欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

裂缝控制论文大全11篇

时间:2023-03-10 14:51:43

裂缝控制论文

裂缝控制论文篇(1)

近年来地下空间的开发利用逐渐普遍,由于功能要求,地下室往往面积大,体量大,超过设置伸缩缝的最小间距。地下室砼因裂缝导致渗漏水的现象非常严重,有的甚至影响到建筑物的使用功能和安全。

一、开裂情况:

地下室侧壁开裂的情况比较多,裂缝宽度小于0.5mm、间距1—4m、长度有的贯通墙壁全高,侧壁两端附近裂缝较少,中部附近较多。

裂缝往往在砼浇筑的60天之内出现,随着时间的推移裂缝数量增多,部分裂缝加宽。尤其是在进入冬季气温骤变的时候。

二、裂缝原因分析:

1、直接原因:

砼结构裂缝产生的原因比较复杂,概括起来有两类原因,一种由外荷载引起的,因结构承载力不足而发生变形,另一种是结构因温差,收缩徐变,不均匀沉降等因素引起。据统计,在工程实践中,由后者(变形荷载)引起的裂缝约占80-85%,地下室砼裂缝大多数属于后者。

砼在浇筑后,由于水泥的水化作用,释放大量的水化热,因为砼构件表面与构件截面中部温差超过25℃就引起砼内部裂缝,构件表面温度和周围空气温差超过25℃,就引起构件表面裂缝。砼浇筑后温度提高,砼初期体积有微膨胀作用,以后温度下降体积急剧收缩。砼除了温度收缩外,还有较大的化学收缩和干燥收缩,砼早期(10天-15天)极限拉伸很低,这造成砼的早期裂缝。因砼的收缩,较高的弹性模量和早期低徐变,会使砼内部产生较大的拉应力,超过砼的极限拉伸,则是造成砼后期裂缝的主要原因。

砼在浇筑一个月左右,完成收缩40%。60天内完成收缩65%,20年后完砼收缩的98%。砼的收缩变形是一个初期大,以后逐渐减少的过程。

2、间接原因:

边界条件如地基和侧面土对砼构件的变形约束作用,砼构件的刚度差异,使砼变形不协调。

侧壁砼浇捣时地板刚度大,受到地板的刚度约束,早期形成压应力,后期砼温度下降,产生拉应力,当拉应力大于钢筋的抗拉强度时则出现裂缝。

砼变形与限制膨胀条件有关。当气温上升时,地板和底板砼因为温度升高而向外膨胀,侧壁和地板相互约束,在侧壁的外侧形成垂直裂缝,当地板和顶板受冷收缩时,侧壁内侧形成垂直裂缝。由于侧壁在边角部分受到的变形量比中部大,同时纵横侧壁的相互约束,因而侧壁两端附近裂缝小,中部附近裂缝多。

侧壁内有柱时,由于截面突变,刚度有差异,侧壁的变形受到柱的约束,往往产生应力集中,在离柱子1∽2m的墙体上易出现纵向收缩裂缝。

三、控制裂缝的措施

根据《砼规》,现浇钢筋砼地下室墙壁最大间距为20m(室外)、30m(室内或土中),而又同时说明了对下列情况,如有充分依据和可靠措施,伸缩缝最大间距可适当加大;

①砼浇筑采用后浇带分段施工。

②采用专门的预应力措施。

③采取能减少砼温度变化或砼收缩的措施。

当增大伸缩缝间距时,尚应考虑温度变化和砼收缩对结构的影响。

伸缩缝虽然是根本解决砼收缩裂缝的措施,也有许多缺点,主要是造价高,地下室不能连成整体,影响功能,伸缩缝的防水处理比较麻烦,防水效果并不理想,同时近几年来超长砼结构的无缝设计与施工技术不断实践与发展,且有许多成功的工程应用,取得良好的效益。

采取的主要措施有以下这点:

1、补偿收缩砼

即在砼中渗入UEA、HEA等微膨胀剂。例如用UEA膨胀剂,以10~20%等量取代水泥,拌制成补偿收缩砼,其限制膨胀率ξ2=0.02~0.05%,按公式α=µESξ2,可在砼中建立0.2~0.7MPa的预压应力,从而抵制砼在硬化过程中全部或大部分拉应力,以砼的膨胀值减去砼的最终收缩值的差值大于或等于砼的极限拉伸即可控制裂缝:ξ2–Sm≧ξp,使砼结构不裂。

2、膨胀带

由于砼中膨胀剂的膨胀变形不会与砼的早期收缩变形完全补偿,为了实现砼连续浇注无缝施工而设置的补偿收缩砼带,根据一些工程实践,一般超过60m设置膨胀加强带。

膨胀带要求设置在砼收缩应力发生最大部位,一般地板和侧墙长度方向的中间位置。对于超过普通砼伸缩缝设置间距的超长砼结构,要进行连续无缝施工可设置多条膨胀加强带。

作用:①膨胀加强带砼的设计强度常比相邻的砼设计强度提高5MPa-10MPa,从而提高膨胀加强带砼的抗拉强度,防止砼在此部位开裂。

②膨胀带内砼的膨胀剂应比带外其它砼掺量高一点,产生较大膨胀,而两侧砼的膨胀率较小,形成中部大两边小的膨胀区,从而补偿相应的收缩曲线,使任意长度可以不设伸缩缝。

做法:膨胀加强带宽2-3m,带的两侧布置中5mm的密孔钢丝网,将带内砼和带外砼分开,为的是不让砼中石子通过,钢丝网垂直布置在上下层(或内外层)钢筋之间,网两端分别绑扎在钢筋上。

膨胀带内增设10%水平温度加强钢筋。与膨胀带方向垂直布置,两端伸出膨胀带2m各与上下层(内外层)钢筋固定,配筋直径减小,间距加密。

由于设置膨胀带主要是为了避免砼早期收缩变形,故膨胀带的保留时间可为10—15天,这比传统后浇带缩短30天的工期。满足工程连续无缝设计施工的要求。

3、后浇带

后浇带作为膨胀加强带一样作为砼早期短时期释放约

束力的一种技术措施,较长久性变形缝已有很大的改进并广泛任用。

根据文献②:结构长度是影响温度应力的因素之一,但只在一方范围对温度收缩应力较为显著,因此设置后浇带是“先放后抗、以放为主”的主要技术措施。

后浇带的设计做法也各不相同。尤其是带内钢筋是否断开,有的不但钢筋连续,还做加强筋连接。带的宽度具体多少为宜各不相同,笔者认为:

①尽量减少穿越后浇带钢筋的总量,以尽可能释放砼的收缩应力。对于楼板内钢筋和侧壁,由于焊接或搭接施工比较方便均应作断开处理。由于梁钢筋连接焊接等施工比较困难,可以留一部分连续钢筋,尽量切断梁腹纵向钢筋和梁顶纵筋截断,保留梁底钢筋连续贯通。

②后浇带宽度内钢筋抗拉刚度EAs远比后浇带两侧砼的抗拉刚度EA小,拉伸变形将主要由后浇带宽度范围内的钢筋提供,对于钢筋全部截断的后浇带,理论上宽度仅有100mm就可以了,为施工方便常取800-1000mm,但对于钢筋连续的后浇带,尽可能增大后浇带的宽度。

③后浇带保留时间为42~60d,一般为60d,这样早期温差和砼收缩完成30—50%。

④材料:用高一等级的微膨胀砼封闭,并进行不少于15d的砼养护。

⑤位置:设在梁墙内力较小位置,后浇带间距为30~40m。后浇带可做成企口式,在浇砼前,必须凿毛清理干净。

4、提高钢筋砼的抗拉能力

砼的抗裂能力取决于砼的极限拉伸值,根据有关资料:混凝土的极限拉伸值与配筋有关。固此,砼应考虑增加抗变形钢筋,即增强对砼由于长期干缩和气温度化引起的热胀冷缩的抗变形能力。对于侧壁,增加水平温度筋,在砼面层起强化作用。选择冷轧带肋钢筋,冷轧扭钢筋,明显增强砼的抗裂能力。

在墙柱连接处设水平附加筋,附加筋的长度为1500∽2000mm,配筋率提高10%∽15%。

钢筋在保持总面积不变的情况下,根据直经小,钢筋布置间距密的方式选择钢筋,能减少裂缝的最大宽度。同时也要考虑砼易于振捣密实。

《砼规》规定:地下室等与土体直接接触的砼构件最大裂缝宽度充许值为0.2mm。当裂缝宽度为0.1~0.2mm,水进入砼与水泥产生反应,砼具有自愈能力。裂缝若控制在0.1mm以内时,则所配钢筋数量增多而不经济。

