欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

量子计算论文大全11篇

时间:2023-03-22 17:36:13

量子计算论文

量子计算论文篇(1)

中图分类号:TP 183 文献标志码:A 文章编号:1672-8513(2011)05-0388-08

The Challenge of Quantum Computing to Information Security and Our Countermeasures

ZHANG Huanguo, GUAN Haiming, WANG Houzheng

(Key Lab of Aerospace Information Security and Trusted Computing of Ministry of Education, Computer School, Whan University, Wuhan 430072, China)

Abstract: What cryptosystem to use is a severe challenge that we face in the quantum computing era. It is the only correct choice to research and establish an independent resistant quantum computing cryptosystem. This paper introduces to the research and development of resistant quantum computing cryptography, especially the signature scheme based on HASH function,lattice-based public key cryptosystem,MQ public key cryptosystem and public key cryptosystem based on error correcting codes. Also the paper gives some suggestions for further research on the quantum information theory,the complexity theory of quantum computing,design and analysis of resistant quantum computing cryptosystems .

Key words: information security; cryptography; quantum computing; resistant quantum computing cryptography

1 量子信息时代

量子信息技术的研究对象是实现量子态的相干叠加并对其进行有效处理、传输和存储,以创建新一代高性能的、安全的计算机和通信系统.量子通信和量子计算的理论基础是量子物理学.量子信息科学技术是在20世纪末期发展起来的新学科,预计在21世纪将有大的发展[1].

量子有许多经典物理所没有的奇妙特性.量子的纠缠态就是其中突出的一个.原来存在相互作用、以后不再有相互作用的2个量子系统之间存在瞬时的超距量子关联,这种状态被称为量子纠缠态[1].

量子的另一个奇妙特性是量子通信具有保密特性.这是因为量子态具有测不准和不可克隆的属性,根据这种属性除了合法的收发信人之外的任何人窃取信息,都将破坏量子的状态.这样,窃取者不仅得不到信息,而且窃取行为还会被发现,从而使量子通信具有保密的特性.目前,量子保密通信比较成熟的技术是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按传统的“一次一密”方式加密.量子纠缠态的超距作用预示,如果能够利用量子纠缠态进行通信,将获得超距和超高速通信.

量子计算机是一种以量子物理实现信息处理的新型计算机.奇妙的是量子计算具有天然的并行性.n量子位的量子计算机的一个操作能够处理2n个状态,具有指数级的处理能力,所以可以用多项式时间解决一些指数复杂度的问题.这就使得一些原来在电子计算机上无法解决的困难问题,在量子计算机上却是可以解决的.

2 量子计算机对现有密码提出严重挑战

针对密码破译的量子计算机算法主要有以下2种.

第1种量子破译算法叫做Grover算法[3].这是贝尔实验室的Grover在1996年提出的一种通用的搜索破译算法,其计算复杂度为O(N).对于密码破译来说,这一算法的作用相当于把密码的密钥长度减少到原来的一半.这已经对现有密码构成很大的威胁,但是并未构成本质的威胁,因为只要把密钥加长1倍就可以了.

第2种量子破译算法叫做Shor算法[4].这是贝尔实验室的Shor在1997年提出的在量子计算机上求解离散对数和因子分解问题的多项式时间算法.利用这种算法能够对目前广泛使用的RSA、ECC公钥密码和DH密钥协商体制进行有效攻击.对于椭圆曲线离散对数问题,Proos和Zalka指出:在N量子位(qbit)的量子计算机上可以容易地求解k比特的椭圆曲线离散对数问题[7],其中N≈5k+8(k)1/2+5log 2k.对于整数的因子分解问题,Beauregard指出:在N量子位的量子计算机上可以容易地分解k比特的整数[5],其中N≈2k.根据这种分析,利用1448qbit的计算机可以求解256位的椭圆曲线离散对数,因此也就可以破译256位的椭圆曲线密码,这可能威胁到我国第2代身份证的安全.利用2048qbit的计算机可以分解1024位的整数,因此也就可以破译1024位的RSA密码,这就可能威胁到我们电子商务的安全

Shor算法的攻击能力还在进一步扩展,已从求广义解离散傅里叶变换问题扩展到求解隐藏子群问题(HSP),凡是能归结为HSP的公钥密码将不再安全.所以,一旦量子计算机能够走向实用,现在广泛应用的许多公钥密码将不再安全,量子计算机对我们的密码提出了严重的挑战.

3 抗量子计算密码的发展现状

抗量子计算密码(Resistant Quantum Computing Cryptography)主要包括以下3类:

第1类,量子密码;第2类,DNA密码;第3类是基于量子计算不擅长计算的那些数学问题所构建的密码.

量子保密的安全性建立在量子态的测不准与不可克隆属性之上,而不是基于计算的[1,6].类似地,DNA密码的安全性建立在一些生物困难问题之上,也不是基于计算的[7-8].因此,它们都是抗量子计算的.由于技术的复杂性,目前量子密码和DNA密码尚不成熟.

第3类抗量子计算密码是基于量子计算机不擅长的数学问题构建的密码.基于量子计算机不擅长计算的那些数学问题构建密码,就可以抵御量子计算机的攻击.本文主要讨论这一类抗量子计算密码[9].

所有量子计算机不能攻破的密码都是抗量子计算的密码.国际上关于抗量子计算密码的研究主要集中在以下4个方面.

3.1 基于HASH函数的数字签名

1989年Merkle提出了认证树签名方案(MSS)[10]. Merkle 签名树方案的安全性仅仅依赖于Hash函数的安全性.目前量子计算机还没有对一般Hash函数的有效攻击方法, 因此Merkle签名方案具有抗量子计算性质.与基于数学困难性问题的公钥密码相比,Merkle签名方案不需要构造单向陷门函数,给定1个单向函数(通常采用Hash函数)便能造1个Merkle签名方案.在密码学上构造1个单向函数要比构造1个单向陷门函数要容易的多,因为设计单向函数不必考虑隐藏求逆的思路, 从而可以不受限制地运用置换、迭代、移位、反馈等简单编码技巧的巧妙组合,以简单的计算机指令或廉价的逻辑电路达到高度复杂的数学效果.新的Hash标准SHA-3[11]的征集过程中,涌现出了许多新的安全的Hash函数,利用这些新的Hash算法可以构造出一批新的实用Merkle签名算法.

Merkle 签名树方案的优点是签名和验证签名效率较高,缺点是签名和密钥较长,签名次数受限.在最初的Merkle签名方案中, 签名的次数与需要构造的二叉树紧密相关.签名的次数越多,所需要构造的二叉树越大,同时消耗的时间和空间代价也就越大.因此该方案的签名次数是受限制的.近年来,许多学者对此作了广泛的研究,提出了一些修改方案,大大地增加了签名的次数, 如CMSS方案[12]、GMSS方案[13]、DMSS方案等[14].Buchmann, Dahmen 等提出了XOR树算法[12,15],只需要采用抗原像攻击和抗第2原像攻击的Hash函数,便能构造出安全的签名方案.而在以往的Merkle签名树方案中,则要求Hash函数必须是抗强碰撞的.这是对原始Merkle签名方案的有益改进.上述这些成果,在理论上已基本成熟,在技术上已基本满足工程应用要求, 一些成果已经应用到了Microsoft Outlook 以及移动路由协议中[16].

虽然基于Hash函数的数字签名方案已经开始应用,但是还有许多问题需要深入研究.如增加签名的次数、减小签名和密钥的尺寸、优化认证树的遍历方案以及如何实现加密和基于身份的认证等功能,均值得进一步研究.

3.2 基于纠错码的公钥密码

基于纠错码的公钥密码的基本思想是: 把纠错的方法作为私钥, 加密时对明文进行纠错编码,并主动加入一定数量的错误, 解密时运用私钥纠正错误, 恢复出明文.

McEliece利用Goppa码有快速译码算法的特点, 提出了第1个基于纠错编码的McEliece公钥密码体制[17].该体制描述如下, 设G是二元Goppa码[n;k;d]的生成矩阵,其中n=2h;d=2t+1;k=n-ht,明密文集合分别为GF(2)k和GF(2)n.随机选取有限域GF(2)上的k阶可逆矩阵S和n阶置换矩阵P,并设G′=SGP,则私钥为,公钥为G′.如果要加密一个明文m∈GF(2)k,则计算c=mG′+z,这里z∈GF(2)n是重量为t的随机向量.要解密密文c, 首先计算cP-1=mSGPP-1+zP-1=mSG+zP-1,由于P是置换矩阵, 显然z与zP-1的重量相等且为t,于是可利用Goppa的快速译码算法将cP-1译码成m′= mS,则相应明文m= m′S-1.

1978年Berlekamp等证明了一般线性码的译码问题是NPC问题[18],McEliece密码的安全性就建立在这一基础上.McEliece密码已经经受了30多年来的广泛密码分析,被认为是目前安全性最高的公钥密码体制之一.虽然McEliece 公钥密码的安全性高且加解密运算比较快, 但该方案也有它的弱点, 一是它的公钥尺寸太大,二是只能加密不能签名.

1986年Niederreiter提出了另一个基于纠错码的公钥密码体制[19]. 与McEliece密码不同的是它隐藏的是Goppa码的校验矩阵.该系统的私钥包括二元Goppa码[n;k;d]的校验矩阵H以及GF(2)上的可逆矩阵M和置换矩阵P.公钥为错误图样的重量t和矩阵H′=MHP.假如明文为重量为t 的n 维向量m, 则密文为c=mH′T .解密时,首先根据加密表达式可推导出z(MT )-1=mPTHT,然后通过Goppa码的快速译码算法得到mPT,从而可求出明文m .1994年我国学者李元兴、王新梅等[20]证明了Niederreiter密码与McEliece密码在安全性上是等价的.

McEliece密码和Niederreiter密码方案不能用于签名的主要原由是,用Hash算法所提取的待签消息摘要向量能正确解码的概率极低.2001年Courtois等提出了基于纠错码的CFS签名方案[21].CFS 签名方案能做到可证明安全, 短签名性质是它的最大优点. 其缺点是密钥量大、签名效率低,影响了其实用性.

因此, 如何用纠错码构造一个既能加密又签名的密码, 是一个相当困难但却非常有价值的开放课题.

3.3 基于格的公钥密码

近年来,基于格理论的公钥密码体制引起了国内外学者的广泛关注.格上的一些难解问题已被证明是NP难的,如最短向量问题(SVP)、最近向量问题(CVP)等.基于格问题建立公钥密码方案具有如下优势:①由于格上的一些困难性问题还未发现量子多项式破译算法,因此我们认为基于格上困难问题的密码具有抗量子计算的性质.②格上的运算大多为线性运算,较RSA等数论密码实现效率高,特别适合智能卡等计算能力有限的设备.③根据计算复杂性理论,问题类的复杂性是指该问题类在最坏情况下的复杂度.为了确保基于该类困难问题的密码是安全的,我们希望该问题类的平均复杂性是困难的,而不仅仅在最坏情况下是困难的.Ajtai在文献[22]中开创性地证明了:格中一些问题类的平均复杂度等于其最坏情况下的复杂度.Ajtai和Dwork利用这一结论设计了AD公钥密码方案[23].这是公钥密码中第1个能被证明其任一随机实例与最坏情况相当.尽管AD公钥方案具有良好的安全性, 但它的密钥量过大以及实现效率太低、而缺乏实用性.

1996年Hoffstein、Pipher和Silverman提出NTRU(Number Theory Research Unit)公钥密码[24]. 这是目前基于格的公钥密码中最具影响的密码方案.NTRU的安全性建立在在一个大维数的格中寻找最短向量的困难性之上.NTRU 密码的优点是运算速度快,存储空间小.然而, 基于NTRU的数字签名方案却并不成功.

2000年Hoffstein等利用NTRU格提出了NSS签名体制[25], 这个体制在签名时泄露了私钥信息,导致了一类统计攻击,后来被证明是不安全的.2001年设计者改进了NSS 体制,提出了R-NSS 签名体制[26],不幸的是它的签名仍然泄露部分私钥信息.Gentry 和Szydlo 结合最大公因子方法和统计方法,对R-NSS 作了有效的攻击.2003年Hoffstein等提出了NTRUSign数字签名体制[27].NTRUSign 签名算法较NSS与R-NSS两个签名方案做了很大的改进,在签名过程中增加了对消息的扰动, 大大减少签名中对私钥信息的泄露, 但却极大地降低了签名的效率, 且密钥生成过于复杂.但这些签名方案都不是零知识的,也就是说,签名值会泄露私钥的部分相关信息.以NTRUSign 方案为例,其推荐参数为(N;q;df;dg;B;t;N)= (251;128;73;71;1;"transpose";310),设计值保守推荐该方案每个密钥对最多只能签署107 次,实际中一般认为最多可签署230次.因此,如何避免这种信息泄露缺陷值得我们深入研究.2008 年我国学者胡予濮提出了一种新的NTRU 签名方案[28],其特点是无限制泄露的最终形式只是关于私钥的一组复杂的非线性方程组,从而提高了安全性.总体上这些签名方案出现的时间都还较短,还需要经历一段时间的安全分析和完善.

