欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

氧化铁的化学元素大全11篇

时间:2023-06-25 16:10:35

氧化铁的化学元素

氧化铁的化学元素篇(1)

一、求元素质量

例一、现有464克四氧化三铁,求其中铁的质量。

分析:因为在一个四氧化三铁的微粒中有3个铁原子,所以它们有Fe3O4――3Fe的关系,再根据质量比等于相对分子质量比就可以求出铁的质量。

解;设其中铁的质量为x,则:

Fe3O4――3Fe

232 168

464克 x

232∶168=464 ∶x

求得x=336克

答:在464克四氧化三铁中有336克铁。

例二、用含氧化铁80%的赤铁矿石2000吨可炼出含杂质3%的生铁多少吨?

分析:2000吨铁矿石中含氧化铁质量为2000吨×80%=1600吨,假设有生铁x吨,则其中含铁是x(1-3%)吨,又因为一个氧化铁微粒中含有2个铁原子,所以可得关系式:Fe2O3――2Fe

解:设生铁的质量是X,则;

Fe2O4――2Fe

160112

1600吨x(1-3%)

160 ∶112=1600 ∶x(1-3%)

求得x=1143吨

答:用含氧化铁80%的赤铁矿石2000吨可炼出含杂质3%的生铁1143吨。

二、求元素的质量比

例一、已知SO4和SO3中,硫元素质量比是3∶1,求SO2和SO3中氧元素的质量比。

分析:从题可知,SO2和SO3中硫元素质量比是3∶1,说明SO2和SO3分子中硫原子个数比是3∶1,因此它们的关系式为:3SO2――SO3,则它们中氧元素的质量比就是3个SO2分子氧原子的相对原子质量和SO3分子氧原子的相对原子质量的比。

解:根据题意可得如下关系式:3SO2――SO3

则其中氧元素的质量比=3×16×2∶16×3=2∶1

三、求物质的质量比

例一、已知SO2和SO3中,硫元素质量比是5∶2,求SO2和SO3的质量比。

分析:根据硫元素的质量比是5∶2(即硫原子的个数比是5∶2),可得它们的关系式为:5SO2――2SO3,根据物质的质量比等于物质的相对分子质量比就可以求出SO2和SO3的质量比了。

解:根据题意得:SO2和SO3的关系式是:

5SO2――2SO3

5(32+16×2) ∶ 2(32+16×3)

则SO2和SO3的质量比=5(32+16×2)∶2(32+16×3)=2∶1

答:SO2和SO3的质量比是2∶1

例二、在CO和CO2中,氧元素的质量相等,求CO和CO2的质量比。

解:根据题意得:CO和CO2的关系式是2CO――CO2(它们含的氧原子个数相等),所以

CO和CO2的质量比=2(12+16)∶(12+16×2)=14∶11

氧化铁的化学元素篇(2)

三、初中化学常见混合物的重要成分 1、空气:氮气(N2)和氧气(O2) 2、水煤气:一氧化碳(CO)和氢气(H2) 3、煤气:一氧化碳(CO) 4、天然气:甲烷(CH4) 5、石灰石/大理石:(CaCO3) 6、生铁/钢:(Fe) 7、木炭/焦炭/炭黑/活性炭:(C) 8、铁锈:(Fe2O3) 四、初中化学常见物质俗称 1、氯化钠 (NaCl) : 食盐 2、碳酸钠(Na2CO3) : 纯碱,苏打,口碱 3、氢氧化钠(NaOH):火碱,烧碱,苛性钠 4、氧化钙(CaO):生石灰 5、氢氧化钙(Ca(OH)2):熟石灰,消石灰 6、二氧化碳固体(CO2):干冰 7、氢氯酸(HCl):盐酸 8、碱式碳酸铜(Cu2(OH)2CO3):铜绿 9、硫酸铜晶体(CuSO4 .5H2O):蓝矾,胆矾 10、甲烷 (CH4):沼气 11、乙醇(C2H5OH):酒精 12、乙酸(CH3COOH):醋酸 13、过氧化氢(H2O2):双氧水 14、汞(Hg):水银 15、碳酸氢钠(NaHCO3):小苏打

四、初中化学溶液的酸碱性 1、显酸性的溶液:酸溶液和某些盐溶液(硫酸氢钠、硫酸氢钾等) 2、显碱性的溶液:碱溶液和某些盐溶液(碳酸钠、碳酸氢钠等) 3、显中性的溶液:水和大多数的盐溶液

五、初中化学敞口置于空气中质量改变的 (一)质量增加的 1、由于吸水而增加的:氢氧化钠固体,氯化钙,氯化镁,浓硫酸; 2、由于跟水反应而增加的:氧化钙、氧化钡、氧化钾、氧化钠,硫酸铜 3、由于跟二氧化碳反应而增加的:氢氧化钠,氢氧化钾,氢氧化钡,氢氧化钙; (二)质量减少的 1、由于挥发而减少的:浓盐酸,浓硝酸,酒精,汽油,浓氨水; 2、由于风化而减少的:碳酸钠晶体。

六、初中化学物质的检验 (一) 、气体的检验 1、氧气:带火星的木条放入瓶中,若木条复燃,则是氧气. 2、氢气:在玻璃尖嘴点燃气体,罩一干冷小烧杯,观察杯壁是否有水滴,往烧杯中倒入澄清的石灰水,若不变浑浊,则是氢气. 3、二氧化碳:通入澄清的石灰水,若变浑浊则是二氧化碳. 4、氨气:湿润的紫红色石蕊试纸,若试纸变蓝,则是氨气. 5、水蒸气:通过无水硫酸铜,若白色固体变蓝,则含水蒸气. (二)、离子的检验. 6、氢离子:滴加紫色石蕊试液/加入锌粒 7、氢氧根离子:酚酞试液/硫酸铜溶液 8、碳酸根离子:稀盐酸和澄清的石灰水 9、氯离子:硝酸银溶液和稀硝酸,若产生白色沉淀,则是氯离子 10、硫酸根离子:硝酸钡溶液和稀硝酸/先滴加稀盐酸再滴入氯化钡 11、铵根离子:氢氧化钠溶液并加热,把湿润的红色石蕊试纸放在试管口 12、铜离子:滴加氢氧化钠溶液,若产生蓝色沉淀则是铜离子 13、铁离子:滴加氢氧化钠溶液,若产生红褐色沉淀则是铁离子 (三)、相关例题 14、如何检验NaOH是否变质:滴加稀盐酸,若产生气泡则变质 15、检验生石灰中是否含有石灰石:滴加稀盐酸,若产生气泡则含有石灰石 16、检验NaOH中是否含有NaCl:先滴加足量稀硝酸,再滴加AgNO3溶液,若产生白色沉淀,则含有NaCl。 17、检验三瓶试液分别是稀HNO3,稀HCl,稀H2SO4? 向三只试管中分别滴加Ba(NO3)2溶液,若产生白色沉淀,则是稀H2SO4;再分别滴加AgNO3溶液,若产生白色沉淀则是稀HCl,剩下的是稀HNO3 18、淀粉:加入碘溶液,若变蓝则含淀粉。 19、葡萄糖:加入新制的氢氧化铜,若生成砖红色的氧化亚铜沉淀,就含葡萄糖。

七、物质的除杂 1、CO2(CO):把气体通过灼热的氧化铜 2、CO(CO2):通过足量的氢氧化钠溶液 3、H2(水蒸气):通过浓硫酸/通过氢氧化钠固体 4、CuO(Cu):在空气中(在氧气流中)灼烧混合物 5、Cu(Fe) :加入足量的稀硫酸 6、Cu(CuO):加入足量的稀硫酸 7、FeSO4(CuSO4): 加 入足量的铁粉 8、NaCl(Na2CO3):加 入足量的盐酸 9、NaCl(Na2SO4):加入足量的氯化钡溶液 10、NaCl(NaOH):加入足量的盐酸 11、NaOH(Na2CO3):加入足量的氢氧化钙溶液 12、NaCl(CuSO4):加入足量的氢氧化钡溶液 13、NaNO3(NaCl):加入足量的硝酸银溶液 14、NaCl(KNO3):蒸发溶剂 15、KNO3(NaCl):冷却热饱和溶液。 16、CO2(水蒸气):通过浓硫酸。

八、化学之最 1、未来最理想的燃料是H2 。 2、最简单的有机物是CH4 。 3、密度最小的气体是H2 。 4、相对分子质量最小的物质是H2 。 5、相对分子质量最小的氧化物是H2O 。 6、化学变化中最小的粒子是 原子 。 7、PH=0时,酸性,碱性最弱 。 PH=14时,碱性 ,酸性最弱 。 8、土壤里最缺乏的是N,K,P三种元素,肥效的氮肥是 尿素 。 9、天然存在最硬的物质是 金刚石 。 10、最早利用天然气的国家是 中国 。 11、地壳中含量最多的元素是 氧 。 12、地壳中含量最多的金属元素是 铝 。 13、空气里含量最多的气体是 氮气 。 14、空气里含量最多的元素是 氮 。 15、当今世界上最重要的三大化石燃料是 煤,石油,天然气。 16、形成化合物种类最多的元素:碳

氧化铁的化学元素篇(3)

从宏观角度理解,在化学反应前后,组成物质的元素种类不变。

从微观角度理解,在化学反应前后,各原子的种类和数目不变。

质量守恒定律在根据化学方程式的计算中应用较广,结合近几年的中考题,常见的题型主要有以下几种。

一、根据质量守恒定律推断化学反应中相关物质的组成元素

【例1】某物质在氧气中燃烧后,生成二氧化碳和水,试推断该物质中一定含有元素,可能含有元素。

解析:根据质量守恒定律,化学反应前后元素的种类不变,生成物中共有碳、氢、氧三种元素,而反应物氧气中只有氧元素,因此推知碳、氢两种元素来自于该物质,而可燃物中是否含有氧元素,这不能确定。答案:碳、氢;氧。

