欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

电力系统研究分析大全11篇

时间:2023-05-24 16:05:43

电力系统研究分析

电力系统研究分析篇(1)

作者简介:赵兴勇(1965-),男,山西太原人,山西大学工程学院,教授;赵艳秋(1964-),女,山西太原人,山西大学工程学院,工程师。(山西 太原 030013)

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)05-0063-02

大学教学改革是大学教学发展的最主要途径,[1]课程改革是大学教学改革的核心环节。山西大学工程学院(以下简称“本校”)作为地方应用型大学,其人才特征和培养模式要适应地方经济社会的需要。围绕山西综合改革实验区的建设和山西电网中长期规划,本校开展对涉电专业课程教学改革,其中“电力系统分析”是首门试点课程。它是本校电气工程及其自动化专业的必修课,由电力系统稳态分析、电力系统暂态分析和实验课组成。学生对该课程的掌握程度直接影响其后续课程的学习及今后的就业和工作。

随着现代电子计算机技术、信息通讯技术及控制技术的快速发展,电力系统也发生了巨大的变化,许多新原理、新技术广泛应用于电力企业,与此对应的电力系统学科也发生了变化,原有的学科体系与现代人才培养目标存在较大差异,已经不能适应现代电力工程教育发展的要求。[2]

为此,笔者从理论教学体系和实践环节等几方面,对“电力系统分析”课程进行了一系列有益的探索和研究,以加强学生理论知识水平和实践动手能力。

一、“电力系统分析”课程现状分析

“电力系统分析”课程理论性较强,内容丰富、抽象,公式繁多,客观上使学生不易理解和掌握;另外还存在如下主要问题,使学生在校所学的知识技能不能适应实际工作。

部分知识陈旧,目前的教学内容大多处于上世纪90年代水平,而近十多年来是电力系统发展最快的时期之一,现在的教学内容没有很好地反映这些变化;课程内容安排不太合理,部分知识点在逻辑上有不连贯之处;教学手段比较机械单一,多媒体技术应用不广或效果较差,难以吸引学生的注意力,学生学习兴趣不高;电力系统企业厂网分家,发输分离,市场化等改革及学校实习经费的减少,使学生现场实习的机会更少,实践环节被严重弱化,[3]认识实习、专业实习流于形式,难以达到理想的效果。

二、理论课程体系构建

1.优化课程内容和结构

根据本校培养应用型高级人才的目标,课程以知识面为单元,理论课紧凑、系统化,体现小而精的思路,各单元之间既相互独立,又相互联系,本课程组将“电力系统稳态分析”和“电力系统暂态分析”两门课程共计118学时压缩到72学时;将“电路”、“电机学”等基础课程安排在前一学期完成,按照潮流计算、调频调压、短路分析、故障计算、稳定性分析等次序安排章节,删减前期课程学过的内容。例如:“电路”课程讲过的导纳矩阵的计算机形成及修改,“电机学”学过的电机等效模型及电压磁链方程等内容,去除无功补偿装置手工整定等工程经验性强、应用性差的内容。

课程组还补充了近十几年来电力系统专业的新理论、新方法、新技术等成果,以体现现代电力系统的实际情况。例如,在介绍新能源发电中,补充了高渗透率下大规模风电场接入电网对电力系统的影响;风光互补对提高新能源并网稳定性等;电力市场环境下电力系统经济性分析;智能微电网的运行与控制策略;特高压交直流输电概述等内容。

同时,根据实际情况,不定时请行业知名专家举办讲座,介绍电力系统的新发展及典型案例等。例如,8.14美加大停电、国家电网“十二五”规划解读、印度7.30-31东北部大停电等,讲座提高了学生的学习兴趣,强化了专业教育,扩展了专业背景,深受学生的欢迎,收到了很好的效果。

2.多种教学方法综合应用

“电力系统分析”课程中大部分内容是很多年来形成的成熟知识,具有很强的工程性,逻辑性相对较弱,对此,笔者在教学中进行了如下几方面的改革:

(1)打破传统的单向授课方式,与学生适当互动。笔者针对每堂课的内容,在上课前,为学生提出2~3个经过精心准备的问题,鼓励学生带着问题听课,积极主动思考,并进行少量的问答讨论,让其在积极的气氛中学习,培养他们的创新思维和自主学习兴趣。

(2)采用相似教学法,易于学生理解。将抽象难懂的问题转换成学生熟悉的事物,进行相似性变换讲解,这样对学生理解难点非常有帮助。例如:将电力系统功角稳定问题类比为多匹马共拉一辆车的情况;无功变换类比为弹簧伸缩问题等,这些都给学生留下深刻的印象。

(3)采用先进的教学手段。笔者利用现代先进的计算机和丰富的信息资源,制作了大量生动的多媒体课件,极大提高了学生的学习兴趣及学习效率,丰富了教学内容。

本校组织教学经验丰富的教师、计算机水平较高的教师和学生代表,从各种资源库中找到的彩色实物图片和相关视频,制成多套动画及ppt,将原理、控制过程与实物结合起来一起讲解,使电力系统难以理解的概念、原理、控制过程等形象化。例如:讲解PARK变换时,将abc轴系与dq0轴系各向量之间的关系用形象的动画表达出来,使原来需要用30分钟讲解的内容缩短到15分钟,而且过程清楚形象,学生容易理解。

三、实践环节设计

充分利用先进的实验室资源,加强学生对概念、原理等的理解,更好地了解和掌握电力系统现场运行情况。

1.进行综合性实验

在以往的实验课中,大部分是验证性实验,内容比较单调、机械。本校从2010年开始,利用中央财政支持地方高校建设资金建立了电网综合自动化实验室,购买了PSASP,PSCAD/EMTDC等电力系统分析软件,丰富了实验资源。电网综合自动化实验室有3台发电机,可以模拟多个电压等级的开、闭环系统,可以进行电力系统要求的相关实验,实验教师设置故障及异常,学生根据现象分析问题,解决问题;或者教师提出具体要求,学生根据要求设计电路,观测实验现象,教师进行指导评价,在整个实验过程中,学生自己动手,充分发挥他们的能动性,有利于培养他们的工程素养。

2.优化实验内容

教师应从实际电力系统的特点及“电力系统分析”课程的特点出发科学安排实验内容,从简单到复杂开设实验,具体顺序为:系统潮流分析、发电机运行方式改变、电力系统静态稳定分析、切负荷、电力系统短路分析、故障分析等。

3.将科研成果转化为实验资源

多年来,课程组教师们承担了大量的省级纵向研究课题及山西电力公司等企业横向项目,取得一定的科研成果并将它们应用到实验中。例如,电压型SVC补偿装置研究,获得山西省科技进步二等奖,利用此项目改进了调压实验;特高压操作过电压柔性限制措施研究,获得山西电力公司科技进步三等奖,利用该项目成果开设电力系统过电压仿真实验,同时为研究生进行科研创造了一定的条件;通过山西省科技重大专项“风力发电机组远程监控和故障诊断”,建立了微电网实验平台,并开设了微电网运行与控制方法实验。这些都丰富了实验内容,强化了与电力系统实际工程的结合。引导学生通过观测实验数据和分析现象,进行机理分析,紧密与理论课相结合,极大调动了学生自己动手的积极性,收到了良好的效果。

四、实施方案及应用情况

经过两年多的研究,本课程组的改革方案已于2010年在电气工程及其自动化专业本科生中开始实施,从改革之初就受到学校和系两级领导的高度重视,得到山西省特色专业建设项目资助,并且“电力系统分析”已成为校级精品课程。

