欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

计算机课件大全11篇

时间:2023-02-28 15:45:44

计算机课件

计算机课件篇(1)

课程设计是很多工科专业提高学生实践能力的重要环节。在全国开设动力机械及工程专业方向的高校中,很多都安排了“汽轮机原理课程设计”这一课程,旨在通过课程设计使学生应用、巩固、提高所学专业知识,加深对所学理论知识的理解,获得与专业有关的实践经验,培养专业技能以及综合运用理论知识分析和解决实际问题的能力。汽轮机原理课程设计是汽轮机原理教学的重要组成部分,是汽轮机原理课程理论教学结束后,针对汽轮机设计过程中某一具体环节,在指定的设计工况下由学生独立进行的一次系统地设计实践。汽轮机设计包括热力设计和强度设计,具有很强的综合性和实践性。设计过程中需要查阅大量的文献资料和物性参数以及相关的设计手册、标准,同时也需要进行大量的设计计算和工程图绘制,设计任务繁重,需要耗费大量的时间和精力。在短时间内完成这一设计过程,学生往往疲于应对各种公式、运算,而不能很好地理解掌握整个设计过程,使得课程设计的教学目的大打折扣。随着计算机和软件技术的发展,汽轮机原理和计算机软件相结合,可有效地提高学生的运算速度,克服上述问题,切实提高课程设计的教学效果。我们在汽轮机课程设计的教学实践中,通过不断摸索发现,计算机软件和传统课程相结合确实取得了良好的效果。

一、同Excel结合,简化计算过程

Excel是MicrosoftOffice常用的办公软件,其强大的公式编辑和计算功能正好可以处理汽轮机原理课程设计中的大量计算工作。汽轮机原理课程设计的计算涉及参数的选择、热力系统的计算、通流部分的热力计算和整机校核计算。设计过程涉及大量的公式和计算,有些参数可能需要反复迭代得到,计算工作量非常大。将Excel引入到设计过程,可以使计算过程简化,提高计算效率。只要一次编辑公式,就能得到所要的结果,需要反复迭代的过程只需改变输入参数即可。利用Excel软件可以节约大量的计算时间,学生可以不用专注于繁琐的计算过程,而有更多时间去消化理解公式和计算过程。

二、同ABAQUS结合,提高工程意识

ABAQUS被广泛地认为是功能最强的有限元软件,可以分析复杂的固体力学、结构力学系统,特别是能够驾驭非常庞大复杂的问题和模拟高度非线性问题。ABAQUS不但可以做单一零件的力学和多物理场的分析,同时还可以做系统级的分析和研究。由于ABAQUS优秀的分析能力和模拟复杂系统的可靠性使得ABAQUS被各国的工业和研究中所广泛地采用ABAQUS产品在大量的高科技产品研究中都发挥着巨大的作用。学生通过公式进行的强度校核采用了一定的简化和近似,得到的结果和工程实际有一定的差距,只适用于课堂教学,在工程实践中几乎不采用。为了培养学生的工程意识,引入ABAQUS软件,通过设计简单的题目让学生去进行强度分析和校核。这一过程不但锻炼了学生工程软件的操作能力,同时也培养了学生的工程意识,为学生踏入工作打下一定的基础。

三、同AutoCAD结合,提高制图规范

汽轮机原理课程设计通常要求学生在设计计算完成以后,将汽轮机的通流流道,以及某几级的叶片叶型,通过工程图纸的形式绘制出来。这时学生需要使用AutoCAD绘图软件将设计结果清晰地呈现出来,同时也要符合机械制图规范。学生首先要去查阅相关的机械制图标准,图纸的页面设计、标题栏、明细栏等均需严格按照机械制图标准绘制;流道以及叶片型线的类型,标注的线性均需按标准严格执行。通过系统而严格的制图过程,学生强化了工程规范意识,同时也提高了绘图水平。通过汽轮机原理课程设计教学的不断摸索和改革,我们将叶轮机械常用的设计软件应用到汽轮机原理课程设计的教学实践,提高了学生的工程意识和软件操作能力,同时也提高了汽轮机原理课程设计的教学质量,为叶轮机械专业人才的培养发挥了应有的作用。

参考文献:

[1]刘相,王兰娟.化工设计软件在化工原理课程设计中的应用,化工高等教育[J],2012,6:64-66

计算机课件篇(2)

[2]武健.操作中的概念、方法、规则与态度——从学习规律看应用软件的教学[EB/OL].(2010-03-05).http://.cn/sciedu/toolop.htm.

