欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

医学技术论文大全11篇

时间:2022-11-15 02:31:32

医学技术论文

医学技术论文篇(1)

2医学院校生物技术专业临床医学教学现状和问题

2.1课程体系和教学内容完全照搬临床医学专业本科教育

课程体系和教学内容是培养目标的直接反映,是培养人才素质、提高教学质量的核心环节。生物技术专业临床医学课程体系和教学内容,应该紧贴生物技术专业实际需求,有针对性地进行设置。然而,目前大部分医学院校生物技术专业临床医学课程体系和教学内容完全照搬临床医学专业本科教育,将内科、外科、专科教学内容按照病因、临床表现、病理、诊断、治疗、预防等毫无取舍地灌输给学生,呈现教师教学无特色、无重点、无思路,学生学习无方向、无兴趣的状态。这与学科设置初衷和社会人才需求脱节,不能培养学生的自主学习能力及创新能力,没有达到预期效果。

2.2课程目标不明确,考核要求不严格

目前大多数医学院校对生物技术专业临床医学教学不够重视,没有真正意识到临床医学对该专业学生今后发展的重要意义。医学院校生物技术专业临床医学课程目标应该是:使学生具有一定临床思维,了解临床医学前沿和需要,并能在医学发展和临床需求中找到生物技术的落脚点、发力点,运用所掌握的生物技术理论知识和技能,从事相关领域的科学研究、技术开发,最终为医学问题的解决开辟新思路、提供新方法。但是目前医学院校对于生物技术专业临床医学课程目标认识比较模糊,在教学过程中需要学生掌握哪些内容、掌握到什么程度没有一个明确的标准。考核过程较为敷衍,甚至没有考核,使临床医学课程开设存在“鸡肋化”的危险。

3医学院校生物技术专业临床医学教学内容

医学院校生物技术专业人才培养,在强调基本素质共性的基础上,应该有不同的培养类型和专业方向。医学生物技术专业临床医学教学内容必须体现职业生涯发展目标,尊重学生多样性选择。目前的教学内容和课程体系不能完全符合专业发展和人才培养需要,不能完全适应现代医学发展需要,不能完全考虑到多样化、个性化、专业化,因此有必要对医学院校生物技术专业临床医学教学内容进行改革。

3.1紧贴实际,重点突出

临床医学是医学生物技术的出发点和落脚点,在课程设置上除了要整体介绍临床医学概况外,重点是要筛选出能够体现生物技术学科发展价值以及与生物技术知识有交集的内容,体现出医学生物技术特色和资源优势,如临床诊断的新方法,基因诊断、基因治疗技术在肿瘤及其他疾病中的应用等;而疾病的临床表现、物理诊断及常规治疗方法等内容应该淡化。这样才会贴近生物技术专业实际,更好地激发学生学习热情,避免浪费学生有限的精力。

3.2以临床问题为向导,以临床难点为突破

医学生物技术发展动力就是临床问题。医学生物技术的发展已为我们解决了一个又一个医学难题,开辟了新思路,提供了新方法,已有很多成熟的、新兴的生物技术应用于临床实践。因此,应将目前临床上亟待解决的问题和需要突破的难点贯穿在教学中,引起学生的思考和学习兴趣,从而更好地把生物技术和临床医学结合起来。

3.3着眼前沿,广泛涉猎

生物技术专业临床医学教学内容需要不断更新和发展。临床医学的最前沿往往与生物技术的发展密不可分,因此要把临床医学中最新的焦点和热点引入教学中,让学生体会医学生物技术对现代医学发展的重要性,增强荣誉感和使命感。同时,临床医学不断进展的案例也是很好的教学事例,让学生了解前辈们是如何发现问题、分析问题、解决问题,并推动医学科学向前发展的。但也要照顾到医学发展的冷门分支,给学生拾遗补缺的机会,在大家忽视的老问题上做出新文章。

4医学院校生物技术专业临床医学教学模式

生物技术专业临床医学教学模式应该有别于临床医学专业,要更加突出多样性、灵活性和自主性,最大限度调动学生积极性,将课程的作用发挥到最大化。

4.1课堂教学与课外教学相结合,选修和必修相结合

压缩课堂教学时数,将教学主战场放在课外,把更多的时间交给学生进行自主学习。增加选修课数量,鼓励学生选择自己感兴趣的方向进行探索。生物技术专业将来不从事临床医疗工作,对临床医学知识的学习应该是有重点和有取舍的,这个选择权不应掌握在教师手中,而应留给学生。让学生在课外通过文献查阅、学术会议、网络交流等多种形式,学习对未来职业发展有帮助的医学知识。

4.2大师进讲堂,将导师范围扩展至临床学科

师资队伍建设是实践教学体系改革的关键。目前生物技术专业临床医学师资结构中,中级职称教师比例偏高,真正的大师偏少。应该把临床医学的“大腕”请进讲堂,因为生物技术专业的导师往往更重视具体的新技术、新方法,而对临床医学前沿需求知之甚少,缺少宏观思路和顶层设计。这些可由临床导师很好地补充,他们扎根临床数十年,对疾病的发生发展、治疗的难点要点有更全面、深入的认识。要鼓励学生参与到临床导师的科研课题及科技创新活动中,使其不仅对原有理论知识和技术有更清晰的认识,还锻炼了临床科研思维能力;使学生能更准确地把握现代医学发展的脉搏,找到自己感兴趣、能钻研、有出路的研究方向,对未来职业发展进行合理的规划。

4.3启发为主,传授为辅

生物技术专业学生将来主要从事科研工作,应该是临床医生的益友良师。其临床医学教学不应以传授方式为主,而应采取引导、启发的方式,加入讨论及案例教学,让学生自己思考问题,用专业特长来分析问题、解决问题。强化学生创新思维和综合能力培养,在教学环节中启发学生自主学习和自由学习。在教学方法和教学手段改革中,坚持理论联系实际、基础联系临床的教学理念,强调教学过程的“四结合”:密切结合科研,密切结合临床,密切结合实践,密切结合新进展。

医学技术论文篇(2)

2医学院校生物技术专业临床医学教学现状和问题

2.1课程体系和教学内容完全照搬临床医学专业本科教育

课程体系和教学内容是培养目标的直接反映,是培养人才素质、提高教学质量的核心环节。生物技术专业临床医学课程体系和教学内容,应该紧贴生物技术专业实际需求,有针对性地进行设置。然而,目前大部分医学院校生物技术专业临床医学课程体系和教学内容完全照搬临床医学专业本科教育,将内科、外科、专科教学内容按照病因、临床表现、病理、诊断、治疗、预防等毫无取舍地灌输给学生,呈现教师教学无特色、无重点、无思路,学生学习无方向、无兴趣的状态。这与学科设置初衷和社会人才需求脱节,不能培养学生的自主学习能力及创新能力,没有达到预期效果。

2.2课程目标不明确,考核要求不严格

目前大多数医学院校对生物技术专业临床医学教学不够重视,没有真正意识到临床医学对该专业学生今后发展的重要意义。医学院校生物技术专业临床医学课程目标应该是:使学生具有一定临床思维,了解临床医学前沿和需要,并能在医学发展和临床需求中找到生物技术的落脚点、发力点,运用所掌握的生物技术理论知识和技能,从事相关领域的科学研究、技术开发,最终为医学问题的解决开辟新思路、提供新方法。但是目前医学院校对于生物技术专业临床医学课程目标认识比较模糊,在教学过程中需要学生掌握哪些内容、掌握到什么程度没有一个明确的标准。考核过程较为敷衍,甚至没有考核,使临床医学课程开设存在“鸡肋化”的危险。

3医学院校生物技术专业临床医学教学内容

医学院校生物技术专业人才培养,在强调基本素质共性的基础上,应该有不同的培养类型和专业方向。医学生物技术专业临床医学教学内容必须体现职业生涯发展目标,尊重学生多样性选择。目前的教学内容和课程体系不能完全符合专业发展和人才培养需要,不能完全适应现代医学发展需要,不能完全考虑到多样化、个性化、专业化,因此有必要对医学院校生物技术专业临床医学教学内容进行改革。

3.1紧贴实际,重点突出

临床医学是医学生物技术的出发点和落脚点,在课程设置上除了要整体介绍临床医学概况外,重点是要筛选出能够体现生物技术学科发展价值以及与生物技术知识有交集的内容,体现出医学生物技术特色和资源优势,如临床诊断的新方法,基因诊断、基因治疗技术在肿瘤及其他疾病中的应用等;而疾病的临床表现、物理诊断及常规治疗方法等内容应该淡化。这样才会贴近生物技术专业实际,更好地激发学生学习热情,避免浪费学生有限的精力。

3.2以临床问题为向导,以临床难点为突破

医学生物技术发展动力就是临床问题。医学生物技术的发展已为我们解决了一个又一个医学难题,开辟了新思路,提供了新方法,已有很多成熟的、新兴的生物技术应用于临床实践。因此,应将目前临床上亟待解决的问题和需要突破的难点贯穿在教学中,引起学生的思考和学习兴趣,从而更好地把生物技术和临床医学结合起来。

3.3着眼前沿,广泛涉猎

生物技术专业临床医学教学内容需要不断更新和发展。临床医学的最前沿往往与生物技术的发展密不可分,因此要把临床医学中最新的焦点和热点引入教学中,让学生体会医学生物技术对现代医学发展的重要性,增强荣誉感和使命感。同时,临床医学不断进展的案例也是很好的教学事例,让学生了解前辈们是如何发现问题、分析问题、解决问题,并推动医学科学向前发展的。但也要照顾到医学发展的冷门分支,给学生拾遗补缺的机会,在大家忽视的老问题上做出新文章。

