥青混凝土路面能耗与碳排放的关键因素。根据路面结构设计寿命,算得路面结构承载标准荷载每百万轴次作用的能耗为84.9GJ和9.9t碳排放。

4.2不同环保沥青混凝土路面技术下能耗与碳排放的比较分析

将路面结构层材料的能耗与碳排放换算为1cm厚3.75m宽和1000m长的单位体积下的能耗与碳排放,结果见表6。单位体积下路面材料的能耗随层位降低而下降,与材料的性能和费用成正比。其中SBS改性沥青混合料的能耗达到70.7GJ,是各类材料中最高的,其能耗与碳排放高出普通热拌沥青混合料约15%,主要是因为SBS改性剂的生产,具有高能耗与高排放的特征以及成品SBS改性沥青在生产和施工中存在二次加热。水稳碎石的单位体积能耗低于沥青混凝土,而6%水泥掺量的水稳碎石单位体积碳排放则高于SBS改性沥青混凝土,达6.1t,相比4%水泥掺量其能耗与碳排放增加约30%,能耗增加约23.2%,进一步说明水泥掺量是影响水稳碎石能耗与碳排放的主要因素。选择三类对与减少路面能耗与排放具有明显效果的材料和技术进行分析,分别是:沥青混合料温拌技术、沥青混合料再生技术以及替代部分水泥的脱硫石膏水稳碎石。分析设定:(1)温拌技术,集料加热、沥青加热温度相比热拌混合料降低30℃[14];(2)再生技术,以旧料替代集料及部分沥青,不添加再生剂,旧料总量为30%,分别替代29%的集料及1%的沥青,旧料往返运距为20km,考虑旧料破碎加工;(3)脱硫石膏水稳碎石,以7%的脱硫石膏替代2%的水泥及5%的细集料,脱硫石膏往返运距为20km。算得上述材料或技术单位体积材料建设期能耗与碳排放,见表6。(1)温拌技术:沥青混合料温拌能耗降低约5.2~5.3GJ,碳排放减少约0.4t,能耗与碳排放降幅分为7.5%~8.6%和6.7%~8%。(2)再生技术:再生混合料能耗降低约5.6GJ,碳排放建设约0.5t,降幅分为9.3%和10%,另计算,当旧料往返运输量相比集料多133km·t时,能耗优势消失,当旧料往返运输量相比集料多160km·t时,碳排放优势消失,考虑旧料弃置的运输时,在上述技术基础上增加旧料运输距离。(3)温拌+再生技术:由表6可见,两种技术同时使用时形成节能减排的叠加效果。(4)脱硫石膏稳定碎石:能耗降低3.2GJ,降幅约9.6%,碳排放减少1.2t,降幅约25.5%。三种技术中,脱硫石膏水稳碎石的环境友好性最好,尤其是对碳排放的减少起到良好效果。再生技术需考虑旧料运输的距离,当旧料弃置的运距大于旧料利用的运距可认为旧料利用是有效的。