[3]何应林,陈丹.影响操作技能形成因素的研究[J].中国职业技术教育,2007(3):50-51.

计算机课件篇(3)

随着计算机科学技术的发展,计算机技术在各领域各行业中得到了广泛的应用。计算机辅助教学课件的出现使课堂发生了很大的变化,教学过程得到了优化,教学效果大量的提高推动了素质教育的发展,为培养更多创新性人才提供了新的思路和方法、技术手段。计算机辅助教学课件深受广大中小学教师的欢迎及广泛的应用,一个优秀成功的课件是一堂课成功的关键,而先进创新的课件设计是一个优秀的课件的基本前提。而计算机辅助教学课件呈现设计思路单一,教学形式单调乏味,主要是知识介绍、操作练习、单元测验,本质仍是书本、教材搬家,在一定程度上不利于调动学生的积极性,更谈不上培养学生创造能力的主要现状[1]课件的优劣直接影响着教学的效果,一个优秀课件的设计、制作,离不开教育科学理论的指导。

1.设计原则

计算机辅助教学课件设计必须符合教育的发展规律符合教育的发展要求,必须遵守一些基本的教育原则和技术标准[3]。

1.1 教育性原则。计算机辅助教学课件设计必须依据教学大纲,教学内容、教学目的与要求,利用算机技术发挥计算机辅助教学的优势。明确教学目标,突出教学重点,灵活教学形式,教学对象要有极强的针对性。

1.2 科学性。计算机辅助教学课件设计应该正确的表达科学内容不能违背科学准则,各知识点之间恰当的连接具有科学特色的知识体系,要讲究艺术美感结合技术让人有美的享受,更有利于调动学生学习的积极性和主动性,使教学得到最优化。

2.设计步骤

2.1模式的选择:CAI模式反映了利用计算机进行教学活动时,完成各个教学子目标所表达教学内容的交互方式。合理地选择模式,可使制作出的课件质量及应用在教学上的效果都得到提高。在近几年的教学实践活动中,我们归纳出了常用的5种模式:(1)操作练习,用在对课堂教学的补充。(2)游戏智力,设计为引起学生兴趣,通过锻炼学生的决策能力,达到开发智能,激发潜能。(3)模拟观察,利用算法模型等软件工具,模仿客观现实或规律,加深对事物规律的理解。(4)发现学习,将学生置于预先设计好的情景中,通过学生的探索发现事物的规律。(5)问题求解,提供给学生解决学科中某一类问题的工具,通过对该学科的求解,掌握解决该类问题总的思想方法。

2.2.课件结构的设计。模式的选择只完成课件的各个局部策略方案,有关课件的整体策略及用何种方式把各个局部的教学单元之间联系起来,呈现在计算机屏幕上,就是课件结构的设计。教育信息的组织结构形式有线性结构、分支结构和网状结构等。传统的文字、录音、录像等教材的信息组织结构都是线性和有顺序的。

设计CAI课件的系统结构,可按以下步骤进行:(1).设计课件的封面要形象生动,标题要简炼,能引起学生兴趣。导言要阐明教学目标与要求,介绍使用方法,呈现课件基本结构。(2).根据课件的主要框架及教学功能,确定课件的主菜单和各级子菜单及按钮,实现所表达内容转换的顺利跳转。课件运行过程中应做到随时能结束退出。(3).将教学内容划分成若干个知识单元,并确定每个知识单元的知识点构成及所达到的教学目标。(4)根据不同的知识单元,设计相应的屏幕类型,使相同的知识单元具有相对稳定的屏幕风格,并考虑每类屏幕的基本组成要素。

2.3脚本的设计。对无能力独立完成课件制作的教师,写脚本是不可缺少的环节。脚本既是制作的依据和出发点,又是它的归宿,脚本的质量将决定课件的质量,没有科学准确、构思严谨的脚本,就很难制作出高水平、高教学效益的课件。

课件脚本设计一般是先根据需求来确定系统的目的,定义系统的功能与界面,然后以屏为单位确定系统的逻辑结构,选择媒体形式和确定每种媒体的信息量,最后形成详细而完整的制作脚本。具体步骤可按目标设计―表现方式的选择―课件结构设计―形成脚本―脚本卡片设计这样的顺序进行。