侧壁受底板和顶板的约束,砼胀缩不一致,可在墙体中部设一道水平暗梁抵抗拉力,水平构造筋放在竖筋的外侧,有利于控制墙体裂缝的发生。

5、施工措施

①优化砼配合比设计:通过试验优选合适的外加剂和掺合料,适当降低水灰比和减少水泥用量,选用水化热低的矿渣硅酸盐水泥,选用优质粉煤灰,砂和石含泥量要小,级配良好。

②砼应严格振捣密实,提高砼密实度。

③落实好砼浇筑后的养护措施,尽量做好保湿保温养护,既可使砼初期获得更高的强度,还可减少砼的温度应力与收缩应力,养护时间在14d以上。

④降低室外温差的影响。夏季施工时应尽量避免在烈日下浇筑楼板砼。降低砼的入模温度。地板垫层上干铺油毡作滑动层。地下室四周土要及时回填,且应分层夯实,既加强地下室顶板作为上部结构的嵌固部位,又可尽快避免室外温度变化对侧壁的影响。

四、工程实例

广州某住宅小区,地上为10栋6层的住宅,地下由一层地下室连成一个整体,长度150m,宽度95m,相当于大底盘多塔楼结构。

地下室未设伸缩缝,为了有效克服砼的收缩裂缝,在地下室钢筋砼结构中掺10%的HEA膨胀剂(内掺量),做成补偿收缩砼。

长边方向设3条后浇带,宽度方向设2条后浇带,后浇带沿住宅之间的道路位置,地下室底板、顶板和侧壁贯通设置。梁钢筋连续,板和侧壁钢筋断开,后浇带做成弯折线形,避免钢筋在一条直线上断开,保留时间为60天,封闭前把钢筋焊接。后浇带宽度为1.0m。为保险起见,预先在底板和侧壁后浇带设置止水带和多道外防水以加强防水。

顶板在室外道路部分,覆土1米厚,既可铺设设备管道,也作为顶板的保温隔热层。底板采用厚板形式,双层双向配筋。侧壁厚300,C30砼,适当加强了侧壁水平钢筋作为抗拉筋。采用严格的施工措施,加强振捣密实和养护,侧壁外及时回填土并夯实,工程建成后观测,地下室使用情况良好。

参考文献:

裂缝控制论文篇(2)

2.1全面分层浇筑方案。是将结构全面分成厚度相等的浇筑层,每层皆从一边向另一边推进浇筑,要求每层混凝土必须在下面一层混凝土初凝前浇筑完毕。采用该方案时,结构的平面尺寸不宜过大,否则混凝土强度(指单位时间内浇筑混凝土的数量)过大,造成施工困难。

2.2分段分层浇筑方案将结构适当分成若干段,每段再分若干层,逐层逐段浇筑混凝土,该方案适用于厚度不大而面积或长度较大的结构。(3)斜面分层浇筑方案。当结构长度较大而厚度不大时,可采用斜面分层浇筑方案。浇筑时混凝土一次浇筑到顶,让混凝土自然流淌,形成一定的斜面。这时混凝土的振捣应从下端开始,逐步向上,这种方案较适合泵送混凝土工艺,因为可免去混凝土输送管反复拆装。

3分析大体积混凝土裂缝产生的原因

3.1干缩裂缝。混凝土干缩主要和混凝土的水灰比、水泥的成分、水泥的用量、集料的性质和用量、外加剂的用量等有关。是混凝土内外水分蒸发程度不同而导致变形不同的结果:混凝土受外部条件的影响,表面水分损失过快,变形较大,内部湿度变化较小变形较小,较大的表面干缩变形受到混凝土内部约束,产生较大拉应力而产生裂缝。

3.2塑性收缩裂缝。塑性收缩裂缝一般在干热或大风天气出现,裂缝多呈中间宽、两端细,且长短不一,互不连贯状态。常发生在混凝土板或比表面积较大的墙面上,较短的裂缝一般长20~30cm,较长的裂缝可达2~3m,宽1~5mm。从外观分为无规则网络状和稍有规则的斜纹状或反映出混凝土布筋情况和混凝土构件截面变化等规则的形状,深度一般3~10cm,通常延伸不到混凝土板的边缘。

3.3沉陷裂缝。沉陷裂缝的产生是由于结构地基土质不匀、松软,或回填土不实或浸水而造成不均匀沉降所致。或者因为模板刚度不足,模板支撑间距过大或支撑底部松动等导致混凝土出现沉陷裂缝。特别是在冬季,模板支撑在冻土上,冻土化冻后产生不均匀沉降,致使混凝土结构产生裂缝。

3.4温度裂缝。温度裂缝多发生在大体积混凝土表面或温差变化较大地区的混凝土结构中。混凝土浇注后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升。而混凝土表面散热较快,这样就形成内外的较大温差。较大的温差造成混凝土内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。

4.对大体积混凝土裂缝采用材料控制技术

4.1水泥的合理选取。优先选用收缩小的或具有微膨胀性的水泥。因为这种水泥在水化膨胀期(1~5d)可产生一定的预压应力,而在水化后期预压应力部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。

4.2骨料的合理选取。选择线膨胀系数小、岩石弹性模量低、表面清洁无弱包裹层、级配良好的骨料,这样可以获得较小的空隙率及表面积,从而减少水泥的用量,降低水化热,减少干缩,减小了混凝土裂缝的开展。

4.3尽可能减少水的用量。混凝土具有双重作用,水化反应离不开水的存在,但多余水贮存于混凝土体内,不仅会对混凝土的凝胶体结构和骨料与凝胶体间的界面过度区间的结构发展带来影响,而且一旦这些水分损失后,凝胶体体积会收缩,如果收缩产生的内应力超过界面过度区间的抗力,就有可能在此界面区产生微裂缝,降低混凝土内部抵抗拉应力的能力。

5.加强混凝土的养护混凝土拌合物经浇筑捣密后,即进入静置养护期,其中水泥和水逐渐起水化作用而增长强度。在这期间应该设法为水泥的顺利水化创造条件,称混凝土的养护。水泥的水化要有一定的温度和湿度的条件。温度的高低主要影响水泥水化的速度,而湿度条件则影响水泥水化能力。混凝土如在炎热气候下浇筑,又不及时洒水养护,会使混凝土中的水分蒸发过快,出现脱水现象,使已形成凝胶状态的水泥颗粒不能充分水化,不能转化为稳定的结晶而失去了粘结力,混凝土表面就会出现片状或粉状剥落,降低了混凝土的强度,另外,混凝土过早失水,还会因收缩变形而出现干缩裂缝,影响混凝土的整体性和耐久性。所以在一定温度条件下混凝土养护的关键是防止混凝土脱水。

6.掺入外加剂与掺合材料提高混凝土耐久性

6.1粉煤灰。混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱集料反应,减少新拌混凝土的泌水等。这些诸多好处均将有利于提高混凝土的抗裂性能。但是同时会显着降低混凝土的早期强度,对抗裂不利。试验表明,当粉煤灰取代率超过20%时,对混凝土早期强度影响较大,对于抗裂尤其不利。

6.2硅粉。(1)抗冻性:微硅粉在经过300~500次快速冻解循环,相对弹性模量隆低10~20%,而普通混凝土通过25~50次循环,相对弹性模量隆低为30~73%.(2)早强性:微硅粉混凝土使诱导期缩短,具有早强的特性。(3)抗冲磨、控空蚀性:微硅粉混凝土比普通混凝土抗冲磨能力提高0.5~2.5倍,抗空蚀能力提高3~16倍。

6.3减水剂。缓凝高效减水剂能够提高混凝土的抗拉强度,并对减少混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形等性能起着极为重要的作用。

裂缝控制论文篇(3)