由上可知,进一步研究格上的困难问题,基于格的困难问题设计构造既能安全加密又能安全签名的密码,都是值得研究的重要问题.

3.4 MQ公钥密码

MQ公钥密码体制, 即多变量二次多项式公钥密码体制(Multivariate Quadratic Polynomials Public Key Cryptosystems).以下简称为MQ密码.它最早出现于上世纪80年代,由于早期的一些MQ密码均被破译,加之经典公钥密码如RSA算法的广泛应用,使得MQ公钥算法一度遭受冷落.但近10年来MQ密码的研究重新受到重视,成为密码学界的研究热点之一.其主要有3个原因:一是量子计算对经典公钥密码的挑战;二是MQ密码孕育了代数攻击的出现[29-31],许多密码(如AES)的安全性均可转化为MQ问题,人们试图借鉴MQ密码的攻击方法来分析这些密码,反过来代数攻击的兴起又带动了MQ密码的蓬勃发展;三是MQ密码的实现效率比经典公钥密码快得多.在目前已经构造出的MQ密码中, 有一些非常适用于智能卡、RFID、移动电话、无线传感器网络等计算能力有限的设备, 这是RSA等经典公钥密码所不具备的优势.

MQ密码的安全性基于有限域上的多变量二次方程组的难解性.这是目前抗量子密码学领域中论文数量最多、最活跃的研究分支.

设U、T 是GF(q)上可逆线性变换(也叫做仿射双射变换),而F 是GF(q)上多元二次非线性可逆变换函数,称为MQ密码的中心映射.MQ密码的公钥P为T 、F 和U 的复合所构成的单向陷门函数,即P = T•F•U,而私钥D 由U、T 及F 的逆映射组成,即D = {U -1; F -1; T -1}.如何构造具有良好密码性质的非线性可逆变换F是MQ密码设计的核心.根据中心映射的类型划分,目前MQ密码体制主要有:Matsumoto-Imai体制、隐藏域方程(HFE) 体制、油醋(OV)体制及三角形(STS)体制[32].

1988年日本的Matsumoto和Imai运用"大域-小域"的原理设计出第1个MQ方案,即著名的MI算法[33].该方案受到了日本政府的高度重视,被确定为日本密码标准的候选方案.1995年Patarin利用线性化方程方法成功攻破了原始的MI算法[34].然而,MI密码是多变量公钥密码发展的一个里程碑,为该领域带来了一种全新的设计思想,并且得到了广泛地研究和推广.改进MI算法最著名的是SFLASH签名体制[35],它在2003年被欧洲NESSIE 项目收录,用于智能卡的签名标准算法.该标准签名算法在2007年美密会上被Dubois、Fouque、Shamir等彻底攻破[36].2008年丁津泰等结合内部扰动和加模式方法给出了MI的改进方案[37-38].2010年本文作者王后珍、张焕国也给出了一种SFLASH的改进方案[39-40],改进后的方案可以抵抗文献[36]的攻击.但这些改进方案的安全性还需进一步研究.

1996年Patarin针对MI算法的弱点提出了隐藏域方程HFE(Hidden Field Equations)方案[41].HFE可看作为是对MI的实质性改进.2003 年Faugere利用F5算法成功破解了HFE体制的Challenge-1[42].HFE主要有2种改进算法.一是HFEv-体制,它是结合了醋变量方法和减方法改进而成,特殊参数化HFEv-体制的Quartz签名算法[43].二是IPHFE体制[44],这是丁津泰等结合内部扰动方法对HFE的改进.这2种MQ密码至今还未发现有效的攻击方法.

油醋(OilVinegar)体制[45]是Patarin在1997年利用线性化方程的原理,构造的一种MQ公钥密码体制.签名时只需随机选择一组醋变量代入油醋多项式,然后结合要签名的文件,解一个关于油变量的线性方程组.油醋签名体制主要分为3类:1997年Patarin提出的平衡油醋(OilVinegar)体制, 1999年欧密会上Kipnis、Patarin 和Goubin 提出的不平衡油醋(Unbalanced Oil and Vinegar)体制[46]以及丁津泰在ACNS2005会议上提出的彩虹(Rainbow)体制[47].平衡的油醋体制中,油变量和醋变量的个数相等,但平衡的油醋体制并不安全.彩虹体制是一种多层的油醋体制,即每一层都是油醋多项式,而且该层的所有变量都是下一层的醋变量,它也是目前被认为是相对安全的MQ密码之一.

三角形体制是现有MQ密码中较为特殊的一类,它的签名效率比MI和HFE还快,而且均是在较小的有限域上进行.1999年Moh基于Tame变换提出了TTM 密码体制[48],并在美国申请了专利.丁津泰等指出当时所有的TTM实例均满足线性化方程.Moh等随后又提出了一个新的TTM 实例,这个新的实例被我国学者胡磊、聂旭云等利用高阶线性化方程成功攻破[49].目前三角形体制的设计主要是围绕锁多项式的构造、结合其它增强多变量密码安全性的方法如加减(plus-minus) 模式以及其它的代数结构如有理映射等.

我国学者也对MQ密码做了大量研究,取得了一些有影响的研究成果.2007年管海明引入单向函数链对MQ密码进行扩展,提出了有理分式公钥密码系统[50].胡磊、聂旭云等利用高阶线性化方程成功攻破了Moh提出的一个TTM新实例[51].2010年本文作者王后珍、张焕国给出了一种SFLASH的改进方案[39-40].2010年王后珍、张焕国基于扩展MQ,设计了一种Hash函数[52-53],该Hash函数具有一些明显的特点.同年,王后珍、张焕国借鉴有理分式密码单向函数链的思想[52],对MQ密码进行了扩展,设计了一种新的抗量子计算扩展MQ密码[54].这些研究对于扩展MQ密码结构,做了有益的探索.但是这些方案提出的时间较短,其安全性有待进一步分析.

根据上面的介绍,目前还没有一种公认安全的MQ公钥密码体制.目前MQ公钥密码的主要缺点是:只能签名,不能安全加密(加密时安全性降低),公钥大小较长,很难设计出既安全又高效的MQ公钥密码体制.

3.5 小结

无论是量子密码、DNA密码,还是基于量子计算不擅长计算的那些数学问题所构建的密码,都还存在许多不完善之处,都还需要深入研究.

量子保密通信比较成熟的是,利用量子器件产生随机数作为密钥,再利用量子通信分配密钥,最后按“一次一密”方式加密.在这里,量子的作用主要是密钥产生和密钥分配,而加密还是采用的传统密码.因此,严格说这只能叫量子保密,尚不能叫量子密码.另外,目前的量子数字签名和认证方面还存在一些困难.

对于DNA密码,目前虽然已经提出了DNA传统密码和DNA公钥密码的概念和方案,但是理论和技术都还不成熟[9-10].

对于基于量子计算不擅长计算的那些数学问题所构建的密码,现有的密码方案也有许多不足.如,Merkle树签名可以签名,不能加密;基于纠错码的密码可以加密,签名不理想;NTRU密码可以加密,签名不理想;MQ密码可以签名,加密不理想.这说明目前尚没有形成的理想的密码体制.而且这些密码的安全性还缺少严格的理论分析.

总之,目前尚未形成理想的抗量子密码.

4 我们的研究工作

我们的研究小组从2007年开始研究抗量子计算密码.目前获得了国家自然科学基金等项目的支持,并取得了以下2个阶段性研究成果.

4.1 利用多变量问题,设计了一种新的Hash函数

Hash 函数在数字签名、完整性校验等信息安全技术中被广泛应用.目前 Hash 函数的设计主要有3类方法:①直接构造法.它采用大量的逻辑运算来确保Hash函数的安全性. MD系列和SHA系列的Hash函数均是采用这种方法设计的.②基于分组密码的Hash 函数,其安全性依赖于分组密码的安全性.③基于难解性问题的构造法.利用一些难解性问题诸如离散对数、因子分解等来构造Hash 函数.在合理的假设下,这种Hash函数是可证明安全的,但一般来讲其效率较低.

我们基于多变量非线性多项式方程组的难解性问题,构造了一种新的Hash 函数[54-55].它的安全性建立在多变量非线性多项式方程组的求解困难性之上.方程组的次数越高就越安全,但是效率就越低.它的效率主要取决多变量方程组的稀疏程度,方程组越稀疏效率就越高,但安全性就越低.我们可以权衡安全性和效率来控制多变量多项式方程组的次数和稠密度,以构造出满足用户需求的多变量Hash 函数.

4.2 对MQ密码进行了扩展,把Hash认证技术引入MQ密码,得到一种新的扩展MQ密码

扩展MQ密码的基本思想是对传统MQ密码的算法空间进行拓展. 如图1所示, 我们通过秘密变换L将传统MQ密码的公钥映G:GF(q)nGF(q)n, 拓展隐藏到更大算法空间中得到新的公钥映射G′:GF(q)n+δGF(q)n+μ, 且G′的输入输出空间是不对称的, 原像空间大于像空间(δ>|μ|), 即具有压缩性, 但却并未改变映射G的可逆性质. 同时, 算法空间的拓展破坏了传统MQ密码的一些特殊代数结构性质, 从攻击者的角度, 由于无法从G′中成功分解出原公钥映射G, 因此必须在拓展空间中求解更大规模的非线性方程组G′, 另外, 新方案中引入Hash认证技术, 攻击者伪造签名时, 伪造的签名不仅要满足公钥方程G′、 还要通过Hash函数认证, 双重安全性保护极大地提升了传统MQ公钥密码系统的安全性. 底层MQ体制及Hash函数可灵活选取, 由此可构造出一类新的抗量子计算公钥密码体制.这种扩展MQ密码的特点是,既可安全签名,又可安全加密[56].

我们提出的基于多变量问题的Hash函数和扩展MQ密码,具有自己的优点,也有自己的缺点.其安全性还需要经过广泛的分析与实践检验才能被实际证明.

5 今后的研究工作

5.1 量子信息论

量子信息建立在量子的物理属性之上,由于量子的物理属性较之电子的物理属性有许多特殊的性质,据此我们估计量子的信息特征也会有一些特殊的性质.这些特殊性质将会使量子信息论对经典信息论有一些新的扩展.但是,具体有哪些扩展,以及这些新扩展的理论体系和应用价值体现在哪里?我们尚不清楚.这是值得我们研究的重要问题.

5.2 量子计算理论

这里主要讨论量子可计算性理论和量子计算复杂性理论.

可计算性理论是研究计算的一般性质的数学理论.它通过建立计算的数学模型,精确区分哪些是可计算的,哪些是不可计算的.如果我们研究清楚量子可计算性理论,将有可能构造出量子计算环境下的绝对安全密码.但是我们目前对量子可计算性理论尚不清楚,迫切需要开展研究.

计算复杂性理论使用数学方法对计算中所需的各种资源的耗费作定量的分析,并研究各类问题之间在计算复杂程度上的相互关系和基本性质.它是密码学的理论基础之一,公钥密码的安全性建立在计算复杂性理论之上.因此,抗量子计算密码应当建立在量子计算复杂性理论之上.为此,应当研究以下问题.

1) 量子计算的问题求解方法和特点.量子计算复杂性建立在量子图灵机模型之上,问题的计算是并行的.但是目前我们对量子图灵机的计算特点及其问题求解方法还不十分清楚,因此必须首先研究量子计算问题求解的方法和特点.

2) 量子计算复杂性与传统计算复杂性之间的关系.与电子计算机环境的P问题、NP问题相对应, 我们记量子计算环境的可解问题为QP问题, 难解问题为QNP问题.目前人们对量子计算复杂性与传统计算复杂性的关系还不够清楚,还有许多问题需要研究.如NP与QNP之间的关系是怎样的? NPC与QP的关系是怎样的?NPC与QNP的关系是怎样的?能否定义QNPC问题?这些问题关系到我们应基于哪些问题构造密码以及所构造的密码是否具有抗量子计算攻击的能力.

3) 典型难计算问题的量子计算复杂度分析.我们需要研究传统计算环境下的一些NP难问题和NPC问题,是属于QP还是属于QNP问题?

5.3 量子计算环境下的密码安全性理论

在分析一个密码的安全性时,应首先分析它在电子计算环境下的安全性,如果它是安全的,再进一步分析它在量子计算环境下的安全性.如果它在电子计算环境下是不安全的,则可肯定它在量子计算环境下是不安全的.

1) 现有量子计算攻击算法的攻击能力分析.我们现在需要研究的是Shor算法除了攻击广义离散傅里叶变换以及HSP问题外,还能攻击哪些其它问题?如果能攻击,攻击复杂度是多大?

2) 寻找新的量子计算攻击算法.因为密码的安全性依赖于新攻击算法的发现.为了确保我们所构造的密码在相对长时间内是安全的,必须寻找新的量子计算攻击算法.