2.4.素材(媒体)的制作

素材是课件组织中的核心,教育信息传递的实体。主要包括以下方面:

1.文字的编辑 。文字是最基本的媒体,是学生获取知识的重要来源。对文字的基本要求是:(1)文字内容要简洁、突出重点,应以提纲式为主.有些实在舍不去的文字材料(2)解题的过程要随着讲解逐步显示,这样有利于学生抓住重点。(3)要采用合适的字体、字号。文字内容的字号要尽量大,一般50号以上为好,字体要醒目,一般宜采用宋体、黑体和隶体。对于文字内容中或公式关键性的标题,要用不同的字体、字号、字形和颜色加以区别;对重点内容、重要的点、线、面还可通过闪烁加不同颜色显示,以引起学生重视。(4)文字和背景的颜色搭配要合理,以醒目、易读,长时间看后不累为佳,一般文字颜色以亮色为主,背景颜色以暗色为主。

2.图形与图象的获取 。图形和图象是CAI课件中重要组成部分。“一图胜千言”,人们可以从图形和图象中理解许多其它形式难以表达的内涵,图形和图象的获取可以用Windows95操作系统中自带的屏幕抓取功能,也可以用绘图软件绘制,还可以利用扫描仪和数字相机输入到计算机中形成相应的图象文件,或利用视频卡、超级解霸软件等捕捉图象。图形和图象设计时应注意:(1)图象的内容要便于学生观察。(2)复杂图象要逐步显示,有利于学生把握重点。对(3)在不影响显示效果的前提下图象尽量简单,以少占用存储空间为原则,否则会影响系统的显示速度。

3.动画和视频的制作。动画和视频以动态表现信息,其手法最具魅力,动画和视频对于移动的、与时间相关的信号处理或图形表现尤其有用。视频可通过摄像机拍摄编辑、配音合成,再经模―数信号转换器得到,也可从Vcd光碟或录像带中取得(注意版权)。视频文件占用存储空间较大,使用时应注意。

计算机课件篇(4)

作为各类院校开设的一门重要的基础课程,计算机应用基础为学生掌握计算机基本概念和基本操作起着十分重要的作用。由于该课程知识点多,操作性强,教学学时在不断下调,教学过程又要求避免枯燥,给教师的教学和学生的学习都带来一定的困难。如何解决上述问题,成为计算机应用基础课程教学中的一大难题。

一、CAI的特点

1.CAI课件根据教学目的,可分为讲课型、练习型、实验型课件等,改变了传统灌输式教学模式。讲课型课件以课程基本原理为主,对于学生理解比较困难的地方,如复杂的动态图形,或学生没有接触过的事物,在CAI课件中就可以利用动画演示,把抽象的事物形象化,既能加强理解,又生动有趣;练习型课件可以辅导学生做习题或自我测试,并对其回答做出判断和提示,其次教师可利用课件批改作业和试卷,逐步摆脱重复劳动,又能综合学生的错误情况,改善课件内容;实验型课件可以辅导学生预习实验和检查实验结果,学生通过模拟掌握实际的使用情况,既不用担心实验器具受到损坏,又能使学生了解具体使用步骤。

2.CAI课件能够实现因材施教、个别化教学目的。学生根据自己对知识的掌握程度,可以对学习内容进行复习、重学、跳跃式学习等,还能根据个人时间对学习进度、内容自我选择,因此学生掌握了学习的主动权。

3.院校通过集中优秀教师去开发CAI课件,使优秀教师的教学方法得到普及,能够更快地提高全体教师的教学水平。

综上所述, CAI具有很多传统教学模式不具备的优势,建立计算机应用基础课程CAI课件可以有效解决传统教学模式具有的问题,并能改善教学环境,充分调动学生的学习积极性,提高教学质量和教学效率,因而为现代教学理论所推崇。

二、CAI课件开发

1.实现工具。CAI课件开发一般有高级语言和多媒体集成工具软件两种方式。高级语言对创作者要求高,开发周期长,工作量大,常用的有 VB、VC等语言。目前常用的多媒体集成工具软件有:Authorware、Toolbook、Director、洪图、方正奥思等。其中Macromedia公司开发的Authorware是一种面向对象的、以图标流程线逻辑编辑为主导,以函数变量为辅助,以动态连接库为扩展机制的“无需编程”的多媒体工具软件。通过Authorware使得非专业人员也能快速掌握使用,编制出自己所需的CAI课件。