在混凝土楼板的浇筑过程中,由于施工人员的长时间振捣,结果使混凝土中的石子﹑骨料下沉,浆体上浮,造成作业面砂浆层。这就使它的干缩性能增大,等到水分蒸发后,混凝土失去水分而变得更加干燥,从而使毛细孔收缩或沉缩引起了混凝土楼板的龟裂。(1)由于在施工中各工种操作人员没有相互配合,人为地将楼板钢筋的成品(板面负筋)踏坏﹑压弯,出现了支座的负弯矩,在浇筑混凝土后便出现了板面裂缝。(2)在施工中由于要提前预埋线管,而且加上预埋线管外表光滑,混凝土经过振捣,石子滑落,水泥砂浆浮于预埋线管上层,这就会使混凝土楼板沿管线预埋方向产生干缩裂缝。(3)施工方为了赶超进度,节约替换模板和支撑系统,当混凝土没有达到规定的强度标准时,操作人员就过早地将模板拆除;或者在混凝土还没有完全终凝后,就在上面加压重荷,甚至上人作业等。这都会使混凝土楼板的弹性发生变性,破坏混凝土楼板结构,从而出现裂缝。(4)混凝土浇筑后,还有大量的水化热量得不到散发,在内部就产生了温度应力。由于混凝土抗拉强度低,容易被温度引起的拉应力拉裂,从而产生温度裂缝,这就给施工后的养护带来了难度。如果在楼板养护时没有采取覆盖或覆盖措施不到位,养护时间不够,也会使楼板产生裂缝。

因此,民居工程的施工中应从以下几方面来控制商品混凝土楼板裂缝的发生。施工方要选择有资质的商品混凝土生产厂家,根据混凝土强度等级﹑和易性及实验室配合比的要求,确定各种标号混凝土配合比,严格按照配合比控制水灰比和水泥用量;选择级配良好的石子,减少孔隙率以减少收缩量;严格控制砂子的含泥量﹑泥块含量,采用中粗砂,避免使用过量粉砂。同时,要求严格审查出厂合格证及设计配合比报告,严格控制混凝土的坍落度,以便提高它的抗裂性能。

先进合理的施工技术和方法,不仅能降低建筑成本,提高工作效率,还能有效控制混凝土楼板的裂缝。(1)梁、柱浇筑完成后,制定混凝土楼板施工方案,并对楼板模板支撑系统编制专项施工方案。要求模板及支撑系统除满足强度要求外,还必须有足够的刚度和稳定性;而且根据工期要求要准备充足的模板,以确保按标准﹑按要求拆除模板。梁、板、柱宜采用同一标号混凝土。(2)混凝土浇筑前,应将模板用水浇湿润,避免模板干燥而吸收水分。同时,要严格控制振捣时间,以防止混凝土产生不均匀沉降收缩,使楼板出现裂缝。(3)现浇楼板中的预埋线管必须布置在底部钢筋网片之上,交叉布线处可采用接线盒集中钢筋网带,严禁将水管水平埋设在现浇混凝土楼板中;而且在埋管集中的地方,切不可管与管紧密相列,要留有适当的间距。(4)现浇混凝土楼板浇筑完毕后,应在12h内进行覆盖并作保湿养护,12h后应浇水养护,养护时间不得少于1个星期。对于掺用缓凝型外加剂的混凝土,养护时间不得少于2个星期。同时,对于已浇筑完毕的混凝土楼板,严格禁止人或重物加荷其上,以防止浇筑混凝土楼板结构的人为破坏,从而导致裂缝的出现。综上所述,混凝土楼板裂缝是混凝土结构中普遍存在的一种现象,它的出现不仅会降低居民楼层与层之间的抗渗能力,影响居民的正常生活,还会降低楼板的耐久性,影响整个居民楼的使用寿命。因此,建筑施工单位必须严格加强混凝土原材料的质量控制、混凝土生产质量控制和现浇混凝土楼板施工质量管理,民居工程中混凝土楼板的裂缝就能得到有效的控制。

本文作者:柴燕仑工作单位:大同煤矿集团公司企划部

裂缝控制论文篇(4)

1.前言

随着建筑技术的不断发展,泵送混凝土施工技术得到普及和应用。泵送混凝土不仅能改善混凝土的施工性能,对薄壁密筋结构少振捣或不振捣施工,具有提高抗渗性、改善耐久性特点。同时,泵送混凝土骨料级配的限制,胶凝材料的大量使用,产生大量的水化热,造成温度裂缝普遍存在,在一定程度上影响结构的抗渗性和耐久性,应当引起足够的重视。为此,现就温度裂缝产生机理及如何有效控制裂缝的出现和发展,谈几点粗浅的认识。

2.温度裂缝产生机理及特征

混凝土浇筑后,在硬化过程中,水泥水化产生大量的水化热。由于混凝土的体积较大,大量的水化热聚积在混凝土内部而不易散发,导致内部温度急剧上升,而混凝土表面散热较快,使得混凝土结构内外出现较大的温差,这些温差造成内部与外部热胀冷缩的程度不同,使混凝土表面产生一定的拉应力。当拉应力超过混凝土的抗拉强度极限时,混凝土表面就会产生裂缝,这种裂缝多发生在混凝土施工中后期。在混凝土的施工中当温差变化较大,或者是混凝土受到寒潮的袭击等,会导致混凝土表面温度急剧下降,而产生收缩,表面收缩的混凝土受内部混凝土的约束,将产生很大的拉应力而产生裂缝,这种裂缝通常只在混凝土表面较浅的范围内产生。

温度裂缝的走向通常无一定规律,大面积结构裂缝常纵横交错;梁板类长度尺寸较大的结构,裂缝多平行于短边;深入和贯穿性的温度裂缝一般与短边方向平行或接行,裂缝沿着长边分段出现,中间较密。裂缝宽度大小不一,受温度变化影响较为明显,冬季较宽,夏季较窄。高温膨胀引起的混凝土温度裂缝是通常中间粗两端细,而冷缩裂缝的粗细变化不太明显。此种裂缝的出现会引起钢筋的锈蚀,混凝土的碳化,降低混凝土的抗冻融、抗疲劳及抗渗能力等。

3.影响因素和防治措施

混凝土内部的温度与混凝土厚度及水泥品种、用量有关。混凝土越厚,水泥用量越大,水化热越高的水泥,其内部温度越高,形成温度应力越大,产生裂缝的可能性越大。

对于大体积混凝土,其形成的温度应力与其结构尺寸相关,在一定尺寸范围内,混凝土结构尺寸越大,温度应力也越大,因而引起裂缝的危险性也越大,这就是大体积混凝土易产生温度裂缝的主要原因。因此防止大体积混凝土出现裂缝最根本的措施就是控制混凝土内部和表面的温度差。

3.1混凝土原材料及配合比的选用

(1)尽量选用低热或中热水泥,减少水泥用量。大体积钢筋混凝土引起裂缝的主要原因是水泥水化热的大量积聚,使混凝土出现早期升温和后期降温,产生内部和表面的温差。减少温差的措施是选用中热硅酸盐水泥或低热矿渣硅酸盐水泥,在掺加泵送剂或粉煤灰时,也可选用矿渣硅酸盐水泥。再有,可充分利用混凝土后期强度,以减少水泥用量。改善骨料级配,掺加粉煤灰或高效减水剂等来减少水泥用量,降低水化热。

(2)掺加掺合料大量试验研究和工程实践表明,混凝土中掺入一定数量优质的粉煤灰后,不但能代替部分水泥,而且由于粉煤灰颗粒呈球状具有滚珠效应,起到作用,可改善混凝土拌合物的流动性、粘聚性和保水性,从而改善了可泵性。特别重要的效果是掺加原状或磨细粉煤灰后,可以降低混凝土中水泥水化热,减少绝热条件下的温度升高。在混凝土中掺加一定量的具有减水、增塑、缓凝等作用的外加剂,改善混凝土拌合物的流动性、保水性,降低水化热,推迟热峰的出现时间。

3.2施工工艺流程改进

(1)改善搅拌工艺采用二次投料的净浆裹石或砂浆裹石工艺,可以有效地防止水分聚集在水泥砂浆和石子的界面上,使硬化后界面过渡层结构致密、粘结力增大,从而提高混凝土强度10%或节约水泥5%,并进一步减少水化热和裂缝。改善混凝土的搅拌加工工艺,在传统的三冷技术的基础上采用二次风冷新工艺,降低混凝土的浇筑温度。

(2)严格控制浇筑流程合理安排施工工序,分层、分块浇筑,以利于散热,减小约束。对已浇筑的混凝土,在终凝前进行二次振动,可排除混凝土因泌水,在石子、水平钢筋下部形成的空隙和水分,提高粘结力和抗拉强度,并减少内部裂缝与气孔,提高抗裂性。在高温季节泵送,宜用温草袋覆盖管道进行降温,以降低入模温度。