3) 密码在量子计算环境下的安全性分析.目前普遍认为, 基于格问题、MQ问题、纠错码的译码问题设计的公钥密码是抗量子计算的.但是,这种认识尚未经过量子计算复杂性理论的严格的论证.这些密码所依赖的困难问题是否真正属于QNP问题?这些密码在量子计算环境下的实际安全性如何?只有经过了严格的安全性分析,我们才能相信这些密码.

5.4 抗量子计算密码的构造理论与关键技术

通过量子计算复杂性理论和密码在量子计算环境下的安全性分析的研究,为设计抗量子计算密码奠定了理论基础,并得到了一些可构造抗量子计算的实际困难问题.但要实际设计出安全的密码,还要研究抗量子计算密码的构造理论与关键技术.

1) 量子计算环境下的单向陷门设计理论与方法.理论上,公钥密码的理论模型是单向陷门函数.要构造一个抗量子计算公钥密码首先就要设计一个量子计算环境下的单向陷门函数.单向陷门函数的概念是简单的,但是单向陷门函数的设计是困难的.在传统计算复杂性下单向陷门函数的设计已经十分困难,我们估计在量子计算复杂性下单向陷门函数的设计将更加困难.

2) 抗量子计算密码的算法设计与实现技术.有了单向陷门函数,还要进一步设计出密码算法.有了密码算法,还要有高效的实现技术.这些都是十分重要的问题.都需要认真研究才能做好.

6 结语

量子计算时代我们使用什么密码,是摆在我们面前的重大战略问题.研究并建立我国独立自主的抗量子计算密码是我们的唯一正确的选择.本文主要讨论了基于量子计算机不擅长计算的数学问题所构建的一类抗量子计算的密码,介绍了其发展现状,并给出了进一步研究的建议.

参考文献:

[1]张镇九,张昭理,李爱民.量子计算与通信保密[M].武汉:华中师范大学出版社,2002.

[2]管海明. 国外量子计算机进展、对信息安全的挑战与对策[J].计算机安全,2009(4):1-5.

[3]GROVER L K. A fast quantum mechanical algorithm for database search[C]// Proceedings of the Twenty-Eighth Annual Symposium on the Theory of Computing. New York: ACM Press, 1996.

[4]SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer [J]. SIAM J Computer, 1997(26) :1484-1509.

[5]HANKERSON D, MENEZES A, VANSTONE S. 椭圆曲线密码学导论[M].张焕国,译.北京:电子工业出版社,2005.

[6]曾贵华. 量子密码学[M].北京:科学出版社,2006.

[7]来学嘉, 卢明欣, 秦磊, 等. 基于DNA 技术的非对称加密与签名方法[J]. 中国科学E辑:信息科学, 2010, 40(2): 240-248.

[8]卢明欣,来学嘉,肖国镇,等. 基于DNA技术的对称加密方法[J]. 中国科学E辑:信息科学, 2007(2): 175-182.

[9]BERNSTEIN D J, BUCHMANN J A, DAHMEN E. Post-quantum cryptography [M]. Berlin:Springer, 2009.

[10]MERKLE R C. A certified digital signature[C]//Advances in Cryptology-CRYPTO 1989 Proceedings, LNCS. Berlin:Springer, 1989,435:218-238.

[11]NIST. Plan for new cryptographic hash functions[EB/OL]. [2010-12-30]..

[49]DING J, HU L, NIE X Y, et al. High order linearization equation (HOLE) attack on multivariate public key cryptosystems[C]//Proceedings of PKC 2007. Berlin: Springer-Verlag, 2007: 233-248.

[50]管海明.有理分式公钥密码体制[C]//第五届中国信息与通信安全学术会议(CCICS’2007)论文集.科学出版社,2007:135-141.

[51]胡磊,聂旭云.多变量公钥密码的研究进展[C]//中国密码学发展报告.北京:电子工业出版社, 2007: 235-254.

[52]王后珍,张焕国.多变量Hash函数的构造理论与方法[J].中国科学:信息科学版,2010,40(10):1299-1311.

[53]WANG H Z, ZHANG H G. Design theory and method of multivariate hash function[J].SCIENCE CHINA:Information Sciences, 2010, 53(10):1 917-2 158.

[54]王后珍, 张焕国.一种新的轻量数字签名方法[J].通信学报,2010(11):25-29.

量子计算论文篇(2)

 

化学反应微分截面的实验测量能够最细致地反映一个化学反应的本质特征,而通过求解在势能面上运动的原子核的薛定谔方程来得到基元化学反应的微分截面则是量子动力学理论计算的终极目标。   在过去的几十年间,经过包括中科院大连化学物理研究所杨学明、张东辉等研究组在内的科学家们的不懈努力,人们已经基本解决了三原子化学体系的量子动力学难题,能够定量地计算三原子体系的微分散射截面。然而,从三原子体系发展到更多更复杂的反应体系,则是一个巨大的挑战。作为向前发展第一步的四原子体系相对于三原子体系,体系的自由度从3增加到6,这意味着无论是势能面的构造还是散射动力学的计算,从难度到计算量都有巨大的增加。譬如,对于势能面的计算,如果每个维度计算100个位点,那么四原子体系的6个自由度相对于三原子体系的3个自由度,所需计算的位点数量就增加了一百万倍!而每个位点的能量计算、势能面的拟合等的难度和计算量都因为原子核和电子数量增加而急剧增大,由此可知量子动力学理论计算从3原子体系发展到4原子体系,困难之大超乎想像。   H2 + OH → H2O + H反应体系是四原子反应体系的基本范例,是燃烧化学和星际化学中的重要反应,其逆反应则是选模化学的研究样板。在过去的几年间,大连化物所杨学明、张东辉研究组对该反应的同位素替代反应HD + OH → H2O + D进行了反应动力学研究。理论上,他们发展出一套非常有效的含时波包方法,能够对六个自由度的四原子反应进行精确的计算,同时用更精确的方法构造了该反应体系的势能面,从而完成了该体系的第一个全维量子态分辨的动力学计算。实验上,他们采用高分辨的交叉分子束—里德堡氘原子飞行时间谱方法测量了HD + OH → H2O + D在不同反应能下的微分截面及其随碰撞能的变化关系。实验结果和理论计算结果高度吻合。   这是首次对一个四原子反应体系的态-态微分截面取得理论和实验高度吻合的研究结果,是分子反应动力学研究的一个重要突破,也意味着大连化物所在分子反应动力学领域继续牢固占据着国际领先地位。   该项研究得到了科技部和国家自然科学基金委的资助,研究成果发表在7月22日出版的美国《科学》杂志上(Science 333,440(2011))。(来源:中科院大连化学物理研究)

      硕士论文、职称论文、医学职称毕业论文、、、,更多详细信息请关注。   原文链接:《科学》摘要(英文)   英文摘要:   Quantum dynamical theories have progressed to the stage in which state-to-state differential cross sections can now be routinely computed with high accuracy for three-atom systems since the first such calculation was carried out more than 30 years ago for the H + H2 system. For reactions beyond three atoms, however, highly accurate quantum dynamical calculations of differential cross sections have not been feasible. We have recently developed a quantum wave packet method to compute full-dimensional differential cross sections for four-atom reactions. Here, we report benchmark calculations carried out for the prototypical HD + OH → H2O + D reaction on an accurate potential energy surface that yield differential cross sections in excellent agreement with those from a high-resolution, crossed–molecular beam experiment.

量子计算论文篇(3)

理论研究科学既有深厚的科学意义,又具备丰富的应用功能,是最基本的计算机科学的组成部分,在国际上一直很受重视,但在国内却是大家不太了解的领域。

据了解,从1998年成立至今,微软亚洲研究院已经确立了五大研究方向,涵盖多媒体、数字娱乐、用户界面、无线及网络技术和互联网搜索与挖掘等领域。本次成立的理论研究组将与原有的五个研究组平行运作,为他们提供理论方面的支持,帮助他们进一步拓展研究的深度和广度。

首先,先谈谈关于计算科学与计算机发展。

第一,计算的本质以及远古的计算工具。抽象地说, 所谓计算, 就是从一个符号串f变换成另一个符号串g。比如说,从符号串12+3变换成15就是一个加法计算。如果符号串f是x2,而符号串g是2x,从f到g的计算就是微分。定理证明也是如此,令f表示一组公理和推导规则,令g是一个定理, 那么从f到g的一系列变换就是定理g的证明。从这个角度看,文字翻译也是计算,如f代表一个英文句子, 而g为含意相同的中文句子, 那么从f到g就是把英文翻译成中文。这些变换间有什么共同点?为什么把它们都叫做计算?因为它们都是从己知符号(串) 开始, 一步一步地改变符号(串) , 经过有限步骤, 最后得到一个满足预先规定的符号(串) 的变换过程。

从类型上讲, 计算主要有两大类::数值计算和符号推导。随着数学的不断发展, 还可能出现新的计算类型。早在公元前5世纪,中国人已开始用算筹作为计算工具,并在公元前3世纪得到普遍的采用,一直沿用了二千年。同时还把算法口诀化,从而加快了计算速度。

第二,近代计算系统与电动计算机和电子计算机。近代的科学发展促进了计算工具的发展:在1614年,对数被发明以后,乘除运算可以化为加减运算,对数计算尺便是依据这一特点来设计。1620年,冈特最先利用对数计算尺来计算乘除。1850年,曼南在计算尺上装上光标,因此而受到当时科学工作者,特别是工程技术人员广泛采用。机械式计算器是与计算尺同时出现的,是计算工具上的一大发明。帕斯卡于1642年发明了帕斯卡加法器。在1671年,莱布尼茨发明了一种能作四则运算的手摇计算器,是长1米的大盒子。自此以后,经过人们在这方面多年的研究,特别是经过托马斯、奥德内尔等人的改良后,出现了多种多样的手摇计算器, 并风行全世界。

20世纪初,电子管的出现,使计算器的改革有了新的发展,美国宾夕法尼亚大学和有关单位在1946年制成了第一台电子计算机。电子计算机的出现和发展,使人类进入了一个全新的时代。它是20世纪最伟大的发明之一,也当之无愧地被认为是迄今为止由科学和技术所创造的最具影响力的现代工具。

第三,摩尔定律与计算的极限。人类是否可以将电子计算机的运算速度永无止境地提升?传统计算机计算能力的提高有没有极限?对此问题,学者们在进行严密论证后给出了否定的答案。如果电子计算机的计算能力无限提高,最终地球上所有的能量将转换为计算的结果――造成熵的降低,这种向低熵方向无限发展的运动被哲学界认为是禁止的, 因此, 传统电子计算机的计算能力必有上限。

而以IBM研究中心朗道(R.Landauer)为代表的理论科学家认为到21世纪30年代,芯片内导线的宽度将窄到纳米尺度(1纳米=10-9米), 此时,导线内运动的电子将不再遵循经典物理规律――牛顿力学沿导线运行,而是按照量子力学的规律表现出奇特的“电子乱窜”的现象,从而导致芯片无法正常工作;同样,芯片中晶体管的体积小到一定临界尺寸(约5纳米)后,晶体管也将受到量子效应干扰而呈现出奇特的反常效应。所有的美妙都是彼此联系和有意义的

第四,量子计算系统。量子计算最初思想的提出可以追溯到20世纪80年代。物理学家费曼RichardP.Feynman曾试图用传统的电子计算机模拟量子力学对象的行为。他遇到一个问题:量子力学系统的行为通常是难以理解同时也是难以求解的。以光的干涉现象为例,在干涉过程中,相互作用的光子每增加一个,有可能发生的情况就会多出一倍,也就是问题的规模呈指数级增加。模拟这样的实验所需的计算量实在太大了,不过,在费曼眼里,这却恰恰提供一个契机。因此,只要在计算机运行的过程中,允许它在真实的量子力学对象上完成实验,并把实验结果整合到计算中去,就可以获得远远超出传统计算机的运算速度。

量子计算的出现,则彻底打破了这种认识与创新规律。它建立在对量子力学实验的在现实世界的不可计算性。试图利用一个实验来代替一系列复杂的大量运算。电子计算机和互联网的出现,大大加强了人类整体的科研能力,那么,量子计算系统的产生,会给人类整体带来更加强大的科研能力和思考能力。不仅如此, 量子计算系统会更加深刻的揭示计算的本质, 把人类对计算本质的认识从牛顿世界中扩充到量子世界中。

再次,关于理论计算机科学研究提速

据了解,从1998年成立至今,微软亚洲研究院已经确立了五大研究方向,涵盖多媒体、数字娱乐、用户界面、无线及网络技术和互联网搜索与挖掘等领域。本次成立的理论研究组将与原有的五个研究组平行运作,为他们提供理论方面的支持,帮助他们进一步拓展研究的深度和广度。

第一,理论研究科学深厚的科学意义和具备丰富的应用功能。理论研究科学既有深厚的科学意义,又具备丰富的应用功能,是最基本的计算机科学的组成部分,在国际上一直很受重视,但在国内却是大家不太了解的领域。直到2004年,计算机理论学界大师姚期智从任教多年的普林斯顿大学回归清华大学时,才算刚刚起步。

