欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

电路设计论文大全11篇

时间:2023-03-07 15:02:10

电路设计论文

电路设计论文篇(1)

1.1设计理论本文设计一个108位前导0计数器电路,采用2位分组的并行计数算法,电路设计原理如下:如图2所示,前导0计数电路将数据位宽平分为高半位和低半位两个部分,然后分别对两部分前导0个数进行计算,在下一级计数逻辑对上面两个计数器结果进行汇总.当n=2时,相当于4位前导0计数电路;当n>2时,相当于2n位前导0计数电路.

1.24位前导0电路设计如图3所示,Count[1:0]可以表示Data[3:0]不全为0时前导0个数;当Data[3:0]全为0时,前导0的个数为4,Count[1:0]最多也只能表示3,因此需要Z信号作为Count的拓展位[4].当Data[3:0]全为0时,前导0个数是4,拓展位Z=1,count[1:0]=2′b00,Z与Count[1:0]组成3位二进制计数值,为3′b100,正好可以表示Data[3:0]全为0时前导0的个数4.

1.38位前导0电路设计8位前导0电路是在两个4位前导0得出的计数结果后再做一次选择,对前面两个4位前导0的计数结果进行汇总.8位前导0的电路结构如图4所示.图4中,左上方电路计算高4位前导0个数,右上方电路计算低4位前导0个数.当高4位全为0时,则需将高4位前导0个数与低4位前导0个数相加;当高4位不全为0,则只需输出高4位前导0个数即可.当Data[7:0]不全为0,Count[2:0]即可表示前导0的个数;当Data[7:0]全为0,则Count[2:0]=3’b0,Z=1,构成二进制1000可以表示成8个0.从8位前导0电路结构,再结合4位前导0电路结构,由此找出前导0电路设计规律,为108位前导0电路设计提供结构的拓展.将8位前导0电路结构进行模块层次化,如图5所示.图5所示,浅灰色模块(四端口模块)是1个NR2D和1个INVD,深灰色模块(三端口模块)是1个AN2D,上一级的白色模块是3个MUX2D,下一级白色模块(五端口模块)是5个MUX2D.在大位宽前导0电路设计中,每向下增加一级模块,模块的个数就会增加一倍,白色模块的MUX2D就会增加2个,浅灰色和深灰色模块的逻辑单元不变.

1.4108前导0电路设计将64位、32位和12位这三个前导0电路进行拼接,组成的108位前导0电路结构如图6所示.如图6所示,从上到下分别是第一级模块、第二级模块、第三级模块、第四级模块、第五级模块、第六级模块、第七级模块.各个模块的内部逻辑电路如图7所示,其中白色模块n(n≥2)是指模块的级数。

2电路优化

2.1Z信号树逻辑优化图6中深灰色模块(三端口模块)是Z信号树逻辑模块,Z信号树经过优化之后如图8所示.

2.2Count树逻辑优化图6中白色模块(五端口模块)构成Count树,Count树由MUX2D逻辑单元构成.由于MUX2D标准单元存在传输管,导致标准单元延时大,以及单元驱动能力弱的情况[5].因此需要将传输管逻辑单元优化成速度快、稳定性好的CMOS互补逻辑单元。将MUX2D传输管逻辑单元通过逻辑换算,使之成为互补的CMOS逻辑单元,可以有效提高Count树的计算速度和稳定性.根据Count树中白色模块(五端口模块)所处的模块级数,分奇偶两种情况分别进行逻辑换算和重组,优化之后的逻辑结构如图9所示.从图9发现,优化后的逻辑电路中有反相器存在,并且随着模块级数增加,反相器个数也在增加.因此有必要将反相器提取出来,以一个大尺寸的反相器来代替这些分散的反相器,这样既可以满足驱动的需要,也可以用来减少面积.于是进一步优化之后的电路结构如图10所示.

2.3单元尺寸优化在同一级有关联的相邻两个模块,由于扇出不同造成负载不一样,因而不同模块内部单元尺寸的调整顺序也不一样.108位前导0电路逻辑单元尺寸调整的顺序如图11所示.从图11可以看出,首先优化第1条路径的尺寸,按照阿拉伯数字依次增大的顺序,依次进行不同路径的模块单元尺寸调整,最后优化第13条路径.每条路径都是顺着箭头的方向,对各个模块依次进行单元尺寸的调整.

3性能比较

在108位前导0电路设计完成过后,提取电路设计的网表进行PT分析,通过PT分析获得到时序和面积结果.然后分别与传统前导0计数器的RTL级代码[6]进行DC综合的结果,以及8位分组的RTL级代码进行DC综合的结果进行比较,如表1所示.通过比较发现,传统前导0的RTL级代码进行DC综合的时序和面积都太大,相对而言8位分组前导0的RTL级代码进行DC综合的时序却要比它要好得多,这也是当前一直使用8位分组前导0的RTL级代码的原因.然而本文设计的2位分组的108位前导0电路,进行PT分析的时序比8位分组DC综合的时序少了19%,但面积却比8位分组的差了20%.由于计数器的运算速度对浮点加法的运算是至关重要的,在面积相差不大的情况下这个电路设计仍然是非常成功的.