二、根据质量守恒定律推断化学反应中相关物质的化学式

【例2】环保部门常用I2O5测定空气受CO污染的程度,发生反应的化学方程式为:I2O5+5CO=I2+5X,根据生成X的多少,可以判断CO的含量,则X的化学式为。

解析:根据质量守恒定律,化学反应前后元素的种类和各元素的原子总数均不变,因此生成物中必定存在碘、碳、氧三种元素,在反应物中共有2个碘原子、10个氧原子、5个碳原子,在生成物中各元素的原子个数也应如此,故X的化学式为CO2。答案:CO2。

三、根据质量守恒定律求反应物或生成物的质量

【例3】现有一反应A+BC+D,有10gA和5gB反应,反应结束后还剩余3gA,B无剩余,生成4g的C,则生成D的质量为。

解析:根据质量守恒定律,化学反应前后反应物和生成物的质量总和相等,即参加反应的A与B的质量总和等于生成的C与D的质量总和,故生成的C质量=7g+5g-4g=8g。答案:8g。

【例4】在一密闭容器中,有甲、乙、丙、丁四种物质,一定条件下充分反应,测得反应前后各物质的质量如下表:

物质1甲1乙1丙1丁反应前的质量(g)120150180130反应后的质量(g)1011001101x请根据质量守恒定律判断x的值()。

A.50B.40C.10D.70

解析:从表中数据可以看出,乙质量增加50g是生成物,甲、丙各减少20g和70g均是反应物,甲、丙共减少90g,根据质量守恒定律,反应前后各物质质量总和相等,则丁是生成物,生成丁的质量为40g,故x的值为70g。

【例5】生铁是铁和碳的合金。为测定某炼铁厂生产的生铁样品中铁的质量分数,化学兴趣小组的同学称得该生铁样品6.0g,放入烧杯中,向其中加入65.0g稀硫酸,恰好完全反应(假设杂质不参与反应)。测得的实验数据如下:

1反应前1反应后烧杯及其中物质的质量197.0g196.8g请你完成有关计算(结果保留一位小数):(1)反应放出的氢气是多少?(2)生铁样品的质量分数是多少?(3)反应后所得溶液中溶质的质量分数是多少?

解析:根据质量守恒定律,反应生成的氢气质量为:97g-96.8g=0.2g,进而依据化学方程式求出生铁中铁的质量为5.6g,杂质质量为:6.0g-5.6g=0.4g,则生铁中铁的质量分数为5.6g/6.0g=93.3%,同时求出生成硫酸亚铁的质量为15.2g,根据质量守恒定律求出反应后所得溶液的质量为:6.0g+65g-0.4g-0.2g=70.4g,则反应后所得溶液中FeSO4的质量分数为15.2g/70.4g=21.6%。

四、根据质量守恒定律解释有关的化学反应现象

【例6】(1)解释细铁丝在氧气中燃烧,为什么生成的四氧化三铁的质量比细铁丝的质量大?

氧化铁的化学元素篇(4)

例1:铁丝在氧气中燃烧后生成物,的质量比原铁丝的质量增大了,试解释这种现象。

例2:用高锰酸钾加热制氧后剩余固体质量比高锰酸钾质量减轻了,试加以说明。

解析:铁丝在氧气中燃烧,是铁与氧气反应生成了四氧化三铁,根据质量守恒定律,生成物四氧化三铁质量等于参加反应的铁和氧气的质量之和,所以生成物四氧化三铁质量大于金属铁的质量。同样道理,利用高锰酸钾制取氧气,是高锰酸钾分解生成了固体锰酸钾和二氧化锰还生成了气体氧气,根据质量守恒定律,参加反应的高锰酸钾质量等于生成固体和气体质量之和,所以剩余固体比高锰酸钾质量小。

二、用来判定反应物、生成物、物质间质量比及反应类型

例3:在一密闭容器中,有甲乙丙丁四种物质,在一定条件下存在某个反应,测得反应前后各物质的质量如下表

对该反应,下列描述正确的是:

A:该反应中,甲丙丁的质量比为1:16:13,

B:乙在该反应中一定是催化剂

C:待测质量一定为4g

D:该反应是分解反应

解析:从;甲丙丁反应前后质量变化,可推测甲为反应物,参加反应甲的质量为(20-2)g,丙丁是生成物,生成的质量分别为(32-20)g,(26-20)g;该反应中,甲丙丁的质量比为(20-2)g:(32-20)g:(26-20)g即3:2:1;由质量守恒定律可知,乙既不是反应物也不是生成物,反应后乙的质量仍为mg,在反应中可能是催化剂;由于该反应是甲生成丙和丁,所以该反应的反应类型为分解反应。

三、确定物质的化学式和定性判断物质的组成

例4:光合作用可看成如下反应

测有机物中一定含有 元素。

例5:二甲醚(CH3OCH3)可由一氧化碳和物质X在一定条件下制得,反应的化学方程式为

则X的化学式为

解析:以上例题中涉及到元素种类,原子种类,及原子个数的问题,只要应用反应前后原子个数、原子种类(元素种类)没有变化这个规律,就能解决此类问题。但必须注意是:一、例4的反应式不是化学方程式,不能反映反应前后原子总数相等的关系,不要用化学式中的原子个数去定量推断有机物中含有什么元素,只能根据元素种类不变作定性判断。二、例5是根据化学方程式判断X的化学式,必须根据反应前后原子种类和各类原子总数守恒来求解,求解过程中还有一点要注意,计算所得的原子个数要除以化学式前的化学计量数,方能求得正确答案。

四、进行有关计算

例6:质量为mg的铁锌铝混合物,加入到质量为Mg稀硫酸中,恰好完全反应,将所得溶液蒸发得固体质量为ng。求反应生成氢气的质量。

例7:用一氧化碳还原混有铁粉的氧化铁充分反应后,冷却,称量剩余固体,发现质量减少了3g。问此混合物中含有氧化铁多少克?

氧化铁的化学元素篇(5)

众所周知,化合价的教学是初中化学教学的重点和难点,它抽象而不具体,变化而不固定,它繁琐而不单一,它较难讲解.在初中化学教学中,我多次遇到这样的问题,在讲解初中化学化合价的相关内容时,学生多次问到我,Fe3O4中Fe的化合价究竟为多少,开始,我不知道怎样回答,不是我不懂Fe3O4中,有1/3的Fe原子显+2价,有2/3的Fe原子显+3价,而是不知道怎样传授给学生,不知道怎样讲才能让学生懂,后来,经过多年的教学,并和同行进行多次交流,我才有所体会,在讲到元素化合价的内容时,Fe3O4中Fe的化合价究竟为多少,你是怎样讲解这个内容的呢?O通常显-2价,根据化合物中元素化合价的代数和为0的原则,Fe3O4中Fe的化合价应该为+8/3价,可是,初中学生都理解化合价是一个整数,为什么在这里会出现分数呢?作为初中化学教师的我们,应该怎样回答呢?2003年,我上到初中化学化合价的内容时,有学生问我这样的问题,Fe3O4中Fe元素的化合价到底为多少,我回答学生说:在Fe3O4这种化合物中,Fe元素的化合价比较特殊,在Fe3O4的元素的原子中,3个Fe原子有1个显+2价,有2个显+3价,即在Fe3O4中,有1/3的Fe原子显+2价,有2/3的Fe原子显+3价,那学生又接着问,那么,Fe3O4是混合物了,我说,不是,它还是化合物,就像你们班的学生,60个人,有20个是女生,40个是男生,女生男生都是人嘛,他们都没有变成其他的动物嘛。他似乎懂了一点,但肯定没有全懂,2004年,我又遇到了同样的问题,学生又问我:Fe3O4中Fe的化合价到底为多少?我除了给该学生同样的解释外,我还说,在初中阶段要解释Fe3O4这种特殊的化合物,就要用到高中的氧化数,在Fe3O4中,Fe的氧化数是+8/3,O的氧化数是—2,但是,他们又听不懂什么是氧化数了,可以跟学生这样解释吗,当时,我也不知对否.2005年,又有3个学生问到这个问题,Fe3O4中Fe的化合价是多少?这一次,我是这样说的:“在前面,你们已经学过了一种物质,它就是胆矾,化学名叫硫酸铜,化学式为CuSO4,这是一种化合物,是物质分类中的一种盐,其实,Fe3O4跟CuSO4是一样的,也是一种盐”,铁在四氧化三铁中有两种化合价,经研究证明了Fe3O4是一种铁(Ⅲ)酸盐,即FeⅡFeⅢ[FeⅢO4]。黑色晶体,密度5.18克/立方厘米。有磁性,故又称磁性氧化铁。、氧化铁黑、磁铁、俗称四氧化三体,也是一种氧化物,他的实际名称叫偏铁酸亚铁,化学式可写为Fe(FeO2)2,这就是特殊的地方,当作为氧化物的时候,就写成Fe3O4,当作盐的时候,就可以写成Fe(FeO2)2,还可以写成FeO.Fe2O3,在FeO﹒Fe2O3此结构中,不要认为FeO.Fe2O3里有FeO微粒,也有Fe2O3微粒,就认为他是混合物了,事实上,我们对比CuSO4、Cu2(OH)2CO3,KAl(SO4)2.12H2O,他们都是化合物,只不过在这些化合物分子里,一个分子里含有其他几个分子罢了。