整个课程的考评由笔试、专题讨论和实验三部分组成,所占比例分别为40%、30%和30%。笔试根据教学大纲进行。专题讨论的题目提前两周给出,论题的主要内容包括:电力系统无功补偿、特高压输电过电压限制措施、潮流计算机算法等。学生充分利用课外时间,广泛阅读、讨论和思考,培养他们进行科学研究的基本素质,最后教师根据学生撰写的研究报告及小组答辩情况给出成绩。实验部分以综合实验为主,教师根据学生在实验中的表现及最后提交的实验报告确定成绩。

该方案实施两年多来,受到学生的普遍欢迎和学校的认可。由学校相关部门组织,对本校2010级、2009级电专业各30个随机抽查的学生进行的综合测试中,2010级学生的合格率达到89%,高出2009级近十个百分点,这表明该课改方案教学效果非常明显。它同时也成为学校教学改革的典型,在本校动力工程系、自动化系等工科类系推广。

五、结论

围绕培养应用型高级人才的目标,课程组对“电力系统分析”课程在教学内容、结构、实践及考评方式等方面进行了较大地改革。该方案优化了理论教学,增加了实践环节,使学生的综合能力得到提升,得到师生的普遍认同,更加适应现代电力工程教育的发展趋势。

参考文献:

[1]肖念,对中国大学教学改革逻辑的思考[J].中国大学教学,

电力系统研究分析篇(2)

1通讯规约简介

在远动装置及自动化系统中,调度端和厂站之间、自动化设备之间有大量的YC(遥测)、YX(遥信)、YK(遥控)、YT(遥调)信息需要进行传送(见图1)。为了保证双方能够准确有效地进行通信,并分清信息传送过程中的轻重缓急,区别所传送信息的类别,必须事先约定好数据传送的格式,在信息发送端和信息接收端做一系列的约定,这种数据传送的格式便是通讯规约。

图1 通讯规约基本模式

通讯规约是设备间进行数据交互的语言,规约中对通讯报了一系列的规定,即为该种交互语言的单词与语法的规定。因此,根据通讯规约的各类规定,对报文进行分析和解释,即可对这种设备交互的语言进行解读和分析。

电力系统常用的通讯规约有“循环式”和“问答式”两类。循环式规约以循环的方式周期性地传送信息给接收端,不顾及接收端的需求,也不要求接收端给予回答,常用的有CDT规约。问答式规约以主站端为主,依次向各个RTU或终端发出查询命令,各RTU或终端根据查询命令进行回答,回答信息串长度是可变的,常用的有N4F、IEC101、IEC103、IEC104规约等。

2通讯接口及新型连接器设计

常用通讯接口包括串行接口和网络接口。串行接口又根据连接形式的不同,分为RS232、RS422、RS485等多种类型。

美国SEL公司(SCHWEITZER ENGINEERING LABORATORIES, INC.)生产的微机型继电器在电力系统中有较广泛应用,主要应用型号包括SEL351、SEL551、SEL387等型号。SEL系列继电器主要使用了RS232串口、EIA485串口两种端口进行通讯,进行设备调试、检修时需要分别使用专用连接线通过相应的端口与继电器进行连接,进而根据通讯规约开展相关工作。由于继电器相关设备调试工作一般都为现场移动作业,带多根不同类型的连接线较为不便,且在实际工作时容易拿错线导致影响工作效率。同时,新型笔记本电脑一般都不再配备RS232串口,只能使用USB转串口线,这使现场工作需再多携带一根USB转串口转接线,进一步增加现场工作复杂程度和难度。因此,我们设计一种便携式通用型SEL继电器用通讯连接器,方便SEL继电器现场调试、检修使用,如图2所示。

图2 便携式通用型SEL继电器用通讯连接器设计图

连接器一端(右侧)设计为现行通用型标准USB接口,可方便插入常用笔记本电脑所带的标准型USB口中,便于与笔记本电脑进行连接;连接器另一端(左侧)设计为与继电器进行连接的模块化接口,一侧为RS232接口,另一侧为EIA485接口,均采用标准9针串口形式,但针脚定义不同。

3电力规约报文解析软件研究

IEC101、IEC103、IEC104为目前在电力系统应用最为广泛的通讯规约。因此,可设计一种电力规约报文解析软件,以方便进行报文解析,如图3所示。

图3 电力规约报文解析软件

电力系统研究分析篇(3)

1 引言

《电力系统分析》主要研究电力系统在正常及故障情况下的运行状态,包含电力系统稳态分析、电力系统暂态分析和电力系统稳定性分析三部分内容,是电气工程及其自动化专业重要的专业基础课,对培养学生运用所学理论解决工程实际问题的能力起着非常重要的作用。由于该课程具有理论性强、工程性强、涉及面广的特点,学习难度大,学生的学习兴趣不高。近年来,将多媒体技术引入课堂教学已成为一种趋势,采用多媒体课件配合板书的教学方法,使得教学更加具体化、形象化,在一定程度上提高了课堂教学效果。

随着计算机科学的不断发展,各种仿真软件的日益广泛应用给专业课的教学提供了现代化的教学手段,MATLAB就是其中之一。自上世纪80年代问世以来,MATLAB以其高性能的数值计算和可视化的图形绘制功能以及简单易学的编程方式迅速成为应用于多学科的大型软件。将MATLAB的数值分析功能、矩阵计算功能和可视化的Simulink仿真功能应用于《电力系统分析》课程的潮流计算和短路分析教学中,已成为《电力系统分析》课程教学改革的一个重要方面。

2 MATLAB在《电力系统分析》教学中的应用

2.1基于MATLAB的电力系统潮流计算——节点导纳矩阵的形成

潮流计算是电力系统稳态分析的重要内容,也是计算系统动态稳定和静态稳定的基础。潮流计算的方法有很多,其本质都是对一组多元非线性方程进行求解,其解法都离不开迭代。潮流计算中需要先形成网络的节点导纳(阻抗)矩阵,如果采用手工计算,即使节点数不多的系统也仍然有相当大的工作量,只有应用计算机才能快速而准确地完成这些计算任务。下面为潮流计算中节点导纳矩阵的形成程序:

n=input('请输入节点数:n=');

n1=input('请输入支路数:n1=');

B=input('请输入由支路参数形成的矩阵:B=');

X=input('请输入由节点号及其对地阻抗形成的矩阵:X=');

Y=zeros(n);

for i=1:n

if X(i,2)=~0;

p=X(i,1);

Y(p,p)=1./X(i,2);

end

end

for i=1:n1

if B(i,6)==0

p=B(i,1);q=B(i,2);

else

p=B(i,2);q=B(i,1);

end

Y(p,q)=Y(p,q)-1./(B(i,3)*B(i,5));

Y(q,p)=Y(p,q);

Y(q,q)=Y(q,q)+1./(B(i,3)*B(i,5)^2)+B(i,4)./2;

Y(p,p)=Y(p,p)+1./B(i,3)+B(i,4)./2;

end

disp(Y)

根据所给系统图,输入网络节点数、支路数及参数矩阵B和X之后,即可形成应用于潮流计算程序的节点导纳矩阵。

2.2采用Simulink/PSB进行电力系统短路仿真分析

1998年推出的MATLAB5.2在Simulink中增加了电力系统模块库PSB(Power System Block)。PSB主要由六个子模块库组成,涵盖了电路、电力电子、电气传动和电力系统等学科中常用的基本元件,可以对非线性、刚性和非连续系统进行非常精确的仿真。

如图为某恒压源系统突然短路的仿真模型。

将故障发生器设置为三相短路,故障时间为(0.01-0.05)s,得到如下仿真波形:

可见,无穷大电源系统短路时,电源端电压只有一些波动,没有发生显著变化。短路点三相电流有效值相等,为对称短路。

类似地建立同步电机三相短路模型,仿真后将结果与上例进行比较,可使学生更加深刻地理解这两种系统发生三相短路时的电磁暂态过程。

改变短路故障发生器的选项设置,可以得到两相短路、单相接地等不同类型短路故障时的电压、电流波形。

3 结论

在《电力系统分析》课程教学中引入MATLAB/PSB对潮流计算、短路故障等重要内容进行辅助分析,具有形象直观、交互性能好等优点,弥补了传统电力系统分析教学的不足,使学生加强了对理论知识的理解,激发了学习兴趣,很好地提高了教学效果。

参考文献:

[1]孟祥萍.电力系统分析[M].北京:高等教育出版社,2004.