2.媒体的选择与操作。根据知识点的内容进行媒体的选择与制作,选择什么样的媒体表达课件内容,关系到课件的学习效果。作为CAI课件开发者,应把多媒体与课件内容有机结合起来,合理安排它们的位置、大小。在CAI课件中可选择如下媒体:

(1)文字说明:适用于概念、定理的讲解,可使用Authorware文字功能中的窗口菜单快速实现。

(2)声响效果:讲解词、背景音乐、提示声响(包括WAV、MPS、MIDI等)。Authorware自带WAV音频文件播放工具,可用变量来决定音频的播放。但音频过多引用就会造成文件容量迅速膨胀,考虑到这一因素,我们可采用MP3、Midi等替代。例如MP3音频格式的文件大小仅为WAV文件的十分之一,从而可以大量节约空间,更适合在CAI课件中使用。但Authorware本身没有自带MP3的播放功能,我们要借助一些专门的外部函数实现MP3的播放。

(3)图形、图像、动画操作:课件使用的结构图、部件图、电路图以及背景图片等可以通过绘图仪、扫描仪、图像处理软件(如Adobe公司的Photoshop软件等)处理。表现某一原理和物体的作用过程,可用动画制作工具(如Autodesk公司的3D Studio等)或实时录像来实现。Authorware本身提供了相应的支持工具。

(4) WWW文本:超文本作为网络时代的新媒体,通过它可利用Internet上的一些现有资源(如远程多媒体教室、网上课堂等),通过Authorware中提供的Webplayer插件来实现,其可充分利用IE的各项功能,达到资源共享,、缩短了开发周期。同时对WWW文本在Authorware中的应用,扩展了CAI的应用范围。

三、结语

目前,计算机已经广泛应用到社会的各个领域,从教育系统本身看,提高教学质量,培养出更多更高水平的人才,无疑具有重大意义,而以计算机为工具,以CAI课件为手段已成为我们达到这一目标的重要一环。作为教学工作者,在掌握一定的计算机知识基础上,结合计算机应用基础课程,开发出优秀的CAI课件,对提高教学质量,培养出更多更高水平的人才具有非常重要的现实意义。

参考文献:

计算机课件篇(5)

中图分类号:G642 文献标识码:A 文章编号:1009-3044(2015)13-0125-03

Abstract: The cultivation of college students' computational thinking ability is the consensus of the computer education in colleges and universities. A method to improve the teaching mode of computer hardware courses is put forward by combining with the basic principles of computational thinking and analyzing the existing problems in the teaching mode of computer hardware courses, which provides a new way for the teaching reform of computer hardware courses.

Key words: Computational Thinking; Computer Hardware Course; Teaching Mode

1 引言

随着计算机科学与技术的发展,不同的高校开设计算机专业的课程有很大的差异,因而许多高校教师面临一些困惑。如,快速发展的计算机技术,使专业课程教学内容面临取舍问题、教学内容选择问题、学时数问题、教学与实践的学时分配问题等。2006年周以真[1]提出了“计算思维”的概念,给国内外教育工作者指明了计算机教育的目标是培养学生的计算思维能力。随后计算思维在国内外计算机界引起广泛关注,计算思维迅速成为了计算机教育研究的重要问题[2-5]。2011年四川师范大学的牟琴和谭良[6]对计算思维的研究情况做了较为详细的阐述和总结,并进一步提出展望。总体看来,教育工作者们对计算思维的理解不尽相同,甚至差别较大,但普遍认为计算机教育的核心任务是培养学生的计算思维能力,是业已形成的共识[7]。然而如何将这种共识变成完整的行之有效的方法体系,仍然需要继续探讨和坚持不懈的实践。

面对大学计算机专业的“知识空间”,战德臣、聂兰顺[8]从宏观上提出了“计算之树”描述计算技术和计算系统,并给出了一个大学计算机课程改革方案。朱亚宗[9]提出了计算思维的基本原理,包括三点:一是可计算性原理,二是形理算一体原理,三是机算设计原理。我们认为这至少从计算机的产生过程方面对计算思维的基本原理有了较为深刻的理解。本文试图结合文献[9]的计算思维的基本原理,根据计算机硬件课程的特点,提出计算机硬件课程教学改革的模式。