在这里,我想重点说的是,Fe3O4,是具有双重身份的物质,因而,他具有双重的性质及反应,潮湿状态的四氧化三铁在空气中容易氧化成三氧化二铁。不溶于水,溶于酸。用作颜料和抛光剂。磁性氧化铁用于制录音磁带和电讯器材。用红热铁跟水蒸气反应制得。 难溶于水,溶于酸(Fe3O4 + 8H+ = Fe2+ + 2Fe3+ + 4H2O),不溶于碱,也不溶于乙醇、乙醚等有机溶剂。但是天然的Fe3O4不溶于酸。 四氧化三铁可视为FeO·Fe2O3,经X射线研究认为它是铁(III)酸的盐 其名称为“偏铁酸亚铁”,化学式:Fe(FeO2)2 另外,它还是导体,因为在磁铁矿中由于Fe2+与Fe3+在八面置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性。 铁丝在纯氧里燃烧生成四氧化三铁;铁在空气里加热到500℃,铁跟空气里的氧气起反应也生成四氧化三铁(现象:火星四射,放热,生成黑色固体——四氧化三铁。实验室里做实验注意实验时要在瓶底铺一层细沙或水 原因是:防止溅落的熔化物炸裂瓶底!);锻工砧子周围散落的蓝灰色碎屑主要是四氧化三铁;铁跟高温的水蒸汽发生置换反应生成四氧化三铁和氢气;天然磁铁矿的主要成分是四氧化三铁的晶体。四氧化三铁是一种重要的常见铁的化合物。 四氧化三铁是一种铁酸盐,(即Fe(FeO2)2,在Fe3O4里,铁显两种价态,一个铁原子显+2价,两个铁原子显+3价,所以说四氧化三铁可看成是由FeO与Fe2O3组成的化合物,可表示为FeO·Fe2O3,而不能说是FeO与Fe2O3组成的混合物,它属于纯净物。另外,附带讲一讲Fe3O4的其它内容。物理性质 黑色固体,不溶于水,硬度大,熔点高,有磁性,在机电,喇叭中经常用做永磁体,导热性不好,导电(四氧化三铁固体具有优良的导电性。 因为在磁铁矿中由于Fe2+与Fe3+在八面置上基本上是无序排列的,电子可在铁的两种氧化态间迅速发生转移,所以四氧化三铁固体具有优良的导电性)。常见化学性质 (1) 在高温下,易氧化成三氧化二铁。 4Fe3O4+O2=6Fe2O3(条件是高温)

(2) 在高温下可与还原剂H2、CO、Al,C等反应。 3Fe3O4+8Al=4Al2O3+9Fe Fe3O4+4CO=高温=3Fe+4CO2 Fe3O4+4H2=高温=3Fe+4H2O

(3)二氧化氮和灼热的铁粉反应生成四氧化三铁和氮气 2NO2+3Fe=Fe3O4+N2(条件是高温)

(4)铁在空气中燃烧生成四氧化三铁 2O2+3Fe=Fe3O4(条件是点燃)

(5)水蒸汽和炽热的铁反应生成四氧化三铁 4H2O(g)+3Fe =Fe3O4+4H2 (条件是高温)

(6)和酸反应 Fe3O4+8HCl=2FeCl3+FeCl2+4H2O制取方法 铁丝在氧气中燃烧1)铁丝在氧气中燃烧 3Fe+2O2=Fe3O4 (条件是点燃)

2)细铁丝在空气中加热到500℃也会燃烧生成四氧化三铁:

3Fe+2O2=Fe3O4 (条件是高温)

3)铁在高温下与水蒸气反应:

氧化铁的化学元素篇(6)

    在化学1阶段,应如何帮助学生建构无机元素化合物知识体系?从学科知识的角度看,无机元素化合物知识注重“物质性质及应用”的学习,其中“物质性质”是核心,物质性质决定了物质的用途、制法、保存等,不认识物质性质,就不可能理解物质的应用。而物质的性质是由其元素组成和内部结构所决定的,不从组成和结构角度认识物质性质,就难以形成对物质性质的深入理解。从中学阶段无机元素化合物知识的编排看,学生对无机元素化合物知识的学习是逐步发展的。初中阶段元素化合物知识以物质为中心,学习典型物质(如氧气、二氧化碳)的性质、制法及用途等,以典型代表物学习一类物质(金属、酸、碱、盐)的性质等。高中化学1阶段元素化合物知识注重以元素为核心,通过核心元素将其单质及其化合物知识组织起来,学习含有同种元素不同物质的重要性质及相互转化关系;高中化学2阶段,借助元素周期表和周期律对元素化合物知识进行整合,建立以周期、族为系列形成对物质性质递变规律的认识[3],建立不同元素及其物质性质等知识的联系。限于化学1阶段元素化合物知识的编排特点和学生的认识发展水平,有必要加强从元素视角认识物质及其转化(见表1),即要加强对元素与物质性质、物质分类、物质之间的转化等学科实质性问题的认识,发挥“元素观”对元素化合物知识学习的指导作用,帮助学生逐步领会和运用“元素观”来分析解释问题,增进学生对化学知识的理解。

    作为中学化学的核心观念之一,“元素观”是从元素视角对物质及其化学变化本质的深层次理解[4,5],大致包括三方面含义:一是对元素的认识,包括什么是元素、元素的种类、元素的性质等。就元素的性质而言,还涉及元素之间的差异、元素性质的周期性、一类元素性质的相似性等。二是从元素视角看物质,即元素与物质有什么关系,具体包括元素组成与物质的分类、性质有什么关系等。三是从元素角度看化学反应,即元素与化学反应有什么关系,在化学反应中元素种类是否发生变化、含有同种元素的不同物质之间的转化存在什么规律等。

    在化学1阶段,强调从元素的视角认识物质,就是要对元素与物质性质的关系有深入的了解,这包括两个层面:一是从元素视角认识物质的“个性”,即认识物质的性质与组成物质的元素种类、元素形态(化合价、相邻元素的结合方式、分子中元素间的相互作用等)密切相关[6]。对于简单的化合物或单质,元素组成对于物质的性质甚至起着决定性的作用。具体为:(1)物质元素组成上的细微差别,会引起物质性质上的巨大差异。如氧化铝、氢氧化铝、铝盐虽然都含有铝元素,但因元素组成不同而其性质不同;氧化钠、氧化铝、氧化铁,虽然都是氧化物,但由于组成氧化物的金属元素不同,其性质不同。(2)组成物质的元素种类相同但其形态不同,物质性质不同。如氢氧化铁、氢氧化亚铁虽然含有相同的组成元素,但由于其中铁元素的价态不同,两者的性质不同。二是从元素视角认识物质的“共性”,即认识基于物质元素组成可以将纯净物进行分类,基于物质类别认识同类物质具有相似的性质,如氧化铜、氧化铁都是金属氧化物,它们都能与盐酸发生反应。

    从元素的视角认识物质间的转化,就是要以元素为核心,认识含有同种元素不同物质之间的转化规律,建立某一元素的不同物质之间的联系,形成相应的知识结构,这包括两方面:一是同一元素相同价态不同物质间的转化,如Al2O3—Al(OH)3之间的转化、Fe2O3—FeCl3—Fe(OH)3之间的转化等;二是同一元素不同价态物质之间的转化,如Fe—Fe2+—Fe3+之间的转化。

    借助表1中的思考框架,可以帮助学生建立研究物质性质、研究物质间转化的基本思路与方法,即通过实验的方法,从物质分类、氧化还原角度来认识物质性质[7]。具体地说,从金属(或非金属)、氧化物、碱(或酸)、盐等物质类别所具有的通性预测某个具体物质可能具有的性质,从物质所含元素的化合价角度预测物质是否具有氧化性或还原性,然后通过实验进行验证。对于同一元素不同物质间的转化,依据金属(或非金属)、氧化物、碱(或酸)、盐等物质所具有的性质确定实现不同类别物质之间的转化途径,依据反应物与生成物中核心元素有没有价态的变化,确定是否是氧化还原反应等。

    2 以“元素观”为导向明确学习的层次及其关键所在

    新课程中无机元素化合物知识的内容及其功能价值发生了明显的变化。以“金属及其化合物”为例,《普通高中化学课程标准(实验)》在化学1主题3“常见无机物及其应用”中所列内容标准为:“根据生产、生活中的应用实例或通过实验探究,了解钠、铝、铁、铜等金属及其重要化合物的主要性质,能列举合金材料的重要应用”[8]。传统的教学注重元素化合物知识的识记,新课程主张实施以化学观念建构为本的教学,强调要超越具体的事实性知识发展学生的深层思维,增进学生对化学知识的深层理解,由此需要思考,在元素化合物知识的教学中到底需要教给学生什么?