(3)注重浇筑完毕后养护混凝土养护主要是保持适当的温度和湿度条件。保温能减少混凝土表面的热扩散,降低混凝土表层的温差,防止表面裂缝。混凝土浇筑后,及时用湿润的草帘、麻片等覆盖,并注意洒水养护,适当延长养护时间,保证混凝土表面缓慢冷却。在寒冷季节,混凝土表面应设置保温措施,以防止寒潮袭击。

4.温度裂缝的处理方法

混凝土裂缝的修补措施主要有采取以下一些方法:如表面修补法,嵌缝法,结构加固法,混凝土置换法等。

4.1表面修补法

表面修补法主要适用于稳定和结构承载能力没有影响的表面裂缝以及深进裂缝的处理。通常的处理措施是在裂缝的表面涂抹水泥浆、环氧胶泥或在混凝土表面涂刷油漆、沥青等防腐材料,在防护的同时为了防止混凝土受各种作用的影响继续开裂,通常可以采用在裂缝的表面粘贴玻璃纤维布等措施。

4.2嵌缝法

嵌缝法是裂缝封堵中最常用的一种方法,它通常是沿裂缝凿槽,在槽中嵌填塑性或刚性止水材料,以达到封闭裂缝的目的。常用的塑性材料有聚氯乙烯胶泥、塑料油膏、丁基橡胶等等;常用的刚性防水材料为聚合物水泥砂浆。

4.3结构加固法

当裂缝影响到混凝土结构的性能时,就要考虑采用加固法对混凝土结构进行处理。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。

4.4混凝土置换法

裂缝控制论文篇(5)

2.水利施工中的混凝土裂缝控制措施

2.1根据当地的气温情况,调节混凝土的施工条件

在水利工程建设当中,混凝土的施工要积极根据当地的气温变化,调节混凝土的施工条件。与此同时,也要积极依据混凝土自身所存在的特性,充分考虑施工过程中的实际情况,制定合适的施工方案,控制混凝土的裂缝问题,提高混凝土的质量。在甘肃地区,由于地处我国西北,夏季气温炎热干燥,昼夜温差较大;而冬季由于受西北风的影响,气温特别低,这给当地的混凝土施工制作带来非常严重环境气候困扰。例如,在混凝土浇筑时,常常会发生混凝土模版变形等问题,水利施工建设单位要积极安排专门的混凝土施工看护人员对模版进行看护,及时了解和发现混凝土模板的情况,当混凝土出现变形和位移现象时,要立即停止缓凝土的浇筑,并对模板进行修理和恢复。在夏天高温的季节,混凝土施工的浇筑入模温度应控制在25℃以下;而在冬季,由于甘肃地区气温特别低,在混凝土施工的过程中,要充分注意混凝土施工过程中的保温。在混凝土浇筑时,入模的温度不能低于10℃。因此,在当地的混凝土施工制作过程中,要积极根据施工现场的环境气温,合理调节混凝土的施工条件,这样才能够有效控制混凝土的裂缝现象,保证水利施工当中的混凝土质量。

2.2混凝土材料的选择和配比

混凝土的质量与混凝土施工材料的选择有着非常重要的关系,其材料使用的正确与否,直接关系到整个水利工程的施工建设安全。所以,在水利工程混凝土的施工制作中,要加强对混凝土掺杂料以及水泥的管理,保证混凝土制作材料的质量。由于在混凝土制作过程中,水泥的水化反映,会释放出大量的热量,造成混凝土内外温差的增大,从而使得混凝土产生裂缝。所以,在混凝土制作中,要合理地选择水化热量较低的水泥。除此之外,还可以在混凝土的制作中,尽可能地减少单位水泥的使用量,水泥的强度等级要与混凝土强度的等级保持相同,不要选用强度过高或者硬性的水泥。在混凝土骨料的选择中,也要严格按照国家相关的骨料使用的相关标准,选择合适的骨料。与此同时,也要保证混凝土原材料的配比符合国家的混凝土制作的标准。另外,增强混凝土的抗压性能够有效减少混凝土裂缝的产生。因此,混凝土施工制作人员可以通过加强对混凝土的振捣,增加混凝土的密实度,从而控制混凝土裂缝的产生,提高混凝土的质量。

2.3积极开展混凝土养护工作

混凝土的后期养护工作,对控制混凝土裂缝的产生有着非常重大的意义[3]。所以,施工单位要在混凝土的养护工作中,使混凝土的内外温度保持平衡,以免因混凝土内外温差过大而导致裂缝产生。与此同时,也要对混凝土进行浇水,保持缓凝土表面的湿度,以免因混凝土表面水分蒸发过快导致的干缩变形。此外,由于混凝土水泥水化热会产生大量的热量。因此,在养护的过程中,也要让混凝土内部热量得到充分的散发,保证混凝土的耐久度。通过保湿和保温的有效养护措施,能够有效保证混凝土内外温度的稳定,从而使得水利施工中的混凝土裂缝能够得到有效控制。

裂缝控制论文篇(6)

1.前言

随着桥梁技术的突飞猛进,大体积混凝土在桥梁结构中应用的越来越多。我国普通混凝土配合比设计规范规定:混凝土结构物中实体最小尺寸不小于1m的部位所用的混凝土即为大体积混凝土;美国则规定为:任何现浇混凝土,只要有可能产生温度影响的混凝土均称为大体积混凝土。目前,国内外对机械荷载引起的开裂问题研究得较为透彻。而对温度荷载引起得有关裂缝的研究尚不充分。我们应对此加以重视,防止危害结构的裂缝产生。另外对于大体积混凝土内温度应力与裂缝控制也多集中在水利工程中的大坝、高层建筑的深基础底板。而对于桥梁中大体积混凝土的裂缝的研究并未得到足够的重视。

2.大体积混凝土裂缝产生的原因

2.1水泥水化热

水泥水化过程中放出大量的热,且主要集中在浇筑后的2~5d左右,从而使混凝土内部温度升高……尤其对于大体积混凝土来讲,这种现象更加严重。因为混凝土内部和表面的散热条件不同,因此混凝土中心温度很高,这样就会形成温度梯度,使混凝土内部产生压应力,表面产生拉应力,当拉应力超过混凝土的极限抗拉强度时混凝土表面就会产生裂缝。

2.2混凝土的收缩

混凝土在空气中硬结时体积减小的现象称为混凝土收缩。混凝土在不受外力的情况下的这种自发变形受到外部约束时(支承条件、钢筋等),将在混凝土中产生拉应力,使得混凝土开裂。引起混凝土的裂缝主要有塑性收缩、干燥收缩和温度收缩3种。在硬化初期主要是水泥水化凝固结硬过程中产生的体积变化,后期主要是混凝土内部自由水分蒸发而引起的干缩变形。

2.3外界气温、湿度变化

大体积混凝土结构在施工期间,外界气温的变化对裂缝的产生有着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温升和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温度梯度。如果外界温度下降过快,会造成很大的温度应力,极易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。

3.大体积混凝土施工质量控制措施

3.1大体积混凝土配合比设计

1)原材料选用。①水泥:由于水泥的用量直接影响着水化热的多少及混凝土温升,大体积混凝土应选用水化热较低的水泥,如低热矿渣硅酸盐水泥、中热硅酸盐水泥等,并尽可能减少水泥用量。②细骨料:宜采用Ⅱ区中砂,因为使用中砂可减少水及水泥的用量。③粗骨料:在可泵送情况下,选用粒径5-20mm连续级配石子,以减少混凝土收缩变形。④含泥量:在大体积混凝土中,粗细骨料的含泥量是要害问题,若骨料中含泥量偏多,不仅增加了混凝土的收缩变形,又严重降低了混凝土的抗拉强度,对抗裂的危害性很大。因此,骨料必须现场取样实测,石子的含泥量控制在1%以内,砂的含泥量控制在2%以内。⑤掺合料:应用添加粉煤灰技术。在混凝土中掺用的粉煤灰不仅能够节约水泥,降低水化热,增加混凝土和易性,而且能够大幅度提高混凝土后期强度,推移温升峰值出现时间。

2)减水剂的使用。采用减水剂,如SF一1缓凝高效减水剂;膨胀剂采用广泛使用的U型膨胀剂,如无水硫铝酸钙(C4S)或硫酸铝(Al2(SO4)),试验表明在混凝土添加了膨胀剂之后,混凝土内部产生的膨胀应力可以抵消一部分混凝土的收缩应力,相应地提高混凝土抗裂强度。