[2]吴天明.MATLAB电力系统设计与分析[M].北京:国防工业出版社,2004.

电力系统研究分析篇(4)

一、引言

电力工业是为国民经济和社会发展提供能源的重要基础产业,也是关系国计民生的公用事业。但日益复杂的电力系统,发生故障的几率也在不断增加,某些扰动可能导致大面积停电和稳定性问题尖锐化,严重时系统可能失去稳定。

目前电力系统中的常用的故障分析系统有故障录波系统、输电线路行波测距系统、小电流接地选线系统和电能质量监测系统等,这些系统为分析电网故障、确定电力系统在特定情况下的运行状况提供了强有力的支持。这一类应用的共同点是都要对某些模拟量数据进行记录、分析和计算,从而实现不同故障分析系统的功能。但目前处理录波数据的系统一般只针对具体的应用而开发,相互之间尽管在数据处理方面有许多共性,却是由不同公司各自开发的,系统的开放性差,只适用于某一种特定的应用,缺少平台化的设计思想。这样就形成了所谓的“自动化孤岛”现象。

二、故障数据分析平台的功能分析

目前电力系统中常用的故障数据分析系统有以下几种:

(一)故障录波分析系统

故障录波系统是电力系统发生故障及振荡时能自动记录的一种系统,它可以记录因短路故障、系统振荡、频率崩溃、电压崩溃等大扰动引起的系统电流、电压及其导出量,如有功、无功及系统频率的全过程变化现象。主要用于检测继电保护与安全自动装置的动作行为,了解系统暂态过程中系统各电参量的变化规律,校核电力系统计算程序及模型参数的正确性,故障录波已成为分析系统故障的重要依据。

系统主要由电流(电压)智能监视模块、通信链路、监视微机和分析软件四部分组成,该系统将多个智能监视模块统一编址,通过通信网与分析主机相连,组成故障录波系统。每一个智能监视模块相当于一个独立的微型故障录波器,在线监视一条线路的运行状况,连续采集数据。当该线路发生异常时,相应模块连续采集一段设定时间段的线路运行数据,然后,将异常出现时刻前后各一段设定时间的数据作为故障录波信息保存,并上传给分析主机;分析主机将模块上传的数据加以保存、远传和处理,并可将异常波形显示并打印出来。

(二)输电线路行波测距系统

当输电线路发生故障后,必须通过寻线找出故障点,并根据故障造成的损坏程度判断线路能否继续运行还是须停电检修。行波测距是目前应用广泛的故障测距方法,其基本原理是:在电力系统发生故障后,在故障点将产生向两端运行的暂态行波,暂态行波在传播过程中遇到不均匀介质时,将发生折射和反射,因此在故障点和母线检测处暂态行波会发生反射和透射,这样就可以利用两个波头之间的时间差来完成故障定位。

行波采集与处理系统安装在厂站端,采用集中组屏式结构,一般包括行波采集装置、T-GPS电力系统同步时钟以及当地处理机三部分。行波采集装置主要负责暂态电流信号的采集、缓存以及暂态启动,并生成启动报告;T-GPS负责提供精确同步脉冲信号及全球统一时间信息;当地处理机由一台工控机构成,负责接收、存储来自装置的暂态启动报告,并与安装在线路对端所在变电所内的行波采集与处理系统交换启动数据,从而自动给出双端行波故障测距结果。

(三)小电流接地选线系统

电力系统配电网故障中绝大部分是单相接地故障。由于故障电流小,系统可带故障继续运行一定时间,小电流接地方式可显著提高供电可靠性,同时也具有提高对设备和人身安全性、降低对通讯系统电磁干扰等优点。但长时间带故障运行,特别是间歇性弧光接地故障时,过电压容易使电力设备出现新的接地点使事故扩大;同时故障电流可能使故障点永久烧坏,最终引短路故障。因此故障后快速选择故障线路就显得十分重要,在发生故障时须准确选出故障线路,以便及时切除故障。

由以上分析可以得出故障处理系统的共性:首先进行数据的采集和存储,再由数据处理模块进行数据的分析、计算及各种特征的提取等操作,最后对所得结果进行保存、显示和打印等。但目前不同的故障处理系统只针对具体应用开发,缺少通用平台的概念。

三、平台的主要功能模块与工作流程

参数设置模块可以对平台运行的参数进行设置,使平台在合适的状态下运行。前置机通过规约处理模块与站端装置进行通信,接收不同监测装置上传的各种录波数据,包括对不同通信规约传输数据的打包与解规约。数据通讯模块负责与后台机交换信息,若从装置收到的录波数据格式不符合Comtrade标准则先调用数据格式转换模块然后再将转换后的数据交给数据通讯模块。

故障处理模块负责把接收到的数据进行分析处理,将数据分析后通过数据库管理模块送入数据库服务器中,故障处理模块还提供与高级应用程序的接口。报表管理模块从数据库中取得数据生成各种报表,装置参数整定模块在后台机上发送参数整定命令,通过前置机发到装置以调整装置的运行状态。装置运行监控模块实现监测与控制装置运行状况的功能,告警模块处理装置上报或是系统操作所产生的各种告警信息。

当用户要查看录波数据曲线时调用录波查询模块查找到满足要求的数据,再通过录波曲线显示模块对要分析的数据进行查看。用户权限设置模块设定用户的使用权限,以提高平台的安全性。

四、结束语

本文提出的电力系统故障数据分析平台,遵循标准化、模块化、分布式、分层次的设计原则,具有良好的通用性和可扩展性,为开发故障录波系统、行波测距、小电流接地故障监测和电能质量监测等以处理录波数据为主的信息管理系统提供全面的底层支持。平台的使用可以提高软件的重复利用率,避免重复开发,减少电力企业的投资,有利于提高电网的运行和管理自动化水平。

参考文献

[1]刘念、谢驰、滕福生,电力系统安全稳定问题研究[J].四川电力技术. 2004.(1):1-6.

电力系统研究分析篇(5)

1、电力系统稳定性的重要性

我国经济发展速度越来越快,对电力的需求也越来越大,电力建设是各行各业发展的基础,是国民经济增长的基础,是我国向现代化前进的命脉。近年来我国电力消耗越来越高,预计到“十二五”时期,我国电力需求会逐年上升10%,在加上我国电力系统的大规模化和系统结构的复杂化,电力系统的不确定性也增加了发生电力事故的概率,给人民生活、工业生产以及国民安全带来较大的损失。所以要维持我国经济的高速发展,必须要建立现代化的电力系统,其首要问题就是保证电力系统稳定正常安全的运行。

电力系统所具有复杂的非线性特征,其不确定的动态行为使得电力系统会出现混沌振荡、频率崩溃和电压崩溃,这三种现象就是电网系统不稳定的典型特征,这也是电网事故三大主要原因。1966年美国两大电网西北西南电网合并互联时,就曾发生过振荡现象,在一分钟内发生了六次混沌振荡,从而导致两大电网解列。1996年5月28日11时57分我国华北电网发生了一起较为罕见的系统振荡事故,振荡持续了1分46秒,造成地处张家口地区的两座火力发电厂的停电,即沙岭子电厂(4*300MW),下花园电厂(2*100+200MW)全停,最后导致该区域大部分地区停电,这就是严重的“5.28”华北电网事故。由此可见,电力工作者们必须在工程和技术上非常重视和关注电力系统的稳定性。