4医学院校生物技术专业临床医学教学模式

生物技术专业临床医学教学模式应该有别于临床医学专业,要更加突出多样性、灵活性和自主性,最大限度调动学生积极性,将课程的作用发挥到最大化。

4.1课堂教学与课外教学相结合,选修和必修相结合

压缩课堂教学时数,将教学主战场放在课外,把更多的时间交给学生进行自主学习。增加选修课数量,鼓励学生选择自己感兴趣的方向进行探索。生物技术专业将来不从事临床医疗工作,对临床医学知识的学习应该是有重点和有取舍的,这个选择权不应掌握在教师手中,而应留给学生。让学生在课外通过文献查阅、学术会议、网络交流等多种形式,学习对未来职业发展有帮助的医学知识。

4.2大师进讲堂,将导师范围扩展至临床学科

师资队伍建设是实践教学体系改革的关键。目前生物技术专业临床医学师资结构中,中级职称教师比例偏高,真正的大师偏少。应该把临床医学的“大腕”请进讲堂,因为生物技术专业的导师往往更重视具体的新技术、新方法,而对临床医学前沿需求知之甚少,缺少宏观思路和顶层设计。这些可由临床导师很好地补充,他们扎根临床数十年,对疾病的发生发展、治疗的难点要点有更全面、深入的认识。要鼓励学生参与到临床导师的科研课题及科技创新活动中,使其不仅对原有理论知识和技术有更清晰的认识,还锻炼了临床科研思维能力;使学生能更准确地把握现代医学发展的脉搏,找到自己感兴趣、能钻研、有出路的研究方向,对未来职业发展进行合理的规划。

4.3启发为主,传授为辅

生物技术专业学生将来主要从事科研工作,应该是临床医生的益友良师。其临床医学教学不应以传授方式为主,而应采取引导、启发的方式,加入讨论及案例教学,让学生自己思考问题,用专业特长来分析问题、解决问题。强化学生创新思维和综合能力培养,在教学环节中启发学生自主学习和自由学习。在教学方法和教学手段改革中,坚持理论联系实际、基础联系临床的教学理念,强调教学过程的“四结合”:密切结合科研,密切结合临床,密切结合实践,密切结合新进展。

医学技术论文篇(3)

进入21世纪以来,随着计算机和多媒体技术的不断发展,多媒体教学逐渐取代传统的教学方式,成为现代教育的一种手段和方法。多媒体教学更新和优化了教学手段丰富了教学内容,调动了学生的各种感官功能,从而使学生的学习更加的形象、生动和丰富多彩[1]。目前,多媒体技术已经广泛应用于各项教学中。将多媒体技术应用到中兽医学教学中,同样具有优势。例如,中兽医的理论抽象、模糊、晦涩难懂,在教学过程中,采用板书的形式往往难以表述清楚,如果借助图像、动画等形式,则可以形象的表现出来,从而加深学生的理解和记忆。然而,在中兽医学教学过程中发现,多媒体技术在给教学带来方便的同时,也带来了很多问题。课题组根据多年教学实践经验,探讨了多媒体在中兽医学教学中的优点及存在的问题,并提出了一些解决问题的相关对策,以供相关教学人员参考。

1多媒体技术在中兽医学教学中应用的优点

中兽医学是动物医学专业的一门重要专业课。通过本门课程的学习,使学生具有独立分析和防治畜禽疾病的能力,并能贯彻“继承和发扬祖国兽医学的遗产”的方针,为发展畜牧业生产和提高人民生活质量服务[2]。中兽医学课程内容知识量大,且理论部分较为抽象、晦涩、难懂。传统的教学方法主要是教师通过板书、标本、挂图、模型等进行讲解。而多媒体技术能将中兽医学的课程内容制作成多媒体课件,使文字与图像、动画等相结合,从而将晦涩、难懂的内容以课件的形式直观、且生动形象的表达出来。因此,多媒体技术在中兽医学教学过程中体现出独特的优势。

1.1把教学中抽象的基础理论直观化,利于学生理解

以往的中兽医学教学中,文字表达是主要的教学手段,由于中兽医理论知识具有较强的思辨性,内容抽象、枯燥,加之文字深奥,学生在理解时有一定的困难,“一支粉笔,一本讲义”的传统教学方法已不能满足目前的教学现状[3]。而如果在讲课时若能结合相关的图片、动画进行解释和描述,则能将抽象的基础理论变得直观、易懂,不仅能够激发学生的学习兴趣,也可以促进学生对知识的理解和把握。例如,对阴阳学说这部分内容的讲授,对阴阳的概念和分类,可用图片表达出来———向日为阳,背日为阴,然后在此基础上进行延伸,宇宙万物均可分为阴阳;讲解阴阳学说的基本内容时,可用太极图进行辅助解释;讲解五行学说时,可先在多媒体课件中画出五行之间的关系图,上课时围绕此图进行详细讲解;讲经络时,配以气血在十二经脉中的流注动态图像;讲察口色时,可将舌色、舌苔、舌形等通过图片显示;讲脉象时,可用动态图像表达脉搏的变化;讲六淫致病时,可配以自然界中六气和六淫致病时的病态图片,进行讲述。通过以上方法,将形象生动的方式展现给学生。例如,在讲中药的炮制时,将各种炮制方法以图片或视频的方式,配以讲解,学生印象会更加深刻;在讲常用中草药时,将中药采收前和炮制后的形态分别配以图片,从而显得形象、生动;在对形态相似而药效不同的两种或几种中药进行辨别时,把中药之间的相似点和不同点,分别用图片的形式概括出来,便于学生理解和记忆。此外在讲针灸时,可以提前给学生播放于船老先生拍摄的《千古神针》录像,将针灸的效果形象生动的表现出来,激发学生学习的兴趣。

1.3能够激发学生的学习兴趣

传统的中兽医学教学模式,在内容和方式上均为比较单调、乏味的教条式的教学。学生的学习兴趣和积极性不高,缺乏学习激情[4]。而多媒体教学则能够有效的克服这一问题。通过多媒体技术,能将抽象的内容和枯燥的语言讲解变得直观、形象,不仅能够吸引学生注意力,而且能够激发学生的求知欲望和学习兴趣,从而达到最佳的教学效果。例如,在讲基础理论中的气血津液部分,可以将动物体内不可见的、抽象的“气”,结合自然界中真实存在的气体,解释气的状态,再结合现在生活中的气功养生,说明气的功能。在讲解的过程中配以相关的图片,从而把抽象、虚无的“气”变的生动形象,同时也能够顺便给学生解释气功能够强身健体的原因,从而能够激发学生的学习兴趣。

1.4扩充教学知识量,丰富课堂内容

近年来,中兽医学课程课时数被大幅度的压缩和减少。以西北农林科技大学为例,《中兽医学》由90年代的120学时逐渐被压缩为目前的64学时。对于中兽医这样一门博大精深的学科,想要在有限的学时内把课程内容讲完,并能够保证学生能够学会并应用中兽医,对中兽医授课教师来讲无疑是一个挑战,而传统的授课方式进度较慢,已不能够满足现代教学的需要。而使用多媒体教学,在课前可以提前制作好课件,在讲课过程中,点击鼠标即可完成教学过程,板书需求较少[5]。此外,将抽象、枯涩的内容用图片或影像的形式直观的表达出来,也可以大大节约语言描述讲解的时间,促进学生对教学内容的理解。因此,教师在相同的时间内可以给学生讲授更多的内容,加快讲课节奏。此外,教师还可以适当增加一部分学科前沿的研究动态成果,比如,中药在动物病毒性疾病治疗中的所取得的成效,针灸技术在国外的兽医领域的应用状况。从而开阔了学生的眼界和拓展了知识面,增加了学生的学习广度和深度,并丰富了教学内容。

1.5重复性强

传统的教学方式,每节课都需要板书,相同内容在不同班级讲授时也需要重复板书,劳动量相对较大。而通过多媒体课件教学,可重复利用课件,只需要制作一次,在讲课过程中,点击鼠标,即可代替大量的板书。此外,多媒体课件增删和更新均比较容易,遇到需要更新或增删的知识点,只需要在原课件中进行变更即可,不需要重新制作课件,工作量小,可以大大节约教师在制作课件上消耗的时间,让老师有更多的时间和精力从事研究工作。

2多媒体技术在中兽医学教学中应用的缺点

多媒体技术应用于中兽医学教学中具有传统教学所无可比拟的优越性,解决了以往教学中难以讲清的抽象、枯涩的内容,调动了学生的学习热情,提高了教学效果。为此,一些教师对多媒体教学推崇备至,甚至将多媒体教学手段的运用列为评课标准之一。尽管多媒体教学具有一系列的优点,但在教学中,主体是学生,如果过多的依赖于多媒体技术,有时却会起到相反的效果,从而产生弊端。

2.1反客为主,忽视了教师的主导作用

目前,大部分的多媒体课件均为教学演示型课件,课件为教师自制,而有的教师为了省事,直接用别的老师制作的课件,或是仅进行了少量的修改。因此,教师对于课件中的内容不够熟悉,对所讲内容的把握缺乏一定的灵活性,上课模式僵化,有的基本是在读课件,没有与学生互动,也没有自己的教学方式,把自己的思维局限在了多媒体课件中,而学生对于此种教学也失去兴趣,课堂上不记笔记,不认真听讲,不是玩手机就是睡觉,而课下把老师的课件拷贝下来,回去自己看。因此,教师也从以前的知识传播者变成了现在的计算机操作员,毫无个性。