电路设计论文篇(2)

100Hz频率计数器的主要功能是在一定时间内对频率的计算。在数字系统中,计数器可以统计输入脉冲的个数,实现计时、计数、分频、定时、产生节拍脉冲和序列脉冲。而本篇论文主要介绍了频率计数器的实现:系统以MAX+PULSLLII为开发环境,通过VHDL语言作为硬件描述语言实现对电路结构的描述。在VHDL语言中采用了一系列的语句,例如:if语句、case语句、loop语句等。这些语句对程序中的输入输出端口进行了解释,并给出实现代码和仿真波形。相关的一些关键词:100Hz;分频;计数;MAX+PULSLLII;VHDL;编译;仿真等。

前言

VHDL是超高速集成电路硬件描述语言(VeryHighSpeedIntegratedCircuitHardwareDescriptionLanguage)的缩写在美国国防部的支持下于1985年正式推出是目前标准化程度最高的硬件描述语言。IEEE(TheInstituteofElectricalandElectronicsEngineers)于1987年将VHDL采纳为IEEE1076标准。它经过十几年的发展、应用和完善以其强大的系统描述能力、规范的程序设计结构、灵活的语言表达风格和多层次的仿真测试手段在电子设计领域受到了普遍的认同和广泛的接受成为现代EDA领域的首选硬件描述语言。目前流行的EDA工具软件全部支持VHDL它在EDA领域的学术交流、电子设计的存档、专用集成电路(ASIC)设计等方面担任着不可缺少的角色。

数字频率计是数字电路中的一个典型应用,实际的硬件设计用到的器件较多,连线比较复杂,而且会产生比较大的延时,造成测量误差、可靠性差。随着复杂可编程逻辑器件(CPLD)的广泛应用,以EDA工具作为开发手段,运用VHDL语言。将使整个系统大大简化。提高整体的性能和可靠性。

本文用VHDL在CPLD器件上实现一种2b数字频率计测频系统,能够用十进制数码显示被测信号的频率,不仅能够测量正弦波、方波和三角波等信号的频率,而且还能对其他多种物理量进行测量。具有体积小、可靠性高、功耗低的特点。

目录

摘要………………………………………………………………………1

前言……………………………………………………………………2

目录……………………………………………………………………3

第一章设计目的………………………………………………………5

1.1设计要求……………………………………………………5

1.2设计意义……………………………………………………5

第二章设计方案………………………………………………………6

第三章产生子模块……………………………………………………7

3.1分频模块……………………………………………………7

3.2分频模块源代码………………………………………………8

3.3仿真及波形图…………………………………………………9

第四章计数模块………………………………………………………9

4.1.计数模块分析…………………………………………………9

4.2.计数模块源代码………………………………………………10

4.3计数模块的仿真及波形图……………………………………12

第五章显示模块……………………………………………………12

5.1七段数码管的描述……………………………………………13

5.2八进制计数器count8的描述…………………………………14

5.3七段显示译码电路的描述……………………………………15

5.4计数位选择电路的描述………………………………………16

5.5总体功能描述……………………………………………18

5.6显示模块的仿真及波形图………………………………19

第六章顶层文件…………………………………………………20

6.1顶层文件设计源程序…………………………………………20

6.2顶层文件的仿真及波形图………………………………………21

结语…………………………………………………………22

参考文献……………………………………………………23

致谢…………………………………………………………24

附件…………………………………………………………25

第一章设计目的

1.1设计要求

a.获得稳定100Hz频率

b.用数码管的显示

c.用VHDL写出设计整个程序

1.2设计意义

a.进一步学习VHDL硬件描述语言的编程方法和步骤。

b.运用VHDL硬件描述语言实现对电子元器件的功能控制

c.熟悉并掌握元件例化语句的使用方法

电路设计论文篇(3)

二、基于.Net的输电线路设计软件的特点

Microsoft公司的.NET框架是一种新的计算平台,它简化了在高度分布式Internet环境中的应用程序开发,考虑输电线路设计的网络计算及相关的信息管理,基于.NET框架的输电线路设计软件具有以下特点:(1).Net框架的程序设计语言具有语言无关性,可以实现跨语言编程和调用。对于输电线路设计软件设计图形接口、表格显示、文字处理等是非常重要的。同时也方便同其他的程序接口,如可以用VBA进行AutoCAD接口,同Excel和Word等进行交换,以及在Web上进行计算信息的及查询等。(2)输电线路设计软件参数众多,应当使用数据库技术管理系统数据。基于的数据库访问技术,更方便实现各种数据库的在线和脱机访问操作。(3)工程应用中要求对输电线路设计计算结果进行大量的图形化处理,传统的程序一般是基于AutoCAD进行图形开发,但程序算法需用其他语言如C++等,开发难度大。利用GDI+可方便实现图形的各种显示、预览和打印等。即便VBA用AutoCAD进行图形的二次开发,.Net下进行VBA的二次开发也很简单。对于各种计算功能则可以选择在.Net平台进行,而复杂的杆塔等图则通过VBA在AutoCAD实现,通过数据库关联。这种模式能兼顾两者的优点,并具有很好的灵活性和可扩展性。(4)输电线路的设计与施工计算功能多,数据关联大,图形显示较复杂,用C++编写开发难度较大,VB进行开发功能难于实现,选用C#.Net是一个很好的方案。(5)基于分布式的输电线路设计软件具有智能客户端的优点,方便离线应用和多用户的角色管理并可应用于网络应用中的工作流进行管理。