微软亚洲研究院院长沈向洋认为,理论研究组的意义在于,从科研角度来讲,理论相当于底层的基础支撑,丰富的、有深度的、坚实的理论资源将使基础研发走得更快更远。他表示,对于微软亚洲研究院来说,促进地区整体科研实力的提高是其使命之一。理论研究组的成立,除了为研究院其他组的研究以及微软产品的研发做好坚实的理论储备,进一步促进研究院的发展和创新外,还希望能和清华大学等科研院所一道促进理论计算机科学在中国的研究与发展。

第二,理论计算机科学研究的机会与挑战。理论计算机科学怎样才能够做出一些突破性的研究,让中国信息科学的研究更上一层楼,姚期智院士举了两个例子:

其一点,有些问题是效率问题,譬如互联网的搜索就能得益于理论计算机科学的发展。互联网是一个很大的图形,在这个图形里面所做的事情,基本上是理论计算机科学里面所包含的问题,如果能在算法上进行改进的话,就能在科学、时间、商业上取得非常大的效果,从而发挥强大的效益。

另一点,有些问题,不单是效率问题,而是能不能够做到的问题。譬如安全,在过去30年的研究里,大家公认的在信息安全、网络安全方面,没有一个好的理论框架和基础,不可能做到绝对安全,完全避免黑客的攻击。因此,必须在理论发展的基础上去保证各种信息的安全。

未来可能会从两个方面解决摩尔定律的极限问题:一方面是计算机的硬件,譬如说量子计算机;另一方面是计算机的软件。

综上所述,如果观察历史,会发现人类文明不断增多的“发现”已经构成了我们理解世界的“公理”,人们的公理系统在不断的增大,随着该系统的不断增大,人们认清并解决了许多问题。人类的认识模式似乎符合下面的规律:“计算工具不断发展-整体思维能力的不断增强-公理系统的不断扩大-旧的神谕被解决-新的神谕不断产生”不断循环。

无论量子计算的本质是否被发现,也不会妨碍量子计算时代的到来。量子计算是计算科学本身的一次新的革命,也许许多困扰人类的问题,将会随着量子计算机工具的发展而得到解决,它将“计算科学”从牛顿时代引向量子时代,并会给人类文明带来更加深刻的影响。如果我们用最好的方法,写的软件程序能够比现在更有效率的话,计算能力本身就会帮我们做许多现在无法做到的事情。

参考文献:

量子计算论文篇(4)

中图分类号:O561 文献标识码:A

0引言

半导体工业在过去的几十年发展表明:计算机的中央处理器在每1-2年就会增长一倍,芯片上的集成的晶体管数目更是呈指数形式增长。在不远的将来每个芯片上的晶体管将会超过十亿个,这样的增长速度使得半导体的加工变得越来越困难。另一方面,随着纳米技术的发展,今后计算机的储存尺度单位将是原子级别的。当人们把这些器件加工到原子尺度程度的时候,就应该用量子理论来描述这些性质。量子理论作为描述微观世界的理论,它具有与经典理论有许多的不同之处,甚至和我们日常经验发生矛盾。

在1994年Peter Shor首次提出一种具体的量子大数因子分解加密算法,这个对RSA等公钥密码系统的安全性来说是一个挑战。随后在1996年,Grover发现了Grover迭代算法,它能求解某些解典计算机不能解决的问题,如经典的NPC问题。除此外,利用量子不可克隆实现保密通信,可以防止通信过程中被监听。这些性质使得量子通信具有广泛地应用前景而成为一个较热的课题。量子信息和量子计算已被我国列入“十三五”重大研究课题。

1量子比特

在经典的计算机里,基本的构造单元是比特。不论是用电子管来实现的一个比特还是用晶体管来实现的比特,其基本原理都要遵从牛顿力学定律。在一个经典的计算机里,其储存量是用比特的多少来衡量的。它的运算速度可有单位时间内比特的转换数目来决定。

在图1中可以看到,经典的比特实质是就是两个点10>和11>,所以在储存的时候也只能是10>和11>。因此我们想要提高其运行速度就受到了原理上的限制。首先是我们在追求速度时,就需要不断地提高微电子元件的集成度,小型化的电子器件必然会受到量子极限尺寸的限制。其次就是由于经典计算机的操作是不可逆的,由热力学原理知道,计算芯片必然发热,这是提高经典计算机的计算能力主要障碍。最后就是经典计算机不具备内在的并行运算。通过连接更多的计算资源来解决并行运算是比较复杂且难以实现的。

2量子比特

量子比特是计算信息科学里一个重要的概念,是量子计算机的基本单元,因此在这里我们对它做一个详细的介绍。

量子比特其可以对应量子力学里一个粒子态的叠加,对于一个自旋为1/2的粒子,其本征态为两种定态 ,单粒子的叠加态可表示为

| >= |1>+ |0> (1.1)

这里的 , 为任意复数,其分别对应两个定态在叠加态中所占的比例,如果 =0或者是 =0 时,叠加态就转化为定态,两个系数的模方 分别代表粒子状态在每一个定态中的几率。Bloch球面中则表示在量子力学里一个一把态的叠加。我们可以看到,经典的两个比特只是Bloch球面中一种特殊的情况,其被Bloch球面所包围。而量子态在三维的坐标中表示出来就是Bloch球面上的一个点。所以一个量子比特有无穷个态,每个态对应Bloch上的一个点,对量子比特进行操纵,就是把Bloch球面上的一个点移到另外的一个点,这个操纵是一个幺正变换。

3量子计算机

从(1.1)式我们可以看到,经典计算机是只是量子计算机的特例,量子计算机是经典计算机的推广,这一推广使得其计算能力成指数倍的增长。对于由量子力学原理所支配的量子计算机来说,原则上制约着经典计算机计算能力的原理都不存在,首先因为构成量子计算机的一些芯片实质上就是量子器件。其次是量子计算是由一系列幺正演化来完成的,所以这是一个可逆的过程,不存在耗热问题。最后就是量子计算是建立在量子叠加态基础上的,所以具有并行性运算能力。因而某些在经典的计算机里需要进行指数倍运算,在量子计算机里却只需进行多项式分解运算。

其实,在早期(1982年)就有人预想到了量子元件的计算能力比经典的元件强很多,不过在这个时期并没有受到人们的关注。直到20世纪初Shor首次提出Shor算法后使得量子计算机有了现实意义,即能对现行信息安全所依仗的大数因子分解难题进行有效的破解。从此以后就有越来越多的科研工作者开始关注量子计算机,关心和探讨适合量子元件运算规律的算法。

要实现量子计算过程,大致有一下三个步骤:

首先是初态的制备,在经典的计算机中,进行一个有用的计算最重要的要求是制备期望的输入。同样在量子计算机里,我们将芯片中的各个比特制备在某个特定的量子态上,这个过程中要求比特保持良好的量子相干性,以便保证量子叠加态能够一直成立。

其次是去实施完成所预想的各种可逆幺正变换,这些幺正变换就是我们通常所说的各种操作。在量子计算机里,人们相信量子计算机和经典计算机一样,都是由一系列的基本的逻辑运算组成。目前已经证明任何的量子计算都可以通过一个基本量子逻辑门集的组合来完成。

最后就是信息的读取,对量子器件进行测量来读出计算结果。需要注意的是,量子力学所掌握的是关于微观系统的规律是一种统计规律,它只能告诉我们在某个时刻一个微观系统的各个物理量取不同值的概率。在大多数时候,我们得到的末态有可能也是一个量子叠加态,所以我们测量的结果一般都是概率性的。量子计算通常要重复多次才能得到比较明确的结果。

4量子算法

在Shor算法为提出以后,人们意识到这将对当今广泛应用着的公匙密码体系的安全性构成严重的威胁,因为它能实现大数因子分解。

通常来说,RSA公匙密码体系中,密码的生成方式是这样的:第一步是去寻找两个大的质数m,n,计算Q=mn的值以及欧拉函数 (Q)=(m 1) (n 1)。第二步是在区间1≤e≤ (Q)随机选择一个和 (Q)互质的整数,计算模 (Q)下的逆元d=e-1mod (Q);最后一步是定义公匙私匙(M,e)是d。

由此可知,RAS公匙密码的安全性完全取决于大整数n的质因数分解的困难性,目前经典计算机是不能破解的。而在物理上,Shor量子算法是有效的,Shor算法是对大数因子分解的一种有效的算法:其复杂程度随着问题的规模只是多项式的增加。

5结论

在本文我们介绍了经典的比特和量子比特。经典的比特只是Bloch球上的两个点,而量子比特则是Bloch球上的所有点。可以看出,经典比特只是量子比特的一种特例。同时我们也讨论了经典的计算机和量计算机,量子计算机所执行的是一个可逆幺正演化且具备并行运算的能力,使得量子计算机能解决经典计算机所不能解决的问题,尤其是对大数因子的分解。量子计算机是目前量子信息科学中最重要的研究领域之一,这将是目前以及未来一段时间内科学家门所要研究的重点。

参考文献

[1] Shor P W.Scheme for reducing decoherence in quantum computer memory,Phys.Rev.A.1995,52(4):2493-2496.

[2] Geover L K,Quantum computers can search rapidly by using almost any transformation.Phys.Rev.Lett.1998,80(19):4329-4332.

量子计算论文篇(5)

人类正被数据淹没,却饥渴于知识。面临浩瀚无际而被污染的数据,人们呼唤从数据中来一个去粗取精、去伪存真的技术。而数据挖掘就是从大量数据中识别出有效的、新颖的、潜在有用的,以及最终可理解的知识和模式的高级操作过程,所以数据挖掘也可以说是一个模式识别的过程,因此模式识别领域的许多技术经过一定的改进便可以在数据挖掘中起重要的作用。计算智能(Computational Intelligence-CI)方法是传统人工智能(Artificial Intelligence,AI)的扩展,它是模式识别技术发展的新阶段[1]。

科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代”。创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志[2]。量子计算智能导论作为信息科学、计算机科学、智能信息处理、人工智能等相关专业的研究生专业课程,已经在越来越多的高等学校开设。

由于量子计算智能是一门跨越包括物理学、数学、计算机科学、电子机械、通讯、生理学、进化理论和心理学等学科在内的深奥科学,因此量子计算智能导论的教学内容和侧重点的安排目前仍处在探索阶段,尤其作为研究生课程如何使得学生在掌握深奥理论的基础上结合实际应用,将理论转化为技术与工具,从而提高动手能力,这是每个研究生专业课任课老师的核心探索所在,因此就要求老师在授业解惑的同时关注前沿,以该学科的前沿领域为教学指引,进而更好的培养研究生主动探索知识的能力。

1教材选择

一本好的教材为教学起到了画龙点睛的作用,因此教材的选择即是老师对教学内容,教学目标和教学方法的选择。我们选择教材,期望该教材由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。由于量子计算智能导论为全校研究生的专业课程,而量子计算智能是一门多学科交叉的综合型学科,因此我们要考虑到来自学校不同专业背景,以及在物理,数学,工程优化和进化理论基础有限的两难困境,所以首先选择了一本关于量子计算的英文原版书作为教材之一,Michael Nielsen等人所著的《Quantum Computation and Quantum Information》[3],2003年高等教育出版社出版,该书全面介绍了量子计算与量子信息学领域的主要思想与技术。到目前为止,该领域的高速进展与学科交叉的特性使得初学者感到困惑而不易对其主要技术与结论有综合性的认识,而该书特色在于对量子机制和计算机科学给予了指导性介绍,使得那些没有物理学或计算机科学背景的学生对此也易于接受,为学生提供了详实的关于量子计算的物理原理和基本概念;另外考虑到这门课程面向研究生,无论将来他们是直接就业还是继续深造,都要注重实践动手能力的培养,要能够将自己所学的书本知识转化为技术和工具,去解决实际的工程和科研问题,因此我们还选择了另外一门书,由李士勇教授所著的《量子计算与量子优化算法》[4],哈尔滨工业大学出版社于2009年出版,该书着重讲解了量子优化算法,为实际工程应用提供了新的思路,并启发大家在量子计算机没有走出实验室的今天,如何利用现有的数字式计算机构造具有量子特性的快速算法。当然考虑到全校研究生的专业知识背景不同,我们也推荐了中南大学蔡自兴教授等编著,2004年由清华大学出版社出版的《人工智能及其应用:研究生用书(第三版)》[5],该书是蔡自兴为主讲教授的国家精品课程人工智能的配套教材,该本书中系统全面的讲解了高级知识推理、分布式人工智能与艾真体、计算智能、进化计算、群智能优化、自然计算、免疫计算以及知识发现和数据挖掘等近年的热点智能方法,从而辅助学生了解人工智能,以及人工智能如何发展到计算智能,使得学生全面认识学科的发展和传承性,为今后学习量子计算智能打下坚实的理论基础。