    从发展学生“元素观”的角度看,化学1阶段选择以钠、铁、铝、铜为金属元素的典型代表,其学习内容[9]可分为三个层次:一是学习金属及其化合物知识,这是学习内容的第一层次,属于事实性知识。具体包括:在初中学习的基础上进一步了解几种典型金属的性质,如认识金属钠的活泼性等,发展对金属元素及金属单质性质的认识。学习相应金属的重要化合物(包括氧化物、氢氧化物及盐等)的性质,如铝的氧化物和氢氧化物具有两性、利用 FeSO4溶液滴加少量NaOH溶液生成的Fe(OH)2在空气中可转化成Fe(OH)3等事实的学习,认识铁元素的变价性以及不同价态之间的转化等,发展对金属化合物的类别、性质的认识。了解金属材料(合金、稀土金属)及其应用等。二是在“金属及其化合物”知识学习的同时,增进对物质性质与组成元素(种类、价态等)的关系、同一元素不同物质间转化关系的理解,丰富和发展对“元素观”的认识,这是学习内容的第三层次,属于观念性知识。三是要形成对上述内容的认识,需要学习相应的研究物质性质、研究物质间转化的基本思路与方法,这是学习内容的第二层次,属于方法性知识。第一层次的学习内容,是短期可以达成的学习目标。后两个层次的学习内容,属于较远期目标。其中较为关键的是要帮助学生建立“研究物质性质、研究物质转化的一般思路与方法”,这是引领学生从事实记忆走向观念建构的重要桥梁。

    3 从促进学生“元素观”认识的角度组织教学内容

氧化铁的化学元素篇(7)

中图分类号:O613.52 文献标识码:A 文章编号:1004-4949(2013)04-0-02

在自然界中,天然存在的化学元素有92种,人体内含有几乎所有的元素。根据它们在体内含量不同分为两类:常量元素和微量元素。常量元素包括C、H、O、N、S、P、Ca、K、Mg、Na和Cl等11种,占人体总重的99.25%,它们构成机体组织并在体内起电解质作用;微量元素是指在人体中的含量低于0.01 %的元素,包括Fe、Zn、I、F、Cr、Co、Mn、Ni、Sn、Se、Mo、Cu等70多种元素,它们在人体内含量虽然很少,但却能起到非常重要的生理作用,根据其在人体内的作用,微量元素还可分为必需元素、非必需元素和有害元素。在人体必需的十多种微量元素中,铁占人体体重的0.006%左右,无论在重要性还是在数量上都居首位,堪称“微量元素中的老大”。

1 铁在人体中的含量及存在形式

铁是人体的必需微量元素之一,其中70%存在于血红蛋白、肌红蛋白、血红素酶类、辅助因子及运载铁中,又叫功能性铁;其余30%的铁以铁蛋白和含铁血黄素的形式存在于肝脏、脾脏、肠和骨髓的网状内皮层系统中,称为储备铁。当人体缺铁时,铁蛋白即可作为补充,而含铁血黄素被机体所用。

铁在人体内主要以Fe2+或 Fe3+的形式存在,它的分布极为普遍,几乎所有组织中都有,被称为人体发育的“建筑材料”,其中以肝、脾含量最高,其次为肾、心、骨骼肌和脑。

2 铁的来源

人体内铁主要来源于食物,食物中的铁有两种存在形式,一类是离子铁或称非血红素铁,主要存在于植物性食物之中。植物中含的铁多是以植酸铁、磷酸铁、草酸铁等不溶性铁盐形式存在,属于三价铁。人体吸收这种与植酸结合成螯合物的铁,必须先将铁和有机物拆开,再将三价铁还原为二价铁才有可能。尽管这类铁在食物中含量较高,但难于吸收。例如,玉米、大豆、小麦中铁的吸收率很低,只有1%~5%。另一类是血红素铁,存在于动物的肝脏、肾脏、瘦肉、蛋黄、鱼类等动物性食物中,这类铁的吸收吸收率一般在10%~20%左右,而且不受食物中的植酸和磷酸的影响,可以直接吸收进入肠粘膜细胞。例如,鱼中的铁吸收率为11%,牛肉中的铁吸收率为22%,牛肝中的铁吸收率为14%~16%,猪血中的铁吸收率为25%,猪肝中的铁吸收率为22%。此外,人体中的一部分铁来源于红细胞,因为红细胞破坏释放出来铁,它的80%又重新用于血红蛋白的合成,20%贮存起来。

3 铁的生理功能

3.1 参与氧的运输、贮存与造血功能

红细胞是氧的载体,其中含铁的血红素是参与运输氧的中心成分,它是一种含有Fe2+的络合物。在血红素分子中,4个卟啉环把二价铁原子包围在中间,二价铁原子好像处于蜘蛛网中心的“蜘蛛”。载氧时Fe2+的状态为低自旋,半径较小,嵌入卟啉环平面,呈6配位,4个配位点为环上N原子,第5个位置为组氨酸残基的咪唑N占据,第6个位置能够可逆地结合氧;而脱氧后Fe2+的状态为高自旋,半径较大,处于高出卟啉环平面70~80pm的位置,为5配位。Fe2+与氧进行可逆性结合,使血红蛋白具有携带氧的功能,参与体内氧的转运、交换及呼吸过程。

肌红蛋白是一种含有血红素的蛋白质,它由一个亚铁血红素和一个球蛋白组成,肌红蛋白的基本功能是在肌肉组织中转运和储存氧,而铁在肌红蛋白合成中具有不可或缺的作用。

铁影响蛋白及脱氧核糖核酸的合成及造血、维生素代谢。许多研究证明,缺铁时肝脏内合成脱氧核糖核酸将受到抑制,肝脏发育减慢,肝细胞及其它细胞内的线粒体和微粒体发生异常,细胞色素C1 含量减少,导致蛋白质的合成及能量运用减少,进而发生贫血,及身高、体重发育不良等。缺铁还可以引起体内无机盐及维生素代谢障碍。

3.2 参与酶的组成

铁是构成机体内许多代谢酶的活性成分,如铁硫蛋白、细胞色素、细胞色素氧化酶、过氧化物酶等;铁与某些酶的活性有密切的关系,如乙酰辅酶A、琥珀酸脱氢酶、黄嘌呤氧化酶、细胞色素还原酶,在细胞生物氧化过程中发挥重要作用。近代研究表明:细胞色素酶类,是体内复杂的氧化还原过程所不可缺少的,有了它才能完成电子传递,并在三羟酸循环中使脱下的氢原子与由血红蛋白从肺运来的氧生成水,以保证代谢,同时在这一过程中释放出能量,供给机体的需要。在氧化过程中所产生的过氧化氢等有害物质,又可被含铁的触酶和过氧化物所破坏而解毒。

3.3 增强免疫功能

铁可使人体内淋巴细胞、血清补体活性、吞噬细胞功能、中性白细胞的杀菌能力保持正常。实验研究发现缺铁时中性白细胞的杀菌能力降低,淋巴细胞功能受损,在补充铁后免疫功能可能会得到改善。在中性白细胞中,被吞噬的细菌需要依赖超氧化物酶等杀灭,在缺铁时此酶系统不能发挥其作用。此外,β-胡萝卜素转化为维生素A、嘌呤与胶原的合成、抗体的产生、脂类从血液中转运以及药物在肝脏的解毒等过程都与铁的催化促进有关。铁还是多种酶活性中心,铁过剩和缺铁时均可引起机体感染性增加,微生物生长繁殖也需要铁的存在,有时补铁会增加感染的危险性。

3.4 参与基因表达

铁可通过控制转铁蛋白和铁蛋白mRNA稳定性和mRNA翻译来调控基因的表达。

转铁蛋白是血清中运输铁元素的蛋白质,它将铁从肝脏运送到网织红血球中用于合成血红蛋白。当血红蛋合成量不足时,机体就需要更多的转铁蛋白来加快铁的运输。Mcknight等在鸡肉试验中发现缺铁将导致血液中转铁蛋白含量迅速增加,肝脏中的转铁蛋白的基因mRNA含量增加水平到正常水平的2.5倍。当补铁后转铁蛋白基因的mRNA含量和转铁蛋白的合成量在3天内回到正常水平,鸡肝脏中铁的贮存量也同时增加。研究证明,由于铁的缺乏所引起的转铁蛋白基因表达的增加是通过提高转录水平来实现的。

铁蛋白是一种由20个亚基所组成、四周结合着大量铁离子的蛋白质。

铁对铁蛋白基因表达的调控与转铁蛋白基因表达控制不同,铁含量越高铁蛋白基因表达就越强,高铁可以促进铁蛋白生物合成,而且这种调控并非发生在转录水平。Zabringer研究发现这是由于当铁含量低时,铁蛋白的亚基与该基因的的mRNA结合,使后者不能与核糖体结合,从而抑制了该基因的表达。当铁含量增加时,铁蛋白的亚基与铁离子结合,而使该基因的的mRNA能激离出来与核糖体结合并开始大量表达铁蛋白。

4 铁的吸收和代谢

铁的吸收部位主要在十二指肠和空肠上端,许多因素影响铁的吸收。①从摄入铁的溶解性来分析,溶解态的铁容易吸收,因亚铁盐的溶解度大于高铁盐,故Fe2+的吸收率比Fe3+约高3倍,但是Fe3+的可溶性配合物也易吸收,因此,凡能将Fe3+还原成Fe2+或和铁形成可溶性的配合物的物质均有利于铁的吸收。半胱氨酸、谷胱甘肽具有还原作用,一些氨基酸和柠檬酸等有机酸有配合作用,维生素C兼有两种作用,这些物质存在有利于铁的吸收。胃液中的盐酸可促进铁盐的溶解,故也有利于铁的吸收。②正常人的生理活动处于一个动态平衡的体系中,肠粘膜上皮对铁的吸收率受到体内铁储量及造血速度的影响。动力学研究表明:体内铁储量愈多或骨髓造血速度愈快(如出血、溶血或缺氧等),肠粘膜内吸收的速度愈快;体内缺铁时,铁的吸收速度加快,女子因月经失血造成人体内铁储量的减少,铁的吸收也明显增加。即正常机体可通过生理调节来满足其对铁的需要和保持铁的平衡。