三、软件架构及算法

为满足中小设计单位对输电线路设计计算程序的要求,根据对输电线路设计与施工计算的算法特点,程序总体上由输电线路程序类构成,下面又分为输电线路计算类和输电线路界面类(接口)。输电线路计算类完成各个功能模块和中间计算结果的数据定义及计算,同时还包括数据库的相关处理。输电线路界面类则负责程序主界面、数据库界面、绘图的实现。基于.Net框架的输电线路设计计算软件构成如图1所示。各个类的作用如下:(1)输电线路计算类。输电线路计算类和界面类独立,包括输入数据类、输出数据类、特殊数据类等3个类完成气象区定义、导线数据定义、特殊计算数据定义、计算结果输出类(如比载、临界档距、控制条件、应力、弧垂等)。采用该方法将输电线路的数据根据具体工程需要进行组织,便于面向对象的方法进行编程,同时方便通过数据库接口。综合程序计算类SdjsClass。这是整个程序的核心模块,主要包括比载计算、临界档距计算、临界档距判断、控制参数计算和应力计算、方程求根程序;由于这些任务是输电线路计算的基础部分,所以将其单独划分为一个计算类,方便其他的模块(组件)调用,这个模块中以临界档距判断和控制参数计算最为关键。特殊程序计算类。这是程序的另一个主要的模块,完成25个子程序功能的实现,数据定义包含在TSdDataClass中,各个计算模块具有相对独立性。数据库类。包括输入参数数据库类,该类完成输入参数的数据库定义、数据库操作,如记录填充、查询、添加、删除等。输出结果数据库类,该类完成输出结果的有关数据库操作,如输出结果更新操作。数据库采用SQLServer数据库,用进行访问。曲线绘图类。由于输电线路设计计算程序需要绘制大量曲线和图形,如应力曲线、安装曲线、弧垂曲线等。该类完成通用的曲线绘制方法,简化软件结构。图2是软件采用GDI+绘制的耐张绝缘子串倒挂临界曲线图及判断结果。如果考虑用AutoCAD进行绘制相关图形,这样更符合现场工程应用,则可以利用VBA或其他二次开发工具进行绘图或采用绘图转换插件技术。(2)输电线路界面类。该类完成输电线路界面的显示和绘图的实现,界面类相对独立,调用计算类的相关数据和计算方法。进行曲线绘制和其他图形绘制时采用.Net框架下的GDI+技术。(3)分布式网络应用类。该类以接口的形式存在于程序中,以充分利用.Net的网络应用功能,可实现输电设计与施工的信息管理。同时其信息管理采用智能客户端的工作方式。

四、功能及算法特点

.Net平台上开发输电线路设计软件的功能主要集中在相关的设计计算上。功能上应涵盖输电线路设计和相关的设计与施工校核。输电线路设计与施工计算和校验功能包括:输电线路应力及弧垂综合计算;导线最大弧垂判断;代表档距计算子程序;地线最大使用应力计算;有高差档的应力和弧垂计算子程序;悬挂点不等高连续档的应力和弧垂计算;线路进出线档(含施工与竣工)计算;线路中孤立档计算;防振锤安装距离计算;直线杆塔风偏角临界曲线;导(地)线上拔临界曲线;导线悬挂点应力临界曲线;耐张绝缘子串倒挂临界曲线;悬垂绝缘子串机械强度验算;导线悬垂角校验;最大允许档距计算;K值曲线及模板曲线计算;连续倾斜档施工紧线时应力和弧垂计算;垂直档距、极限档距与允许高差计算;档距中有集中荷载时的应力和弧垂计算;衰减系数结求断线张力一解析法。数据库功能。典型气象参数和导线参数查询,自定义参数输入,中间计算结果查询等数据库参数管理功能。在输电线路设计算法上,为了使计算的理论依据更加严密,计算步骤更加明确易懂,计算结果更加准确实用且便于计算机编程实现,对传统的[17]和通常见诸文献的某些内容进行了大幅度改进,比如:避雷线最大使用应力的确定采用了更严密的算法[18-19];对导线悬挂点应力的校核方法进行了更准确合理的计算[20];对连续倾斜档施工紧线时应力计算方法进行了特殊处理,使之更方便计算机处理;对线路进出线档计算中临界档距的分析计算与判断采用了新方法;对等高和不等高时的孤立档和连续档的临界档距分析计算与判断统一为一种模式进行处理等等。这些算法经过工程实际应用其正确性得到了证实。图3是弧垂应力与安装曲线综合计算的界面及计算文本结果。

电路设计论文篇(4)

EFT/B干扰信号在线路传导过程中,其中的共模干扰信号频率高,且干扰幅度大,对设备的影响较大,差模信号频率低,干扰幅度小,对设备的影响也较小,所以针对高频干扰信号较强这一情况,我们的滤波电路设计为低通滤波电路,见图1。图中,C1和C2电容为差模滤波电容,主要是为了滤除差模信号,为了防止在通电的瞬间产生较大的冲击电流,此电容选用不宜过大。C3和C4为共模滤波电容,和共模扼流圈一起,共同组成共模滤波电路滤除电源线和地线之间的共模干扰。

L1为共模扼流圈(图2),采用铁氧体做磁芯,双线反向并绕,由结构特点,对中高频的共模干扰信号呈现很大阻抗,抑制中高频共模信号通过,达到滤波的目的。理想的共模扼流圈对差模干扰信号本无抑制作用,但实际上绕组线圈之间存在的间隙,也会产生差模电感,对差模干扰信号也有一定的抑制作用。另外共模电感还可以抑制本身不向外发出电磁干扰,避免影响其他设备电路工作。共模扼流圈上的电感为储能元件,在抑制传导性干扰上有明显作用,但是电感本身的适用频率一般不高于50MHz,所以对高于50MHz的超高频干扰信号,我们在输入信号线加铁氧体磁环来抑制超高频干扰。

铁氧体磁环是一种很常用的滤波材料,它本身属于能量转换器件,低频信号通过时,铁氧体磁环不会影响数据和有用信号的传输,但高频信号通过时,铁氧体磁环会大大增加阻抗,把高频干扰转换为热量消耗掉。实验证明,铁氧体的确对滤波电路的滤波效果产生了非常积极的作用。根据上面的设计方案,我们用通过试验做一下验证。试验中,EFT/B信号U=4KV,分别注入L线和N线,得数据如表格1。由表格1的实验数据,我们可以得出,滤波器对EFT/B干扰信号有很明显的抑制效果,不管是差模部分还是共模部分均取得满意效果。

电路设计论文篇(5)

2驱动电路设计

2.1光纤发送电路由DSP发出的PWM信号先通过RC滤波和施 密特触发器整形后送给后面的光纤发送电路,转换为光信号,如图3所示。RC低通电路的参数如图3所示,截止频率fp=1/2πR1C1=6.8MHz,可滤除PWM波的高频干扰,二极管D1、D2将电平钳位在0V或5V,反相施密特触发器74HC14输出传递延迟为几十ns。二输入与非门SN75452的目的是为增强驱动能力。光纤发送、接受器分别采用AVAGO的HFBR1521和2521,这对组合能实现5MBd的传输速率下最大20m的传输距离。