2.2削弱了学生在课堂上的主观能动性

多媒体课件能将枯燥的文字与形象生动的图像、视频相结合,目的在于激发学生的学习积极性和主动性。但是在实际教学过程中,有些教师从上课开始,就按照课件的内容开讲,直到下课,中间都没有停顿,没有给学生留下充分的思考时间,有的教师甚至只会盯着自己面前的显示器,点击鼠标,读自己的课件。这样的多媒体教学,在一定程度上束缚了学生的思维,且由于缺少了师生之间的沟通和交流,每个学生在课堂上参与及展示的机会也大大减少,不仅使教师未能及时掌握学生的学习动态,对所学知识的理解程度,也使学生容易产生疲倦,注意力不集中,容易开小差,甚至犯困。久而久之,教学又成了另一种意义上的“填鸭式”教育,抹杀了学生的学习兴趣和积极性。这样,无形中教师就把学生的思维方式限制在了课件的固定框架内,长期下来,学生的学习主动性必然会受到不同程度的不利影响。

2.3信息量过大,学生难以完全掌握

多媒体课件可以储存大量的信息,这是多媒体教学的一大优点。但有的教师在制作多媒体课件时,害怕内容单薄,或是害怕没备好课,于是将与教学有关的内容,不分主次,全部纳入课件,造成课件容纳了大量的信息。此外,由于课件是提前制作好的,在课堂上只需要点击鼠标放映即可,需要板书的地方很少,从而导致相同的时间内讲授内容增多,不利于学生当堂消化教师所讲授的知识,而学生由于进度过快,导致没有足够的时间做好笔记,给课后复习带来一定的困难。另外,多媒体课件集图、文、声、动画、视频于一体,给学生强烈的刺激,易分散学生的注意力,也容易使学生抓不住重点,从而忽略了动画、图片等所表达的知识内容[6]。

3多媒体教学中采取的应对策略

虽然多媒体技术大大的改善了传统教学中存在的问题,使课堂内容变得十分丰富,但是必须强调的是多媒体技术只是一种教学辅助手段,课堂的主体依旧是学生,而不是课件,同时也不能忽视教师在课堂上的主导作用。因此,教师应该认真仔细的进行教学设计,使多媒体技术真正服务于中兽医学教学,从而提高教学质量,以获得最佳的教学效果。3.1教师仍应发挥主导作用多媒体是教师在课堂上进行教学演示的工具,是一种辅助教学的方法,不是课堂的主体。而学生是课堂教学的中心,教师是教学的引导者。在教学过程中,教师要明确自己在课堂中的主导作用,防止教学思路被多媒体所左右[7]。例如,在讲六淫致病时,首先在一张课件上标出六邪,然后启发学生,自然界中的六气有何特点,先让大家思考一下,然后再下一张课件中,写出六淫的性质,然后再根据其性质,启发学生推测出六淫的致病特性,最后进行归纳总结,从而引导学生逐步深入。在讲血与津液时,先将血液和体内的津液以图片的形式放在一张课件中,启发学生用现代医学观点,分析血和津液的来源及作用,然后在另一张课件中写出中兽医学中学与津液的来源和生理功能,最后进行总结,归纳中西兽医中血与津液的异同点。因此,教师在课堂上应以引导者的角色,充分发挥自己在教学中的主导作用,让学生按照自己的思路,逐步深入。这样才能取得最好的教学效果。

3.2充分调动学生在课堂上的学习积极性

教师应当科学、合理的设计多媒体课件,要加强师生间的互动和课堂气氛的调节,让课堂气氛变得活跃,而不应该只顾讲自己的课,从而忽视学生的课堂表现,让学生沉默一片。只有这样,才能更好的发挥多媒体教学的优势。比如,在讲脏腑辨证时,可以先给学生讲解几个病例,然后挑出几个病例,让学生来讲,教师在旁边适当的引导,并适时做出恰如其分的评价;在讲八纲辨证时,可以以日常生活中经常遇到的感冒、发烧、腹泻等病症,让学生自己分析,属于什么证,该如何治疗,这样既能使理论与实践紧密结合,又能增强趣味性;在讲针灸时,可以播放一些运用针灸治病的视频,然后再配以讲解,或是播放一段后,暂停一下,等待学生提问,然后解答。通过这些措施,来充分调动学生在课堂上的学习积极性,从而达到理想的教学效果。

3.3多媒体课件内容要适量

多媒体教学虽然可以丰富教学内容,但其内容也不易过多。如果内容太多,教师在讲课过程中很容易不自觉的加快速度,导致学生的思维跟不上教师的讲解,从而使学生对所讲授的内容理解不够深入或是完全没有理解。一个好的多媒体课件应该能对教材中的内容做出精炼的总结和概括,要分清主次。例如,在讲五脏的生理功能时,只需把要点写上即可,详细的解说可以用语言跟学生讲解,而不必写在课件上;讲脏腑辨证时,只需把主证、治则和方例写上即可,具体的分析用语言进行描述。此外,课件不能全是一片文字,要尽量用少的文字归纳出重点,目的在于,一是防止教师过度依赖的课件,杜绝只会埋头读课件的现象;二是让学生有重点的做笔记,而不是全篇通记,这样也有利于学生课后的复习和巩固。此外,在多媒体教学中,必要的板书是教师和学生之间沟通的桥梁,不应把节约板书的时间用来过度的增加教学内容,而应该安排一定的板书时间让学生思考、理解和记忆。因此,运用多媒体教学必须要做到内容适量,使学生有理解、消化、吸收所学知识的余地[8]。

总而言之,多媒体教学具有多方面的优越性,虽然存在一些缺陷,但将多媒体技术引入课堂教学仍是社会发展的必然趋势。但是,多媒体技术终究只是一种辅助教学的手段,在教学中一定要正确处理教师与多媒体的关系,要时刻谨记“学生为主体,教师为主导,手段为辅助”的原则,充分利用好多媒体教学,扬长避短,同时还要结合中兽医学的特点,摸索出一种适合于中兽医学的新的教学模式,从而来提高中兽医学的教学质量和教学效果[4]。文中所列,只是在教学过程中的初步做法和体会,还不够成熟,也可能有错误,如何更好的使用多媒体课件辅助中兽医学教学,有待中兽医教育工作者继续不断的探索和实践。

作者:范云鹏 麻武仁 张为民 宋晓平 单位:西北农林科技大学

参考文献:

[1]杨修国.多媒体辅助教学利弊分析[J].电脑知识与技术,2014,10(12):2859-2860.

[2]胡元亮.中兽医学[M].科学出版社,2013,1-7.

[3]卢德章,马新武,张翊华,张德刚.多媒体技术在兽医外科学教学中的应用[J].养殖技术顾问,2013,11,267-269.

[4]蔡丙丙,毕禛.论多媒体课堂教学的利弊及解决对策[J].河南科技,2014,4,260-261.

[5]宿晓舟.浅析多媒体课件在课堂教学中的利弊[J].科技教育,2012,3:365-366.

医学技术论文篇(4)

1.引言

近20多年来,医学影像已成为医学技术中发展最快的领域之一,其结果使临床医生对人体内部病变部位的观察更直接、更清晰,确诊率也更高。20世纪70年代初,X-CT的发明曾引发了医学影像领域的一场革命,与此同时,核磁共振成像象(MRI:MagneticResonanceImaging)、超声成像、数字射线照相术、发射型计算机成像和核素成像等也逐步发展。计算机和医学图像处理技术作为这些成像技术的发展基础,带动着现代医学诊断正产生着深刻的变革。各种新的医学成像方法的临床应用,使医学诊断和治疗技术取得了很大的进展,同时将各种成像技术得到的信息进行互补,也为临床诊断及生物医学研究提供了有力的科学依据。

在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体,往往需要借助医生的经验来判定。至于准确的确定病变体的空间位置、大小、几何形状及与周围生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图象处理技术对二维切片图象进行分析和处理,实现对人体器官、软组织和病变体的分割提取、三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分析,可以大大提高医疗诊断的准确性和可靠性。此外,它在医疗教学、手术规划、手术仿真及各种医学研究中也能起重要的辅助作用。

本文对医学图像处理技术中的图像分割、纹理分析、图像配准和图像融合技术的现状及其发展进行了综述。

2.医学图像三维可视化技术

2.1三维可视化概述

医学图像的三维可视化的方法很多,但基本步骤大体相同,如图.。从#$/&’(或超声等成像系统获得二维断层图像,然后需要将图像格式(如0(#1&)转化成计算机方便处理的格式。通过二维滤波,减少图像的噪声影响,提高信噪比和消除图像的尾迹。采取图像插值方法,对医学关键部位进行各向同性处理,获得体数据。经过三维滤波后,不同组织器官需要进行分割和归类,对同一部位的不同图像进行配准和融合,以利于进一步对某感兴趣部位的操作。根据不同的三维可视化要求和系统平台的能力,选择不同的方法进行三维体绘制,实现三维重构。

2.2关键技术:

图像分割是三维重构的基础,分割效果直接影像三维重构的精确度。图像分割是将图像分割成有意义的子区域,由于医学图像的各区域没有清楚的边界,为了解决在医学图像分割中遇到不确定性的问题,引入模糊理论的模糊阀值、模糊边界和模糊聚类等概念。快速准确的分离出解剖结构和定位区域位置和形状,自动或半自动的图像分割方法是非常重要的。在实际应用中有聚类法、统计学模型、弹性模型、区域生长、神经网络等适用于医学图像分割的具体方法。