2教学内容

本课程从量子计算的基本概念和原理出发,重点讲解量子计算基础和基本的量子算法;并从量子优化算法拓展开来。该门课程我们安排了46学时,具体安排如下:第1章,量子力学基础(2学时);第2章,量子计算基础(4学时);第3章,基本量子算法(4学时);第4章,Grover量子搜索算法的改进(4学时);第5章,量子遗传算法(8学时);第6章,量子群智能优化算法(8学时);第7章,量子神经网络模型与算法(8学时);第8章,量子遗传算法在模糊神经控制中的应用(8学时)。

3教学方法

3.1理论与实践相结合的教学方法

量子计算智能导论是一门多学科交叉的综合型学科。选课的同学来自全校,各个的专业背景不同,但是大家的共同需求是一样的,就是从课程中掌握一种用于解决实际问题的工程技术,但是工程技术的掌握也需要理论的支撑,因此我们在教学实践中总结出了一套方法,具体做法是将教学内容划分为:理论型和实践型。

理论型教学指的是发展完善的量子计算基本原理和方法。其内容包括:量子位、量子线路、量子Fourier 变换、量子搜索算法和量子计算机的物理实现等。而其中量子位、量子线路以及量子算法都是以量子相对论为基础的,这也是量子计算的本质原理,而较之我们熟悉的数字式计算机和计算方式有着本质的区别。我们在教学中由浅入深,通过PPT授课,采取理论与实例相结合的讲授方式。下面给出了一个我们在教学中的实例:将量子计算问题形象化。具体内容如下。

让我们想象一下下面这个问题。我们要找一条穿过复杂迷宫的路。每次我们沿着一条路走,很快就会碰到新的岔路。即使知道出去的路,还是容易迷路。换句话说,有一个著名的走迷宫算法就是右手法则――顺着右手边的墙走,直到出去(包括绕过绝路)。这条路也许并不很短,但是至少您不会反复走相同的过道。以计算机术语表述,这条规则也可以称作递归树下行。现在让我们想象另外一种解决方案。站在迷宫入口,释放足够数量的着色气体,以同时充满迷宫的每条过道。让一位合作者站在出口处。当她看到一缕着色气体出来时,就向那些气体粒子询问它们走过的路径。她询问的第一个粒子走过的路径最有可能是穿过迷宫的所有可能路径中最短的一条。当然,气体颗粒绝不会给我们讲述它们的旅行。但是 量子算法以一种同我们的方案非常类似的方式运作。即,量子算法先把整个问题空间填满,然后只需费心去问问正确的解决方案(把所有的绝路排除在答案空间以外)。这样以来,一个枯燥晦涩的量子算法就被很形象的解释,因此增强了学生的记忆也加深了理解,从而提高了学生的学习兴趣。

实践型教学指的是正在发展中的量子计算智能方法的热点问题。其内容包括:量子遗传算法,混沌量子免疫算法,量子蚁群算法,量子粒子群算法,量子神经网络模型与算法,和这些算法在实际工程优化中的应用。这部分内容属于本学科的前沿,但也是热点问题,因此这部分我们在教学中忽略理论推导,重点强调实际操作,在PPT课件中增加仿真实例的讲解;并在课下布置相应的上机操作习题,配合上机实践课程,锻炼学生的动手能力,同时也引导学生去关注这些前沿,从而培养他们的科研素养。

为了体现该门课的教学特点,我们在考核方式上,采取考试与报告相结合的方式,其中理论部分我们采取闭卷考试,占总考评分数的40%;实践部分采取上机技术报告考核,内容为上机实践课程布置的大作业,给出详实的算法流程图和仿真结果与分析,占总考评分数的40%;出勤率占总考评分数的20%。

3.2科研素养的培养与实践能力的提高

科研素养的最核心部分,就是一个人对待科研情感态度和价值观,科研素养的培养不仅使学生获得知识和技能,更重要的是使其获得科学思想、科学精神和科学方法的熏陶和培养。正如温总理说的那样:“教是为了不教,学是为了会学”,当学生将课本内容遗忘后,遗留下来的东西即是他们所具备的科研素养。因此,在教学中,我们的宗旨也是提高学生的科研素养,量子计算智能导论是一门理论和实践紧密结合的学科,该学科的发展日新月异,在信息处理领域的关注度也越来越高。在教学实践中,我们采用了上机实践和技术报告相结合的教学方式。掌握各种量子计算智能方法的原理和流程是这门课程教学的首要任务,因此学生结合各自研究方向实现量子智能算法在实际科研任务中的优化问题求解。在上机实践中,学生不仅要掌握该智能算法的流程而且重点关注学生对

自己科研任务的建模,学会系统分析问题,建立合理的数学模型,并给出理论分析。上机实践验收中,我们不但考察其结果展示,更增加了上机实践的技术报告,用来分析模型建立的合理性,从而培养学生对待科研问题的分析素养和建模素养。在技术报告中,我们要求学生给出几种可供参考的建模模型,并分析各自的优势,和选择这一解决方案的依据。由于量子计算智能导论是面向研究生开设的课程,在教学中,我们更佳关注其分析问题的能力,和解决问题的合理性的思考能力,从而培养学生的科研素养。

4结语

把教学当做一门艺术,是我们作为高校老师毕生追求的目标,如何做到重点讲透,难点讲通,要点讲清,这也是我们多年教学中一直关注的关键点。我们在教学中反对“灌输式”,强调“启发式”,以实际应用先导教学是非常可取的,也收到了良好的效果。量子计算智能导论是一门综合型交叉学科,且面向研究生开设,因此在教学实践中,我们十分重视学生科研素养的培养。通过上机实践和技术报告的形式引导学生积极动手,积极思考。希望这些教学中的点滴供同行们交流探讨。

参考文献:

[1] 焦李成,刘芳,缑水平,等. 智能数据挖掘与知识发现[M]. 西安:西安电子科技大学出版社,2006.

[2] 田新华. 跟踪国际学术前沿迎接量子信息时代:《量子计算与量子优化算法》评介[J]. 科技导报,2010,28(6):122.

[3]Michael A. Nielsen ,Isaac L. Chuang. Quantum Computation and Quantum Information [M]. 北京:高等教育出版社,2003.

[4] 李士勇,李盼池. 量子计算与量子优化算法[M]. 哈尔滨:哈尔滨工业大学出版社,2009.

[5] 蔡自兴,徐光v. 人工智能及其应用:研究生用书[M]. 3版. 北京:清华大学出版社,2004.

Exploration on Introduction to Quantum Computational Intelligence

LI Yangyang, SHANG Ronghua, JIAO Licheng

量子计算论文篇(6)

关键词:2013年诺贝尔化学奖;理论与计算化学;计算机辅助;模型化学

文章编号:1005?6629(2014)3?0011?04 中图分类号:G633.8 文献标识码:B

2013年的诺贝尔化学奖被授予了Martin Karplus、Michael Levitt以及Arieh Warshel三位美国科学家,以表彰他们在发展复杂化学体系多尺度模型方面所做出的杰出贡献。我们知道,长久以来,化学学科的奠基和发展始终离不开化学家在实验室中的辛勤劳动,但与此同时,随着实践知识的不断丰富和完善,以及运算能力的突飞猛进,理论和计算化学有可能也应当在新世纪在化学学科的传统领域发挥更大的作用。当前,解开每个人生命背后的谜团也是人们的兴趣所在。Karplus,Levitt和Warshel三位科学家将经典力学模拟方法结合最新发展的量子物理计算方法,为建立和发展多尺度复杂模型的理论模拟研究做出了基础性的贡献。那么,到底什么是理论模拟方法?它有什么重要的科学意义?对我们又有什么启迪?

1 理论与计算化学的建立和发展历程

20世纪初量子力学的发现为科学家们打开了深层次研究分子和原子的大门。量子力学中著名的薛定谔方程以其优美简洁的形式描述了原子和分子的重要组成部分――电子的行为[1]。1927年,Walter Heitler以及Fritz London两位科学家利用薛定谔方程解开了氢气分子电子结构[2],理论化学从此悄然兴起。随后,价键理论[3]、Hartree-Fock理论[4]、分子轨道理论[5]等的建立极大地丰富了理论化学的内容。从此,化学学科可以说与物理学一样,开始了真正的两条腿走路,而不再只是依靠实验知识的获取跛足而行。

早在20世纪50年代,科学家利用半经验的方法对原子轨道进行了计算。50至60年代期间,各种各样基于现代量子理论的计算已经被用来计算一些简单分子的电子结构和相互作用。20世纪70年代,例如Gaussian?、ATMOL?、IBMOL?等量子化学计算软件的开发也扩充了计算化学的内涵。

与此同时,新的化学合成与表征技术的开发使得越来越多新颖的分子被制造出来,人们不仅需要认识这些新分子,而且也需要借助一定手段来指导新分子的合成。在这样的前提下,就需要借助计算机对分子进行模拟。

1990年,密度泛函理论(Density Functional Theory)的提出将理论和计算化学带到了一个新纪元。和以往的方法相比,密度泛函理论解决了以往的分子模型中电子交换和相关作用的近似,由其得出的分子几何结构和电子结构的预测与实验数据吻合得非常好。直至目前,密度泛函理论依然是分子和化学反应模拟中最重要也是最为常用的方法,两位科学家Walter Kohn[6]和John Pople[7]因为分别发展了密度泛函理论以及将这种量子力学计算方法融入到计算化学中去而获得了1998年的诺贝尔化学奖,这是诺贝尔化学奖第一次被授予理论和计算化学领域的科学家。获奖者之一的Pople也是著名量子化学计算软件Gaussian[8]的开发者之一,该软件在2009年又进行了一次更新,是当今功能最完善、计算最有效、生命力最长的量子化学计算软件。

目前,专门刊登量子化学理论、模型化学和计算化学的学术期刊也纷纷涌现,如,美国化学会(American Chemistry Society)下已有Journal of Chemical Information and Modeling, Journal of Chemical Theory and Computation, Journal of Physical Chemistry A三本期刊出版,而著名学术出版集团Elsevier也有Journal of Molecular Graphics and Modeling, Journal of Molecular Modeling, International Journal of Quantum Chemistry和Computational and Theoretical Chemistry等专刊,国内也有例如《物理化学学报》和《计算机及应用化学》等期刊。

2 复杂化学体系多尺度模型的建模以及应用

1976年,Michael Levitt和Arieh Warshel二人提出了酶催化生物化学反应的通用理论研究方法[10]。这个方法将生物酶-底物间的复合物和溶剂作用一起考虑在整个体系之内,并且用量子力学和经典力学两种方法探讨了所有可能影响催化路径的因素。其中,量子力学包含了酶-底物键的断裂,底物与酶结合时电荷的重新分布;而经典力学部分则考虑了酶和底物之间的立体作用能和静电作用能。综合考虑以上两点,两位作者以一种水解酶裂解糖苷键为实例,首次进行了水解酶-糖苷这个复杂化学体系多尺度模型的理论计算(图1)。如今复杂化学体系的QM/MM方法已经被广泛应用到酶-底物催化反应,有机反应以及DNA/RNA的相关研究中去。

那么,如何建立一个合理的多尺度复杂模型?科学家们和软件工程师们通力合作开发出了各种功能强大的分子建模和可视化软件。对于小分子的构建,最为常用的为PerkinElmer公司下属的剑桥软件公司开发的ChemBioOffice?系列软件,包括了ChemBioDraw?和ChemBio 3D?两个模块(图2)。当在软件窗口的右侧ChemDraw?面板画出感兴趣的分子后,左边的窗口就会立即显示出分子的3D模型。本软件还包括了其他很多内容,例如对分子进行简单的几何结构优化操作或者分子动力学计算,根据计算结果画出分子的部分电荷、分子轨道等信息。

GaussView?是Gaussian公司开发的用于分子建模的软件包,目前已经更新到GaussView5.0b版本。此软件包的功能类似于ChemBioOffice?,该软件并不如ChemBioOffice?那样还具有计算功能,而只是作为量子化学计算软件Gaussian?的图形输入接口,图3是利用GaussView?创建了联苯分子,当利用Gaussian?软件对分子进行计算完毕之后,也能够展示分子轨道的图形。

以上两种软件不仅可以在各自的软件内部进行计算,而且ChemBioOffice?软件还提供了Gaussian?计算软件的接口。我们可以在ChemBioOffice?中构建完小分子,并设置运行参数之后在Gaussian?中进行对应的计算。

在一个复杂化学体系中,往往还要涉及到生物大分子的构建。现在科学家们已经构建起了大分子结构库,最著名就是由美国布鲁克海文(Brookhaven)国家实验室建立的蛋白质数据库(Protein Data Bank,http:// rcsb.org)。库内包含了蛋白质、多肽、DNA、RNA等95644个晶体结构数据。我们可以通过下载数据来得到生物大分子的晶体结构。

Accelrys公司开发的Discovery Studio Client?软件能够读取从Protein Data Bank下载的pdb文件,如图4展示的是Discovery Studio Client?的界面,展示了人体血清白蛋白和一种DNA的结构。