2.2驱动转接电路驱动转接电路接收光纤传递过来的PWM波信号,将光信号转换为电信号,然后分成两路送给并联的两个IGBT的驱动器。图4为驱动转接电路的部分原理图。为了防止IGBT直通[7],要求IGBT上、下管驱动信号不能同时为高电平。驱动转接电路将输入的两路信号PWM-A,PWM-B(对应IGBT上、下管驱动信号,低电平有效)其中一路信号做“非”处理然后与另一路信号做“与非”处理,这样,当驱动转接电路输入的两路PWM信号同时为低电平时,驱动转接电路输出PWM信号为低电平(高电平有效),IG-BT上、下管均关断而不会直通。IGBT发生故障时,如过流、短路和驱动器电源欠压等,驱动器会反馈故障信号给驱动转接电路(图4中的SO1、SO2)。在驱动转接电路中将PWM信号与IGBT故障反馈信号SO(低电平有效)做“与”处理,这样当驱动器检测到IGBT故障时,驱动转接电路会封锁PWM信号输出(输出低电平),及时关断IGBT。同时故障信号经驱动转接电路、光纤发送电路反馈给DSP,DSP对其处理后发出相应保护指令。

2.3驱动器电路

2.3.1输入信号处理2SP0320T2A0是基于CONCEPT公司的SCALE-2芯片组的驱动器。该驱动器采用脉冲变压器隔离,通过磁隔离把信号传到高压侧。根据脉冲变压器一次侧二次侧,芯片分为原方和副方。原方芯片有两个重要的特点:①芯片带宽很高,可以响应极高频的信号;②芯片的两个脉冲信号INA、INB输入跳变电平比较低,虽具有施密特特性,可是若噪声超过这个数值,驱动器也能响应。在SCALE-2输入芯片中,一般不使用窄脉冲抑制电路。但是若驱动器前端脉冲信号进行长线传输时,鉴于上述噪声干扰,窄脉冲抑制电路非常必要,然后再经施密特触发器CD40106,可将信号跳沿变得陡峭。门电路要就近接入INA、INB脚,如图5所示。为提高抗干扰能力可以在接收端放置一数值较小的下拉电阻,为提高输入信号的信噪比则可在输入侧配置电阻分压网络提高输入侧的跳变门槛,例如本来输入电压门槛分别为2.6V和1.3V经电阻R1=3.3kΩ和R2=1kΩ提高到了11.18V和5.59V。

2.3.2报错信号的处理报错信号SO管脚直接连到ASIC中,其内部为漏极开路电路,对噪声比较敏感,且连线越长,对噪声越敏感。对SO信号的处理有以下的方法:(1)SO信号必须有明确电位,最好就近上拉;(2)SO信号经过长线传输时,可以配合门电路,提高电压信号抗干扰能力,且接收端配合阻抗合适的下拉电阻;(3)SO接10Ω小电阻,再用肖特基二极管做上下箝位保护,控制器端用电阻上拉。如图6所示对应上述的第2种,虚线表长线传输。

2.3.3IGBT短路保护当IGBT发生短路时,短路电流会在短时间内图6报错信号处理达到额定电流的5倍~6倍[8],此时必须关断IG-BT。否则会造成IGBT不可恢复的损坏,因此为保护功率器件,需要设计保护电路。短路检测一般用电阻或者二极管,检测功率器件C、E的饱和压降,图7则为二极管检测电路,当IGBT发生短路时,集电极电位上升,二极管截止,VISO通过R向C充电至参考电位,相应的比较器输出翻转,从而检测到短路状态。式中:VGLX为驱动器的关断电压,2SP0320T-2A0关断电压为-10V,C的值推荐在100pF~1nF,R的值推荐在24kΩ~62kΩ。驱动器短路保护原理如图8所示(由电阻Rvce检测短路)。其中VISO、VE、COM是由芯片内部将副边输出25V电源处理出来的端口。VISO、VE之间15V,是稳压的,COM、VE之间-10V,是不稳的。当IGBT导通时,B点电位从-10V开始上升(内部mosfet将B点电位箝在-10V),IGBT集电极电位开始下降至Vcesat(2V左右),最终B点电位也达到Vcesat;当IGBT短路后,IGBT会退出饱和区,此时A点电位(集电极)会迅速上升到直流母线电压,A点通过电阻向B点充电,由二极管钳位,B点电压在15V左右。经过一段时间后(极短的时间),B点电位上升到参考电压C点,比较器翻转,IGBT被关断。参考电压通过电阻R2来设置,VREF=150μA•R2。由于密勒电容的存在,当IGBT短路时,门极电位会被抬升,相应短路电流会增大。门极钳位电路可以将门极电位钳住,以确保短路电流不会超过规定的范围,一般有俩种方法:①G和E之间接一个双向的TVS。②门极直接接一个肖特基二极管将门极钳位在15V。IGBT发生短路时,此时关断管子di/dt会很大,电路中的杂散电感会感应出很高的尖峰电压或较大的dv/dt,关断过压值可通过Vtr=Lsdi/dt计算,Ls表杂散电感,这些都可能损坏IGBT。有源钳位电路[9]则可以钳住IGBT的集电极电位,当集电极-发射极电压超过阈值时,部分打开IGBT,从而令集射电压得到抑制。有源钳位电路一般在发生故障时才会动作,正常时不动作,因为在器件正常关断时产生电压尖峰不太高,但过载和发生短路时,此时关断管子会产生非常高的电压尖峰。最基本的有源钳位电路,只需要TVS管和普通快恢复二极管即可构成,但存在TVS管功耗大和钳位效果不好等缺点,基于SCALE-2设计的AdvancedActiveClamping电路改进了这些缺陷,钳位的准度及电路的有效性大大提高,可参考文献[10]。