2、电力系统运行的基本状态

电力系统应有充足的静态稳定容量,分有功和无功两种,而且在正常负荷的波动下,能够有效的调节有功和无功间的潮流,并且不发生振荡,这样就可以保持电力系统正常运行的稳定性。若系统任意一元件发生故障,如发电机或变压器等,不应导致主系统发生频率崩溃或电压崩溃等非同步运行的情况。

若电力系统的总功率与总负荷随时相等,那么我们可以称该电力系统正常运行。用数学公式表示为: ;

,式中P为有功功率,Q为无功功率,g为功率,l为负荷,P、Q分别代表有功、无功的损耗。

电力运行的状态主要包括以下四种。(1)正常状态:电力系统可以在电压和频率上满足各用户的用电需求。(2)警戒状态:电力系统在正常运行状态下受到振荡等一些因素的干扰,并且将干扰带来的影响积累起来,当干扰的影响积累足够多时,电力系统进入警戒状态。(3)紧急状态:当干扰的影响积累足够多时,各运行水平偏离正常值,电力系统已经不能在电压和频率上满足各用户的用电需求,这时我们称电力系统进入紧急状态。(4)恢复状态:在进入紧急状态之后,一般电力系统会安装有继电保护或自动保护的装置,可以使故障停止下来或者隔离,这时则可以称为恢复状态。

3、电力系统稳定性的基本概念

在电力系统稳定运行的状态下,发出的电功率为定值,同时在各个节点上的各种参数也是定值,反之,如果发出的电功率和各个节点上的电压或频率出现了波动和偏差,那么这时电力系统就不是在稳定状态下运行。

电力系统的稳定性包含以下几种:(1)电力系统的静态稳定:在往电力系统里加入或移除个别电机电力,加入或移除负荷时,电力系统会受到一些小干扰,在小干扰消失后系统不发生自发振荡或非同步,自动恢复到初始运行状态,这种状态我们就称为电力系统的静态稳定。(2)电力系统的暂态稳定:与静态稳定对立,在电力系统受到较大干扰后,例如短路或者断线,可以暂时达到一个新的状态稳定下来,那我们则称这个新的状态为暂态稳定。(3)电力系统的动态稳定:电力系统的动态稳定则是指电力系统受到干扰后,不发生振幅不断增大的震荡而失步。

4、电力系统稳定性的研究方法

近年来,我国电力系统朝大电网、超高压、大机组、远距离输电的方向发展,但是电力系统基础建设设施水平落后的现在依然存在,在储存和运输能力方面,经常会接近甚至超过电网系统的额定负荷,在这种情况下,就会在较大程度上威胁到电力系统的稳定性。以2010年上海世博会为例子,而电力系统的稳定就是整个世博园区安全最根本的保障。设想在世博会期间,电力系统如果发生了故障,导致停电事故,势必将会造成一定性质的混乱,从而导致一些负面的因素影响到上海乃至中国的国际形象,其后果不堪设想。随着电力行业的发展,各电厂、电站和电力局的规模不断扩大,传输能力和距离的不断提高,在结合电力市场的日益完善和成熟,那么如何提高电力系统运行的稳定性,如何进一步加强和完善提高电力系统的基础设施来保证其稳定性,如何保持其可持续性发展,就成为了各国电力工作者们所面临的一个难题。1980年以来,电力工作者们和电力研究人员在电力系统稳定性领域做了大量的科学研究工作而且也获得很大的成就。下面我们就来看看有关电力系统稳定性的解决办法。

根据电力系统的实际情况和特点,近年来主要的应用措施有以下几点:

(1)在干扰较小的情况下,可以模糊的认为是线性问题,通过建立数学模型的方法来确定动态和稳定性,计算电压和频率的特征值。

(2)在干扰很大的情况下,则不能认为是线性问题,需要建立非线性方程组,而且不能通过建立学学模型的方法来确定动态和稳定性,目前一般是采用积分法来求解,但是由于非线性方程组求解的不确定性,一般会得到多组解,也就是说在干扰很大的情况下,会有多个动态的平衡状态。

参考文献:

电力系统研究分析篇(6)

二、电力系统可靠性分析

高速铁路电力系统的组成比较复杂,按照功能与作用主要可以分为牵引和电力两部分前者是为高速铁路行车提供电源系统,后者是承担牵引供电以外所有铁路负荷的供电任务,包括信号系统、生产、车站、供水系统以及生活等铁路用电负荷的高速铁路电力供电系统,其供电可靠性不仅直接影响铁路运输系统的正常安全运行,还关系到很多铁路职能部门的正常工作,铁路电力供电系统由于应用的特殊性,在系统构成和功能上都有一些有别于电力系统的特点,主要体现电压等级低、系统接线形式简单以及供电可靠性要求高这三方面:

第一,从电力系统的角度看,铁路负荷属于终端负荷,直接面对最终用户,所以,铁路供电系统中绝大多数为10kV和35kV变配电所,这取决于地方供电系统电源的情况和铁路就地负荷的要求;第二,铁路供电系统的接线就像铁路一样,是一个沿铁路敷设的单一辐射网,各变电所沿线基本均匀分布,并且互相连接,构成手拉手供电方式;连接线自闭线和贯通线两种,连接线除了实现相邻所之间的电气连接外,还为铁路供电最重要的负荷提供电源;第三,铁路供电系统虽然电压等级低,接线方式简单,但对供电可靠性的要求却很高,其负荷的供电中断时间不能超过150ms,否则,将会导致所有供电区间的自动闭塞信号灯变为红灯,影响铁路的正常运输。

三、提高电力系统可靠性的措施

铁路沿线分布着车站和通信基站,这些地面设施是保证铁路运输畅通和安全的基础设施,上述设施需要电力可靠供应,高速铁路对电力供电提出了更高的可靠性要求,全线供电安全、可靠性取决电力贯通线的运行水平,供电可靠性依赖于铁路供电设备配置水平,采用的可靠性措施主要有三方面:

第一,保证系统可靠备用,各配电所自国家电网接引两路电源;各配电所采用单母线分断接线型式;10kV配电网络采用双路环网电力电缆;变配电所、箱式变电站内配电变压器按双台配置;第二,提高设备可靠性,配电所选用SF6气体绝缘开关柜;箱式变电站选用SF6气体绝缘环网开关柜;变压器选用干式变压器;低压开关柜采用高可靠性、模数化、组合式柜型;第三,提高系统抵抗自然灾害能力,电线入地;设备进屋;备用发电机;从高压到低压全部采用远动。

四、高速铁路电力供电系统新技术的分析与研究

电力系统研究分析篇(7)

一、引言

当今,为了更好地为国家整体经济的发展,以及电力技术的不断提高,新电力设备不断的使用,电力系统越来越复杂。而复杂的电力系统是否能够稳定运行成为电力系统至关重要的环节。只有电力系统的稳定性才能持续保证电力的供应,进而保证工业经济和人民的日常生活。

电力系统的稳定性运行问题开始受到关注最初是在上世纪40年代,之后由于电力系统发展的重点在技术创新和互联网等方面上,电力系统的稳定性运行一直发展相当缓慢,以至于稳定性的理论体系也迟迟未建立完全。近些年来,随着全球电力系统出现的几起大型的电力系统稳定性破坏引发的事故(如用电负荷超高导致系统崩溃的事故等),例如,在西方发达国家就曾出现过由于稳定问题出现的大面积停电导致重大经济损失[1,2]。因此,当前电力系统的稳定问题越来越引起了业内人士的广泛关注,并认为电力系统的稳定运行成为制约电力系统发展的瓶颈[3]。