此外,Discovery Studio Client?还具有将小分子和大分子组装结合在一起的功能,如图5分别是将一种长链的污染物分子结合到了脂肪酸结合酶和人体血清白蛋白中,这就完成了一个复杂化学体系的模型构建。

VMD?软件也是一种常用的可视化软件,相对于Discovery Studio Client?,其功能更侧重于动态展现动力学情况下分子的运动和形变情况。图6则是VMD?软件的界面以及其展示的人体血清白蛋白分子和DNA分子。

在分子建模完成之后,就可以对一个建立完成的化学体系进行理论的计算,预测这个复杂化学体系的物理化学性质。对于一个多尺度模型的计算,计算方法的选择也是多尺度的。首先,对需要模拟的化学反应的区域要进行界定。在界定了这个区域之后,必须对这个区域内的分子进行高精度的量子化学计算,模拟或预测该区域内可能存在的化学键以及键的断裂。在界定的反应区域之外,由于不牵涉到化学反应,所以不需要高精度的量子化学计算方法,而只需要相对简单的半经验的计算方法或者更简单的分子力学方法进行计算。总而言之,这就是复杂化学体系多尺度模型的计算,即QM/MM计算。涉及量子化学部分的QM计算,需要用到包含量子化学计算的软件,例如最著名的Gaussian?,GAMESS?等。在这些软件中,也可以采用ONIOM方法[12]进行计算。

3 复杂化学体系多尺度模型建立的科学意义及其展望

结合理论以及计算化学发展本身的历程来看,复杂化学体系多尺度模型具有十分重要的科学意义。首先,此模型的建立使我们从简单分子的化学反应进入到了生物大分子体系的理论计算研究。利用理论计算这个强有力的工具,生命科学的奥秘将很快被解开,人们对生命科学背后的化学机制的认识将会上升到分子层面,对带动化学,乃至生命科学学科具有举足轻重的作用。其次,多尺度模型的建立也能够促进理论和计算化学本身的发展,丰富理论和计算化学本身的内涵,并且随着研究体系的进一步复杂化,将在现有的多尺度基础上提出新的超尺度模型的可能。

此外,作为一门交叉学科,理论和计算化学的发展也势必会带动其他相关学科的进一步发展。90年代开始,纳米学科蓬勃发展,各种新材料如雨后春笋般出现,得益于理论化学中平面波和赝势(即将离子实的内部势能用假想的势能取代真实的势能,但在求解波动方程时,不改变能量本征值和离子实之间区域的波函数)的发展,对具有周期性结构的晶体材料性质的模拟和预测也成为可能。目前,已经有Material Studio?、VASP?等多种模拟软件。在药物合成方面,计算机辅助药物合成的概念已经深入人心(Computer-aided Drug Design)。顾名思义,计算机辅助药物设计利用计算化学这个强有力的工具来发现或者研究具有生物活性的药物分子的行为,其最基本的目标就是通过计算化学来预测一个分子与靶生物分子是否会结合,并且其结合能力有多强,能够实现这一功能的软件则包括了GOLD?、SYBYL?等等。

可以说,理论和计算化学已经成为辅助化学家们探索世界的重要工具,也成为了指引科学家探索未知世界的新罗盘。

参考文献:

[1] Schrodinger E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev., 1926, 28, 1049~1070.

[2] Heitler, W. & London, F. Wechselwirkung Neutraler Atome und hom?opolare Bindung nach der Quantenmechanik. Zeitschrift fur Physic 1927, (44): 455~472.

[3] Pauling, L. Electronic Structure of the Benzene Molecule. Nature, 1987: 325, 396.

[4] Levine, I. N. Quantum Chemistry (4th edition), Englewood Cliffes, New Jersey: Prentice Hall.

[5] Mulliken, R. S. Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations. Phys. Rev. 1932, (41): 49~71.

[6] Hohenberg P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, (136): B864~B871.

[7] Pople, J. A. Molecular Association in Liquids: II. A Theory of the Structure of Water. Proc. Royal Soc. A, 1951: 205, 163.

[8] Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, ?. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

量子计算论文篇(7)

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2014)26-0191-04

一、引言

数字摄影测量是摄影测量在信息化时代的必然发展,在基础地理信息数据生产、工业控制测量与工程变形监测、土地资源管理、矿产资源调查、城市规划、文化遗产保护以及军事等众多领域都有重要的应用,是既有深厚理论基础又有广泛应用领域的学科和技术。许多高等院校的测绘工程或环境工程、地理信息系统以及摄影测量与遥感等专业都开设有数字摄影测量专业课程。

在数字摄影测量的研究和生产实践中经常需要提取数字影像中的点线特征,如经典的Moravec、Förstner点特征提取算子,一阶、二阶差分线特征提取算子以及Zuniga-Haralic定位算子等。许多文献报道了对这些特征算子的研究结果,如文献[1]给出了Moravec、Förstner以及Zuniga-Haralic算子的计算流程,文献[2,3,4]对点特征提取算子进行了比较研究,文献[5]研究了数字摄影测量征点的提取方法,提出了改进的角点提取方法,避免了原始Harris方法中选择经验常数k的不确定性和随意性的缺陷。

对这些点线特征提取算子的研究,多数文献和教材由于篇幅限制和侧重不同,都只是给出了相关算子的模型和计算过程,而对这些算子的设计初衷和构造理论基础分析重视不够,这给数字摄影测量学课程教学中学生对算子的学习和理解带来困难。本文分析了数字摄影测量中的一些经典特征提取算子,从方法论和解决问题的角度,通过设计原理分析或实践-理论-再实践等模式,给出了这些算子最初设计的理论基础,解释了这些算子的提出者为什么这样设计特征提取算子,本文的立意更侧重于“授之以渔”,有助于数字摄影测量领域工程技术人员和相关专业学生对点线特征提取的理解,并在理解的基础上对算子进行改进或创新,培养学生分析问题和解决问题的能力,体现素质教育的精神。教学实践表明,这种方法收到了较好的教学效果,得到学生好评。

二、关于线特征提取的差分算子

尽管已有大量先进的线特征检测算子,但在学习线特征提取算子内容时都是从最基本的差分算子,如一阶差分、二阶差分以及Laplacian边缘检测算子等开始引入[6]。对该部分内容的学习,如果仅仅讲解不同差分算法的提取步骤,那么学生只知道用该算子检测计算,而不知道为什么用这种算子,不理解最初研究人员设计差分算子的驱动源泉。作者在理解分析这部分内容时,采用了类似于实践-理论-再实践的模式,首先对实际问题中的“边缘”抽象建模,然后用理论对模型进行分析,得到严格理论框架下的结论,最后将得到的结论用于“边缘检测”实践。这里的抽象建模就是将实际遥感影像中的边缘总结抽象为两种类型,即“阶梯型”边缘和“条状型”边缘,如图1之(a)、(b)所示。其所对应的理想一维强度函数即为图形(c)、(d)。由于传感器分辨率以及噪声的影响,实际探测到的两种类型边缘的抽象解析函数应该是理想函数光滑或平均后的结果,即如图1之(e)、(f)所示。对(e)、(f)求一阶、二阶偏导数,分别得到如(g)、(h)、(i)、(j)所示的导函数。

分析图1中的(c)、(e)、(g)、(i)可以发现,将一维影像灰度函数抽象到连续可微函数f(x),真正的边缘位置P或(e)中的Px分别对应着一阶导函数的局部极大值位置P′,和二阶导函数的局部零交叉(zero-cross,又称过零点)位置P″。对离散的数字影像来说,影像灰度函数的偏导数常用Robert离散差分来代替,即x、y方向偏导数分别用和计算,常用上述两个差分的算术根即近似影像灰度函数f(x,y)在(x,y)处的导数。当用一阶导数极大值检测遥感影像边缘时,那么在Robert梯度计算准则下,就得到边缘检测的Robert算子响应:

Redge= (1-1)

对给定的离散遥感影像,按(1-1)计算每一像素处的Robert梯度响应Redge,如大于事先给定的阈值,则认为该像素是边缘并加以标记。如果用不同的倒数计算规则,就自然得到Sobel、Prewitt等边缘检测算子。如果采用二阶导数的极小值检测边缘,并用差分代替导数,则得到第二类边缘检测的二阶差分算子:

Sedge=|fx(i,j+1)-fx(i,j)|+|fy(i+1,j)-fy(i,y)|

=|f(i,j+2)-f(i,j+1)-(f(i,j+1)-f(i,j))|

+|f(i+2,j)-f(i+1,j)-(f(i+1,j)-f(i,j))|

=|f(i,j+2)-2f(i,j+1)+f(i,j)|+|(f(i+2,j)-2f(i+1,j)+f(i,j)| (1-2)

在上述分析的指导下,按照离散数字遥感影像灰度值的一阶差分极大值点(或二阶差分的零交叉点),一阶差分的零交叉点(或二阶差分的极小值点)分别提取数字影像上的阶梯型和条状型边缘就是顺理成章、水到渠成之事。

这种分析问题解决实际问题的思路,可总结成“问题抽象建模―理论模型分析推导―结论指导实践”的三步模式。这样不仅告诉学生用什么方法检测边缘,还讲清楚了为什么用这种方法检测边缘。这种讲授方法就启发学生,在遇到问题时应先抽象建模、理论分析然后将分析结果用于解决问题。通过长期的这种潜移默化训练与培养,可以逐步锻炼提高学生分析问题解决问题的能力,激发学生的创新性思维。

三、Förstner点特征提算子设计原理

Förstner点特征提算子是斯图加特大学摄影测量研究所的Wolfgun Förstner教授于1986年提出[7],是摄影测量界著名的点特征提取算子。该算子提取点特征有2个指标:q和w,其中q代表圆度指标,w表示权值。对该算子的设计与理论分析,作者给出如下的解读,以帮助初学者的理解与应用。

该算子是在分析最小二乘影像匹配质量的基础上而提出的。在摄影测量中,影像匹配就是确定同名对象的左右视差与上下视差。假设有图2所示的立体像对,(a)(b)子图中的黑色象素点表示同名像点,假定左像上的目标点坐标为(x,y),则右像上的同名点可表示为(x+px,y+py),px、py表示视差。

在地面平坦和近似垂直摄影的理想条件下,对左右影像灰度函数gl(x,y)、gr(x,y)在局部格网窗口内应满足下述方程:

gl(x,y)=gr(x+px,y+py)

≈gr(x,y)+rx(x,y)・ry(x,y)・py (2-1)

其中rx、ry g的两个偏导数。此可得线性化误差方程:

Δg(x,y)+v(x,y)=(x,y)・px+(x,y)・py (2-2)

其中Δg(x,y)=g(x,y)-g(x,y)。对左右影像局部窗口内的所有像素均按(2-2)列出误差方程,按最小二乘原理求解,在等权情况下可得到视差最或然估计为:

=(A)AL (2-3)

其中,

A=,N=AT A=(2-4)

由方程(2-3),可得视差向量的估计精度:

cov=σ(A A)=σ=ΔσQ (2-5)

如果想要求在该点匹配效果好,那么方程(2-5)中的矩阵Q所决定的方差椭圆应该尽可能的小,并且方差椭圆尽可能接近圆。方差椭圆愈小,说明估计的视差精度愈高;方差椭圆愈圆,说明匹配估计的视差精度均匀。

由误差理论可知,设由矩阵Q决定的方差椭圆的长轴和短轴分别为E、F,则有:

E+F=σ(Q+Q)=σ・trQ (2-6)

q=1-=4 (2-7)

由(2-6)可以看出,trQ愈小或w=1/trQ愈大,则方差椭圆愈小即视差估计的精度愈高。由(2-7)有,q愈接近于1,则方差椭圆愈圆即视差估计的精度愈均匀。所以可以得出这样的结论:Förstner准则下的特征点,实际上就是用最小二乘匹配时,配准点的精度较高并且精度较均匀的那些像素点。虽然方程(2-4)中的偏导数均是按照右像灰度函数计算的,但只要注意到在影像匹配中左右像的地位是对等的,所以上述偏导数计算完全可以在左影像上进行。这样,对给定的数字遥感影像,判断其上的某个像素是否为Förstner准则下的特征点,只要以该像素为中心开取一定大小的窗口,按(2-4)对窗口内的像素计算偏导数矩阵Q以及权值w、圆度q,只要w足够大(大于事先给定的阈值)q值接近于1,即可认为是特征点,否则不是。由上述分可以看出,Förstner点特征提取算子就是将最小二乘匹配中匹配精度较高并且均匀的点作为特征点筛选准则。

四、Zuniga-Haralic角点定位算子理论分析

Zuniga-Haralic角点定位的基本过程是,首先利用零交叉边缘检测器提取边缘,然后计算边缘上的点梯度角变化率k,以k的大小作为衡量角点的标准或角点响应函数,也称角点强度(cornerness),当k大于给定的阈值时,则认为该点为角点[1]。文献[1]只给出了该算子的计算步骤,并未分析其设计原理。该算子的设计依据可用图3中的图形作直观说明,在图3(a)中,当动点沿边缘方向变化时,拐角处点的梯度角(即垂直于边缘方向的直线与x轴正方向的夹角)从0度突变到π/2,梯度角变化率最大,所以认为该点是角点。图3(b)中的图形也有这种特性。由此分析启发,可得到“梯度角沿边缘方向变化率最大的点应该是角点”的设计依据。下述的推导结果也证明,按照这种思路进行严密的理论分析,正好得到Zuniga-Haralic角点定位算子。