3实验波形与分析

将设计出IGBT驱动电路应用在前面所述500kW光伏逆变器上。我们用示波器分别测量一路PWM信号光纤发送板的输出波形和光纤转接板的输入波形,如图9(a)所示,测量光纤转接板输出波形和IGBT驱动器输出波形,如图9(b)所示。同一桥臂上下管的驱动信号如图9(c)所示。可以看出,该驱动电路信号传输延迟小,跳沿陡峭,信号无失真,说明其抗干扰能力强。上下管的脉冲之间明显有一死区时间,可防止桥臂直通。采用了该驱动电路的500kW光伏逆变器运行状况良好。我们测量了其约80%负载时并网电流波形,如图9(d)所示,电流波形为光滑正弦波,总谐波畸变率THD<2%。

电路设计论文篇(6)

2电路板设计

错误的布局布线不仅不会发挥保护电路的保护作用,还有可能引入其他干扰。TVS二极管应该尽量靠近I/O端口,接近干扰源,在干扰进入电路之前就滤除掉,避免干扰耦合到邻近的电路上。另外,PCB布线时应尽量采用短而粗的线,减小干扰对地通路上的阻抗。图2为不好的布局布线情况,图3为良好的布局布线情况。

3接口保护效果

保护电路增加前后,全自动引线键合机上的RS422接口在持续电子打火环境下的通信情况如图4所示。由图可以看出,没有保护电路时,在电子打火瞬间,正常通信线路上会产生接近10V的冲击电压,完全超出了接口可接受的-7~+7V共模电压范围,影响正常通信,严重时足以烧坏接口。在相同条件下,增加保护电路后,通信情况如图5所示。由图5可以看出,电子打火瞬间电路上的电压完全在-7~+7V范围内,正常通信不受影响,达到了保护电路的设计目的。

电路设计论文篇(7)

计算机高速数字电路设计技术的发展是电子设计领域一次新的突破,对计算机电子技术的发展有着极大的作用。但是,在现阶段计算机高速数字电路设计技术中却存在一定的问题。例如,信号线间距离对计算机高速数字电路设计的影响,一般情况下,信号线间的距离会随着印刷版电路密集度的增大而变化,越来越狭小,而在这个过程中,也会导致信号之间的电磁耦合增大,这样就不会对其进行忽略处理,会引发信号间的串扰现象,而且随着时间的推移会越来越严重。

1.2 阻抗不匹配的问题

阻抗是信号传输线上的关键因素,而在现阶段计算机高速数字电路设计的过程中,却存在信号传输位置上的阻抗不相匹配的现象,这样极易引发反射噪声,而反射噪声将会对信号造成一定的破坏,使得信号的完整性受到极高速数字电路设计是电子技术行业发展的重要结晶,通过多个电子元件组成,更是将电子技术发挥的淋漓尽致,而且,计算机高速数字电路技术的应用也极为广泛。但是,在实际的应用中,计算机高速数字电路设计技术却受到一些因素的影响,例如,信号线间距离的影响、阻抗不匹配的问题、电源平面间电阻和电感的影响等,都会对计算机高速数字电路技术的运行效率产生影响,要提升计算机高速数字技术的应用效率,必须解决这些影响因素,对此,本文主要对计算机高速数字电路设计技术进行研究。摘要大的影响。

1.3 电源平面间电阻和电感的影响

计算机高速数字化电路设计技术是根据实际的情况,利用先进的电子技术设计而成,在诸多领域都得到广泛的应用。现阶段计算机高速数字电路设计中,由于电源平面间存在电阻和电感,使得大量电路输出同时动作时,就会使整个电路产生较大的瞬态电流,这将会对极端级高速数字电路地线以及电源线上的电压造成极大的影响,甚至会产生波动的现象。

2计算机高速数字电路技术的研究分析

2.1 合理设计,确保计算机高速数字电路信号的完整性

通过以上的分析得知,现阶段计算机高速数字电路设计技术中,由于受到阻抗不匹配的影响,对电路信号的完整性也造成一定的影响,因此,要对计算机高速数字电路技术进行合理的设计,确保计算机高速数字电路信号的完整性。主要分为两方面研究,一方面是对不同电路之间电路信号网的传输信号干扰情况进行研究,也就是以上所提到的反射和干扰的问题,而另一方面,要对不同信号在传输的过程中,对电路信号网产生的干扰情况进行分析。计算机高速数字电路在运行的过程中,会受到阻抗不相匹配的因素而影响到电路信号的传输效率,而且,现阶段计算机高速数字电路运行的过程中,阻抗很难控制,经常会出现阻抗过大或过小的现象,都会对电路信号传播的波形产生一定的干扰,从而对计算机高速电路传输信号的完整性产生直接的影响。为了避免这类情况的发生,要对计算机高速数字电路设计技术展开研究,从正常理论来看,高速数字电路设计难以使电路与临街阻抗的状态相互符合,可以对计算机高速数字电路设计技术进行改进,保持系统处于过阻抗状态,这样就能保证计算机高速数字电路设计不会受到阻抗不等的状态而影响到计算机高速数字电路信息传输的完整性。

2.2 对高速数字电路电源进行合理设计

电源是计算机高速数字电路技术的重要组成元件,通过以上的分析得知,计算机高速数字电路设计中,由于受到电源平面间电阻和电感的影响,使得电源运行过程中会出现过电压的故障,也就是电源的波形质量受到影响,严重影响到计算机高速数字电路运行的可靠性。从理论上来看,如果高速数字电路设计中,电源系统中不存在阻抗的话是电路设计最理想的状态,这样整个信号的回路也不会存在阻抗耗损的问题,系统中的各个点的点位就会保持恒定的状态。但是,在实际中却不会存在这种理想状态,计算机高速数字电路系统运行的过程中,就必须要考虑到电源的电阻和电感因素,而要减少电源面的电阻和电感对电源系统的影响,就必须对其采取降低的处理措施。从当今计算机高速数字电路系统电源材质的分析了解到,电路系统中大多数都是采用大面积铜质材料,如果结合电源系统要求来分析的话,这些材料远远达不到计算机高速数字电路电源的标准要求,这样在系统正常运行的过程中势必会受到一定的影响,对此,要将所有影响因素进行综合性的考虑和研究,可以采用楼电容应用到电路中,这样可以有效的避免或降低电源面电阻和电感对系统的影响,从而有效的提高计算机高速数字电路系统运行的可靠性。