人体内铁的代谢与其它物质相比较最独特的一点是机体在正常情况下很少失铁,因此每日从食物中吸收的铁也极少,只须补充自人体丢失的微量铁就够了。即人体内的铁代谢是一个相当封闭的系统,在正常情况下人体内的铁可以反复循环利用。

5 铁含量对健康的影响

5.1 缺铁对健康的影响

5.1.1 缺铁性贫血

缺铁性贫血是体内铁缺乏,影响正常铁血红素合成所引起的贫血。缺铁性贫血常导致人疲乏、无力、注意力不集中、失眠、食欲不振、皮肤干燥。缺铁时,脱氧核糖核酸(DNA)合成减少,抗体的产生受到抑制,淋巴细胞对抗原的反应能力降低,体液免疫和非特异性免疫能力受到不同程度的损害。因此,缺铁患者易感染。由于体内总铁量的65%存在于细胞内,因此反复多量失血引起体内总铁量显著下降。钩虫病引起肠道长期少量出血,多年肛痔出血或妇女月经过多等长期损失铁,最终可使体内贮铁量枯竭,以致发生缺铁性贫血。严重者除有一般贫血症状外,可发生肝、脾、淋巴结肿大和四肢水肿。

5.1.2 溶血性贫血

溶血性贫血是由于红细胞破坏增速,超过造血补偿能力范围发生的一种贫血。这种病人虽对铁的吸收量增多,但对铁的利用率很低,贮存的铁反而增多,因而对铁剂治疗应慎重,以免引起继发性血色病。临床表现较多为急性中毒,肢体酸痛、头痛、呕吐、寒战、高热、面部苍白、黄疸、肝脾肿大、血尿、急性肾功能衰竭、尿毒症。

5.2 铁过量对健康的影响

当血铁浓度超过正常值(全血为50mg/100ml,血清为0.065 ~0.175mg/100ml)时,就会出现贮存铁和运用铁之间的动态平衡的紊乱,主要表现为全身性血管的扩张、充血而导致病人休克,并伴随着超标量的程度不同而出现不同程度的铁中毒症状。最近医学研究表明:铁参与黄嘌呤氧化酶(XO)活性中心的构成,黄嘌呤氧化酶(XO)是常见的催化产生超氧自由基(O2・)酶类。但在铁复合物存在条件下,则可以转变成活性更加高、毒性更强的羟基自由基(HO・),即Fenton反应。

正常情况下,铁都是处于蛋白质复杂大分子的包围中,即所谓的“隔离封闭”效应,催化活性受到严格的控制,但当人体内的铁含量过多时,便从“隔离封闭”状态游离出来,催化自由基反应,生成大量的自由基,损伤脱氧核糖核酸(DNA)、蛋白质等生物大分子化合物,造成DNA的畸形,基因突变,影响蛋白质的合成,甚至造成细胞死亡或癌变,对人体引起不可逆转的损害。

6 应科学补充铁元素

当人体少量缺铁时,切不可盲目补充,应听从医生的建议。正确合理的饮食可以防治缺铁性贫血。已患缺铁性贫血的病人,单靠饮食疗法效果不大,但可作为辅助治疗,以防止复发。应适当多食含铁较多、营养丰富的食品,如:动物血、肝脏、鸡胗、牛肾、大豆、黑木耳、芝麻酱、牛肉、羊肉、蛤蜊和牡蛎等。在服用铁剂时应注意以下几点:

(1)贫血补铁应坚持“小量、长期”的原则,否则易导致急性铁中毒。口服铁剂以硫酸亚铁、右旋糖苷铁、富马酸亚铁和葡萄糖酸亚铁为佳,因铁以二价铁的形式吸收。

氧化铁的化学元素篇(8)

化学初三上册知识总结1第一单元走进化学世界

一、物质的变化和性质:

1.物质的变化:物理变化:无新物质生成的变化;化学变化:有新物质生成的变化.

2.物质的性质:物质不需发通过化学变化表现出来的性质,叫做物理性质,主要有颜色、状态、气味、硬度、密度、熔点、沸点等;物质必须通过化学变化才表现出来性质,叫做化学性质.如可燃性氧化性、还原性、毒性等.

二、基本实验操作:

1.药品的取用:

(1)取药量:没有说明用量,固体只需盖满试管底部,液体取1—2mL.

(2)注意事项:“三不”:不闻、不尝、不摸

(3)取用少量液体药品用胶头滴管,取用一定量的液体药品用量筒量取,读数时,量筒必须放平,视线与液体凹液面的最低处保持水平.取用较大量液体时用倾倒方法,瓶塞倒放,标签向手心,瓶口要紧靠容器口.

2.物质的加热:

(1)酒精灯的火焰分为外焰、内焰、焰心三部分,其中外焰温度最高.

(2)使用酒精灯时,酒精不能超过灯容积的2/3,绝对禁止用嘴吹灭酒精灯,要用

灯帽盖熄.

(3)给试管液体加热,试管所盛液体体积不能超过试管容积的1/3,试管要倾斜放置,试管口不能对着自己或他人.

3.仪器的洗涤:

玻璃仪器洗涤干净的标准:在容器内壁既不聚成水滴,也不成股流下.

化学初三上册知识总结2第二单元我们周围的空气

一、空气的成分和组成

1.空气的成分:

空气成分N2O2稀有气体CO2其它气体和杂质

体积分数78!%0.94%0.03%0.03%

2.空气中氧气含量的测定:(如右图)

观察到的现象:有大量白烟产生,广口瓶内液面上升约1/5体积,

反应的化学方程式:

4P5O2点燃4P2O5;

结论:空气是混合物;O2约占空气体积的1/5,

氮气约占空气体积的4/5.

思考:(1)液面小于五分之一原因:

装置漏气,红磷量不足,未冷却完全;

(2)能否用铁、碳代替红磷?不能,原因是碳产物是气体,不能产生压强差、铁不能在空气中燃烧

3.空气的污染及防治

(1)对空气造成污染的主要是有害气体和烟尘等,目前计入空气污染指数的项目为CO、SO2、NO2、O3和可吸入颗粒物等.

二、氧气的化学性质

1.物理性质:无色、无味的气体,密度比空气大,不易溶于水

2.氧气的化学性质:比较活泼,在反应中作氧化剂.

3.氧气的制取

(1)工业制氧气―――分离液态空气法法,利用空气中氧气和氮气的沸点不同,此变化属于

物理变化.

(2)实验室制取氧气原理:固固加热:(化学方程式)

2KClO3MnO22KCl3O2、2KMnO4K2MnO4MnO2O2

固液不加热:2H2O2MnO22H2OO2

(3)发生装置

收集装置:排水集气法,因为氧气不易溶于水;

向上排空气法,因为氧气密度比空气大.

(4)操作步骤和注意点:

①试管口略向下倾斜:防止防止冷凝水倒流引起试管破裂

②试管口应放一团棉花:防止防止高锰酸钾粉末进入导管

③排水法收集时,待气泡均匀连续时再收集;

④实验结束时,先移开导管再熄灭酒精灯,防止防止水倒吸引起试管破裂

(5)氧气的检验:用带火星的木条伸入集气瓶内,木条复燃,证明是氧气.

氧气的验满:用带火星的木条放在集气瓶口,木条复燃,证明已满.

4.催化剂:在化学反应中能改变其它物质的化学反应速率,而本身的质量和化学性质

在反应前后都没有改变的物质

三、反应类型

1.基本反应类型:①化合反应:由两种或两种以上物质生成一种物质的反应

②分解反应:由一种物质生成两种或两种以上物质的反应

2.氧化反应:物质与氧发生的反应

(1)剧烈氧化:如燃烧

(2)缓慢氧化:如铁生锈、人的呼吸、食物腐烂、酒的酿造等

他们的共同点:①都是氧化反应;②都发热.

四、物质的分类:

1、混合物:含有两种或两种以上的物质.如空气、海水、生铁等;

2.纯净物:只含有一种物质

①单质:只含有一种元素的纯净物.如N2、Fe等;

②化合物:含有两种或两种以上元素的纯净物,如H2O、KMnO4等

氧化物:含有两种元素,其中一种元素是氧的化合物.如H2O等.

化学初三上册知识总结3物质构成的奥秘

一、原子的构成

1.原子的结构:

2.相对原子质量:以一种碳原子质量的1/12为标准,其它原子的质量与它相比较所得到的比值,为这种原子的相对原子质量.

3.原子结构示意图各部分的意义:①决定元素种类的是质子数(核电荷数);

②决定元素化学性质的主要是最外层电子数;

二、元素

1.元素是具有相同核电荷数(即质子数)的一类原子的总称.

2.表示的意义:

(1)(宏观)表示某种元素;(2)(微观)表示该元素的一个原子.

注意:有些元素符号还可以表示一种单质.如Fe、S、He.

3.一种元素与另一种元素的本质区别:核电荷数不同

4.地壳中含量最多的四种元素:O、Si、Al、Fe,其中含量最多的金属元素是Al.

5.根据原子结构示意图判断金属元素、非金属元素和稀有气体的方法:

(1)金属元素:最外层电子数小于(填大于、小于或等于)4,在反应中容易失去电子,形成阳离子;

(2)非金属元素:最外层电子数大于或等于4,在反应中容易得到电子,形成阴离子;

(3)稀有气体元素:最外层电子数为8(He为2),在反应中不易得失电子,性质稳定.

三.元素周期表规律:

1.横行(周期):电子层数即周期数,在同一周期中,电子层数相同,

最外层电子数逐渐增加;

2.纵行(族):同一族中最外层电子数相等,元素的化学性质相似.

注:原子序数=核电荷数(质子数)

四.离子:

1.带电的原子或原子团.