目前,电力系统稳定性问题分析开始得到不断的发展,现在按照对失稳机理的认识,电力系统的分析方法可以分为两类即静态和动态分析方法。为了更好地指导以后的电力系统稳定运行和及时发现问题,在此对电力系统的稳定性问题的分析方法进行分析。

二、电力系统稳定性问题及其分类

电力系统稳定是指当受到一定的扰动时(或者小扰动或者大扰动),系统的电压能够保持不变,即使受到影响仍然可以在限定时间内恢复到允许的范围内,不会发生崩溃或者偏低的情况。然而,在实际总往往受到扰动后无法在短时间内恢复到允许值或者出现崩溃等极端情况,此为电力系统的稳定性问题出现问题。

如何避免电力系统不稳定首先要确定是何种扰动导致的,即分析稳定失稳的机理。由于稳定划分的标准不同,电力系统稳定性问题的具体的分类也有差异。例如,导致失稳的扰动规模来看,分为小扰动和大扰动;根据失稳事故时间的场景来看,分为暂态稳定、中期稳定和长期稳定等问题。

三、电力系统稳定性问题的分析方法

根据前面所提到的电力系统失稳的机理,目前的电力系统的稳定性分析方法主要有两类,即静态电压稳定分析方法和动态电压稳定分析方法。

1.静态电压稳定分析方法

当电力系统受到的干扰较小不足以引起系统的自发振荡等问题的时候,可以认为系统是静态的。静态分析方法是以潮流方程为基础的分析方法。该分析方法比较成熟,当前应用较广。该方法的本质是认为电压稳定是符合潮流问题,而电压稳定与否关键是找到稳定与失稳的临界点,即通常所说的电力网络中的潮流极限,并通过各种方法求得此点并掌握失稳与稳定临界的极限状态的不同特征作为失稳的崩溃点[4]。

根据这一原理,该类静态电压稳定分析方法又可以细分为潮流多解法、灵敏度分析方法、奇异值分析法和连续潮流方法等。

其中,灵敏度法相对来说计算过程比较简单,结果也非常清楚,适合于单台发动机单负荷的电力系统中应用。奇异值法则是更加关注雅克比矩阵的奇异性对稳定性的影响,该方法计算简单,技术成熟,应用很广。

2.动态电压稳定分析方法

其实,电力系统不能简单归类为静态状态,实质上电力系统更多的被认为是动态系统,即通常系统受到的干扰力都是很大的,容易使原来的运行状态发生变化。因为系统中很多因素是动态可变的,正是因为可变性导致了电压失稳。例如发电机的参数和动态特征、无功补偿设备特征等。

目前,动态电压稳定分析的方法可以分为以下几类:小扰动的分析法、暂态电压稳定分析法、中期电压稳定分析法和长期电压稳定分析法等[5,6]。

在此介绍以下暂态电压稳定分析方法。与静态相比,暂态是否稳定主要考虑的是电力系统在受到较大的扰动时电力系统的主要单元(这里主要指的是发动机)能否还能保持原来状态运行。在研究此类问题的时候,通常需要进行简化。暂态稳定分析的方法可分为两类:数值解法和直接解法。

四、结论

为了更好地服务经济生产,电力系统的稳定非常重要。特别是在当前长距离、高功率输送电力的系统中,这就需要业内人士掌握相应评定电压稳定的技术,探索出更为准确和贴切实际的稳定性值班,这样可以更好地服务于社会。

参考文献

[1]胡学浩.美加联合电网大面积停电事故的反思和启示闭.电网技术2003,27(9):2-6

[2]Middlebrook R D.Input filter considerations in design and applications of switching regulators[C]. IEEE IAS Annual Meeting,Piscataway,1976, 1:158-162.

[3]潘冠文 电力系统电压稳定性分析方法及展望[J].电源技术应用,2013,4:125.

电力系统研究分析篇(8)

作者简介:李孟超(1968-),男,河南商丘人,河南省电力公司商丘供电公司,高级工程师。(河南 商丘 476000)

中图分类号:TM73 文献标识码:A 文章编号:1007-0079(2013)20-0209-02

近年来,随着我国电力工业步入大电网、大机组、大容量、特高压、交直流混合、远距离输电、智能电网的阶段,电力系统的复杂性明显增加,电网的安全稳定问题日渐突出。当电网结构薄弱、缺少技术防范措施时,则可能因某一电气设备故障引发大面积停电事故,因此应把电网的稳定问题放在首位,这是众多事故中得出的客观规律。对于我国来说,长期以来发输变配工程落后于负荷的增长,网架相对薄弱,随着电网的不断发展,保证电网的稳定、可靠、运行,成了一项艰巨而重要的任务。加强电网稳定、可靠控制技术的研发和利用,已成了电力部门的重要任务。无论什么情况下,电力生产调度部门都要把电网安全稳定运行放在极其重要的位置。

一、保障提高电力系统静态稳定的措施

从电力系统静态稳定的本质来看,静态储备越大,电网静态稳定性越高。缩短“电气距离”是提高静态稳定的根本措施。主要措施包括以下几个方面:

1.减小线路电抗

采用分裂导线可以减小架空线路的电抗。对于电压为220kV及以上的输电线路,一般均采用分裂导线。这样既可以减小线路电抗,又加强了系统之间的联系,从而提高了电力系统的稳定性。

2.提高电力线路的额定电压

在电力线路始末端电压相位角保持不变的前提下,沿电力线路传输的功率基本上与电力线路额定电压的平方成正比。换言之,提高电力线路的额定电压相当于减小电力线路的电抗。因此,提高了电力系统的静态性。

3.采用串联电容器补偿

电力线路串联电容器补偿除了可以降低电力线路电压降落并用于调压外,还可以通过减少电力线路的电抗来提高电力系统的静态稳定性。但由于这两种补偿的目的不同,使用的场合、考虑问题的角度也就存在很大的不同。

一般情况下,串联电容器的补偿度愈大,愈接近于1,电力线路补偿后的总电抗愈小,从而可以提高电力线路的输送功率极限值,提高电力系统的静态稳定性。

4.改善电力系统的结构

改善电力系统结构的方法较多,对提高电力系统静态系统作用较明显的方法包括:一是加强系统联系,增加输电线路回数,减少输电线路电抗,使电力系统有坚强的网架,从而提高电力系统的静态稳定性。二是加强电力线路两端系统各自内部联系。三是在电力系统中间接入中间调相电力系统。

因此,电力线路经过的地区有地方电力系统或发电厂时,应尽可能地联合成为较大的联合电力系统,对于提高整个电力系统的静态稳定性有一定好处。

5.维持和控制母线电压

在电力系统正常运行中,维持和控制母线电压是调度部门保证电力系统稳定运行的主要和日常工作。维持和控制变电站、发电厂高压母线电压恒定,特别是枢纽厂(站)高压母线电压恒定,相当于输电系统等值分割为若干段,这样每段电气距离将远小于整个输电系统的电气距离,从而保证和提高了电力系统的稳定性。

二、影响电力系统暂态稳定的主要原因

(1)负荷的突然变化。如切除或投入大容量的用户引起较大的扰动。

(2)切除或投入系统的主要元件。如切除或投入较大容量的发电机、变压器和较重要的线路等引起了大的扰动。

(3)电力系统的短路故障。它对电力系统的扰动最为严重。

三、提高电力系统暂态稳定性的措施

提高电力系统暂态稳定性的措施和提高静态稳定性的措施有所不同。其不是首先考虑缩短电气距离,而是首先考虑减少能量差额或功率的临时性措施。具体措施如下:

1.快速切除故障和自动重合装置的应用

这是两种常常配合在一起使用的借减少功率或能量的差额提高暂态稳定性的措施,经济有效,应首先考虑。

(1)快速切除故障。快速切除故障对提高电网暂态稳定有着决定性作用。其大大提高了发电厂之间的稳定性,减少了电动机失速的危险。

(2)自动重合闸。由于电力系统中的故障,特别是高压电力线路的故障,大多是瞬时性短路故障。采用自动重合闸装置可以大大提高电网的可靠性和稳定性。因重合成功会使系统电源充足,易满足负荷的要求,从而保证了负荷运行的稳定性。

2.电气制动和变压器中性点经小电阻接地

(1)电气制动。当电力系统故障时,电机输出的功率急剧减少,发电机功率因功率过剩而加速,如能迅速投入制动电阻,消耗发电机的有功功率以制动发电机,使发电机不失步,仍能同步运行,可提高电力系统的暂态稳定性。

(2)变压器中性点经小电阻接地。变压器中性点经小电阻接地就是对接地性短路故障的电气制动。在短路靠近送电端时,它主要由送端发电厂供给;靠近受电端时,主要由受端系统供给。送电端发电机由于要供给这部分功率,短路时它们的加速就要放缓,或者说这些电阻中的功率损耗起了制动作用,从而提高了系统能的暂态稳定性。

3.长线路中间设置开关站

在线路较长时,可以在线路中间设置一个或多个开关站,这样相当于缩短了线路,因而可以提高系统的暂态稳定性。

4.采用单元接线方式

这是不增加设备投资以提高电力系统暂态稳定性的措施。采用单元接线基本上防止了发电厂之间并列运行暂态稳定的破坏。

5.连锁切机和切除部分负荷

连锁切机是由单元接线方式派生的,是介于并联接线和单元接线之间的一种提高暂态稳定的措施,它可以提高电力系统的暂态稳定性。当电力系统中备用容量不足,难以采用单元接线方式而必须采用并联接线方式时,为了提高系统暂态稳定性,可以采用连锁切机。

四、商丘电网安全稳定水平现状

通过对2013年夏季大负荷、冬季大负荷进行全接线及N-1暂稳分析,商丘电网无暂稳问题。

由N-1静态安全分析,在主要发、输、变电设备检修情况下,商丘电网存在500千伏联变下网负荷超稳定极限、重要断面过极限及220千伏电压水平偏低问题。

2013年商丘电网稳定约束的重点在于配合各种设备检修时,控制电网负荷使商丘电网电压满足运行要求,各重要断面不过载或不超稳定极限。

五、对商丘电网稳定运行采取的约束措施

(1)电压控制:电压控制是以下各项控制的前提。控制商丘电网220千伏电压不低于220千伏。

(2)开封地区与商丘地区500千伏主变。

1)汴西变投运前:开封地区与商丘地区500千伏主变由祥符两台主变、庄周两台主变共四台主变构成,主变下网极限要求如表1所示。

2)汴西变投运后:开封地区与商丘地区500千伏主变由祥符两台主变、庄周两台主变、汴西一台主变共五台主变构成,主变下网极限要求如表2所示。

(3)张阁庄周西送断面。该断面由220kV健张线、ⅠⅡ华庄线三个元件组成,控制限额如表3所示。

(4)商丘东部受电断面。该断面由220kV张梁线、ⅠⅡ庄陆线、ⅠⅡ裕梁线五个元件组成,控制限额如表4所示。

六、结论

电网的稳定运行对电力系统的安全十分重要。运行经验表明,重大电网事故的发生几乎都是由于电网稳定破坏而扩大,因缺乏事故预案,而后扩大至灾害性后果。因此,一个较弱而有措施准备的电网,将比一个强而无措施准备的电网会有更好的运行效果。本文希望通过对一些对策的研究,提高电网的安全稳定运行及经济效益和社会效益。

参考文献:

[1]何仰赞,温增银.电力系统分析(上、下册)[M].武汉:华中科技大学出版社,2005.

[2]孟祥萍.电力系统分析[M].北京:高等教育出版社,2004.

电力系统研究分析篇(9)

0.引言

在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。

1.电力系统的谐波

(1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,其结果如表1所示。表中,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。

(2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。

(3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔流输电技术和高压直流输电技术得到极大的发展和应用。柔流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。

2.谐波的危害

谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。

首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。

其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。

此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。

3.电力系统的谐波抑制技术

如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。

3.1预防性电力谐波抑制技术

预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:

(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。

(2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。

(3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。

3.2补救性电力谐波抑制技术

补救性电力谐波抑制技术是指为了解决已经存在的谐波问题而采取的技术手段,主要是在电网谐波源处加装滤波装置。常见的滤波装置有如下几种:

(1)无源滤波器。无源滤波器也称为LC调谐滤波器,是由滤波电容器、电抗器和电阻器适当组合而成的无源滤波装置。无源滤波器的基本工作原理为:由电感,电容和电阻组成的无源电路网络,通过将电容和电感调谐到对某一次谐波电流频率发生谐振,对该次谐波电流形成低阻抗支路以分流该谐波电流,从而达到在电网中滤除谐波电流的目的。无源滤波器结构简单、易于实现、设备投资较少、运行费用较低,是迄今为止应用范围最广的一种滤波手段。然而,由于无源滤波器只工作于特定频率,所以实际应用中通常用几组单调谐滤波器和一组高通滤波器相互配合组成滤波装置,以达到滤除主要的各次谐波分量的目的,但是这样容易造成各组调谐滤波器之间的相互影响,使调谐变得困难;而且无源滤波器受其电容电气特性的影响,容易和系统阻抗发生谐振,损害电容器件,严重时,甚至会使系统崩溃。

(2)有源滤波器。如图1所示,有源滤波器是通过检测补偿对象的谐波电流,然后通过控制电路注入一个与谐波电流相位相反的补偿电流,抵消谐波电流的影响,实现电源电流波形的正弦化。随着材料科学的发展以及大功率电力电子器件的开发应用,有源滤波器在耐压以及容量等问题上还有很大的发展空间。

(3)混合型有源滤波器。混合型有源滤波器是由有源滤波器和无源滤波器相结合组成的混合型滤波装置。装置的有源滤波器可以快速地补偿谐波,而无源滤波器可以同时进行谐波过滤和无功补偿,提高了滤波补偿的效率。当前混合型有源滤波器主要有串联式混合型有源滤波器和并联式混合型有源滤波器,其中并联式混合型有源滤波器的应用空间更广,已在多个直流输电工程中得到应用。

4.结语

综上所述,电力谐波给电网带来的危害是明显的,因此,我们有必要针对电力系统的谐波问题,采取科学的技术进行抑制,这不仅可以提高供电设备工作的稳定性与效率,而且能在保证供电质量的前提下降低供电的成本,对电能高效使用有着重要的指导意义。 [科]

电力系统研究分析篇(10)

铁路是国家的重要基础设施、国家的大动脉、大众化交通方式之一,它具有运输能力大、成本低、能耗少、速度高、适应性强等众多优点。在综合交通体系中处于骨干地位,如果没有铁路的现代化就难以实现国家的现代化。由于中国幅员辽阔、内陆深广、人口众多,资源分布及工业布局不均衡,铁路运输在各种运输方式中的优势更加突出,在国民经济和社会发展中具有特殊的地位和作用。

铁路技术装备和信息技术的现代化是实现铁路现代化的重点任务之一,铁路技术装备是铁路运输的物质基础,它包括线路、车站、电力、通信信号设备,机车、车辆、装备、给水设备和建筑物以及电气化铁路的供电设施等。

近年来随着运行管理模式的改革和技术进步,提高了电网安全、经济运行水平、改善供电质量,达到了减人增效的目的,提高处理事故的灵活性和电网的稳定性、安全性,提高了铁路供电单位的经济效益和劳动生产率。先进的电力装备、良好的供电质量记忆一流的服务水平,已成为铁路对电力需求的重要组成部分。在电力的管理中,需要有一套完善的用电管理系统,电网运行状态进行实时监测,及时掌握低压配电网运行状况。利用高科技手段提高用电效率,节约成本,给用电管理提供直接、便利的技术支持,为符合预测、电力调度、用电管理、配套服务奠定坚实的基础。