电路设计论文篇(8)

固态电源的基本任务是安全、可靠地为负载提供所需的电能。对电子设备而言,电源是其核心部件。负载除要求电源能供应高质量的输出电压外,还对供电系统的可靠性等提出更高的要求。

IGBT是一种目前被广泛使用的具有自关断能力的器件开关频率高广泛应用于各类固态电源中。但如果控制不当,它很容易损坏。一般认为IGBT损坏的主要原因有两种:一是IGBT退出饱和区而进入了放大区使得开关损耗增大;二是IGBT发生短路,产生很大的瞬态电流,从而使IGBT损坏。IGBT的保护通常采用快速自保护的办法即当故障发生时,关断IGBT驱动电路,在驱动电路中实现退饱和保护;或者当发生短路时,快速地关断IGBT。根据监测对象的不同IGBT的短路保护可分为Uge监测法或Uce监测法二者原理基本相似都是利用集电极电流IC升高时Uge或Uce也会升高这一现象。当Uge或Uce超过Ugesat或Ucesat时,就自动关断IGBT的驱动电路。由于Uge在发生故障时基本不变,而Uce的变化较大并且当退饱和发生时Uge变化也小难以掌握因而在实践中一般采用Uce监测技术来对IGBT进行保护。本文研究的IGBT保护电路,是通过对IGBT导通时的管压降Uce进行监测来实现对IGBT的保护。

采用本文介绍的IGBT短路保护电路可以实现快速保护,同时又可以节省检测短路电流所需的霍尔电流传感器,降低整个系统的成本。实践证明,该电路有比较大的实用价值,尤其是在低直流母线电压的应用场合,该电路有广阔的应用前景。该电路已经成功地应用在某型高频逆变器中。

1短路保护的工作原理

图1(a)所示为工作在PWM整流状态的H型桥式PWM变换电路(此图为正弦波正半波输入下的等效电路,上半桥的两只IGBT未画出),图1(b)为下半桥两只大功率器件的驱动信号和相关的器件波形。现以正半波工作过程为例进行分析(对于三相PWM电路,在整流、逆变工作状态或单相DC/DC工作状态下,PWM电路的分析过程及结论基本类似)。

在图1所示的电路中,在市电电源Us的正半周期,将Ug2.4所示的高频驱动信号加在下半桥两只IGBT的栅极上,得到管压降波形UT2D。其工作过程分析如下:在t1~t2时刻,受驱动信号的作用,T2、T4导通(实际上是T2导通,D4处于续流状态),在Us的作用下通过电感LS的电流增加,在T2管上形成如图1(b)中UT2D所示的按指数规律上升的管压降波形,该管压降是通态电流在IGBT导通时的体电阻上产生的压降;在t2~t3时刻,T2、T4关断,由于电感LS中有储能,因此在电感LS的作用下,二极管D2、D4续流,形成图1(b)中UT2.D的阴影部分所示的管压降波形,以此类推。分析表明,为了能够检测到IGBT导通时的管压降的值,应该将在t1~t2时刻IGBT导通时的管压降保留,而将在t2~t3时刻检测到的IGBT的管压降的值剔除,即将图1(b)中UT2.D的阴影部分所示的管压降波形剔除。由于IGBT的开关频率比较高,而且存在较大的开关噪声,因此在设计采样电路时应给予足够的考虑。

图2IGBT短路保护电路原理图

根据以上的分析可知,在正常情况下,IGBT导通时的管压降Uce(sat)的值都比较低,通常都小于器件手册给出的数据Uce(sat)的额定值。但是,如果H型桥式变换电路发生故障(如同一侧桥臂上的上下两只IGBT同时导通的“直通”现象),则这时在下管IGBT的C~E极两端将会产生比正常值大很多的管电压。若能将此故障时的管压降值快速地检测出来,就可以作为对IGBT进行保护的依据,从而对IGBT实施有效的保护。

2短路保护电路的设计

由对图1所示电路的分析,可以得到IGBT短路保护电路的原理电路图,如图2所示。在图2所示电路中IC4及其器件构成选通逻辑电路,由IC5及其器件构成滤波及放大电路,IC2及其器件构成门限比较电路,IC1及其器件构成保持电路。正常情况下,D1、D2、D3的阴极所连接的IC2D、IC2C及CD4011的输出均为高电平,IC1的输出状态不会改变。假设由于某种原因,在给T2发驱动信号的时候,H型桥式PWM变换电路的左半桥下管T2的管压降异常升高(设电平值为“高”),即T2-d端电压异常升高,则该高电平UT2-d通过R2加在D8的阴极;同时,发给T2的高电平驱动信号也加在二极管D5的阴极。对IC2C来说,其反相输入端为高电平,若该电平值大于同相输入端的门槛电平值的话,则IC2C输出为“低”。该“低”电平通过D2加在R-S触发器IC1的R输入端,使其输出端Q的输出电平翻转,向控制系统发出IGBT故障报警信号。如果是由于右半桥下管T4的管压降异常升高而引起IC2D输出为“低”,则该“低”电平通过D1加在R-S触发器IC1的R输入端,使其输出端Q的输出电平翻转,向控制系统发出IGBT故障报警信号。由IC5A和IC5C及其器件构成的滤波及放大电路将选通电路送来的描述IGBT管压降的电压信号进行预处理后,送给由IC5B构成的加法器进行运算处理。若加法器的输出电平大于由R22和R32确定的门槛电平,则会使R-S触发器IC1的R端的第三个输入端为“低”,也向控制系统发出IGBT故障报警信号。改变由R22和R32确定的门槛电平,就可以灵活地改变这第三路报警信号所代表的物理意义,从而灵活地设计保护电路。图2中的端子T4-d、T2-d,分别接在T4、T2的集电极上,T4-G、T2-G分别接IGBT器件T4、T2的驱动信号。在电路设计时应该特别注意的是,D8、D5、D9、D4必须采用快速恢复二极管。