2.表示方法及意义:如Fe3表示铁离子;2SO42-表示2个硫酸根离子

3.原子和离子:

(1)

(2)同种元素的原子和离子

①核电荷数相等;②电子数及最外层电子数不相同(填相同或不相同)

4.原子和离子的区别和联系:

粒子的种类原子离子

阳离子阴离子

区别粒子结构质子数=电子数质子数大于电子数质子数小于电子数

粒子电性不带电性显正电显负电

符号氧原子O钙离子Ca2氧离子O2-

五、化合价

1.单质化合价为零,化合物中化合价代数和为零.

2.化合价的实质:元素的最外层电子数n4,元素一般显—(8-n)价.如铝原子最外层电子数为3,因此,铝元素显3

价,表示为Al;氧原子最外层电子数为6,因此,氧元素的化合价为-2价,表示为O.

六、化学式

1.意义:(以H2O为例)

(1)宏观:①表示一种物质(表示水)

②表示物质是由什么元素组成(表示水是由氢元素和氧元素组成)

(2)微观:①表示一种分子(表示水分子)

②表示分子的结构(表示一个水分子由2个氢原子和1个氧原子构成)

写出下列物质的化学式

氯气N2;氦气He;白磷P;水银Hg;生铁、钢的主要成分Fe;

干冰CO2;冰H2O;过氧化氢(双氧水)H2O2;氧化铜CuO;

铁锈的主要成分Fe2O3;氯化氢HCl;氯化亚铁FeCl2;氯化铝AlCl3;

氢氧化钠NaCl;石灰水的主要成分Ca(OH)2;硫酸铁Fe2(SO4)3;硫酸镁MgSO4;石灰石、大理石主要成分CaCO3;硝酸钾KNO3;

氧化铁的化学元素篇(9)

铁元素本身有多个化合价,在与氧元素进行结合时,可以展现出+2价、+83价和+3价.+2价的氧化亚铁(FeO)粉末呈现出一种淡绿色,通常是从亚铁盐的溶液中得来的;+83价的四氧化三铁(Fe2O2)呈现黑色,由铁在空气中燃烧形成;而氧化铁(Fe2O2)也称三氧化二铁,是铁在潮湿的环境下与氧气进行缓慢氧化反应或者电化学反应的产物,也就是通常所说的铁锈.纯净的铁锈呈现出鲜艳的红色,而不是我们日常见到的掺有杂质时的土黄色.

二、橙色的甲基橙

甲基橙对于初中学生而言并不陌生,它作为一种常用的指示剂,对于溶液酸碱性的鉴定或者分析化学中的滴定实验都有重要的用途.橙黄色的甲基橙呈鳞状晶体或粉末.稍溶于水而呈黄色,不溶于乙醇.在供水中,利用甲基橙作指示剂,将pH4.5以上的滴定终点定义为总碱度或甲基橙碱度,代表碳酸氢盐离子(HCO2-)与强酸反应生成碳酸(H2CO2)后的pH.

三、黄色的单质硫

硫(S)又称硫磺,是一种实验室常见的物质,名称与颜色非常相符合.硫元素作为初中化学的核心元素之一,在化学反应中占据相当重要的位置.包含有硫元素的物质有气体二氧化硫(SO2)、气体三氧化硫(SO2)和液体硫酸(H2SO2),至于硫酸盐、亚硫酸盐就不计其数了.硫磺在空气中可以燃烧,与氧气反应生成SO2.黄色SO2浓烟有很浓的刺激性气味,对人体的呼吸道将产生巨大的破坏.因此工业生产中要将产生的SO2气体通过倒吸的装置溶解到碱性的溶液中以防止环境污染.另外,以煤炭为供热原料的产业在煤炭进行燃烧之前,对煤炭进行脱硫也是必不可少的流程.

四、绿色的氯气

氯气这个名字来源于英文Chlorine,很显然是根据物质的颜色进行翻译的.Cl2就其颜色来说其实是黄绿色的,是初中化学接触到的重要气体物质.氯气的绿色是其分子状态下的颜色,一旦分子的结构破坏掉,颜色也就随之消失了,比如氯化氢HCl,次氯酸HClO等都是没有颜色的.绿色的氯气对于饮用水的消毒作用是我们日常应用最广泛的一个用途.

五、蓝色的硫酸铜

干燥的硫酸铜实际上是白色的粉末,但是这些粉末极易吸收空气中的水分为变成了漂亮的蓝色晶体,也就是所谓的五水合硫酸铜CuSO4・5H2O.实质上五水合硫酸铜的颜色是2价铜离子的颜色,这表明在有水和无水的状态下,硫酸铜中的铜离子的状态不不一样的,不同的状态使得它们的能级有所不同,因此在吸收光线方面也有一定的差别,所以呈现出不同的颜色特征.

六、紫色的高锰酸钾

高锰酸钾中的锰元素Mn呈现出+7价的高价态,因此具有了很强的氧化性.高锰酸钾的紫色也就是其中+7价Mn元素的颜色.在初中的化学课程中,最早对高锰酸钾接触就是用高锰酸钾来制备氧气.高锰酸钾具有强氧化性,可以将HCl氧化成Cl2,对亚铁离子、亚铜离子的氧化更是不在话下.由于高锰酸钾特殊的颜色,使得它成为研究扩散现象的首选化学药品,将一小粒高锰酸钾投入到水中,可以看到高锰酸钾粒子在水中的溶解,以及溶液中的紫色部分缓慢扩散到整个烧杯中,对于学生理解扩散这个概念起到了很大的帮助.

氧化铁的化学元素篇(10)

持“火石红”是“后生”观点的是我的好友崔文彦先生和聂伟先生。他们在2005年《收藏》第九期《古瓷火石红探微》一文中,详细阐述了“火石红”是“后生”的观点。十年前我们曾共同做过很多有关“火石红”及古陶瓷的科学检测。

“火石红”的问题大家讨论了十几年,为什么大家对“火石红”如此关注呢?主要是因为很多古陶瓷爱好者把“火石红”的真伪作为判断古陶瓷真伪的很重要的依据之一。既然“火石红”对鉴定古陶瓷如此重要,那么我们就必须搞清楚何谓“火石红”、火石红是如何产生的、真假火石红的本质区别、如何利用“火石红”鉴定古陶瓷。下面就让我们详细地论述有关“火石红”的本人的实验结果以及观点。

一、“火石红”的定义

我们在古陶瓷上所看到的火石红到底是一种什么物质呢?当然很多朋友会说:“火石红”是铁的氧化物。这个答案很不准确,因为铁的氧化物很多,不同的铁的氧化物有完全不同的物理化学性质。图1是本人所做的“火石红”粉晶x衍射图,检测的结果“火石红”为:褐铁矿[FeO(OH)·nH2O]。

我们知道了“火石红”是什么矿物,那么“火石红”是如何产生的呢?要知道“火石红”的来历就必须从古陶瓷的胎釉的成分,古陶瓷的生产过程,古陶瓷出窑后的物理化学变化说起。

瓷器的胎是由粘土制成的,粘土是多种矿物的混合物,粘土中所含的各种矿物的种类和数量对粘土的性质和瓷器的质量有很大的影响,其中铁的杂质矿物对“火石红”的影响很大。粘土中铁的杂质矿物有黄铁矿(FeS2)、褐铁矿(HFeO2·nH2O)、菱铁矿(FeCO3)、赤铁矿(Fe2O3)、针铁矿(HFeO2)等。

我国瓷器窑口众多,不同的窑口所使用的粘土都是就地取材,不同的窑口所用的粘土不同,粘土中所含的铁的杂质矿物的种类和数量也不同,即使同一窑口所使用的粘土也不会相同,同一地区不同矿点的粘土铁的杂质矿物的含量也不尽相同,多数情况下相同的粘土,不同的淘洗工艺和淘洗的精细程度不同,所烧制的瓷器的胎釉的含铁量也不同。同一窑口的胎土各种矿物的含量差距不大,不同窑口的胎土的差距还是比较明显的。几乎所有古陶瓷鉴定书籍中提到“火石红”时都是特指景德镇的瓷器,其实对我国所有的古陶瓷都存在“火石红”的问题。以下是各种铁的杂质矿物在瓷器烧造过程的化学变化。

黄铁矿:高温煅烧时的化学反应

4FeS2+11O2=2Fe2O3+8SO2

2Fe2O3=4FeO+O2 氧化气氛下(1350度)

Fe2O3+C=2FeO+CO 还原气氛下(1100度)

褐铁矿:高温煅烧时的化学反应

HFeO2·nH2OFeO+H2O 还原气氛下(1100度)

菱铁矿:高温煅烧时的化学反应

3FeCO3Fe3O4+2CO2+CO

赤铁矿:高温煅烧时的化学反应

2Fe2O3=4FeO+O2 氧化气氛下(1350度)

Fe2O3+C=2FeO+CO 还原气氛下(1100度)

针铁矿:高温煅烧时的化学反应

2HFeO2Fe2O+H2O

2Fe2O3=4FeO+O2 氧化气氛下(1350度)

Fe2O3+C=2FeO+CO 还原气氛下(1100度)