由于可以对同一部位用不同的成像仪器多次成像,或用同一台仪器多次成像,这样产生了多模态图像。多模态图像提供的信息经常相互覆盖和具有互补性,为了综合使用多种成像模式以提供更全面的信息,需要对各个模态的原始图像进行配准和数据融合,其整个过程称为数据整合。整合的第一步是将多个医学图像的信息转换到一个公共的坐标框架内的研究,使多幅图像在空间域中达到几何位置的完全对应,称为三维医学图像的配准问题。建立配准关系后,将多个图像的数据合成表示的过程,称为融合。在医学应用中,不同模态的图像还提供了不互相覆盖的结构互补信息,比如,当CT提供的是骨信息,MRI提供的关于软组织的信息,所以可以用逻辑运算的方法来实现它们图像的合成。

当分割归类或数据整合结束后,对体数据进行体绘制。体绘制一般分为直接体绘制和间接体绘制,由于三维医学图像数据量很大,采用直接体绘制方法,计算量过重,特别在远程应用和交互操作中,所以一般多采用间接体绘制。在图形工作站上可以进行直接体绘制,近来随着计算机硬件快速发展,新的算法,如三维纹理映射技术,考虑了计算机图形硬件的特定功能及体绘制过程中的各种优化方法,从而大大地提高了直接体绘制的速度。体绘制根据所用的投影算法不同加以分类,分为以对象空间为序的算法(又称为体素投影法)和以图像空间为序的算法!又称为光线投射法",一般来说,体素投影法绘制的速度比光线投射法快。由于三维医学图像的绘制目的在于看见内部组织的细节,真实感并不是最重要的,所以在医学应用中的绘制要突出特定诊断所需要的信息,而忽略无关信息。另外,高度的可交互性是三维医学图像绘制的另一个要求,即要求一些常见操作,如旋转,放大,移动,具有很好的实时性,或至少是在一个可以忍受的响应时间内完成。这意味着在医学图像绘制中,绘制时间短的可视化方法更为实用。

未来的三维可视化技术将与虚拟现实技术相结合,不仅仅是获得体数据的工具,更主要的是能创造一个虚拟环境。

3.医学图像分割

医学图像分割就是一个根据区域间的相似或不同把图像分割成若干区域的过程。目前,主要以各种细胞、组织与器官的图像作为处理的对象,图像分割技术主要基于以下几种理论方法。

3.1基于统计学的方法

统计方法是近年来比较流行的医学图像分割方法。从统计学出发的图像分割方法把图像中各个像素点的灰度值看作是具有一定概率分布的随机变量,观察到的图像是对实际物体做了某种变换并加入噪声的结果,因而要正确分割图像,从统计学的角度来看,就是要找出以最大的概率得到该图像的物体组合。用吉布斯(Gibbs)分布表示的Markov随机场(MRF)模型,能够简单地通过势能形式表示图像像素之间的相互关系,因此周刚慧等结合人脑MR图像的空间关系定义Markov随机场的能量形式,然后通过最大后验概率(MAP)方法估计Markov随机场的参数,并通过迭代方法求解。层次MRF采用基于直方图的DAEM算法估计标准有限正交混合(SFNM)参数的全局最优值,并基于MRF先验参数的实际意义,采用一种近似的方法来简化这些参数的估计。林亚忠等采用的混合金字塔Gibbs随机场模型,有效地解决了传统最大后验估计计算量庞大和Gibbs随机场模型参数无监督及估计难等问题,使分割结果更为可靠。

3.2基于模糊集理论的方法

医学图像一般较为复杂,有许多不确定性和不精确性,也即模糊性。所以有人将模糊理论引入到图像处理与分析中,其中包括用模糊理论来解决分割问题。基于模糊理论的图形分割方法包括模糊阈值分割方法、模糊聚类分割方法等。模糊阈值分割技术利用不同的S型隶属函数来定义模糊目标,通过优化过程最后选择一个具有最小不确定性的S函数,用该函数表示目标像素之间的关系。这种方法的难点在于隶属函数的选择。模糊C均值聚类分割方法通过优化表示图像像素点与C各类中心之间的相似性的目标函数来获得局部极大值,从而得到最优聚类。Venkateswarlu等[改进计算过程,提出了一种快速的聚类算法。

3.2.1基于模糊理论的方法

模糊分割技术是在模糊集合理论基础上发展起来的,它可以很好地处理MR图像内在的模糊性和不确定性,而且对噪声不敏感。模糊分割技术主要有模糊阈值、模糊聚类、模糊边缘检测等。在各种模糊分割技术中,近年来模糊聚类技术,特别是模糊C-均值(FCM)聚类技术的应用最为广泛。FCM是一种非监督模糊聚类后的标定过程,非常适合存在不确定性和模糊性特点的MR图像。然而,FCM算法本质上是一种局部搜索寻优技术,它的迭代过程采用爬山技术来寻找最优解,因此容易陷入局部极小值,而得不到全局最优解。近年来相继出现了许多改进的FCM分割算法,其中快速模糊分割(FFCM)是最近模糊分割的研究热点。FFCM算法对传统FCM算法的初始化进行了改进,用K-均值聚类的结果作为模糊聚类中心的初值,通过减少FCM的迭代次数来提高模糊聚类的速度。它实际上是两次寻优的迭代过程,首先由K-均值聚类得到聚类中心的次最优解,再由FCM进行模糊聚类,最终得到图像的最优模糊分割。

3.2.2基于神经网络的方法

按拓扑机构来分,神经网络技术可分为前向神经网络、反馈神经网络和自组织映射神经网络。目前已有各种类型的神经网络应用于医学图像分割,如江宝钏等利用MRI多回波性,采用有指导的BP神经网络作为分类器,对脑部MR图像进行自动分割。而Ahmed和Farag则是用自组织Kohenen网络对CT/MRI脑切片图像进行分割和标注,并将具有几何不变性的图像特征以模式的形式输入到Kohenen网络,进行无指导的体素聚类,以得到感兴趣区域。模糊神经网络(FNN)分割技术越来越多地得到学者们的青睐,黄永锋等提出了一种基于FNN的颅脑MRI半自动分割技术,仅对神经网络处理前和处理后的数据进行模糊化和去模糊化,其分割结果表明FNN分割技术的抗噪和抗模糊能力更强。

3.2.3基于小波分析的分割方法

小波变换是近年来得到广泛应用的一种数学工具,由于它具有良好的时一频局部化特征、尺度变化特征和方向特征,因此在图像处理上得到了广泛的应用。

小波变换和分析作为一种多尺度多通道分析工具,比较适合对图像进行多尺度的边缘检测,典型的有如Mallat小波模极大值边缘检测算法[6

3.3基于知识的方法

基于知识的分割方法主要包括两方面的内容:(1)知识的获取,即归纳提取相关知识,建立知识库;(2)知识的应用,即有效地利用知识实现图像的自动分割。其知识来源主要有:(1)临床知识,即某种疾病的症状及它们所处的位置;(2)解剖学知识,即某器官的解剖学和形态学信息,及其几何学与拓扑学的关系,这种知识通常用图谱表示;(3)成像知识,这类知识与成像方法和具体设备有关;(4)统计知识,如MI的质子密度(PD)、T1和T2统计数据。Costin等提出了一种基于知识的模糊分割技术,首先对图像进行模糊化处理,然后利用相应的知识对各组织进行模糊边缘检测。而谢逢等则提出了一种基于知识的人脑三维医学图像分割显示的方法。首先,以框架为主要表示方法,建立完整的人脑三维知识模型,包含脑组织几何形态、生理功能、图像灰度三方面的信息;然后,采用“智能光线跟踪”方法,在模型知识指导下直接从体积数据中提取并显示各组织器官的表面。

3.4基于模型的方法

该方法根据图像的先验知识建立模型,有动态轮廓模型(ActiveContourModel,又称Snake)、组合优化模型等,其中Snake最为常用。Snake算法的能量函数采用积分运算,具有较好的抗噪性,对目标的局部模糊也不敏感,但其结果常依赖于参数初始化,不具有足够的拓扑适应性,因此很多学者将Snake与其它方法结合起来使用,如王蓓等利用图像的先验知识与Snake结合的方法,避开图像的一些局部极小点,克服了Snake方法的一些不足。Raquel等将径向基网络(RBFNNcc)与Snake相结合建立了一种混合模型,该模型具有以下特点:(1)该混合模型是静态网络和动态模型的有机结合;(2)Snake的初始化轮廓由RBFNNcc提供;(3)Snake的初始化轮廓给出了最佳的控制点;(4)Snake的能量方程中包含了图像的多谱信息。Luo等提出了一种将livewire算法与Snake相结合的医学图像序列的交互式分割算法,该算法的特点是在少数用户交互的基础上,可以快速可靠地得到一个医学图像序列的分割结果。

由于医学图像分割问题本身的困难性,目前的方法都是针对某个具体任务而言的,还没有一个通用的解决方法。综观近几年图像分割领域的文献,可见医学图像分割方法研究的几个显著特点:(1)学者们逐渐认识到现有任何一种单独的图像分割算法都难以对一般图像取得比较满意的结果,因而更加注重多种分割算法的有效结合;(2)在目前无法完全由计算机来完成图像分割任务的情况下,半自动的分割方法引起了人们的广泛注意,如何才能充分利用计算机的运算能力,使人仅在必要的时候进行必不可少的干预,从而得到满意的分割结果是交互式分割方法的核心问题;(3)新的分割方法的研究主要以自动、精确、快速、自适应和鲁棒性等几个方向作为研究目标,经典分割技术与现代分割技术的综合利用(集成技术)是今后医学图像分割技术的发展方向。

4.医学图像配准和融合

医学图像可以分为解剖图像和功能图像2个部分。解剖图像主要描述人体形态信息,功能图像主要描述人体代谢信息。为了综合使用多种成像模式以提供更全面的信息,常常需要将有效信息进行整合。整合的第一步就是使多幅图像在空间域中达到几何位置的完全对应,这一步骤称为“配准”。整合的第二步就是将配准后图像进行信息的整合显示,这一步骤称为“融合”。