3仿真及实验结果

电路设计论文篇(9)

2研究型实践教学模式的具体实施

2.1课程结构优化

指导学生接触各类资料,能够提出问题,进而解决问题以掌握知识、应用知识,完成对知识的一个探求过程;对实验内容进行适当调整和完善,使课程体系更全面更科学,更能贴近行业发展,更能体现学生的主动性。

2.2采用课堂讨论进行专题研讨的教学方法

在研究型实践教学模式中,师生互动有助于学生对基本概念、基本理论、基本方法的理解和掌握。根据课程需要,结合国内外的研究现状和发展趋势,采用与行业内吻合的实验软件,挑选合适的电路原型做仿真设计,并共同探讨电路的优化方案。

2.3专业资料查询能力培养

为学生提供研究资料或指导学生进行资料查询、整理,鼓励学生从图书馆、书店、网络等各种途径查阅文献资料,以充实自己的研究基础。提醒学生要对已收集的资料进行批判性的研究,去伪存真,指导学生从这些资料中总结、分析、解释与实践研究课题相关的理论、知识经验以及前人的研究成果。

2.4指导学生撰写专题论文(报告)

在研究型实践教学过程中,指导学生通过论文、调查报告、工作研究、分析报告、可行性论证报告等形式记录实践研究成果。在撰写论文时,要求学生要了解实践课题研究报告的一般撰写格式;要先拟订论文的写作提纲,组织好论文的结构,做到纲举目张;会用简练、严谨、准确的语言表达自己的思想,不追求文章的长短。指导学生开展专题电路讨论,由学生根据自己感兴趣的课题来查找文献资料,进行研究,完成电路设计和仿真,最后完成专题论文的撰写。

2.5鼓励学生参与课题研究

为调动学生参与科研创新活动的积极性,激发学生的创新思维,提高学生实践创新能力,鼓励学生参加老师的课题,锻炼学生的动手能力,培养“研究型”的思维模式。

3研究型实践教学模式对教师和学生的要求

3.1研究型实践教学模式对教师的要求

研究型实践教学模式的实施对任课教师提出了新的要求:一是要熟练地掌握课程的基础知识和内在结构,还要掌握与课程相关的专业基础知识和实践的基本技能;二是要掌握学科最新信息,不断更新知识,了解课程所涉及学科的最新动态和取得的最新研究成果;三是要熟练运用科学研究的方法和手段。这些都对教师提出了更高的要求。

电路设计论文篇(10)

在直流伺服控制系统中,通过专用集成芯片或中小规模的数字集成电路构成的传统PWM控制电路往往存在电路设计复杂,体积大,抗干扰能力差以及设计困难、设计周期长等缺点因此PWM控制电路的模块化、集成化已成为发展趋势。它不仅可以使系统体积减小、重量减轻且功耗降低,同时可使系统的可靠性大大提高。随着电子技术的发展,特别是专用集成电路(ASIC)设计技术的日趋完善,数字化的电子自动化设计(EDA)工具给电子设计带来了巨大变革,尤其是硬件描述语言的出现,解决了传统电路原理图设计系统工程的诸多不便。针对以上情况,本文给出一种基于复杂可编程逻辑器件(CPLD)的PWM控制电路设计和它的仿真波形。

1PWM控制电路基本原理

为了实现直流伺服系统的H型单极模式同频PWM可逆控制,一般需要产生四路驱动信号来实现电机的正反转切换控制。当PWM控制电路工作时,其中H桥一侧的两路驱动信号的占空比相同但相位相反,同时随控制信号改变并具有互锁功能;而另一侧上臂为低电平,下臂为高电平。另外,为防止桥路同侧对管的导通,还应当配有延时电路。设计的整体模块见图1所示。其中,d[7:0]矢量用于为微机提供调节占空比的控制信号,cs为微机提供控制电机正反转的控制信号,clk为本地晶振频率,qout[3:0]矢量为四路信号输出。其内部原理图如图2所示。

该设计可得到脉冲周期固定(用软件设置分频器I9可改变PWM开关频率,但一旦设置完毕,则其脉冲周期将固定)、占空比决定于控制信号、分辨力为1/256的PWM信号。I8模块为脉宽锁存器,可实现对来自微机的控制信号d[7:0]的锁存,d[7:0]的向量值用于决定PWM信号的占空比。clk本地晶振在经I9分频模块分频后可为PWM控制电路中I12计数器模块和I11延时模块提供内部时钟。I12计数器在每个脉冲的上升沿到来时加1,当计数器的数值为00H或由0FFH溢出时,它将跳到00H时,cao输出高电平至I7触发器模块的置位端,I7模块输出一直保持高电平。当I8锁存器的值与I12计数器中的计数值相同时,信号将通过I13比较器模块比较并输出高电平至I7模块的复位端,以使I7模块输出低电平。当计数器再次溢出时,又重复上述过程。I7为RS触发器,经过它可得到两路相位相反的脉宽调制波,并可实现互锁。I11为延时模块,可防止桥路同侧对管的导通,I10模块为脉冲分配电路,用于输出四路满足设计要求的信号。CS为I10模块的控制信号,用于控制电机的正反转。