根据以上铁的杂质矿物在高温煅烧时的反应结果,铁元素最终都是以+2价存在的,作为过度性金属致色元素+2价铁的氧化物FeO是黑色或铁灰色的。就以景德镇的瓷器为例,其烧造温度都在1280℃左右(个别低温瓷除外),烧造气氛为还原气氛,景德镇瓷器中的铁元素是+2价,所以景德镇的瓷器釉面白中泛青,如果景德镇瓷器在出窑前降温时铁元素被二次氧化为+3价铁,那么景德镇瓷器的釉面将发黄而不会泛青。这也说明了瓷器在出窑前不会被二次氧化而生成“火石红”。举一个生活中常见的例子,我国传统建筑常用的红砖和青砖,红砖和青砖所用的砖坯都是一样的,只是它们的烧造制度不同,红砖是用氧化焰烧成的,青砖使用还原气氛烧成的,砖的颜色是由砖坯中的Fe元素致色的,红砖是Fe+3(Fe2O3)元素致色的,如果要烧造青砖,则需在红砖烧好时,在窑内加足够的煤炭然后将窑门封号,第二天从窑顶慢慢渗水,水蒸汽与窑内的碳发生化学反应会产生大量的氢气和一氧化碳气体,氢气和一氧化碳都是还原气体,大约一星期窑里的红砖就会被烧制成青砖,红砖之所以变为青砖是因为红砖中的Fe+3(Fe2O3)被还原成了Fe+2(FeO),二价铁离子致色使砖变为青砖。

以上的例子告诉我们,瓷器在出窑时是不会生成“火石红”的,事实上我们在商店里面看到的各种各样的新瓷器都没有“火石红”也是同样的原因。

既然我们证明了“火石红”不是出窑前降温时二次氧化所形成的,那么火石红到底是如何形成的呢?我们知道瓷器在出窑后所处的环境是地表环境,是常温常压下的氧化环境,胎体中的二价铁(FeO·Fe2O3)会被慢慢氧化而成为三价铁(Fe2O3),最后三氧化二铁被风化和水解成为褐铁矿(HFeO2·nH2O),也就是我们俗称的“火石红”。所以“火石红”的定义如下。

火石红:瓷器出窑以后,胎釉中的二价氧化铁长期在地表环境下被氧化和水解成褐铁矿(HFeO2·nH2O),其颜色由浅黄至黑褐色。

火石红的分布及浓淡变化

古陶瓷的胎釉结合处。

古陶瓷的气泡中或周围。

古陶瓷胎体的任何部位。

氧气和水分可以渗入的釉下。

较粗松的胎体内的空洞处。

火石红的浓淡与胎釉的铁含量有关,铁含量越多,火石红越浓重。

火石红的浓淡与出窑后的时间有关,时间越长火石红越重,时间越短火石红越淡。

火石红与胎体的致密与否有关,越致密的胎体火石红越淡,越粗松的胎体火石红越重。

真假火石红的区别

由于真假火石红的生成过程不同,真火石红的生成过程无法完全复制,所以真假火石红有本质的区别。

真火石红是由胎中长出的,所以和胎是一体的,不虚浮。假火石红是人为涂抹的,虚浮在胎体的表面。

真假火石红的颜色不同,真火石红的颜色柔和自然,有浓淡变化,假火石红的颜色死板无变化,颜色不正。

真火石红的光泽是半金属光泽,有油性,假火石红光泽暗淡,无金属光泽,无油性。

氧化铁的化学元素篇(11)