在临床诊断上,医生常常需要各种医学图像的支持,如CT、MRI、PET、SPECT以及超声图像等,但无论哪一类的医学图像往往都难以提供全面的信息,这就需要将患者的各种图像信息综合研究19],而要做到这一点,首先必须解决图像的配准(或叫匹配)和融合问题。医学图像配准是确定两幅或多幅医学图像像素的空间对应关系;而融合是指将不同形式的医学图像中的信息综合到一起,形成新的图像的过程。图像配准是图像融合必需的预处理技术,反过来,图像融合是图像配准的一个目的。

4.1医学图像配准

医学图像配准包括图像的定位和转换,即通过寻找一种空间变换使两幅图像对应点达到空间位置上的配准,配准的结果应使两幅图像上所有关键的解剖点或感兴趣的关键点达到匹配。20世纪90年代以来,医学图像配准的研究受到了国内外医学界和工程界的高度重视,1993年Petra等]综述了二维图像的配准方法,并根据配准基准的特性,将图像配准的方法分为两大类:基于外部特征(有框架)的图像配准和基于内部特征(无框架)的图像配准。基于外部特征的方法包括立体定位框架法、面膜法及皮肤标记法等。基于外部特征的图像配准,简单易行,易实现自动化,能够获得较高的精度,可以作为评估无框架配准算法的标准。但对标记物的放置要求高,只能用于同一患者不同影像模式之间的配准,不适用于患者之间和患者图像与图谱之间的配准,不能对历史图像做回溯性研究。基于内部特征的方法是根据一些用户能识别出的解剖点、医学图像中相对运动较小的结构及图像内部体素的灰度信息进行配准。基于内部特征的方法包括手工交互法、对应点配准法、结构配准法、矩配准法及相关配准法。基于内部特征的图像配准是一种交互性方法,可以进行回顾性研究,不会造成患者不适,故基于内部特征的图像配准成为研究的重点。

近年来,医学图像配准技术有了新的进展,在配准方法上应用了信息学的理论和方法,例如应用最大化的互信息量作为配准准则进行图像的配准,在配准对象方面从二维图像发展到三维多模医学图像的配准。例如Luo等利用最大互信息法对CT-MR和MR-PET三维全脑数据进行了配准,结果全部达到亚像素级配准精度。在医学图像配准技术方面引入信号处理技术,例如傅氏变换和小波变换。小波技术在空间和频域上具有良好的局部特性,在空间和频域都具有较高的分辨率,应用小波技术多分辨地描述图像细貌,使图像由粗到细的分级快速匹配,是近年来医学图像配准的发展之一。国内外学者在这方面作了大量的工作,如Sharman等提出了一种基于小波变换的自动配准刚体图像方法,使用小波变换获得多模图像特征点然后进行图像配准,提高了配准的准确性。另外,非线性配准也是近年来研究的热点,它对于非刚性对象的图像配准更加适用,配准结果更加准确。

目前许多医学图像配准技术主要是针对刚性体的配准,非刚性图像的配准虽然已经提出一些解决的方法,但同刚性图像相比还不成熟。另外,医学图像配准缺少实时性和准确性及有效的全自动的配准策略。向快速和准确方面改进算法,使用最优化策略改进图像配准以及对非刚性图像配准的研究是今后医学图像配准技术的发展方向。

4.2医学图像融合

图像融合的主要目的是通过对多幅图像间的冗余数据的处理来提高图像的可读性,对多幅图像间的互补信息的处理来提高图像的清晰度。不同的医学影像设备获取的影像反映了不同的信息:功能图像(SPECT、PET等)分辨率较差,但它提供的脏器功能代谢和血液流动信息是解剖图像所不能替代的;解剖图像(CT、MRI、B超等)以较高的分辨率提供了脏器的解剖形态信息,其中CT有利于更致密的组织的探测,而MRI能够提供软组织的更多信息。多模态医学图像的融合把有价值的生理功能信息与精确的解剖结构结合在一起,可以为临床提供更加全面和准确的资料。

医学图像的融合可分为图像融合的基础和融合图像的显示。(1)图像融合的基础:目前的图像融合技术可以分为2大类,一类是以图像像素为基础的融合法;另一类是以图像特征为基础的融合方法。以图像像素为基础的融合法模型可以表示为:

其中,为融合图像,为源图像,为相应的权重。以图像特征为基础的融合方法在原理上不够直观且算法复杂,但是其实现效果较好。图像融合的步骤一般为:①将源图像分别变换至一定变换域上;②在变换域上设计一定特征选择规则;③根据选取的规则在变换域上创建融合图像;④逆变换重建融合图像。(2)融合图像的显示:融合图像的显示方法可分成2种:空间维显示和时间维显示。

目前,医学图像融合技术中还存在较多困难与不足。首先,基本的理论框架和有效的广义融合模型尚未形成。以致现有的技术方法还只是针对具体病症、具体问题发挥作用,通用性相对较弱。研究的图像以CT、MRI、核医学图像为主,超声等成本较低的图像研究较少且研究主要集中于大脑、肿瘤成像等;其次,由于成像系统的成像原理的差异,其图像采集方式、格式以及图像的大小、质量、空间与时间特性等差异大,因此研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;最后,缺乏能够客观评价不同融合方法融合效果优劣的标准,通常用目测的方法比较融合效果,有时还需要利用到医生的经验。

在图像融合技术研究中,不断有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向。随着三维重建显示技术的发展,三维图像融合技术的研究也越来越受到重视,三维图像的融合和信息表达,也将是图像融合研究的一个重点。

5.医学图像纹理分析

一般认为图像的纹理特征描述物体表面灰度或颜色的变化,这种变化与物体自身属性有关,是某种纹理基元的重复。Sklansky早在1978年给出了一个较为适合于医学图像的纹理定义:“如果图像的一系列固有的统计特性或其它的特性是稳定的、缓慢变化的或者是近似周期的,那么则认为图像的区域具有不变的纹理”。纹理的不变性即指纹理图像的分析结果不会受到旋转、平移、以及其它几何处理的影响。目前从图像像素之间的关系角度,纹理分析方法主要包括以下几种。

5.1统计法

统计分析方法主要是基于图像像素的灰度值的分布与相互关系,找出反映这些关系的特征。基本原理是选择不同的统计量对纹理图像的统计特征进行提取。这类方法一般原理简单,较易实现,但适用范围受到限制。该方法主要适合医学图像中那些没有明显规则性的结构图像,特别适合于具有随机的、非均匀性的结构。统计分析方法中,最常用的是共生矩阵法,其中有灰度共生矩阵(graylevelco-occurrencematrix,GLCM)和灰度—梯度共生矩阵。杜克大学的R.Voracek等使用GLCM对肋间周边区提取的兴趣区(regionofinterest,ROI)进行计算,测出了有意义的纹理参数。另外,还有长游程法(runlengthmatrix,RLM),其纹理特征包括短游程优势、长游程优势、灰度非均匀化、游程非均匀化、游程百分比等,长游程法是对图像灰度关系的高阶统计,对于给定的灰度游程,粗的纹理具有较大的游程长度,而细的纹理具有较小的游程长度。

5.2结构法

结构分析方法是分析纹理图像的结构,从中获取结构特征。结构分析法首先将纹理看成是有许多纹理基元按照一定的位置规则组成的,然后分两个步骤处理(1)提取纹理基元;(2)推论纹理基元位置规律。目前主要用数学形态学方法处理纹理图像,该方法适合于规则和周期性纹理,但由于医学图像纹理通常不是很规则,因此该方法的应用也受到限制,实际中较少采用。

5.3模型法

模型分析方法认为一个像素与其邻域像素存在某种相互关系,这种关系可以是线性的,也可以是符合某种概率关系的。模型法通常有自回归模型、马尔科夫随机场模型、Gibbs随机场模型、分形模型,这些方法都是用模型系数来表征纹理图像,其关键在于首先要对纹理图像的结构进行分析以选择到最适合的模型,其次为如何估计这些模型系数。如何通过求模型参数来提取纹理特征,进行纹理分析,这类方法存在着计算量大,自然纹理很难用单一模型表达的缺点。

5.4频谱法

频谱分析方法主要基于滤波器理论,包括傅立叶变换法、Gabor变换法和小波变换法。

1973年Bajcsy使用傅立叶滤波器方法分析纹理。Indhal等利用2-D快速傅立叶变换对纹理图像进行频谱分析,从而获得纹理特征。该方法只能完成图像的频率分解,因而获得的信息不是很充分。1980年Laws对图像进行傅氏变换,得出图像的功率谱,从而提取纹理特征进行分析。

Gabor函数可以捕捉到相当多的纹理信息,且具有极佳的空间/频域联合分辨率,因此在实际中获得了较广泛的应用。小波变换法大体分金子塔形小波变换法和树形小波变换法(小波包法)。

小波变换在纹理分析中的应用是Mallat在1989年首先提出的,主要用二值小波变换(DiscreteWaveletTransform,DWT),之后各种小波变换被用于抽取纹理特征。传统的金字塔小波变换在各分解级仅对低频部分进行分解,所以利用金字塔小波变换进行纹理特征提取是仅利用了纹理图像低频子带的信息,但对某些纹理,其中高频子带仍含有有关纹理的重要特征信息(如对具有明显的不规则纹理的图像,即其高频子带仍含有有关纹理的重要特征)得不到利用。使用在每个分解级对所有的频率通道均进行分解的完全树结构小波变换提取特征,能够较全面地提取有关纹理特征。

由于医学图像及其纹理的复杂性,目前还不存在通用的适合各类医学图像进行纹理分析的方法,因而对于各类不同特点的医学图像就必须采取有针对性地最适合的纹理分析技术。另外,在应用某一种纹理分析方法对图像进行分析时,寻求最优的纹理特征与纹理参数也是目前医学图像纹理分析中的重点和难点。

6.总结

随着远程医疗技术的蓬勃发展,对医学图像处理提出的要求也越来越高。医学图像处理技术发展至今,各个学科的交叉渗透已是发展的必然趋势,其中还有很多亟待解决的问题。有效地提高医学图像处理技术的水平,与多学科理论的交叉融合、医务人员和理论技术人员之间的交流就显得越来越重要。多维、多参数以及多模式图像在临床诊断(包括病灶检测、定性,脏器功能评估,血流估计等)与治疗(包括三维定位、体积计算、外科手术规划等)中将发挥更大的作用。

参考文献

[1]P.Suetens.FundamentalsofMedicalImaging[M].CambridgeUniversityPress,2002.