3.2温控措施及施工现场控制

1)温度预测分析。根据现场混凝土配合比和施工中的气温气候情况及各种养护方案,采用计算机仿真技术对混凝土施工期温度场及温差进行计算机模拟动态预测,提供结构沿厚度方向的温度分布及随混凝土龄期变化情况,制定混凝土在施工期内不产生温度裂缝的温控标准及进行保温养护优化选择。

2)混凝土浇筑方案。采用延缓温差梯度与降温梯度的措施,在浇筑前经详细计算安排分块、分层浇筑次序、流向、浇筑厚度、宽度、长度及前后浇筑的搭接时间;控制混凝土入模温度并加强振捣,严格控制振捣时间,移动距离和插入深度,保证振捣密实,严防漏振及过振,确保混凝土均匀密实;做好现场协调、组织管理,要有充足的人力、物力,保证施工按计划顺利进行,保证混凝土供应,确保不留冷缝;浇筑后对大体积混凝土表面较厚的水泥浆进行必要的处理(一般浇筑后3~4h内初步用水长刮尺刮平,初凝前用铁滚筒碾压两遍,再用木抹子搓平压实)以控制表面龟裂;混凝土浇灌完及拆模后,立即采取有效的保温措施并按规定覆盖养护。

3)混凝土温度监测。在混凝土内部及外部设置温度测点,并且设置保温材料温度测点及养护水温度测点,现场温度监测数据由数据采集仪自动采集并进行整理分析,每一测点的温度值及各测位中心测点与表层测点的温差值,作为研究调整控温措施的依据,防止混凝土出现温度裂缝。

4)温度应力检测。为反映温控效果可在少数混凝土层中埋设应变计进行温度应力检测,应变计沿水平方向布置,检测水平向应力分量。

5)通水冷却。采用薄壁钢管在一些混凝土浇筑分层中布设冷却水管,冷却水管使用前进行试水,防止管道漏水、阻塞,根据混凝土内部温度监测,控制冷却水管进水流量及温度。

3.3构造设计上采取的防裂措施

1)设计合理的结构形式,减少工程数量,降低水化热。如可根据悬索桥锚碇受力特点,设计挖空非关键受力部分混凝土体积,利用土方压重方案,减少混凝土结构体积。

2)充分利用混凝土在基坑有侧限条件,在混凝土中掺加微膨胀剂,使其在基坑约束下成一定的预压力,补偿混凝土内部温度、收缩产生的拉应力,从而有效的避免混凝土裂缝的产生。

3)大体积混凝土体积庞大,施工周期一般较长,依据结构受力情况(如悬索桥锚碇受力是逐步参与的,施工期仅承受自重和施工过程产生的次应力,此阶段受力不足其最终受力的30%),可合理的确定混凝土评定验收龄期,打破正常标准28d的评定验收龄期,改为60d或更多天,评定验收龄期充分考虑混凝土的后期强度,从而减低设计标号,达到减少混凝土水泥用量,降低水化热的目的。

4)由于边界存在约束才会产生温度应力,采用改善边界约束的构造设计,如遇有约束强的岩石类地基、较厚的混凝土垫层时,可在接触面上设滑动层来减少温度应力。在外约束的接触面上全部设滑动层,则可大大减弱外约束。

5)在设计构造方面还应重视合理配筋对混凝土结构抗裂的有益作用。可采取增配构造钢筋(配筋应尽可能采用小直径、小间距,全截面含筋率控制在0.3%~0.5%之间)、在混凝土表面增设金属扩张网等有效措施,有效地提高混凝土抗裂性能。

4.大体积混凝土的裂缝检查与处理

裂缝控制论文篇(7)

一、房屋建筑中混凝土裂缝的种类及成因分析

(一)常见的裂缝种类

目前,房屋建筑混凝土裂缝较为常见的种类有收缩裂缝、温度裂缝和沉陷裂缝等。

1.收缩裂缝。这类裂缝又分为塑性收缩、沉降收缩和干燥收缩。其中塑性裂缝一般多发生在混凝土初凝后,裂缝多集中在混凝土表面上,呈不规则分布,裂缝深度较浅;沉降裂缝主要是因为骨料的密度不同导致浇筑振捣时由于钢筋等障碍物阻挡引起的不均匀沉降,并以此为分界形成的裂缝,这种裂缝多出现在预埋件附件,深度一般会延伸至钢筋以上;干缩裂缝通常宽度较小,多出现在粗骨料周围,呈辐射状,纵横交错分布。

2.温度裂缝。主要是由于混凝土结构内外温差过大引起应力变化而导致混凝土开裂。这种裂缝形式在混凝土中十分常见,一般都发生在施工阶段,多出现构件表面,裂缝分布无规律。

3.沉陷裂缝。此类裂缝多由不均匀沉陷造成,裂缝较深,并与地面垂直或成45度角,基本与温度无关。

(二)混凝土裂缝的成因分析

引起混凝土裂缝的原因较多,大体上可归纳为以下几个方面:

1.设计原因。房屋建筑结构设计不合理容易引起混凝土开裂,如结构设计配筋不足、未设置伸缩缝等等。此外,混凝土配合比设计不当也容易造成混凝土早期开裂。目前,我国房屋建筑工程中基本采用的都是商品混凝土,当水灰比取值超出0.4-0.6这一区间范围时,便会造成混凝土各方面性能降低,从而造成开裂。

2.施工原因。在混凝土浇筑过程中,由于施工不规范导致钢筋片尾或是管线集中,都会引起混凝土开裂。同时混凝土养护未按照规范要求进行,养护时间不足、养护方法不正确也容易引起混凝土裂缝。此外,混凝土未达到设计要求的强度就过早拆模或是混凝土未达到终凝时间就堆放过大的荷载,都会造成混凝土开裂。

3.原材料问题。混凝土本身是由水泥、砂石、水、外加剂等按照一定比例配合而成,一旦这些原材料的质量不合格或是不符合要求,便会导致混凝土的性能下降。如水泥过期、砂石骨料中含泥率过高、外加剂使用不当等等。

二、混凝土控制技术在房屋建筑施工中的具体应用

(一)混凝土结构设计的控制措施

在房屋建筑工程混凝土结构设计中,应对以下环节进行控制:抗裂计算时应当充分考虑抗裂薄弱部位,当结构设计变形余量不足时,可通过增加配筋来降低温度变形,这样能够达到控制温度裂缝的目的;当建筑物长度过长时,应设置后浇带,并在后浇带两侧设置加强钢筋,以此来减少不均匀沉降引起的裂缝。

(二)控制好混凝土原材料及配合比

1.原材料质量。水泥是混凝土中最为重要的组成部分之一,它的质量优劣直接影响混凝土的整体质量,所以水泥的选用必须慎重,在条件允许的情况下,应当尽可能选用一些正规厂家生产的低水化热、收缩性小的水泥,如复合水泥、矿渣水泥等等;粗骨料应当选用连续级配的碎石,最大粒径不得超过构件截面最小尺寸的1/4;细骨料宜选用中粗砂;外加剂可选用粉煤灰,它的抗裂效果极佳,但需要控制掺入量,以免影响混凝土的强度。

2.配合比优化。在确保混凝土强度和流动性的前提下,应尽可能减少水泥用量,这样有助于降低水泥水化热,为了确保混凝土配合比达到最优,设计人员应当深入施工现场,结合构件的截面尺寸、浇筑振捣工艺等条件,合理选择混凝土坍落度,并按照砂石骨料等原材料的实际质量,对混凝土配合比进行及时调整,以此来确保最佳的混凝土配合比,这样能够降低裂缝的出现几率。

(三)控制好混凝土施工质量

1.混凝土浇筑质量控制要点。首先,商品混凝土进入施工现场后,应当对其入模坍落度进行检查,高层建筑的坍落度应控制在180mm以内,普通建筑为150mm;在进行混凝土浇筑的过程中,必须严格控制好现浇楼板和钢筋保护层的厚度,现浇楼板中的交叉布线位置处应当采用线盒,以免出现立体交叉式穿越,线管的直径应小于1/3楼板厚度,并沿管线方向设置钢筋网带,这样能够防止管线位置处裂缝的产生;对于大体积混凝土的浇筑应当采取分层分段、一次到顶的方法,并控制好分层厚度,以免时间间隔过久形成冷缝;为了防止塑性收缩裂缝的形成,应当在混凝土初凝之前进行二次振捣,并在终凝前进行抹面处理。