1 典型铁路电力远动系统组成

为了充分发挥铁路电力的贯穿作用,确保铁路用电的安全可靠,减少其对铁路运输生产造成的影响,所以电力远动技术被引入到铁路电力系统中,电力远动系统在我国的广泛应用时间并不长,大致经历了三个阶段,分别是:有触点式阶段、布线逻辑式阶段和软件化阶段等。

铁路10kv电力远动系统是一个综合的铁路供电和设备运行管理系统,由铁路供电的特殊要求决定其需要采集的数据量。铁路电力本文由收集整理远动系统一般选用分层分布式系统结构,主要包括远动控制主站、运动终端和通信通道三部分。

铁路电力远动系统对铁路供电所、电力线路及信号电源进行情况等的实时监测控制,消灭了事故隐患、加快事故的处理速度、保证了铁路行车的供电需求。

铁路电力远动系统采用n链式结构,即一台远动控制主站对应着n个被控端,系统一般除了具有遥控、遥信、遥控功能外,还应具有判断和切除线路故障的功能。铁路电力远动系统如图所示:

1.1 远动控制主站

远动控制主站主要是指在电网调度控制中心的计算机控制系统,它是整个电网调度管理控制系统的心脏部分,一般采用计算机局域网结构,分布式控制系统,以计算机设备为核心,以网络节点为单元进行配置。它主要负责相关信息的收集与处理及综合管理等,对沿线配电所及各站信号电源实施遥测、遥信和遥控,对个站贯通线和自闭线上的高压分段开关实现遥控与遥信。

系统的硬件配置主要有前置机、后台处理机、维护工作站、模拟屏、操作员节点机等网络节点设备及相应的人机接口设备,设置了实时数据打印,文档管理报表打印机、实时监视及卫星时钟同步等设备。

应用软件是整个系统的灵魂,应用软件协调完成同各个远动终端的数据通讯任务;应用软件把硬件系统采集的各种数据如电压、电流、电量等经过计算后以合理的方式显示出来供操作人员参考;操作人员的操作也要通过应用软件才能执行;应用软件还有很多其它功能。应用软件的好坏将直接影响整个远动系统的应用水平。

1.2 运动终端

运动终端设备分为配电所监控终端(rtu)、杆上开关监控终端(ftu)及信号电源监控终端(stu)。

运动终端采集的数据有利于分析正常时的负荷变化和故障时的变化情况,为科学分析判断故障和合理调配资源提供了依据。

配电所综合自动化安装集中式rtu,根据整个系统的配电功能要求,rtu实现对配电所的遥测、遥信和遥控,将配电所基础单元的所有保护信息通过远动系统上送主站,以满足远方遥测、遥信、遥控、遥视等在线监测和远方诊断及维护的要求。

杆上开关控制终端ftu以配电远动控制终端为核心单元,配以不锈钢控制箱体、操作机构、智能充电装置、免维护蓄电池以及其它设备。它主要安装在电力贯通线、自闭线的分段开关上,用来检测和控制开关的运行状态,测量电路的电流、电压和有功功率及无功功率等电气量,采集高压远动负荷开关、高压线路过流、短路遥信、高压线路接地遥信等遥信量,保存十个故障录波数据供系统事故分析。

信号电源监控终端stu设在沿线车站信号机械室内,实现对信号楼电源遥测、遥信、遥控功能。stu以配电远动控制平台为核心单元,与杆上开关监控终端ftu等远动控制终端共同组成车站的监控节点,并转发它们的数据至远动控制主站,完成远动控制功能。它主要检测电力贯通线经变压器输出的信号电源的电器参量,采集信号电源相电压、相电流及有功功率、功率因数、正序、负序等模拟量及低压远动断流器过流、短路遥信等遥信量。记录两路信号电源的低压远动断路器在发生过流、速跳闸时故障点前后各5个周期的电压、电流波形曲线,保存十个故障录波数据供系统故障分析。另外还记录发生越限时,越限点前后各5s的电压、电流有效值的故障曲线。

远动终端主要包括数据输入输出模块、数据通讯部分、电源部分等三个部分组成。

1.3 通信信道

通信信道是远动系统中的最重要的组成部分。借助于通信信道,各远动终端盒远动控制主站得以相互交换信息和信息共享,提高了电力系统运行的可靠性,减少了连接电缆和设备数量,实现终端远方监控。

远动通道物理结构一般采用由光缆构成的环形结构,动态备用运行方式;远动控制主站通过远动通道查询报文查询远动终端的数据,远动终端如有数据则上送远动控制主站,如无数据则回答正常应答报文。

由于铁路电力远动系统本身没有通信线路,远动控制主站通过铁路通信系统提供的专用主/备光纤数字通道与被控终端进行通信,实现远程监控,光纤数字通道采用环形结构。主控站采用双以太网配置,在逻辑上与被控站通信构成点对点通信方式。

2 电力远动系统的主要功能

铁路电力远动系统的主要任务就是将表征电力系统运行状态和各发电厂和变电所的有关实时信息采集到远动控制主站;把远动控制主站的命令发往远动终端,对设备进行调节和控制。

从远动终端发往控制主站的信息有测量量和状态量,测量量有有功功率、无功功率、电压、电流、频率和水库的水位等。状态量有断路器、隔离开关的位置状态、自动装置、继电保护的动作状态,发电机组、远动设备的运行状态等。

主要功能包括遥测、遥信、遥控、打印;具有对线路故障进行检测的能力;有对实时数据采集、传输、分析和处理的能力;具有对远动终端在线自检和显示的功能;对用户画面和用户数据库实现在线修改、编辑和定义的功能;本文由收集整理所有计算机有自启动、自恢复功能;冗余配置的双主机系统,有可自动切换和手动切换的功能;对操作人员可进行模拟培训和演示功能等。

2.1 遥测、遥信及遥控功能

遥测、遥信和遥控功能是铁路电力远动系统的最基本的功能。应用通信技术传送被测变量的测量值称之为远程测量,简称遥测;应用通信技术完成对设备状态信息的监视称之为远程信号,简称遥信;调度控制中心发送给发电厂或变电所的远程命令有控制命令及调节命令,应用通信技术完成改变运行设备状态的命令称之为远程命令,又称之为遥控。

当调度中心需要直接抑制发电厂、变电所中的某些设备,就会发出相应的控制命令,这种应用通信技术完成对有两个确定状态的运行设备的控制成为远程切换。在中国,通常把远程切换称为遥控。

随着科技的进步,铁路远动系统的功能根据电力系统的实际需要还在不断地扩展,为了有助于分析电力系统的事故、保证远动装置的正常运行和便于维护,还具有自检查、自诊断等功能等。

2.2 线路故障检测

远动系统在线路故障检测也发挥了重要的作用,当故障发生时采用过电流检测原理,即可判断线路电流是否超过整定值来检测故障。由ftu检测到故障并上报主站,主站系统首先要完成故障的自动定位,在确认线路失电的情况下自动遥控断开故障线段两侧的负荷开关,隔离故障点,然后,自动下发遥控命令闭合两侧配电所出现开关,恢复非故障线段的供电,并给出提示信息和故障的处理报告,供调度员进一步分析。故障发生时,主站自动查找故障区间内所有的ftu暂态3i0值,找到最大值所在的ftu,则故障点位于该ftu相邻的一侧。然后比较该ftu两侧的暂态3i0值,找到较大者,并比较最大值与较大值暂态零序电流的方向,如果相同,则故障点位于最大值ftu的另一侧;如果相反,则故障点位于两者之间。同时利用零序电压3i0值作为故障处理的启动条件和闭锁条件,提高故障检测和定位的准确性。主站系统根据ftu上报的线路电压数据,高压断相故障的位置应该在第一个出现任意线电压或相电压低于断相故障电压上限门槛值(如小于180v),而且大于断相电压下限门槛值(不为0)的开关和与其相邻的上游开关之间。