对图像灰度函数g(x,y),灰度曲面上任一点(x,y,g(x,y))处的梯度为向量为

,梯度角θ=arctan/。依据梯度方向垂直于边缘方向,可以认为该点处的边缘方向为-

,单位化的边缘方向矢量为:α=(cosφ,sinφ)=-

/,

/。按方向导数公式并假定灰度函数的混合偏导数相等,即=,可得到灰度曲面上任一点处的梯度角θ沿边缘方向α的变化率k为:

k=・cosφ+・sinφ= (3-1)

这正是Zuniga-Haralic角点定位算子的角点响应函数。

注意到函数的二阶导数绝对值大小表示函数曲线的弯曲程度,曲线上二阶导数局部极大值点也应该是比较突出或明显的角点。通过这一基本原理分析,还可以直接从二阶导数得到Zuniga-Haralic角点算子。因为影像灰度函数曲面g(x,y)与边缘方向α的截痕即为空间曲线,该空间曲线沿方向α的二阶方向偏导数为:

(x,y)=cosα+2sinαcosα+sinα

= (3-2)

这与角点响应测度(3-1)仅相差一个因子k’(即梯度模的倒数):

k'=1/ (3-3)

实际上,(3-3)正是Kitchen and Rosenfeld提出的角点定位算子[8]。

针对角点响应函数(3-1),可事先给定阈值,如果某一点的k值大于阈值,则认为该点是角点。显然,按(3-1)检测到的角点只能是像素级的,如果将变化率k在其极大值附近沿边缘方向拟合二次曲线,然后通过求解二次曲线的极大值点作为角点,则可将角点定位精度提高到子像素级,这是需要进一步研究的内容。

五、总结

本文针对数字摄影测量研究和实践中常用的几种点线特征提取算子,分析了它们的设计原理和构造理论基础,使学生或工程技术人员不仅知道在计算机上如何实现这些算子,还使他们理解为什么这样来设计这些算子,做到既授之以鱼又授之以渔。如果在课堂教学中长期坚持这样的训练和学习,有助于建立学生分析问题和解决问题的正确思路,培养学生面对问题设计正确的解决方法,锻炼他们分析问题解决问题的能力,也有助于提高学生的创新能力。

参考文献:

[1]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社,1996:121-126,134-137.

[2]刘阳,邹峥嵘.摄影测量中几种特征点提取算法比较[J].测绘与空间地理信息,2012,35(8):125-127.

[3]王启春,郭广礼,查剑锋,等.基于图像灰度点特征提取算子的比较研究及改进[J].大地测量与地球动力学,2012,(2):148-150.

[4]王利勇,王慧,程,等.低空遥感数字影像的点特征提取算子的比较[J].测绘科学,2011,36(1):121-124.

[5]胡小平,廖海洋.数字摄影测量征点的提取方法研究[J].光学精密工程,2005,13(增刊):236-239.

[6]耿则勋,张保明,范大昭.数字摄影测量学[M].北京:测绘出版社,2010:66.

[7]Wolfgun Förstner,A feature based correspondence algorithm for image matching[J].Int.Arch. of Photogrammetry,1986,26-3/3:1-13.

量子计算论文篇(8)

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米Si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,PurdueUniversity等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米/分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。

简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。

1952年国际天文协会定义的时间标准是基于地球自转周期和公转周期而建立的,分别称为世界时(UT)和历书时(ET)。这种基于天文方面的宏观计时标准,设备庞大,操作麻烦,精度仅达10-9。随着电子技术与微波光谱学的发展,产生了量子电子学、激光等新技术,由此出现了一种新颖的频率标准——量子频率标准。这种频率标准是利用原子能级跃迁时所辐射的电磁波频率作为频率标准。目前世界各国相继作成各种量子频率标准,如(133Cs)频标、铷原子频标、氢原子作成的氢脉泽频标、甲烷饱和以及吸收氦氖激光频标等等。这样做后,将过去基于宏观的天体运动的计时标准,改变成微观的原子本身结构运动的时间基准。这一方面使设备大为简化,体积、重量大减小;另一方面使频率标准的稳定度大为提高(可达10-12—10-14量级,即30万年——300万年差1秒)。1967年第13届国际计量大会正式通过决议,规定:“一秒等于133Cs原子基态两超精细能级跃迁的9192631770个周期所持续的时间”。该时间基准,发展了高精度的测频技术,大大有助于宇宙航行和空间探索,加速了现代微波技术和雷达、激光技术等的发展。而激光技术和电子技术的发展又为长度计量提供了新的测试手段。

总之,在探讨了近似计算在静态分析中的应用问题、纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册后,广大科技工作者对电子技术在时间与频率标准中的应用知识的初步了解和认识。在当代高科技产业日渐繁荣,尖端信息普遍进入我们生活之中的同时,国家经济建设和和谐社会的构建离不开我们科技工作者对新理论的学习和新技术的应用,因此说,本文具有深刻的理论意义和广泛的实际应用价值是不足为虚的。

【参考文献】

[1]张凡,殷承良《现代汽车电子技术及其在仪表中的应用[J]客车技术与研究》,2006(01)。

[2]李建《汽车电子技术的应用状况与发展趋势》[J],《汽车运用》,2006(09)。

[3]陶琦《国际汽车电子技术纵览》[J],《电子设计应用》,2005(05)。

[4]刘艳梅《电子技术在现代汽车上的发展与应用》[J],《中国科技信息》,2006(01)。

[5]魏万云《浅谈当代电子技术的发展》[J],《中国科技信息》,2005(19)。

[6]黄军辉,张南峰,管卫华《创办汽车电子技术专业——适应现代汽车技术的发展之路》[J],《广东农工商职业技术学院学报》,2006(01)。

量子计算论文篇(9)

一、近似计算在静态分析中的应用

在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米Si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,Purdue University等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米 / 分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。

简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。

1952 年国际天文协会定义的时间标准是基于地球自转周期和公转周期而建立的,分别称为世界时(UT)和历书时(ET)。这种基于天文方面的宏观计时标准,设备庞大,操作麻烦,精度仅达10- 9 。随着电子技术与微波光谱学的发展,产生了量子电子学、激光等新技术,由此出现了一种新颖的频率标准——量子频率标准。这种频率标准是利用原子能级跃迁时所辐射的电磁波频率作为频率标准。目前世界各国相继作成各种量子频率标准,如(133 Cs)频标、铷原子频标、氢原子作成的氢脉泽频标、甲烷饱和以及吸收氦氖激光频标等等。这样做后,将过去基于宏观的天体运动的计时标准,改变成微观的原子本身结构运动的时间基准。这一方面使设备大为简化,体积、重量大减小;另一方面使频率标准的稳定度大为提高(可达10- 12 —10- 14量级,即30 万年——300 万年差1 秒)。1967 年第13 届国际计量大会正式通过决议,规定:“一秒等于133 Cs 原子基态两超精细能级跃迁的9192631770 个周期所持续的时间”。该时间基准,发展了高精度的测频技术,大大有助于宇宙航行和空间探索,加速了现代微波技术和雷达、激光技术等的发展。而激光技术和电子技术的发展又为长度计量提供了新的测试手段。

总之,在探讨了近似计算在静态分析中的应用问题、纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册后,广大科技工作者对电子技术在时间与频率标准中的应用知识的初步了解和认识。在当代高科技产业日渐繁荣,尖端信息普遍进入我们生活之中的同时,国家经济建设和和谐社会的构建离不开我们科技工作者对新理论的学习和新技术的应用,因此说,本文具有深刻的理论意义和广泛的实际应用价值是不足为虚的。

【参考文献】

[1]张凡,殷承良《现代汽车电子技术及其在仪表中的应用[J]客车技术与研究》,2006(01)。

[2]李建《汽车电子技术的应用状况与发展趋势》[J],《汽车运用》,2006(09)。

[3]陶琦《国际汽车电子技术纵览》[J],《电子设计应用》,2005(05)。

[4]刘艳梅《电子技术在现代汽车上的发展与应用》[J],《中国科技信息》,2006(01)。

量子计算论文篇(10)

0 引言

有机及配合物电致发光(EL)和非线性光学材料在高新技术中的广泛应用,受到人们的关注并得到积极的研究[1-3]。近30年来,随着量子化学计算方法和分子模拟技术、以及计算机技术的飞速发展,对材料科学的发展产生了深刻影响。利用量子化学计算方法方法研究EL材料的电子结构和光谱性质,以全自由度优化几何结构为基础,计算化合物的电子光谱。对研究此类材料的性质及合成有指导性意义计算结果是实验结果基本吻合。本文主要介绍量子化学在EL材料研究中的应用及进展。

1 量子化学研究EL材料的方法及原理

就量子化学的几种计算方法来看,从头算法虽然有严谨的理论支持,能得到较好的计算结果,但是当遇到诸如酶、聚合物、蛋白质等大分子体系时,计算很耗时,其计算代价无法承受[4]。为了在计算时间和计算精度上找到一个平衡点。采用量子化学半经验方法AMI进行了理论计算包括构型优化、振动分析电子光谱计算。科学家们以从头算法为基础,忽略一些计算量极大,但是对结果影响极小的积分,或者引用一些来自实验的参数,从而近似求解薛定谔方程,就诞生了半经验算法。如:AM1,PM3,MNDO,CNDO,ZDO 等[5,6]。目前,对多类EL材料的研究大部分都是基于量子化学的半经验方法。

2 光谱性能的量子化学半经验计算

EL材料的发光颜色与材料的荧光光谱有密切的关系,荧光即是电子由第一激发单重态跃迁回基态所产生的降级辐射。目前对光谱性能的量子化学计算多半基于量子化学半经验方法PM3和AM1,先对化合物的几何构型进行了全参数优化, 得到其稳定构型,再进行振动分析,在此基础上利用单激发态组态相互作用方法(CIS)计算它们的电子光谱。

比如苏宇,廖显威[7]等人采用量子化学半经验方法PM3对三种黄酮类化合物的荧光光谱进行了理论研究。对各化合物优化后的构型作了振动分析,均未出现虚频率。在此基础上,采用单激发组态相互作用方法(CIS) 计算荧光光谱,所有计算结果与实验值基本吻合。廖显威,李来才[8]采用单激发组态相互作用(CIS)方法,分别计算了4 种稠环芳烃的电子光谱,选了801个组态进行计算,所得结果与实验值基本吻合。他们还对几种含氮芳烃化合物有机EL材料,对FL-4、 FL-7、FL-10 和FL-12的光谱进行研究,计算结果与实验值基本相符合。薛照明,张宣军[9]等用PM3/SCI方法计算了三个分子的电子吸收光谱,测定了三个分子的电子吸收光谱和荧光光谱(DMF溶液)。结果表明理论计算值与实验值相当吻合。高洪泽,石绍庆等利用量子化学半经验AM1及INDO/SCI方法研究了B与8-羟基喹啉的螯合(LiBq4)的电子结构和光谱性质,计算得到基态到各激发态的垂直跃迁能和振子强度,获得电子光谱。分析出由于配体中苯酚环、吡啶环对不同前线轨道的贡献不一样,所以在吡啶环和苯酚环上引入取代基会对光谱发生影响,为分子设计提供理论指导。

3 量子化学对EL材料结构的分析

结构与性能的关系一直是量子化学的主要研究领域,它涉及的范围非常广泛,从无机小分子、有机分子到高聚物和生物大分子,从人为设计的理想模型分子到实用的药物分子和材料分子等[10]。通过结构与性能的研究,人们可以逐类地对一些化学现象进行统一的解释,得出一般性的规律,进而预言一新的化学事实,指导设计新的实验。目前国际上关心的课题主要有:重要新型无机分子、有机分子和原子簇化合物的化学键本质的研究;重金属、稀土元素化合物的成键规律;(半)导体材料、磁性材料、光电材料等。

高洪泽,石绍庆[11]等通过量子化学半经验方法研究了蓝色有机薄膜电致发光材料LiBq4 电子结构,国外研究人员在这方面已做了不少努力,合成了很多类型的蓝色发光材料并且制备了相关器件[12-15],但多数都没有获得突出的结果。由于LiBq4体系相对分子质量较大,迄今未见有对其进行理论研究的报道.他们通过计算结果表明,各个喹啉环基本保持各自的面共轭结构。计算得到的稳定几何结构和的主要键长。为探讨其发光机理及B和Li 元素在其中所起的作用及M ―N键的共价性、离子性对发光的影响,为进一步探索合成与设计具有优良性能的蓝色发光材料提供理论依据和指导。

4 振动分析

判断分子是否处于稳定构型的一个重要方法是看它的振动光谱是否出现虚频率[16]。刘芳玲,张红梅[17]等对萘及其卤代化合物在B3LYP /6-31G水平下优化了4种化合物的几何构型, 在振动分析中,其振动光谱均未出现虚频率, 说明构型优化基本合理性。

5 前景与展望

近些年来虽然量子化学在研究和分析EL材料方面,解释了一些实验现象,揭示了不少前期未被理解的机理,甚至预期了一些结构性能关系。但量子化学的应用远不止这些。随着量子化学理论不断发展和应用领域的逐渐拓宽,研究方法的不断创新,今后将对电致发光材料的合成和选择提供更好的理论依据和指导。将量子化学与EL材料的性质分析结合起来,才能更好的选择EL材料的构成,合成性能更好的EL材料。

【参考文献】

[1]D.B.Mitzi.Synthesis, structure and properties of organic-inorganic perovskites and related materials[J].Prog.I norg.Chem.,1999,48:123.