2.混凝土养护。该环节是混凝土浇筑施工的最终环节,也是控制裂缝产生的关键环节,具体养护时应做到以下几点:其一,混凝土浇筑振捣完毕后,应当在12h之内对其进行养护,可采取覆盖法和洒水法,养护时间最少不得低于7d,掺入缓凝剂的混凝土养护时间不得低于14d;其二,大体积混凝土应当做好保温养护,可采用表面覆盖海绵泡沫等材料对其进行保温养护,这样一方面能够降低混凝土内外部温差,从而使温度应力有所减小,另一方面还有助于混凝土应力松弛、强度增大,从而能够进一步提高混凝土的承受能力和抗裂性,可有效防止混凝土塑性裂缝和温缩裂缝的产生;其三,在对混凝土进行的过程中,应当控制好其中心与表面温度的差距,最大不得超过25摄氏度;其四,混凝土养护首日,只能够进行弹线、定位以及测量等工作,严禁进行大量材料吊装,以免产生冲击振动。当混凝土养护超过24h后,方可以分批的方式运入少量的材料,并且要轻卸轻放,不得集中放置。养护时间超过72h以后,可正常进行楼板和墙板支模施工,应在材料吊卸的位置处设置满堂架,借此来增加支架的稳定性,这有助于防止混凝土构件开裂。

结论:

总而言之,在房屋建筑施工混凝土裂缝的控制是一项较为复杂且系统的工作,由于引起混凝土裂缝的原因较多,这给裂缝的有效控制增添了一定的难度。为了进一步减少或避免裂缝的形成,除了应当采取合理的控制技术外,还应当做好施工质量控制,只有这样,才能从根本上解决房屋建筑混凝土裂缝的问题,才能为住户创造出一个安全舒适的居住环境。

参考文献:

[1]李志群.刍议地下室底板混凝土裂缝控制及其施工养护[J].中华民居.2011(10).

[2]蔡才勤.卓建明.韩小龙.从工程实例中谈商品混凝土裂缝控制[A].第三届全国商品混凝土信息技术交流大会暨2009全国商品混凝土年会论文集[C].2009(6).

裂缝控制论文篇(8)

1引言

建筑结构在其使用过程中承受两类作用,静荷载、动荷载和其它荷载,称为直接作用;温度、收缩、不均匀沉降等则称为间接作用(即非荷载作用)。调查资料表明,由荷载引起的裂缝仅占20%左右,尚有约80%的裂缝是由非荷载作用引起的。构造配筋对裂缝发生发展的控制作用往往由以下两点来定性解释:一方面,配筋可以提高混凝土的极限拉伸应变,从而提高混凝土的抗裂能力,这一点目前已经得到普遍认可[1,2],另一方面,配筋可以有效的减小开裂处混凝土的应变集中从而有效控制裂缝宽度[3],因为裂缝的宽度与结构开裂过程中所释放的拉应变成正比,一旦开裂,必然在开裂区附近形成应变集中,应变集中程度越高,在相同条件下,裂缝宽度越大[4]。

为了能为裂缝控制设计提供理论依据,构造钢筋对非荷载裂缝的控制不能仅仅停留在定性的阐述上,必须从定量的理论上加以研究,这就涉及到混凝土的应力应变分布规律、裂缝宽度随配筋率的变化规律等内容。

2构造配筋控制裂缝的产生

配筋能否控制或者延迟裂缝的产生曾经是一个比较有争议的问题。一种观点认为,配筋对混凝土的极限拉伸没有影响,反而加大了混凝土的自约束应力;另一种观点则认为,配筋可以提高混凝土的极限拉伸,在配筋率较低的情况下,配筋引起的自约束应力是很小的,可以忽略不计。所以,问题的关键是,配筋能否提高混凝土的极限拉伸;另一方面是配筋是否会引起一个过大的自约束应力,从而导致裂缝的过早出现。

文献[1][2][4][5]中认为配筋可以提高混凝土的极限拉伸,从而提高混凝土的抗裂能力,文献[1]给出了合理配置构造配筋混凝土极限拉伸的经验公式

(1)

式中,为配筋后的混凝土极限拉伸;

为混凝土抗裂设计强度;p为截面配筋率 ;d为钢筋直径(cm)。

上述公式为经验公式,各参数无量纲代入。上式可以用来估算配筋对混凝土极限拉应变的贡献。分析公式可见合理配筋就是要“细、密”。故配筋可起到有效控制裂缝产生的作用。

3构造配筋控制裂缝的开展

在楼板开裂之后,配筋的主要作用表现为对裂缝发展的控制作用,即不同的配筋率对已有裂缝宽度的控制作用和对次级裂缝的限制作用[6]。

3.1 钢筋和混凝土的滑移规律

假定两端的固支约束构件受到温降值为 的非荷载温降作用,则钢筋和混凝土的单元应力分布如图1。

上面虽然得到了混凝土在长度方向上的应力-应变分布规律,但所给出的函数关系过于复杂,不便于发现规律。所以下面给出一系列实际情况下的计算结果,然后结合计算结果分别进行讨论。计算实例的初始条件均为,当量温度(混凝土的其他收缩可以参考文献[6]转化为当量温度)降低为25℃,钢筋的直径 , ,

图2给出了混凝土应力在长度方向上的分布规律。可以看出:①混凝土在裂缝附近存在一个应力过渡区,在该过渡区之外,混凝土的应力分布是非常均匀的,这与许多学者的基本假设是吻合的。②应力均匀区中,混凝土的应力大小与钢筋和混凝土图3混凝土应力在长度方向上分布规律与滑移刚度有关,滑移刚度越大,混凝土应力越大。因此,对要求严格控制初始裂缝的,可以考虑采用滑移刚度较小的光圆钢筋,而对初始裂缝不是特别敏感,但对裂缝宽度要求较高的工程,就应尽量选择滑移刚度较大的螺纹筋。

图3给出了应力均匀区的混凝土应力随着配筋率增加的变化情况,可以看出:①随着配筋率增加,混凝土内的应力明显增加。这就使得混凝土可能在已有裂缝的邻近区域很快地达到混凝土的极限抗拉强度,从而引起次级裂缝。这样,随着配筋率的增加,钢筋混凝土构件的裂缝间距变小了,裂缝变密。②类似于图3,的增加提高了应力均匀区的混凝土应力。

图4给出了应力均匀区的混凝土应力和所配置的钢筋直径之间的关系(配筋率为1.0%)。从力学方面看,改变钢筋的直径对控制裂缝作用不明显。试验和实际所证明的配置细密的钢筋有利于控制裂缝,主要还是应该从细密的配筋有利于改善混凝土内部应力的不均匀性从而提高混凝土的极限拉应变的角度上考虑。

3.3 裂缝宽度随配筋率的变化规律

由于钢筋的中截面并没有位移,所以裂缝宽度其实就是混凝土在整个长度方向的滑移总和,即

图5给出了混凝士的裂缝宽度随配筋率的变化规律。可以看出:①裂缝的扩展宽度和裂缝的配筋率近乎成线性关系,说明增加配筋对控制裂缝的扩展,效果是明显的。②在相同的配筋率条件下,增加钢筋和混凝土之间的滑移刚度可以减小裂缝宽度。

4结论

要求严格控制初始裂缝的,可以考虑采用滑移刚度较小的光圆钢筋,而对初始裂缝不是特别敏感,但对裂缝宽度要求较高的工程,就应尽量选择滑移刚度较大的螺纹筋。

从力学方面看,改变钢筋的直径对控制裂缝作用不明显。试验和实际所证明的配置细密的钢筋有利于控制裂缝,主要还是应该从细密的配筋有利于改善混凝土内部应力的不均匀性从而提高混凝土的极限拉应变的角度上考虑。

参考文献

[1] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.197~208.

[2] 赵国藩,李树瑶.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991.67~71.

[3] 林宗凡.钢筋混凝土受弯构件裂缝宽度允许值的直接控制[J].工业建筑,1988, 6(11):41~47,53.

[4] G.Creazza and S.Russo.A New Model for predicting Crack With Different Percentages of Reinforcement and Concrete Strength Classes. Materials and Structures, Vol.32, August-September 1999,520~524.