3 电力远动系统存在的问题

就目前而言,我国的电力远动系统尚在建设之中,还没有形成规模,在铁路的供电网络、路网供电方供电设备等与国外的差距还是很大[2-3],从而导致供电网络运行水平偏低,线路操作、倒闸作业、故障抢修、恢复供电等效率偏低,频繁的导致了许多重特大安全事故的发生,造成了重大的人员和财产损失,故应加快铁路电力远动系统建设提高供电网络整体运行水平,减少人员使用

量,减少事故发生概率。

3.1 运动系统设备的干扰

远动系统设备属高度集成化的弱电设备,其绝缘水平较低,对外界的干扰较为敏感,对于雷电等强电磁脉冲和过电压的耐受能力很低。而远动设备工作环境却是极易受到电磁干扰的强电场所,这些干扰对数据的采集、传输、处理产生影响,进而影响系统的准确性与稳定性。这些干扰主要包括来自自然环境的干扰,放电过程产生的干扰和来自电网的干扰等。

为了防止此类干扰对远动系统的影响,可采取一些措施,如屏蔽措施、系统接地设计、滤波器的设计以及印刷电路板的设计等[3],采用合理的抗干扰措施能够明显的电力远动监控系统的安全性及可靠性。

3.2 运动系统的通讯通道

路电力远动系统中通讯通道的设置方式主要以利用公网远程拨号方式为主。这种方式产生的原因主要由铁路电力远动系统技术发展的历史原因所造成。电力远动技术进人铁路电力系统时,全路还未组建dmis、tmis等系统。为了解决电力远动的通讯通道问题,可以采取以下解决方案,如:电力线载波、利用公网各站端远程拨号上网、用户单位自行敷设通讯线等。随着时间的推移,利用公网各站端远程拨号上网方式逐渐在路内电力远动系统中占据主导地位。随着铁路内部dmis、tmis等系统的组建,铁路电力远动系统完全可以借用它们的通讯通道,与这些系统组成综合管理或综合调度中心。铁路电力系统是为铁路通信信号设备供电的系统,该系统的正常工作是铁路通信信号设备正常工作的基本条件,因此,该系统的信息也应该属于行车安全信息。由此可见,铁路电力远动系统应该可以与dmis、tmis等系统合并,形成综合管理或综合调度系统。

3.3 远动系统的软硬件设计

由于现代铁路运输和指挥控制系统都是电气化系统,以及一些跟列车行驶有关的新设备都更多的引入了自动化,铁路用户对铁路电力远动系统的稳定性、可靠性提出了更高的要求,所以需要建立可靠、完善的铁路电力远动系统,这里主要的是远动系统的软硬件设计[4]。

电力系统研究分析篇(11)

前言:信息时代背景下,我国电力改革进程不断深化,朝着智能化、自动化方向转变,取得了不错的成绩,但同时也面临着巨大的挑战和威胁。由于电力系统规模壮大,电气操作不当引起了诸多故障,在很大程度上导致了系统突然中断,严重情况下,还会威胁到人员人身安全。继电保护故障信息分析系统作为一项崭新的系统,以其自身灵活性、高效性等优势,在电力系统中的应用,能够及时预测安全故障,将危险遏制在萌芽状态。因此加强对该系统实践应用的研究具有非常重要的现实意义。

1、继电保护基本原理分析

继电保护是一种电力系统自动保护装置,由测量、逻辑及执行三个部分构成。继电保护在实践中,首先对保护对象输入信号、设定整定值进行比较和分析,确保保护装置能够形成逻辑性,执行对应保护动作[1]。然后通过执行部位发出指令,即报警或者跳闸,完成任务执行目标。

在具体应用中,为了促使装置发挥积极作用,需要明确划分系统故障与非故障两种情况。如突然增加的电压、电流信号,负序与零序的电压和电流等。目前,常见的继电保护装置有很多,从制作工艺层面上来看,由机电型、整流型等类型;从原理上来看,有电流型、电压型及阻抗型等。对于继电保护装置的选择,要坚持可靠性、选择性等原则,才能够确保装置充分发挥有效性。

2、继电保护故障信息分析处理系统在电力系统的应用

2.1仿真模型的构建

仿真模型构建的终极目标是为工作人员能够更加全面、真实地了解和掌握装置参数设置情况,获取到相应的参数,以提高设备使用性能。在实际工作中,继电保护故障诊断仿真模型的构建可以从以下几个方面入手:第一,坚持真实性原则,在仿真时要根据真实情况进行设置,形成完善的仿真模型。在此基础上在模拟故障后能够获得真实的效果[2]。第二,保护动作跳闸之后,相关信息呈现出来,能够确保仿真提示与真实情况保持一致性。第三,还需要强调灵活性,面对复杂多变的电力系统,还要坚持灵活性,帮助工作人员随时查看和改变装置参数设置。第四,在不同运行方式下,要输入详细、具体的故障参数,使得仿真模型能够为实践工作提供科学依据。现行电力系统故障种类多种多样,且原因更为复杂,对应的继电保护方式同样需要作出及时调整。如利用典型的保护类型,以此来适应装置性能的发挥。只有这样,才能够真正意义上实现对系统的全面保护。

2.2软件功能的应用

系统数据库中存储了大量故障模拟状态,通过故障量分析和检验,能够做出对应的保护动作行为,并提醒工作人员对系统故障进行维修和调整。其中程序,主要负责故障计算程序等,如对阻抗、电压和电流的判断,可以采取分段方式,逐一排除故障,直至最后一个动作,使得工作人员能够对电网的故障点有所了解和把握,为后续维修计划的制定提供科学依据。

2.3设备监控与维护

将该系统引入到变电站中,能够代替人工对电气设备进行实时监督和控制,一旦出现自检异常情况,系统会自动收集并保存下来,及时汇报给控制中心,安排检修人员进行针对性检查。另外,在控制中心,可以对一次设备装置的定值进行调取,不同的连接装置能够获取实时数据、波形等内容,从而实现远程监视目标。

2.4故障信息管理

随着技术之间融合和发展,研发人员将Browser/Server模式运用于故障处理系统当中,并借助国际通用通讯协议,用户能够实现对数据库的管理。如装置动作、自检等诸多环节产生的信息都会纳入到数据库当中,为工作人员查询和统计提供支持。不仅如此,还具备转存、备份等功能,即便是受到外部恶意侵扰,依旧能够在短时间内恢复到最初状态,从而最大限度上保障电力系统安全、可靠运行[3]。除此之外,借助通讯设备,能够将电网中的地理接线图呈现出来,点击鼠标可以随时调取历史数据,或者自动显示故障所在位置。随着我国电力事业不断发展,我们还应适当增加资金、人力投入,加大对现有故障处理系统的研究,实现对系统的进一步调整和优化,保障电力系统可靠运行的同时,为用户提供更加优质的电力服务。

结论:根据上文所述,我国电网正处于“三集五大”改革进程当中,引进继电保护故障信息处理系统是一项基础性工作。因此在实践中,相关人员要明确认识到故障处理系统在提高电网智能化、自动化水平的重要意义,并结合实际情况,坚持灵活性、多元化等原则,合理引入故障处理系统。同时借助互联网技术,构建相应的信息系统网络,不断提高电网科学管理水平,制定最优决策,从而促进我国电力产业环境、经济等综合效益的有效发挥。

参考文献