[2]刘俊敏,黄忠全,王世耕,张颖.医学图像处理技术的现状及发展方向[J].医疗卫生设备,2005,Vol26

(12):25-26.

[3]田娅,饶妮妮,蒲立新.国内医学图像处理技术的最新动态[J].电子科技大学学报,2002,Vol31(5):

485-489.

[4]周刚慧,施鹏飞.磁共振图像的随机场分割方法[J].上海交通大学学报,2001,Vol35(11):1655.

[5]ZhangHM,YuanZJ,CaiZM.SegmentationofMRIusinghierarchicalmarkovrandomfield[J].Journalof

Software,2002,Vol13(9):1779.

[6]林亚忠,陈武凡,杨丰.基于混合金字塔吉布斯随机场模型的图像分割[J].中国生物医学工程学报,

2004,Vol23(1):79.

[7]聂生东,陈瑛,顾顺德.磁共振颅脑图像快速模糊聚类分割算法研究[J].中国生物医学工程学报,2001,

Vol20(2):104.

[8]江宝钏,张钧良.基于BP神经网络的MRI分割[J].微机发展,2000,Vol1:67.

[9]AhmedMN,FaragA.Two-stageneuralnetworkforvolumesegmentationofmedicalimages[J].Proceedings

ofIEEEInternationalConferenceonNeuralNetworks,1997,Vol28(3):1373.

[10]黄永峰,岑康,司京玉等.模糊神经网络在颅脑磁共振图像分割中的应用研究[J].中国生物医学工程

学报,2003,Vol22(6):508.

[11]CostinH,RotariuCR.Knowledge-basedcontourdetectioninmedicalimagingusingfuzzylogic[J].

InternationalSymposiumonSCS’03,2003,1:273.

[12]谢逢,罗立民,田雪琴.基于知识的人脑三维医学图像分割显示方法[J].生物医学工程学杂志,1997,

Vol14(2):124.

[13]王蓓,张立明.利用图像先验知识与Snake结合对心脏序列图像的分割[J].复旦大学学报(自然科学

版),2003,Vol42(1):81.

[14]RaquelVC,VeronicaMB,OscarYS.Couplingofradial-basisnetworkandactivecontourmodelformulti

spectralbrainMRIsegmentation[J].IEEETransactionsonBiomedicalEngineering,2004,Vol51(3):459.

[15]LuoXP,TianJ,LinY.Analgorithmforsegmentationofmedicalimageseriesbasedonactivecontour

model[J].JournalofSoftware,2002,Vol13(6):1050.

[16]HallpikeL,HawkesDJ.Medicalimageregistration:Anoverview[J].BrInstituteRadiol,2004,Vol14(6):

455-463.

[17]PetraA,ElsenV.MedicalImagemaching:Areviewwithclassification[J].IEEETransMedImage,1993,

Vol12(3):26-39.

[18]LuoShuo-qian,LiXiang.Implementationofmutualinformationbasedmulti-modalitymedicalimage

registration[A].EngMedBillSocProc22ndAnnIntConfIEEE[C].NavyPierConventionCenterChicago,

Illinois,USA:TheInstituteofElectricalandElectricalandElectronicsEngineers,Ind,2000,2:1447-1450.

[19]SharmanR,TylerJM,PianykhOL,etal.Afastandaccuratetomethodtoregistermedicalimagesusing

waveletmodulusmaxima[J].PattRecogLett,2000,21:447-462.

[20]LesterH,ArridgeSR.ASurveyofhierarchiclnon-linearmedicalimageregistration[J].PatternRecognition,

1999,32:129-149.

[21]卢健,胡志忠,杨如乃.医学图像融合技术的研究[J].上海生物医学工程,2006,Vol27(3):163-167.

[22]王新成.高级图像处理技术[M].北京:中国科学技术出版社,2001.

[23]RVoracek,HPMcAdams,puterAidedDiagnosisofInterstitialLungDisease:aTexture

医学技术论文篇(5)

虚拟现实又称“灵境”,由三维计算机图形学技术、多功能传感器的交互式接口技术以及高清晰度和高更新速度的显示技术构成[1-2]。VR技术就是在计算机中建立一个模拟真实世界效果的特殊环境,通过各种传感器设备,使用户“沉浸”在这个虚拟环境中并进行操作和控制,以达到特殊的目的。VR具有3个特性—3I,即immersion(沉浸性)、interaction(交互性)和imagination(构想性)[3],它为处在该环境下的用户提供包括视觉、听觉、触觉等多种直观而又自然的实时感知交互。用户在该虚拟环境中能够产生身临其境的感觉,并且可以通过操作来改变或选择可以感受的内容,同时又留给用户可以自由发挥想象的空间进行大胆的尝试,进而扩展其认知的范围,提高用户的探索和创新意识。

2康复医学目前存在的问题

临床经验表明,早期的康复介入,对患者的身心功能恢复、预防二次损伤和废用综合征都起到关键性的作用,因而康复治疗和手术药物等的治疗同等重要。我国幅员辽阔,地形复杂,近年来自然灾害时有发生,给灾区人民的身体和心理都带来巨大的创伤,加之老龄化问题的日益严峻及其带来的疾病谱的变化,康复医学工程正面临着前所未有的挑战。传统的康复治疗通常是医师与患者一对一形式的训练,存在诸多局限性:(1)现有资源不够充足。无论是专业的康复医师还是康复器械都无法满足当前康复人群的需要。(2)训练过程单调而乏味。传统的训练过程通常是对一组训练动作的不断重复,导致整个过程十分枯燥,难以有效调动患者主动参与的积极性,甚至使患者产生厌烦情绪,降低了康复效率。(3)功能定量化测评难以实现。随着康复治疗的不断进行,患者的身体状况发生变化,其承受的活动量强度也在改变,而目前无法对患者在训练中的具体数据进行记录和保存,不利于康复训练计划的制订和调整,也在一定程度上影响了康复进程。

3康复医学结合虚拟现实技术的必要性

VR康复系统可以打破传统训练方式的局限性,它可以针对不同类型功能障碍的患者提供不同的虚拟训练平台,使患者以做游戏或完成趣味性任务的方式进行康复训练,以此调动患者的积极性。系统还能够详细地记录患者的训练数据,康复医生可以远程监控患者的训练情况,进而根据需要实时地调整训练计划和训练强度,推荐康复治疗方案。通过这种方式,一个医生可以同时指导多名患者,提高了医疗人员的工作效率,减轻了其工作强度。VR技术可提供重复练习、效果反馈和动机维持3种关键环节,这正是患者习得某种功能的必要条件。另外,VR康复系统能将心理引导与生理治疗结合起来,在患者进行“游戏式”康复训练的过程中,通过音乐、画面、文字和语音提示等形式给患者以正面的激励反馈,提高患者的信心和主动性[4]。因此,将康复训练与VR技术相结合具有重要的应用价值。

4VR技术在康复医学中的应用与进展

4.1VR在运动康复中的应用

运动障碍是指以运动异常为特征的各种障碍,包括运动不能、震颤、舞蹈症、扭转痉挛、斜颈、张力障碍、颤搐、抽动和肌阵挛等症状[5]。当前,在运动障碍康复领域,对患者受损的运动功能进行康复性训练是VR技术最重要的用途。

4.1.1平衡和协调训练

许多中风患者存在姿态和平衡方面的问题,例如身体摇摆和不对称的质量分布降低了其灵动性,影响了他们的日常生活。DINGQi-cheng等[7]结合CIMT原理对NintendoWiiFit游戏系统进行改造,构建了一款基于VR的下肢平衡康复训练系统。该系统使患者的双脚分别站立在2块平衡板上,通过双脚用力动态地控制压力中心,进而操控虚拟人的运动状态。通过这种方法能成功地迫使患者增加患侧肢体的使用,使其体质量分布更加均匀,对称性能力得到大幅改善。RLloréns等[8]开发的BioTrakVR系统涵盖一系列的平衡康复活动,包括端坐时头部和躯干姿势控制的恢复和站立时的动态平衡练习等多个管理项目,同时允许用户通过选择不同的练习和规划自己的持续时间、休息时间和重复次数进行个性化训练。然而,我国对平衡功能障碍的研究起步较晚,应用VR技术的研究成果尚鲜见报道,有待于进一步探索。