裂缝控制论文篇(9)

Abstract: for the water supply and drainage engineering structure pool, according to the water supply and drainage engineering structures structure design rules "(GB50069-2002) requirements, crack control through the resistance to LieDu checking and crack development width checking and structural measures to achieve. This paper describes how to take appropriate measures to control the cracking of the pool structure, and combined with engineering example, the results calculated the analysis and comparison, to explore the satisfy the intensity of the reinforcement if the component GB50069-2002 calculations, the largest crack width you could meet the maximum crack width limits of 0.2 mm.

Keyword: water supply and drainage engineering; Pool structure; Crack control; Strength reinforcement

中图分类号: S276.3文献标识码:A 文章编号:

0 前言

给排水工程中,钢筋混凝土水池结构的设计较为常见。考虑水池的抗渗防裂对正常使用有至关重要的作用,水池结构设计必须重视裂缝控制。为了确保结构具备良好的防渗、防漏性能,满足设计要求的耐久性,《给水排水工程构筑物结构设计规范》(GB50069–2002)对在组合作用下钢筋混凝土构筑物构件的最大裂缝宽度限值做了严格规定。本文简述了如何采取恰当的措施控制水池结构裂缝的产生,并结合工程算例,对计算结果进行分析比较,来探讨一下满足强度配筋的构件如采用GB50069–2002计算,其最大裂缝宽度能否满足最大裂缝宽度限值0.2 mm 。

对于水池结构,根据《给水排水工程构筑物结构设计规范》(GB50069–2002)要求,裂缝控制通过抗裂度验算、裂缝开展宽度验算和构造措施来实现。轴心受拉或小偏心受拉构件,应按抗裂度验算。这类构件的抗裂性能主要由混凝土抗拉强度和构件受拉截面决定。受弯或大偏心受拉(压)构件,应按裂缝宽度控制验算,在水池设计中以此类工况最多。

水池结构设计时,一般先根据强度计算初步确定配筋,然后进行裂缝宽度验算。根据水池的盛水性质(清、污水)及其使用功能,最大裂缝宽度一般控制在0.2mm或0.25mm。

下面先简述一下如何采取恰当的措施控制水池结构裂缝的产生。

1 控制裂缝的措施

1.1荷载作用裂缝的控制

荷载作用裂缝的控制,是要求在设计时对池体各部位可能产生最大拉应力的截面进行计算分析,使之满足裂缝控制的要求。对池体结构建立正确的计算模型和选择合理的荷载组合,以确保其内力及变形的计算与水池的实际工作情况一致。

1.2 混凝土收缩和温湿差造成裂缝的控制

此类裂缝的控制首先应根据规范规定,严格掌握混凝土配比及其用料的品种规格和级配,同时对混凝土灌筑和养护提出设计要求。另外,对大型水池可采取设伸缩缝、掺添加剂和设加强带、后浇带等措施,以及近些年比较常用的引发缝。由于变形缝的设置需要采取严密的构造措施来保证,对节点处理、施工及材料等都有相当高的要求,当有经验时,可在混凝土中施加可靠的外加剂、设后浇带或增设加强带,从而放宽伸缩缝的最大间距限制,以减少或取消伸缩缝。我院一般在大水池的底板处设置加强带,而在相应位置的池壁与顶板外设置后浇带;圆形水池池壁常用引发缝。

1.3 从施工方面考虑控制裂缝

为确保水池在施工期间严格控制由于施工因素造成的裂缝,除严格按设计要求外,在施工中还应注意施工缝的预留位置、混凝土的保温、水灰比的控制及砼的养护等问题。

2 裂缝控制与强度控制配筋计算的对比

2.1 《给水排水工程构筑物结构设计规范》(GB50069-2002)受弯构件最大裂缝宽度的计算方法。

2.2 《混凝土结构设计规范》(GB50010-2010)矩形截面的受弯承载力计算如下式:

2.3 裂缝控制与强度控制实例配筋计算结果的对比

下面以矩形截面池壁为例,在不同荷载作用下,采取两种控制方式进行计算,并作对比分析。

钢筋混凝土矩形池壁,截面尺寸b×h,混凝土强度等级为C30,保护层厚度c=35mm,采用HRB335级钢筋。钢筋间距控制在最常用的@100到@150之间,并使配筋率接近强度配筋率。计算结果列于表1中。

3 结论

通过以上实例的计算结果进行对比分析可知:

(1)构件钢筋受哪一种控制并不能简单地下结论。但将钢筋间距控制在最常用的@100到@150之间的情况下,弯矩值较大时,所取钢筋直径较大,满足强度配筋的构件如采用GB50069–2002计算,其最大裂缝宽度一般不能够满足最大裂缝宽度限值0.2 mm,即配筋是由裂缝控制的,并不是由强度控制;反之,由强度控制。

(2)在选择配筋方案时发现:细筋密布有利于减小最大裂缝宽度。

(3)从表1中并不能看出,随着壁厚的增大或配筋率的加大,最大裂缝宽度有明显的变化规律;这取决于所选择的配筋方案,钢筋直径或间距不同,最大裂缝宽度差别较大。

(4)计算池壁配筋时,应取裂缝控制与强度控制两种计算结果的较大者。

参考文献:

1. GB50069-2002,给水排水工程构筑物结构设计规范[s].

裂缝控制论文篇(10)

 

1.工程概况

连云港东疏港高速公路大岛山立交工程,为上跨连徐高速公路的预应力砼连续箱梁结构,桥长688m,柱式墩,肋式台,桩基础。在检查箱梁顶板砼质量时,发现不同程度地存在裂缝,裂缝宽0.2~0.4mm,长度不一。下面分析裂缝产生的原因,并依据工程实践提出防治措施。

2.裂缝分类及产生原因

2.1收缩裂缝

从砼浇筑至使用期,收缩过程大致可分为五个阶段,即塑性收缩期,自生收缩期,水化热温差收缩期,干燥收缩期,环境温度收缩期等。施工中常见的砼收缩裂缝有塑性收缩裂缝、干缩裂缝等。

(1)塑性收缩裂缝

塑性收缩是指砼在凝结之前,表面因失水较快而产生的收缩。一般在高温或大风天气易出现,裂缝多为中间宽、两端细且长短不一,互不连贯。免费论文参考网。由于砼在塑性状态时,刚开始终凝,而高温或大风天气使砼表面水分蒸发过快,砼表面产生急剧的体积收缩,此时砼表面强度较低,使砼表面出现龟裂。

(2)干缩裂缝

干缩裂缝多出现在砼养护结束后的一段时间或砼浇筑完毕后的一周左右。水泥浆中水分的蒸发会产生干缩,这种裂缝出现在板的表面,比较细小。免费论文参考网。水泥是水硬性材料,具有干缩性,在硬化初期如果水份不足则可能产生裂缝。多在砼养护完毕一段时间后才出现,为表面性的较浅较细裂缝,多沿短方向分布。裂缝产生的原因主要是砼养护不良,受风吹日晒表面水分散失过快,而砼内部温度变化小,表面干缩变形受到砼内部的约束,从而产生较大拉应力后产生裂缝。

2.2温度裂缝

温度裂缝多发生在温差变化较大的环境特别是冬季施工的箱梁上。砼浇筑后,在硬化过程中,水泥水化产生大量的水化热。由于砼的体积较大,大量的水化热聚积在砼内部不易散发,导致内部温度急剧上升,而砼表面散热较快,这就形成内外的较大温差,造成内外部热胀冷缩的程度不同,引起内部受压,外部受拉,使砼表面产生一定的拉应力。当拉应力超过砼的抗拉强度极限时,砼表面就会产生裂缝,这种裂缝多发生在砼施工中后期,通常只在砼表面较浅的范围内产生。

2.3沉降裂缝

沉降裂缝一般多沿主筋通长方向,在砼表面出现,常在浇灌砼后发生,硬化后停止。裂缝产生原因是砼浇捣后,骨料颗粒沉落,水泥浆上浮,受到钢筋或大骨料的阻挡,使砼骨料与浆分离,因砼本身组成材料沉落不均匀造成开裂。

2.4其它施工裂缝

包括应力集中引起的裂缝、加荷过早产生的裂缝、砼硬化初期模板振动或移位、施工缝处理不好引起箱梁出现裂缝等。

3.砼裂缝防治措施

3.1优化砼配合比

在满足强度等设计指标要求的前提下,通过掺加外加剂等尽量减少水泥用量,降低砼水化热温升,同时严格控制原材料的质量和用量,按砼的配合比拌制砼,提高砼的后期强度及抗裂能力。免费论文参考网。