这篇九年级化学复习提纲期末辅导的文章,是

1、物理变化:没有生成其他物质的变化,如石蜡熔化、水的三态变化、灯泡发光等。2、化学变化:生成了其他物质的变化,如燃烧、钢铁生锈、食物腐败、呼吸作用、光合作用等。3、物理性质:物质不需要发生化学变化就能表现出来的性质,它包括颜色、状态、气味、熔点、沸点、硬度、密度、溶解性、导电导热性、延展性等。如通常状况下,二氧化碳是无色无味的气体,密度比空气大,能溶于水,降温后能变成固态的干冰。4、化学性质:物质在化学变化中表现出来的性质,如可燃性、还原性、氧化性、酸性、碱性等。5、混合物:由两种或两种以上物质组成,如空气、自来水、矿泉水、海水、石灰水、粗盐、石灰石、盐酸、黄铜、生铁和钢等各种合金、石油、煤、天然气都是混合物。6、纯净物:只由一种物质组成,如O2 、N2 、CO2、H2O等。7、元素:具有相同核电荷数(即质子数)的一类原子的总称,元素的化学性质主要决定于原子的最外层电子数。决定元素的种类是质子数或核电荷数。8、构成物质的微粒:(1)分子(保持物质化学性质的一种微粒,由原子构成);(2)原子(化学变化中的最小微粒,在化学变化中不可再分);(3)离子(原子失去或得到电子后形成的带电微粒,可分为阳离子[如Na+、NH4+]和阴离子[如Cl—、CO32—]。9、原子结构:(1)原子核:居于原子中心,体积极小但质量相当于整个原子质量。它虽小,还可分为带正电质子和不带电的中子。(2)电子:带负电,在原子核外很大空间作高速运转。跟原子比较,其质量和体积都可忽略不计。在原子里,核电荷数=质子数=核外电子数10、离子:带有电荷的原子或原子团(镁离子和镁原子具有相同的质子数或核电荷数)。11、稳定结构:①最外层8电子②第一层为最外层2电子。12、自然界中的化学元素:(1)地壳中最多的元素:O (2)地壳中最多的金属元素:Al地壳中含量前四位的元素依次是氧、硅、铝、铁。空气中含量最多的元素是氮元素。(3)海水、人体中最多的元素:O13、化合物的命名:(1)两种元素化合:“某化某”,如MgO氧化镁,NaCl氯化钠,Fe3O4四氧化三铁,P2O5五氧化二磷,Ca(OH)2氢氧化钙;(2)金属与酸根化合:“某酸某”,如CaCO3碳酸钙,CuSO4硫酸铜,NH4NO3硝酸铵。14、催化剂:在化学变化里能改变其它物质的化学反应速率,而本身的质量和化学性质在化学化前后都没有变化的物质(注:2H2O2 === 2H2O + O2 此反应MnO2是催化剂)15、燃烧的条件:(1)物质具有可燃性;(2)可燃物与氧气接触;(3)温度达到着火点。16、灭火的方法:(1)移走可燃物;(2)隔绝氧气(如油锅着火可用锅盖盖灭);(3)降低可燃物的温度至着火点以下(如房屋着火时消防队员用高压水枪灭火)。17、爆炸:可燃物在有限空间内急速燃烧,在短时间内产生大量热和气体导致爆炸。一切可燃性气体、粉尘、在遇到明火时都有可能发生爆炸。(也有物理变化的爆炸如车胎爆炸)。18、质量守恒定律:参加化学反应的各物质的质量总和,等于反应后生成各物质的质量总和。在化学反应前后,肯定不变的是原子的种类和数目、元素的种类、反应前后物质的总质量。肯定变化的是物质的种类和分子的种类。19、合金:由一种金属跟其他一种或几种金属(或金属与非金属)一起熔合而成的具有金属特性的物质。 合金是混合物而不是化合物。一般说来,合金的熔点比各成分低,硬度比各成分大,抗腐蚀性能更好。20、各元素或原子团的化合价与离子的电荷数相对应。单质中,元素的化合价为0 ;在化合物里,各元素的化合价的代数和为0)21、化学符号的意义:a.元素符号:①表示一种元素;②表示该元素的一个原子。b.化学式:①宏观意义:①.表示一种物质;②.表示该物质的元素组成;②微观意义:①.表示该物质的一个分子;②.表示该物质的分子构成。c.离子符号:表示离子及离子所带的电荷数d.化合价符号:表示元素或原子团的化合价。当符号前面有数字(化合价符号没有数字)时,此时组成符号的意义只表示微观意义。22、常见的酸根离子:SO42-(硫酸根)、NO3-(硝酸根)、CO32-(碳酸根)、PO43-(磷酸根)、Cl-(氯离子)、HCO3-(碳酸氢根)、HPO42-(磷酸氢根)、H2PO4-(磷酸二氢根)、S2-(硫离子)。23、溶液:一种或几种物质分散到另一种物质里,形成均一的、稳定的混合物。 溶液的组成:溶剂和溶质。(溶质可以是固体、液体或气体;固、气溶于液体时,固、气是溶质,液体是溶剂;溶液中各部分的性质均一、稳定。溶液不一定是无色的。24、固体溶解度:在一定温度下,某固态物质在100克溶剂里达到饱和状态时所溶解的质量,就叫做这种物质在这种溶剂里的溶解度。20℃时,食盐的溶解度为36克。就是说在20℃时,100克水中最多可以溶解食盐36克。影响固体溶解度的因素是温度。影响气体溶解度的因素是温度和压强。若要分离溶解度随温度的升高而明显增大的物质,应用冷却热饱和溶液法。25、酸碱度的表示方法——PH值说明:(1)PH值=7,溶液呈中性;PH值7,溶液呈碱性。(2)PH值越小,酸性越强;PH值越大,碱性越强。26、金属活动性顺序表:K、 Ca、 Na、 Mg、 Al、 Zn、 Fe、 Sn、 Pb、(H)、 Cu、 Hg、 Ag、 Pt、 Au( 钾、钙、 钠、 镁、 铝、 锌、 铁、 锡、 铅、 氢、 铜、汞 、银、 铂、 金)说明:(1)越左金属活动性就越强,左边的金属可以从右边金属的盐溶液中置换出该金属来(2)排在氢左边的金属,可以从酸(盐酸或稀硫酸)中置换出氢气;排在氢右边的则不能。元素化合物部分1. 测定空气中氧气的含量实验中,如果两位同学的实验结果差别较大,可能的原因有(1)铜丝的量不足(2)系统漏气 (3)加热温度达不到反应温度 (4)反应的充分程度不同2.空气的成分按体积分数 计算,大约是:氧气占21%,氮气占78%,稀有气体占0.94%,二氧化碳0.03%;得出空气成分的化学家是法国的拉瓦锡。3、O2的物理性质:通常状况下,O2是无色无味的气体,密度比空气稍大,难溶于水,降温可变成淡蓝色液体和雪状固体。4、O2的化学性质:各种物质在氧气中燃烧的现象和化学方程式如下:燃烧的现象 燃烧的化学方程式木炭在氧气中剧烈燃烧,发出白光,放出大量热 点燃C + O2CO2硫在氧气中剧烈燃烧,发出明亮的蓝紫色火焰,生成有刺激性气味的气体点燃S +O2 SO2磷在氧气中剧烈燃烧,产生大量白烟 点燃4P + 5O22P2O5铁在氧气中剧烈燃烧,火星四射,生成黑色固体 点燃3Fe + 2O2Fe3O4镁在氧气中燃烧,发出耀眼的白光,生成色固体。 点燃2Mg+ O2 2MgO5.实验室制取氧气用过氧化氢和二氧化锰。一般不用氯酸钾、高锰酸钾因为反应需要加热,收集氧气可用排水法,因为氧气不易溶解于水;收集氧气可用向上排空气法,因为氧气密度比空气的大。收集氢气可用排水集气法和向下排空气法。(收集方法由气体的密度和水溶性决定)收集CO2只能用向上排空气法,收集CO、N2只能用排水法。6、工业制氧气是利用液氮和液氧的沸点不同,分离液态空气是物理变化。7、氧气的重要用途是供给呼吸和支持燃烧,利用氧气易于其它物质反应并放热的化学性质。水通直流电后,正极产生氧气,负极产生氢气,负极气体能燃烧产生淡蓝色火焰(H2),正极气体能使带火星木条复燃,前者与后者的体积比为1:2,质量比为8:1。8、水的净化:自来水的净化步骤如下:沉降(加明矾);过滤;灭菌(氯气);煮沸。硬水是指含有较多可溶性钙镁化合物的水;软水是指不含或含有较少可溶性钙镁化合物的水。向两种类型的水中分别加肥皂水,搅拌,产生较多泡沫的是软水,否则为硬水。利用蒸馏、煮沸的方法可将硬水变为软水。9、实验室制取氢气用锌粒和稀硫酸。一般不用镁、铁与稀硫酸反应,镁反应过快、铁反应缓慢不能用浓硫酸、硝酸,因有强氧化性,反应不能得到氢气。不用浓盐酸,生成的气体中会含有HCl气体可用氢氧化钠溶液等吸收HCl气体。10、二氧化碳的物理性质:通常状况下,CO2是无色无味的气体,密度比空气大,能溶于水,降温可变成无色液体和无色固体(干冰)。11、二氧化碳的化学性质:(1)CO2能使紫色石蕊试液变红:CO2 + H2O H2CO3 ; 加热上述红色液体会恢复为紫色,因为碳酸不稳定易分解:H2CO3 H2O + CO2 (2)CO2能使澄清石灰水变浑浊: CO2 + Ca(OH)2 CaCO3+ H2O ,该反应可用于CO2气体的检验,和其他碱也能反应。12、CO2的用途:(1)灭火(不能燃烧不能支持燃烧,密度比空气大);(2)人工降雨、舞台云雾(干冰升华吸收大量热,使水蒸气液化);(3)光合作用的原料;(4)保存食品。 13、CO2的实验室制法:大理石或石灰石与稀盐酸:CaCO3 + 2HClCaCl2+H2O+CO2,不用Na2CO3,因反应太快;不用稀硫酸,因为石灰石或大理石的主要成分CaCO3与硫酸反应生成微溶的CaSO4,会覆盖在石块的表面而阻止反应的进行;也不用浓盐酸,因浓盐酸有挥发性,会使制得的二氧化碳混有HCl等杂质。可用向上排空气法收集CO2,验满时用燃着的火柴放在瓶口,看火柴是否熄灭。14、CO2与人体健康:CO2无毒,当空气中含量达到一定浓度对人体有害,因为CO2不能供给呼吸,故进入枯井或山洞前要做灯火试验。15、实验室制取氢气用锌粒和稀硫酸。一般不用镁、铁与稀硫酸反应,镁反应过快、铁反应缓慢不能用浓硫酸、硝酸,因有强氧化性,反应不能得到氢气。不用浓盐酸,生成的气体中会含有HCl气体可用氢氧化钠溶液等吸收HCl气体16、CO中毒,又叫煤气中毒。CO是无色、无味的气体,难溶于水,有剧毒,不易被察觉。被吸入人体与血红蛋白结合,使人缺氧气。CO一半以上来自汽车排放的废气。用CO作还原氧化铜等实验时,一定要进行尾气处理。17、金属材料包括铁、铝、铜等金属和合金.金属有很多共同的物理性质。例如:常温下它们的状态大都是固态,有金属光泽,大多数为热和电的良导体,有延展性,密度较大,熔点较高。18、金属材料金属的物理性质:①常温下一般为固态(汞为液态),有金属光泽;②大多数呈银白色(铜为紫红色,金为黄色);③有良好的导热性、导电性、延展性。19、金属的化学性质点燃(1)大多数金属可与氧气的反应 4Al+3O22Al2O3 3Fe+2O2Fe3O4 2Cu+O22CuO(2)较活泼金属与酸反应放出氢气 Fe+H2SO4FeSO4+H22Al+6HCl2AlCl3+3H2 Cu不与盐酸反应(3)金属1 + 盐1 金属2 +盐2(活泼金属置换不活泼金属) Fe + CuSO4 == Cu + FeSO4 (“湿法冶金”原理),Cu+2AgNO32Ag+Cu(NO3)2 单质铁在发生置换反应时,生成的都是+2价的亚铁。 置换反应:单质1+化合物1单质2+化合物220、金属资源的保护和利用高温(1)铁的冶炼原理: 3CO + Fe2O3 2Fe + 3CO2 (赤铁矿:Fe2O3 ;磁铁矿:Fe3O4)(2)原料:铁矿石、焦炭、石灰石、空气(3)钢铁锈蚀的条件是:①与O2接触 ②与水接触在有酸或盐存在的条件下,会加速钢铁生锈(铁锈的主要成分:Fe2O3)。铁锈很疏松,不能阻碍里层的铁继续与氧气、水蒸气反应,因此铁制品可以全部被锈蚀。因而铁锈应及时除去。而铝与氧气反应生成致密的氧化铝薄膜,从而阻止铝进一步氧化,因此,铝具有很好的抗腐蚀性能。(4)防止铁制品生锈的措施:①保持铁制品表面的清洁、干燥;②表面涂保护膜,如涂油、刷漆、搪瓷、电镀、烤蓝等;③制成不锈钢。红色的铜,在潮湿的空气中易于与空气中的水、氧气、二氧化碳等作用下生成铜绿〔Cu2(OH)2CO3〕金属制品电镀、电焊前一般要用稀盐酸处理,目的是用盐酸除去金属表面的锈。21、浓硫酸敞口放置质量会增加,质量分数会减小,因为浓硫酸具有吸水性。浓盐酸敞口放置质量会减少,质量分数会减小,因为浓盐酸具有挥发性。氢氧化钠(NaOH)敞口放置,质量会增加,因为氢氧化钠易吸收空气中的水分而潮解,而且可以和空气中的二氧化碳反应而变质。2NaOH + CO2 = Na2CO3 + H2O不能用NaOH干燥的气体是SO2、CO2、HCl。22、紫色石蕊与无色酚酞都属于酸碱指示剂,可指示溶液的酸碱性。 酸性溶液,石蕊遇之变红色,酚酞不变色,pH7。中性溶液:石蕊不变色(仍为紫色),酚酞不变色,pH=7 。23、氢氧化钠固体要密闭保存,原因是氢氧化钠不仅易吸收空气中的水分而潮解,还能与空气中的二氧化碳反应生产Na2CO3而变质,鉴定氢氧化钠是否变质,可用过量的稀盐酸检验(看是否有气泡产生)。除Na2CO3时可加适量的石灰水即Ca(OH)2。 氢氧化钠溶液存放在试剂瓶中时应用橡皮塞,不能用玻璃塞。原因是玻璃中的SiO2能与氢氧化钠反应生产黏性的物质。24、Ca(OH)2:氢氧化钙,俗称熟石灰、消石灰,微溶于水,溶解度随温度的升高而减小。其水溶液称石灰水,不饱和石灰水转化成饱和溶液的方法是升温(与大部分固体相反)或加石灰。石灰水的保存与氢氧化钠溶液相同。25、氢氧化钠的俗称是烧碱、火碱、苛性钠。碳酸钠(Na2CO3 )的俗称是纯碱、苏打。碳酸氢钠(NaHCO3)的俗称是小苏打。26、工业上用石灰石(主要成分为CaCO3)、水、纯碱(Na2CO3)制烧碱的方法:(1)高温锻烧石灰石生成CaO;(2)CaO与水反应生成Ca(OH)2;(3)Ca(OH)2与Na2CO3反应可生成烧碱(NaOH)。27、纯碱(Na2CO3)的水溶液呈碱性,pH>7,但它不是碱,属于盐;碳酸钠晶体即Na2CO3•10H2O是纯净物,属于盐类,俗称口碱;碳酸钠晶体易风化,属化学变化。硫酸铜晶体俗称胆矾、蓝矾,是蓝色晶体,化学式为CuSO4•5H2O;无水硫酸铜CuSO4是白色固体,易吸收水分而变蓝,可用其检验水的存在。