4.1.2行走及步态训练

与正常人相比,脑卒中偏瘫患者往往具有运动发起难、步速慢、步态周期延长、患侧支撑时间短等特点[9]。集中的特定任务式的训练可以提高脚踝的推力、髋部的拉力和行走的速度。AnatMirelman等[10]用Rutgers踝关节康复系统对18名中风后的轻偏瘫患者进行试验,受试者只能使用踝背屈、跖屈、反转、外翻以及这些动作的组合来驾驶虚拟环境中的飞机或船。实验结果表明,患者脚踝的推力、踝关节活动度(rangeofmotion,ROM)均有明显改善,膝关节ROM及站立和摆动情况也有大幅提高。可见,VR技术对患者步态康复有一定作用。目前,国内对步态康复的研究主要以简单重复性训练的康复机器人为主,对结合VR技术的研究较少。张磊杰等[11]提出了一种基于VR的步态康复机器人系统,可以快速提取患者的步态速度、心跳等生理信息并恰当地体现在游戏中,使枯燥的训练变得有趣,也提高了患者的注意力集中程度。因此,结合VR技术的步态康复机器人系统将逐渐引起众多学者和医疗器械产业的关注。

4.1.3上下肢康复训练

由于力量减弱和利用反馈能力的下降,脑卒中偏瘫患者难以进行精确的运动控制,SangwooCho等[12]基于VR技术开发出一种新型上肢康复系统,用本体感觉反馈取代视觉反馈来提高患者的运动控制能力。系统采用模拟起居室的虚拟环境,患者需要依靠自己本体感受的反馈信息,将患侧手握的虚拟半透明柱体移动到不透明柱体所在的目标位置,用这种方法亦能提高患者的日常生活能力。Burdea等[13]开发了康复训练系统“RutgerArmII”,系统由运动跟踪、重力和虚拟现实游戏3个模块组成,利用红外技术跟踪到患者的运动数据,使其能在虚拟场景中进行游戏式训练,并能得到相关的触觉反馈。国内众多学者对上下肢康复也作了很多研究。王瑞利等[14]设计了结合主动、被动和助力训练的踝关节康复系统,并添加了功能评价机制,为患者制订治疗方案提供可靠的证据。柯福全等[15]借助Kinect设备开发了一款基于视频运动跟踪的虚拟现实系统用来辅助患者的上肢康复。张金龙[16]设计了一款手指康复系统,包含了手势变换、坦克射击和赛车竞速3种游戏,非常具有趣味性。华南理工、中南大学附属第三医院与广州一康医疗设备有限公司三方联合研发的虚拟厨房训练系统[17],患者通过在其中漫游并完成烧开水、摆餐具、盛水果等一系列的厨房操作来训练偏瘫上肢的运动功能,将该系统应用到33例上肢功能障碍患者身上,结果显示比传统训练方式的康复效果更为显著。

4.2VR在认知康复中的应用

认知是指人脑接受外界信息,经过加工处理转换成内在的心理活动,从而获取知识或应用知识的过程,它包括记忆、语言、视空间、执行、计算和理解判断等方面。认知功能障碍对患者日常生活的影响有时甚至超过了躯体功能障碍,因此也成为医学界面临的重要课题之一。将VR技术应用于认知康复,可以在虚拟环境中为患者提供安全可控的刺激进行治疗,并能监测多种重要指标,表现出传统方法无法比拟的优势。Godehard等[18]利用VR系统治疗有空间认知和记忆缺陷的轻度认知功能障碍患者,让他们在虚拟的公园和迷宫里根据地标(房子、汽车、高山等)寻找宝藏,加强患者以自我和非自我为中心记忆的能力。Caglio等[19]利用3D电子游戏进行记忆康复的研究,发现虚拟航行训练可以激活记忆区域,改善成人脑损伤患者的记忆功能。王文春等[20]设计的虚拟认知康复训练系统,包括注意力、记忆力、思维操作能力等七大训练模块,每个模块又设计了高、中、低3种级别的题目。将该系统应用到38例有认知功能障碍的患者身上,结果表明,虚拟认知康复系统在注意力和空间知觉的改善方面优于传统的康复训练模式,且更具趣味性,适用于临床推广。戚淮兵等[21]设计了基于Agent的虚拟认知康复系统,能为患者提供感官上的刺激,纠正认知偏差,具有开放、自主、可移植的特点。尽管如此,在我国内陆地区,VR技术辅助认知康复治疗的研究仍处于初级阶段,能够真正进行临床应用的系统较少,还需要不断的探索和研究。

4.3VR在远程康复中的应用

目前,我国经济发展均衡度还较低,各地的医疗设施建设也存在很大差异,康复医疗机构集中在大中城市,许多地区缺乏必要的康复服务,给广大群众带来不便。虚拟现实技术结合网络通讯技术可以将一流的医疗资源传送到较落后的地区,为康复医学带来革命性的变化。MJJohnson等[22]利用网络通讯技术使中风的患者可以在家中进行康复训练。李军强等[23]设计了一套远程监控系统,用虚拟人的运动再现患者手臂的运动,实现监控功能,从而使医生掌握患者手臂的运动情况。王月姣等[24]设计了基于力反馈的远程康复训练虚拟驾驶系统,治疗师端的计算机能实时显示患者训练视频、相关训练数据及当前训练方案,并能据此实时修改训练方案。可见,VR技术有利于提高落后地区的医疗水平,优化医学资源分配,推动我国社区康复的建设进程。

医学技术论文篇(6)

1引言

生理学的知识大部分是通过实验获得的,所以生理学实验在整个教学环节中占有非常重要的地位。因此,在实验教学中,怎样才能有效的组织生理学实验教学,怎样能使抽象的理论和复杂的操作变得简单化,如何提高学生的积极性和主动性,增强实验教学效果,是目前生理学实验教学需要重要改进和探索的课题之一。通过实践证明,把多媒体课件引入到实验教学中,能更有效的提高教学质量。以下是我在教学实践中,对将多媒体教学融入到传统教学中有何优点谈的几点体会,以供参考。

2多媒体组合教学能较好解决教学中的重点和难点

传统的实验教学是老师利用板书进行讲解,学生对于实验的原理和操作的理解和观察是静态的,而生理学动物实验内容较为抽象、手术操作难度较大。对教师来讲,传统的讲授方式很难将其中涵盖的内容完全用语言讲清楚;对学生来讲,从未接触过手术器材及手术操作,听起课来很吃力,很难完全清楚掌握手术步骤。例如家兔的颈总动脉插管技术,以前是在黑板上画一个颈部手术示意图。示意图很难体现颈部解剖层次、结构和毗邻组织。这样,学生在分离颈总动脉时很容易出错,甚至导致实验失败。据统计,传统教学方法在动物实验中,成功率为70%左右。而现在使用多媒体教学,老师在讲授实验操作时,先配合图片进行讲解,使学生大致了解各个部位的解剖结构。再让学生观看一遍动物手术录像,通过完整的录像演示对动物进行麻醉、固定、切开皮肤和肌肉、分离血管和神经、颈动脉插管等全过程,使学生对手术操作有个初步概念,手术部位的解剖层次、结构和毗邻组织一目了然;然后,带教老师结合实际进行讲解。最后学生自己动手进行操作。这样,学生对手术器械及操作步骤了解清楚,操作动作较规范,操作速度较快,实验成功率高。我们统计,使用多媒体课件教学后,生理学实验的成功率达到95%以上。如果个别组实验失败,该组同学可以通过观看录像和学习成功组实验结果,达到实验目的。通过多媒体课件的使用,可以克服在传统教学中出现的弊端,使学生感受直观,记忆深刻,学生可以通过推理及形象思维而记忆,大大提高了学习的效率,使学生掌握教学中的重点、难点,达到了实验课要求的效果。

3充实了课堂信息,扩大了教学容量

生理学实验的内容多,但是授课时间偏少,要使学生在有限的时间内掌握全面的、基本的操作知识是很困难的。然而多媒体课件能把教师从大量的讲解、板书和示教中解脱出来,借助多媒体的优势,对信息进行优化处理,它利用文字的闪现、图形的缩放与移动、颜色的变换等手段,不仅容量大,速度快,效果也更好[1]。使得教师在有限的时间里讲述更多的信息,从而扩大了教学容量,节约了时间,增加了学生动手操作的机会,对于培养学生的动手能力和实验操作能力,起了很好的作用。

4对教师自身素质的提高,起到了很大的促进作用

医学技术论文篇(7)

某一系统疾病的临床诊断过程以泌尿系统疾病为例,在临床上,泌尿系统疾病涉及肾上腺、肾脏、前列腺、输尿管、膀胱、尿道等部位,泌尿外科医生的临床诊断思维在形成过程中除了应具备大量的医学专业知识之外,还要具备认识客观事物的正确思维方法。疾病是一个客观事物,人们对客观事物的认识,即对疾病的认识,都要通过感性认识上升到理性认识。临床诊断要经历初步诊断、会诊、确诊等几个阶段,这个过程是泌尿外科医生对所获得的泌尿系统疾病信息进行临床思维,并进行分析、判断、推理,最终将信息形成疾病诊断的过程。正确处理医学影像高新技术与临床诊断思维的关系医学影像高新技术使外科医生的视野扩大了,并克服了过去脏器诊断的模糊性。随着医学技术的发展,CT、核磁共振等已成为肾脏等腹膜后器官检查的重要工具,而医学影像高新技术在各科中的广泛应用,极大地提高了诊断水平。医学影像高新技术的进步,不但使医生得到了对疾病的深层次认识,也使其对临床思维方式提出新的要求。例如,CT、MRI在成像手段上具有很高的创造性,它集计算机、物理学、生物工程学等于一身,形成了影像数字化。其高分辨及薄层技术可以对局部较微细的结构进行分析,从而对临床产生深刻的影响。事实上,诊断手段越先进,越要发挥人的能动性和创造性,越要求影像专业的各科医生具有更高的综合判断能力。所以,面对大量的影像高技术参数,临床理论思维方法要求更完善、更全面,就越要求各科医生具有更高的综合判断能力和临床水平。