3.2加强砼温度控制

在砼施工时降低浇筑温度,也就是降低最高温升和初始温差,达到降低表面拉应力的目的。这对防止早期温度裂缝非常有效。降低浇筑温度要控制骨料温度、水泥温度,充分利用制冷设施来降低砼出机温度;砼运输中采用搅拌车,减少运输途中的温度回升;减少入仓振捣时的温度回升。

3.3提高施工质量

加强砼浇筑过程中的振捣控制,浇捣过程中尽量做到既振捣充分又避免过度,保证砼内部组织密实,达到提高砼极限拉伸值的目的。

3.4二次抹压

为防止或减少砼表面的龟裂现象,必须重视砼表面的二次抹压工作。抹压的次数和时间要掌握好,可有效地减少砼表面的龟裂现象。

3.5加强砼养护。

箱梁顶面采用洒水、覆盖的养护方法,对不易覆盖的部位可采用延长模板的留置时间等进行砼的养护工作,模板的留置时间一般要求不得低于7天。采用这种养护方式,既能减少砼本身的水分散失速度,又保证了砼在早期处于―个相对比较稳定的温度、湿度环境,避免了风速、太阳暴晒等引起砼急剧干缩的因素,有效地控制砼易产生裂缝的现象发生。

裂缝控制论文篇(11)

混凝土结构是有水泥、水、细集料(砂)及粗骨料(石子)及掺加剂按一定的比例混合浇筑,振捣,养护而成的结构。但是由于施工技术、构件的形状、气候温度条件、人为因素等因素的影响,混凝土构件常常出现各种程度不同的裂缝。混凝土构件的裂缝不仅严重影响着构件的外观,甚至对构件的安全稳定性也有成很大程度的影响。要有效地控制裂缝必须从裂缝形成的原因、裂缝的形成入手,鉴定检测裂缝。

一、 混凝土构件裂缝形成的原因

首先裂缝按形成原因可以分为:变形裂缝和荷载裂缝两大类。

变形裂缝是由于地基不均匀沉降温度变化的因素引起的混凝土力学性能的改变而导致混凝土构件的变形。变形受到约束时在混凝土内部就会产生应力,当应力超过混凝土内部抗拉强度等级时就会有裂缝产生,随着裂缝的产生而这样应力逐渐减小或消失。

荷载缝是由弯矩、剪应力、和扭矩等外部荷载引起的混凝土内部拉应力超过了混凝土内部的抗拉强度等级,从而产生裂缝。荷载裂缝的产生预示着设计混凝土构件可能不满足设计强度等级。

二、混凝土构件的裂缝形式

不同原因引起的裂缝形式有较大的不同,认清裂缝形式对有效控制裂缝有很重要的意义。荷载裂缝规律性很强,通常能通过精确的计算得出裂缝的大小,位置。

轴心受压柱在荷载的作用下裂缝沿轴纵向分布,中间较密。大偏心受压时受拉一侧的裂缝水平向内延伸,垂直梁轴,受拉一侧有压碎现象出现。典型简支梁跨中截面出现的受弯裂缝下部比上部大,两端斜截面为剪切裂缝。牛腿受力构件中,裂缝从集中荷载点开始向外斜面延伸。大型屋面板张拉时裂缝垂直与长轴分布板面,并向下延伸,加有预应力钢筋时端部会出现局部裂缝现象。地震作用时窗间墙容易产生裂缝,呈双向剪切破环,形状为X装。地基变形引起的裂缝是由于地基的埋深和类型不同,以及地基的不均匀沉降,建筑物交界处会出现竖向裂缝和倾斜裂缝。除了这几种常见的裂缝外,火灾后模版的变形也会引起混凝土的开裂,这种裂缝通常为网状结构。由于混凝土用料的不同裂缝的形式也有所差别。

三、裂缝的危害

混凝土构件拉压强度比较低,调节变形能力差,再加上混凝土材料的非匀质性,实际施工过程中很控制混凝土构件免裂缝的产生。裂缝对建筑物的危害主要体现在对结构持久承载力和正常使用功能两个方面。无筋构件中一旦出现裂缝就预示着构件的承载力存在很大的问题;配筋构件中裂缝存在过多会使钢筋锈蚀腐化,从而降低结构的耐久性,严重时构件的承载力耗尽钢筋被拉断,建筑物坍塌。

实际工程中有很多建筑物虽然出现很多裂缝,对建筑物本身并没有安全性的影响。裂缝的产生对建筑物的主要正常使用功能有很大的副作用,因为它不仅降低了结构的防水、防渗和气密性作用,甚至严重时会给人造成一种心理压力,影响建筑外观的美观。

裂缝的危害性与裂缝的具体形状、位置、构件的功能要求以及周边环境有很大关系。荷载裂缝还要进行承载力验算同时考虑裂缝运动的稳定性,综合考虑裂缝存在的危害程度。例如裂缝宽度是危害中的一个重要变量,裂缝过宽就会使钢筋腐蚀,然后形成一个恶性循环;裂缝密度分布则是构件内部裂纹积累造成的,最终也会在一定范围内达到平衡。化学反应引起的膨胀裂缝要格外重视,这种裂缝通常不属于稳定性裂缝,很难预料它的发生与发展,应尽可能的避免这种现象的发生,地基沉降造成的裂缝同时也要及时的处理。

四、混凝土的构件的裂缝鉴定与检测

混凝土的检测鉴定过程主要有立项阶段、方案阶段、调查阶段、检测阶段、整理阶段和结论阶段。其中检测阶段在整个分析过程中起着决定性的作用,属于硬件工作的范畴,检测的工作有两类,一类是直接对裂缝形态进行检测,一类是间接的对裂缝的产生有影响的项目检测。

1、寻找标注裂缝

比较宽度的裂缝可以直接肉眼观察,并进行标注,比较细的裂缝要仔细靠近表面观查,难以辨认时湿润构件表面,擦干后根据潮湿的水印来辨认裂缝。观测时注意区分表面抹灰层和维护结构界面的裂缝与混凝土裂缝,前两者不属于混凝土构件本身的裂缝,对结构没有太大的影响。

2、描绘裂缝的形态

进一步的描绘典型裂缝的形态,包括裂缝出现的位置、扩展方向、宽度的变化,统计裂缝的数量,并列表表达。

3、裂缝的检测

通常检测裂缝最大宽度,深度,判断是否存在贯通面,观测是否渗水,检测裂缝是否已经处于稳定,必要时对裂缝进行原位加载试验。

4、与裂缝相关项目的检测

包括结构构件的实际参数、相关区域的其他缺陷、结构的环境条件和使其时间等,只要是对裂缝的控制和修补以及成因有联系的都要进行相应的检测。

五、混凝土裂缝检测的原则

1、公正性

检测和处理裂缝时要排除各种干扰和压力;根据检测结果做出不带有任何倾向性的结论。尽可能的做到公正,不违背自己的职业道德。

2、客观性

积极主动的听取有关人员各方面的信息和意见,但不盲目的偏信。以测量的数据为客观依据和真实信息,排除主观判定的因素,只有建立在检测数据、现象观测的客观事实才能真实情况的结论。

3、科学性

根据检测的数据最裂缝的产生和解决方案提出科学的判断,坚持严谨的态度认真对待每一个工作步骤,严格按照相关的规范进行操作计算,在缺少把握时向有关的专家学者请教。

4、全面严密性

检测结论充分考虑产生裂缝的可能性,工程结构中裂缝产生的原因相当复杂,单一原因造成的裂缝基本不存在,全面考虑差生原因可以避免片面的误判。明确的表达关键问题,结论中不能存在回避、含糊的问题。不然会带来很多的不良因素,甚至造成重新检测的发生。

5、公开性

裂缝涉及到住户的切身利益,检测结果要得到别人的信任,所以检测结果要公开公正,并向有关人员宣传裂缝的基本知识,并允许他们旁观检测过程,使其了解裂缝产生的真相,这是真诚认真的态度是解决任何建筑问题的必备条件。

参考文献:

[1] 傅汉民.混凝土结构裂缝控制的工程实践[J].四川建筑,2004,23(10):13-18.

[2] 施礼德,马心俐.大体积混凝土裂缝控制与施工技术的工程应用[J].西大学学报(自然科学版),2005,17(10):1-6.

[3] 杨碧华 建筑工程大体积混凝土温升最高限值研究:[硕士学位论文].武汉:华中科技大学,2002.