[2]O.M.Yag hi, H.Li, C.Davis, D.Richardson, T.L.Groy. Synthetic structure, patterns and emerging properties in the chemistry of modular porous solids[J].Acc.Chem.Res.,1998,31:474.

[3]W.Su, M.C.Hong, J.B.Weng, R.Cao, S.F.Lu.A semiconducting lamella polymer[Ag(C5H4NS)ln] with a graphite-likeanay of silver(Ⅰ)ions and its analogue with a layered structure[J].Angew. Chem. Int. Ed., 2000,39:2911.

[4]张勇.生物活性分子的结构和相互作用的理论研究[D].郑州大学,2005.

[5]笪良国,张倩茹.量子化学计算方法及其在结构化学中的应用[J].淮南师范学院学报,07,9(3):101.

[6]Dewar M. J. S,The semipirical Approach to Chemistry[J]. Int J Quantum Chem,1992,44:427.

[7]苏宇,廖显威,刘珊,邓嘉莉.光谱学与光谱分析[J].2006,26(6).

[8]廖显威,李来才.几种稠环芳烃EL材料的量子化学研究[J].1999,12(6).

[9]薛照明,张宣军,田玉鹏,吩噻嗪衍生物EL材料的结构、光谱研究及量子化学计算[J].2002,19(3).

[10]徐昕,王南钦,吕鑫,张乾.二量子化学的研究现状发展趋势与展望[J].1996,8(1).

[11]高洪泽,石绍庆,阚玉和.蓝色有机薄膜电致发光材料LiBq4电子结构与电子光谱的量子化学研究[J].2005,37(3).

[12]Adachi C, Tsutsui T, Sai to S. Blue lith t-emit ting organic elect roluminescent devices[J].Appl Phys Lett, 1990,56(9):293-296.

[13]张晓宏,吴世康,高志强,等.几种吡啉衍生物的光致发光和电致发光特性研究[J].化学学报,1999,58(3):293-296.

[14]Tao X T, Suzuki H, Wada T ,et al.Highly effi cient blue electroluminescence lithium tetra -(2 -methyl-8 -hyd roxy -quinolinat o) boron[J].J Am Chem Soc, 1999,121(40):9447-9448.

量子计算论文篇(11)

摘 要:本文针对计算机技术压力与个人和组织的关系进行全面的分析,验证了计算机技术压力量表的重要性,对其由浅到深、由点到全面的到验证性开发,并对当前的计算机技术量表评测所存在的问题提出相应的改进建议,以供同行参考.

关键词 :计算机技术压力;验证性因子;结构方程模型

中图分类号:C912.69文献标识码:A文章编号:1673-260X(2015)01-0159-02

自从计算机技术的普遍推广,计算机开始走向走入普通家庭, 但是经过市场人调查发现,人们对此项技术有一定的抵制情况,大部分认为计算机技术存在着一定的安全问题,使社会缺乏人性、侵犯个人隐私以及大量工作岗位的流失,自进入信息时代以来,计算机技术的普遍推广以及迅猛发展,使得计算技术在不断得到人们的使用,随之出现了计算机技术压力这一现象,“计算压力技术压力“这一词最早出现在20世纪80年代,当时定义计算机技术压力是一种由于没有能力应付新的计算机技术而产生的特殊非正常反应,表现为对计算机技术的发展产生畏惧心理或者沉溺于某一种计算机技术.美国著名心理学家Weil和Rosen对计算机技术压力概念进行了更为广义的解说,他们认为计算机技术压力并不是人的一种疾病,它是计算机技术对人的态度、想法、行为和心理造成的消极影响所引发的的后期不正常的人体反应,之后经过众多的专家学者的深入研究,所得出了一个很重要的理论:计算机技术压力的定义和度量问题,本文基于这一概念,对原有量表进行验证性因子评测并提出了相应的改进度量模型.

1 计算机压力的量表评测的研究现状

综合当前各国学者研究的理论结果,计算机技术压力是人在接触、学习和使用计算机技术时,由于计算机技术复杂难懂或是技术升级过快而产生的一种负极反应,之后受到社会压力的影响会引发心理和情绪的反感,例如工作所使用的计算技术过于复杂,自身不能完全适应所产生的一种焦躁感,这种现象主要出现于计算机技术的初期学习者身上,对进一步的学习和使用计算机产生阻碍,但是这种反应和状态属于暂时性的反应,就如植物的应激反应一般,可通过相关指导得到缓和和改善,此处的计算技术指的是计算机硬件、软件;计算机网络以及其它与计算机密切相关的技术.

美国托莱多大学商学院、罗切斯特理工学院的三位学者针对这一现象合作开发了Technostress Quest ionnaire,也就是计算机技术压力问卷,通过对问卷调查的结果分析得出以下结论,根据美国国内计算机压力问卷调查数据分析可得,将计算机技术压力分成了五个因子模型:第一个:工作负荷因子,随着计算机技术的出现,使得长期人们高效率的处理工作中,同时为获得更高效率的产出,但也大大增加了工作负荷,使得众多人产生手忙搅乱的心理,进而加剧个人工作紧张与压力;第二个:技术改变生活因子,紧张的工作导致多余时间少,不得不私人时间和生活空间学习新的计算机技术时间,另外由于多种原因,部分工作者在私人的休息时间里也必须与工作保持联络;第三个:复杂难懂的技术因子:在计算机学习过程中,由于计算机技术复杂难懂,再加上技术更新过快,导致过多的失败经验所累积的挫折感引起个人对计算机的畏惧,并且因为计算机技术复杂,缺乏自我学习信心,难以将其学习和掌握;第四个:工作压力因子:由于智能化的计算机发展导致更多的就业机会的流失,同时企业中的员工多多少少会担心自己岗位会被计算机智能技术代替或者被掌握计算机技术的人所代替;第五个:技术更新过快因子:计算机软件、硬件更新频繁、计算机技术发展迅猛,学习者、使用者很难追随上技术发展的速度,从而难以适应新技术条件下的工作压力,这是当前计算机技术工作着最大的问题,以上的二阶因子模型是分析计算机技术压力的量表评测的重要理论依据,被当前研究者广泛接受.

2 计算机压力的量表评测的研究方法

计算机技术压力发展标准量表的完整研究过程主要分以下两步骤:第一步:试探性研究:通过数据参数构建参数分析模型,进而进行理论分析;第二步,验证性研究:对理论分析的数据进行分析验证阶段,通过分析参数分析理论模型的拟和优度等指标参数确定分析的正确与否.通过对验证性因子分析需要遵循相应的评估标准去分析比较两个以上(包括两个)相似模型的优劣性,并且根据实际的分析提出对模型评测的进行评测,计算机技术压力自提出到现今大范围研究,针对试探性方法对相关量表的研究,伴随简单重复试探性研究的技术路线,本文的研究就是在基于前人研究的基础之上,对原有的二阶单因子进行探讨,深入研究二阶多因子模型,并且构建另外一个二阶双因子模型与之比较,完成计算机技术压力量表开发研究的全过程.

2.1 计算机技术压力的参数模型分析

近几十年,学术界不断深入研究计算机技术压力,每个人对计算机压力的研究方向不同而导致研究结果不同,为此形成了当前众多计算机压力研究理论认知体系,例如反应特征认知体系,主体特征认知体系和复杂的计算机技术压力认知体系,本文从复杂的计算技术压力构成学说角度出发,依据罗宾斯的压力理论模型,结合目前的计算机压力的理论体系构成了计算机技术压力二阶五因子构成模型.罗宾斯认为压力由环境、组织和个人三方面的因素所构成,而计算机技术压力是在这三个因素的基础在增添了技术升级过快因子和技术复杂难懂因子所构成,这五个方面的因素是否会导致显性计算机技术压力的形成,这与个体差异有关(例如个人认识能力、知识水平、工作的经验、社会的压力等等),所以计算机技术压力五个一阶因子中的技术复杂难懂因子、工作压力因子和技术更新过快因子是直接由计算机技术特征所导致的压力感,亦或者说压力的产生源于周围环境因素的影响,而工作强度的增加和技术深入生活则是因为计算机技术特性及其变化情况,直接压力会引发间接压力,它们二者之间相互影响,二阶多因子模型则能够更为准确的描述了计算机技术压力的不同来源和类型,比二阶单因子模型而言,更能准确的体现自身的内涵.

2.2 计算机技术压力的评价体系

本研究通过结构方程模型(即SEM模型)为基础来构建模型,根据模型的绝对拟合指标、相对拟合指标和调整性拟合等参数指标作为性能判定的理论依据,绝对拟合指标为V2/df、RMSEA、GFI,V2/ df在0至5之间表示模型可行,GFI在0.8以上代表模型拟合良好,RMSEA小于0.05代表模型拟合正常;相对拟合指标主要有NFI、NNFI和CFI,这三个指标大于0.9代表模型拟合良好;调整性拟合指标是指AGFI,AGFI大于0.9代表模型拟合合理.

2.3 计算机技术压力调研与样本

本次实证调查电子邮件的方式将问卷发放给全国各地的企业技术部门的工作人员进行问卷调查,同时将20%的问卷发给不同工作性质的人填写,例如普通工作者,大学生等,问卷总共为1000份,信息技术人员800份,其他工作者200份,根据问卷的回收结果,有效问卷为760份,根据其结果分析,男女比例为1:2.3,年龄段在25以下和以上的比例为2.1:2.3,根据教育状况来分析,本科学历者比例为59%,此外计算机技术人员值占17%,计算机使员人员高达83%.

3 计算机技术压力结果分析

针对以上的数据对二阶五因子模型进行分析验证以确定模型的信效度.

3.1 模型因子分析及信效度检验

在问卷调查的基础上,对模型的信度和效度进行检验,进行信效度分析,工作负荷增加主要表现为以下五个方面:计算机技术发展导致工作量加大、工作安排紧凑、工作方式发生改变、工作负荷加重以及工作节奏加快;技术入侵生活是指计算机技术发展导致个人休息时间较少、在假期必须与工作保持联系、牺牲假期与休息时间来掌握新计算机技术以及新技术的安全性导致个人隐私的泄露;技术复杂难懂是指计算机知识掌握困难、花费过多的时间掌握新计算机技术、提高自己的计算机水平困难以及掌握最新计算机技术维持工作;工作压力增大主要为维持岗位难以与其他共享计算机知识以及技术好的同事时迫使自己去学习新技术而导致工作压力的增大;技术发展过快是指工作中使用的计算机软件、硬件、计算机技术以及计算机网络系统更新频繁升级;对以上五大因子的分析来确定模型的信效度.

3.2 二阶五因子模型检验与比较

通过使用结构方程模型分析软件对两个模型进行比较,通过对模型拟和优度指标显示以及调整性拟和指标( AGFI)确定,两者模型皆具有良好的拟和效度,但是二阶五因子模型的拟和优度比二阶单因子模型更具优势性,这说明模型能够符合计算机技术压力的分析,同时二阶五因子模型在一定程度能够诠释好五个因子的变化量,通过比较两个可替代因子模型,能够更为准确的衡量模型刻画相应的理论体系,提升模型的拟和优度,所以在对模型的模拟性与信效度检测时,如果模拟和优度指标的区别度不大,可通过检验模型中潜变量的信效度对模型的优劣性进行判断,以检验模型是否满足理论分析需要.

4 结束语

综上所述,针对计算技术压力的的量进行全面的分析与研究,通过提出了计算机技术压力二阶五因子构成模型,解决原来的二阶单因子构成模型所存在的不足,在模型拟和信效度优于原有的二阶单因子模型,所以二阶五因子模型能够准确的反应计算机技术压力概念,这一模型为计算机技术压力的后续研究工作提供了新的研究方向,同时对进一步探讨相应的计算机技术压力量表的发展,为计算机技术压力量的应用提供了有力的支持.

参考文献:

〔1〕Tarafdar M, Tu Q, Ragu- Nathan B S, Ragu- Nathan T S. The impact of technostr ess on ro le stress and productiv ity[J]. Journal o f Manag ement Information Systems, 2007(24):301-328.