在疾病诊断过程中,处理好医学影像传统技术与医学影像高新技术的关系

医学技术论文篇(8)

2讨论

专业认同感是指学生对于所学专业的目标和社会价值的接受和认可,专业认同会影响大学生的学习热情与行为[2]。学生的专业认同感低,对专业的兴趣就弱,学习主动性差,直接影响学生的专业学习成绩。因此,有必要探索大学生的专业认同现状与对策。张东军等[3]调研发现在医学院校中非医学专业的学生对专业的认同水平显著低于医学专业学生。本调研结果与张东军等类似,发现在以医学占主导地位的医学院校中,生物技术专业本科生对专业的认同感比较低,近50%的同学不喜爱自己的专业,有不少同学希望有机会能换专业学习和就业。在希望调换专业的学生中,绝大部分同学希望转到医学专业学习。这一结果可能与很多生物技术专业的学生本身是由于高考分数线没有达到本校医学专业录取分数线而从医学专业调剂而来有关,也可能有部分原因是因为医学是医学院校的优势学科有关。仅有30%左右的学生认为生物技术专业有较好的发展前景和较多的就业机会。尽管如此,绝大部分同学仍然希望在专业相关方向就业或考研深造,这可能与学生对专业的情感有关,也可能与学生在专业相关方向就业时竞争力比较大有关。一个令人欣喜的事实是,绝大多数同学都认为自己经过了1-3年的专业学习后对生物技术专业的认同感提高了,对专业的培养方案及教学内容、教学效果等持赞同和满意态度。这些调研结果反映了同学们对我校生物技术专业教学质量的认可。从调研结果可以看出,大四、大三、大二学生对专业的认同感依次升高,分析原因,可能和大三和大二本科生中有较多学生是自主选择了生物技术专业有关。相反,大四学生中仅有10%是自主选择了该专业,绝大多数都是从医学专业调剂而来。造成这一结果的另一个不可忽视的原因,可能也与本校生物技术专业的建设与发展有关。潍坊医学院生物技术专业于2005年设立并开始招生,学校一直非常注重专业的建设和发展,从培养目标和培养方案确立、教学内容设定、教学设施完善、师资力量培养等各个方面都非常重视。经过8年的发展和建设,本校生物技术专业于2013年已发展成为山东省特色专业,培养的毕业生得到了社会的认可,专业知名度有了较大提高,所以在校低年级学生较高年级学生的专业认同感高也不足为奇。

医学技术论文篇(9)

1.2设置临床见习期现有的课程设置与临床实践结合的还不够密切,由于未能很好地让学生早期接触临床,致使部分学生并不知道临床检验报告是什么,不知道检验报告上各项指标代表何意,也就更谈不上有专业感情。因此,建议在对学生进行专业课教学之前应安排学生在医院的检验科临床见习一段时间,具体了解检验工作的流程,培养学生的感性认识,加深对检验知识的印象,达到百闻不如一见的效果。医学检验专业的课程教学应该针对检验技师的培养目标,强化检验专业的特色,突出检验技师岗位的基本能力和基本素质培养,具体表现在检验方法学、实验种类、检验项目、技术种类等教学内容的特色和优势。

1.3增设一些有特色的选修课以加强学生对当前最新技术的了解和应用。如针对检验科的大型仪器设备,检验人员只需了解仪器性能及常见故障排除。因此,可以将《检验仪器维修》这门课程改为选修课或以专题讲座形式开出。也可将几门临床主干课程中的临床检验仪器集中为临床检验仪器学课程,避免重复讲授。为加强实验室质量控制,开设《临床实验室管理》课程,可以将生化、免疫、细胞等质量管理的内容集中起来,不必在多门专业课中重复讲授;而针对《临床实验室管理》内容比较抽象,可以组织学生在临床实习期间边实践边学习,其教学效果会更好。

2课程开设顺序

课程开设顺序总体要求是通识课程、专业基础课程、临床医学课程、专业课程、选修课,这样依照学科的发展、知识的关联与衔接来设置。有平行课程时要平衡开课实验室和教研室的学年工作量。实训课中的军事训练建议在新生入学时安排,以规范学生的行为习惯,养成良好的时间观念、组织纪律观念、集体观念和讲求规范及雷厉风行的工作作风,促进校风校纪建设;社会实践课应安排在每年的寒假和暑假进行;临床见习时间宜安排在进入专业课之前;毕业实习安排在最后一学年。

医学技术论文篇(10)

二、现代医学成像技术专业要求分析

众所周知,二十世纪医学成像有了巨大的突破和近战,现如今,随着各种医学成像系统和设备的出现,这些装置都成了现代医生进行临床诊断的重要依据所在。相关资料显示,很多知名企业像是西门子、飞利浦、GE等大型企业都开始设立了专门的医学成像设备研发部门,再加上医疗机构的需求,这直接导致了医学影像专业人才巨大的高端人才缺口所在。笔者要着重指出的现代设备需求的都是应用型的复合人才需要有极强的动手和解决实际问题的基本能力,从这一点我们不难看出,当前社会人才需求的类型和具体要求所在。

三、现阶段现代医学成像技术课程教学中的问题所在

第一,教学内容理论性较强,内容较多,课时量相对较少因而对于某些成像技术和一些基本算法实现的过程讲解不深入,甚至一略而过,致使学生学完该课程后对于医学成像技术这门课的认识和理解仍然停留在比较肤浅的阶段,很难有效地实现既定的培养目标。第二,教学方法不够丰富目前课堂多采用现代的多媒体教学,但是又过分依赖于多媒体,而单纯的多媒体教学又会使学生产生偷懒情绪,一晃而过的幻灯片并不会给学生留下深刻的印象,这很大程度上影响了学生学习的兴趣和教学的效果。第三,现有的考核体系不够完善医学成像技术具有医理工三结合的特点,融合了当今诸多高新技术,不仅注重基本成像原理的基础理论知识,更注重对仪器设备的实际动手操作。传统教学体系,已然不适用于现代医学教学了。

四、新时期现代医学成像技术课程教学改革策略分析

(一)关于教学内容的改革

笔者认为要针对当前社会需求在具体选择合适教材,主要教材是《医学成像系统》,辅教材可以选择《医学影像成像理论》和《医学成像技术》。同时,笔者将为学生准备自编的讲义和其他辅助参考资料。在实际教学过程中,利用一切可利用的多媒体教学手段和现代化教学方法来综合利用其次,借助现代教育技术,结合多媒体手段来丰富课堂教学的内容。

(二)关于实践教学的改革与创新

现代教学中实践性教学,是为了更好的将复杂的额理论荣辱到实际动手当中,主要体现的实践性的基本特点。高校应当开设必要的相关医学实验室,为学生创造更多的实际动手机会和实践能力的培养,这样以来,学生在实际操作过程中就会真正了解到自己的缺点并努力进行系统性的改进。

(三)考核体系的改变

传统的教学考评体系中,仍采取的是笔试考试为主,实践考试为辅。然而,这种模式并不能真实检验学生对知识掌握的具体情况和实际操作能力。笔者在实际考核过程中会逐步加强实践环节的考试并将这些成绩融入到期末考试总评成绩当中。

医学技术论文篇(11)

1.1图像成像

从本质上来看,生物医学图像成像技术(下文简称“图像成像技术”)与医学影像技术的区别并不大,仅仅是人们更习惯将其表达为医学影像。生物医学图像成像技术的研究内容为:利用染色方法和光学原理,清晰地表达出机体内的相关信息,并将其转变为可视图像。图像成像技术研究的图像对象有:人体的标本摄影图像、观察手绘图像、断层图像(如ECT、CT、B超、红外线、X光)、脏器内窥镜图像、激光共聚焦显微镜图像、活细胞显微镜图像、荧光显微镜图像、组织细胞学光学显微镜图像、基因芯片、核酸、电泳等显色信息图像、纳米原子力显微镜图像、超微结构的电子显微镜图像等等。

图像成像技术主要包括2个部分:现代数字成像和传统摄影成像。通常可采用扫描仪、内窥镜数码相机、采集卡、数字摄像机等进行数字图像采集;显微图像采集则可应用光学显微镜成像设备及超微结构电子显微镜成像设备;特殊光源采集可应用超声成像仪器、核磁共振成像仪器及X光成像设备。目前,各种医学图像技术的发展都十分迅速,特别是MRI、CT、X线、超声图像等技术。在医学图像成像技术方面,如何提高成像分辨力、成像速度、拓展成像功能,尤其是在生理功能及人体化学成分检测方面,已经引起了相关领域的重视。

1.2图像处理

生物医学图像处理技术,是指应用计算机软硬件对医学图像进行数字化处理后,进行数字图像采集、存储、显示、传输、加工等操作的技术。图像处理是对获取的医学图像进行识别、分析、解释、分割、分类、显示、三维重建等处理,以提取或增强特征信息。目前,医学领域所应用的图像处理技术种类较多,统计学知识、成像技术知识、解剖学知识、临床知识等的图像处理均得到了较快的发展。另外,人工神经网络、模糊处理等技术也引起了图像处理研究领域的广泛重视。

1.3图像分析及图像传输

生物医学图像分析技术,是指测量和标定医学图像中的感兴趣目标,以获取感兴趣目标的客观信息,建立相应的数据描述。通过计算测定的图像数据,可揭示机体功能及形态,推断损伤或疾病的性质及其与其他组织的关系,进而为临床诊断、治疗提供可靠依据。生物医学图像传输技术,是指应用网络技术,在互联网上开展医学图像信息的查询与检索。通过网上传输图像,在异地间进行图像信息交流,可实现远程诊断。同时,在院内通过PACS(数字医学系统—医学影像存档与通信系统),也能在医院内部实现医学图像的网络传递。