2电路设计

本设计采用的是Lattice半导体公司推出的is-plever开发平台,该开发平台定位于复杂设计的简单工具。它采用简明的设计流程并完整地集成了LeonardoSpectrum的VHDL综合工具和ispVMTM系统,因此,无须第三方设计工具便可完成整个设计流程。在原理设计方面,本设计采用自顶向下、层次化、模块化的设计思想,这种设计思想的优点是符合人们先抽象后具体,先整体后局部的思维习惯。其设计出的模块修改方便,不影响其它模块,且可重复使用,利用率高。本文仅就原理图中的I12计数器模块和I11延迟模块进行讨论。

计数器模块的VHDL程序设计如下:

entitycounteris

port(clk:instdlogic;

Q:outstdlogicvector(7downto0);

cao:outstd_logic);

endcounter;

architecturea_counterofcounteris

signalQs:std_logic_vector(7downto0);

signalreset:std_logic;

signalcaolock:std_logic;

begin

process(clk,reset)

begin

if(reset=‘1')then

Qs<=“00000000”;

elsifclk'eventandclk=‘1'then

Qs<=Qs+‘1';

endif;

endprocess;

reset<=‘1'whenQs=255else

‘0';

caolock<=‘1'whenQs=0else

‘0';

Q<=Qs;

cao<=resetorcaolock;

enda_counter;

图2PWM可逆控制电路原理图

在原理图中,延迟模块必不可少,其功能是对PWM波形的上升沿进行延时,而不影响下降沿,从而确保桥路同侧不会发生短路。其模块的VHDL程序如下:

entitydelayis

port(clk:instd_logic;

input:instd_logic_vector(1downto0);

output:outstd_logic_vector(1downto0)

enddelay;

architecturea_delayofdelayis

signalQ1,Q2,Q3,Q4:std_logic;

begin

process(clk)

begin

ifclk'eventandclk=‘1'then

Q3<=Q2;

Q2<=Q1;

Q1<=input(1);

endif;

endprocess;

Q4<=notQ3;

output(1)<=input(1)andQ3;

output(0)<=input(0)andQ4;

enda_delay;

电路设计论文篇(11)

压阻效应于1865年由LordKelvin首先发现,现在这个原理广泛应用于传感器原理中。当传感器薄膜结构上的压敏电阻受到外界压力作用时会产生形变,使电阻率发生变化从而引起电信号的改变,这就是压阻式压力传感器的工作原理。由此可见,压敏电阻的变化与受到的压力大小和压阻系数有关。本文中的气压传感器是基于硅的压阻效应设计的,制备的气压传感器芯片结构截面图。传感器结构由一个单晶硅弹性薄膜和集成在膜上的4个压敏电阻组成,4个电阻形成了惠斯通电桥结构,当有气压作用在弹性膜上时电桥会产生一个与所施加压力成线性比例关系的电压输出信号。

1.2气压传感器制作工艺流程

整个流程主要是采用硅表面微加工工艺。与传统的压阻式压力传感器的加工方法相比,该工艺流程采用了外延单晶硅硅膜的工艺进行真空腔密封,这种方法可以克服传统的湿法刻蚀工艺的缺点,加工出的单晶硅膜具有很好的机械性能。①首先,对硅衬底采用各向异性干法刻蚀,刻蚀出一道道约5μm深的浅槽。然后采用各向同性干法刻蚀,使浅槽下方形成一个连通的腔。②采用外延工艺,在衬底上进行单晶硅外延,并利用外延的硅材料将浅槽完全封住,从而在下面形成一个接近真空的密封腔。外延工艺如下:温度为1135℃,采用的是H2,PH3等气体,外延时的真空度为80torr。③在对外延硅层的局部区域进行小剂量硼离子注入。该部工艺主要是为了制作压敏电阻,压敏电阻主要位于膜四边的中央。④对局部区域进行大剂量硼离子注入。该步工艺主要是要实现压敏电阻条之间的欧姆连接,并为压敏电阻的引出做准备。⑤在硅片表面生长一层氧化层及氮化层,用作绝缘介质层。⑥对氧化层和氮化层光刻并图形化,形成接触孔。⑦溅射金属层并光刻图形化,形成引线及压焊块。

2测试电路设计

此压阻式气压传感器,压敏电阻初始电阻值为163Ω,满量程输出电阻变化最大为9Ω,针对此微小阻值变化量,本文中设计了一款专用接口测试电路。该测试电路主要包括STM32系列单片机及ADS1247模/数转换模块和液晶显示模块。电路应用时将惠斯通电桥输出节点与测试电路连接起来,通过硬件和软件的结合实现外界气压信号的检测并转化为数字电信号进行输出,读数在LCD显示屏上进行显示,测试电路板的说明如图4所示,针对部分重要模块的电路设计在下文说明。

2.1电源电路设计

测试系统中需要用到3.3V和5V两种电压(选用的STM32单片机规定工作电压为2.0V~3.6V,ADS1247数/模转换模块模拟电源部分供电电压为5V),根据测试电路元件的需求,采用国产LM2940-5和LM1117-3.3两个稳压模块来进行电源供电的设计。

2.2ADS1247模/数转换电路设计

ADS1247是TI公司推出的一种高性能、高精度的24位模拟数字转换器。ADS1247单片集成一个单周期低通数字滤波器和一个内部时钟、一个精密(ΔΣ)ADC与一个单周期低通数字滤波器和一个内部时钟。内置10mA低漂移电源参考和两个可编程电流型数字模拟转换器(DAC)。通过程序设置,在输出电压裕度内,DACS可为外部提供多种强度的电流,分别为50μA、100μA、250μA、500μA、750μA、1000μA、1500μA。除此之外,ADS1247还具有一个可编程放大器(PGA),放大倍数可设置为1倍、2倍、4倍、8倍、16倍、32倍、64倍、128倍。

3气压传感器性能测试分析

气压传感器作为一种高空探测的工具,它的性能好坏直接影响到高空探测的准确性,针对本传感器结构进行测试并从数据中对气压传感器的灵敏度、线性度、测试精度进行了分析及拟合修正。