2 计算思维的基本原理

2.1 可计算性原理的核心是递归

计算在人类社会发展中是必不可少的工具。不过,人们一直较为直观认为:计算就是按照预定的规则,将一些原始数据变换成另一些需要的数据的处理过程。那么,按照确定的规则,将给定类型问题中的任何具体问题在有限步内完成求解,便称为这类问题是可计算的。但进入20世纪,人们发现很多问题找不到算法,例如:半群的字的问题,希尔伯特第10问题等。这时人们反思,尽管通过构造出的方法能够解决一些问题,但对计算的理解依然不明确。

美国数学家Kurt Godel于1934年提出了一般递归函数的概念,并给出了重要论断:凡算法可计算的函数都是一般递归函数,反之亦然。1936年,著名的“丘奇论点”指出算法可计算函数等同于一般递归函数或λ可定义函数。就这样,经历数学教们的努力,可计算函数有了严格数学定义,但对具体的某一步运算,选用什么初始函数和基本运算仍有不确定性。为此,Turing在“论可计算数及其在判定问题中的应用”一文中,全面分析了人的计算过程,把计算归结为最简单、最基本、最确定的操作动作,并使任何机械的程序都可以归约为这些操作动作。这种方法以一种“自动机”为基础,算法可计算函数即是这种自动机能计算的函数。后来人们将这种“自动机”称为“图灵机”。

因此,“递归”的思维是可计算性原理的核心。采用一个或多个前导元素运算后续元素,从而实现求解一系列元素。周以真教授也指出递归是计算机技术的典型特征,递归使无限的功能在有限步骤内可以描述或运行。

2.2 物理机制与计算方法对应是形理算一体关键

数学能够充分地表达各种物理规律,对物理规律有明确表达,但是同一物理规律可能有多种数学表达方法,如我们在笛卡尔坐标和极坐标下描述椭圆,就可以形成不同的表达式,这样在计算上就不等效。因此,要使数学物理的离散计算步骤完全可以上溯到形象思维层次的物理模型,计算思维必须与形象思维及抽象思维融合为一体。

2.3 机算设计原理的根本是“0-1”和“程序”思维

电子计算机的基本模型应该是计算思维的根基。众所周知,计算机的根本特征是程序存储和程序的自动执行。冯・诺依曼提出的计算机的基本机构为:计算器、逻辑控制装置、存储器、输入和输出5个构成部分,并确定了采用二进制和存储程序,自动执行指令,这样就充分利用了逻辑学家和电子工程师的智慧。因此,计算机的基础原理离不开“0-1”思维和“程序”思维。计算机的硬件电路由晶体管等元器件实现,再进一步组合形成逻辑门电路,然后再构造复杂的电路,从而实现计算机的复杂功能。正是硬件能够存储和执行逻辑值,0和1就是逻辑值的符号,通过0和1,把所有的操作或处理都符号化为0-1序列。这就是“0-1”思维。计算机的各种复杂的操作都是由基本操作构成的,实现系统仅仅需要若干基本操作进行组合,形成基本动作的次序,也就是程序,即是“程序”思维。

3 计算机硬件课程教学模式存在的问题

计算机硬件课程主要由模拟电子技术、数字逻辑、计算机组成原理、微机原理与接口技术、计算机体系结构、嵌入式系统6门课程。这些是计算机专业课程的重要部分,多数院校都对这些课程比较重视,但大多数学生都反映对硬件知识掌握不牢,动手实践能力不强,几乎不能理解简单硬件系统的原理,更谈不上硬件系统的分析与设计等等问题。导致这一结果的原因与教学模式有很重要的关系。

3.1 课堂教学内容无新意,难激发学生的学习兴趣

如果计算机硬件课程仅仅按照教材的组织授课,整个知识的过程是填鸭式,一灌到底,最终只能是知识堆积,给学生感到内容繁杂,难以理解,学生会渐渐失去学习兴趣。

3.2 强调理论知识,不重视实践训练,难提升思维方式

很多院校对课时量压缩,教学内容大大减少,教师在课堂上只讲解基本原理,使学生的系统分析和设计能力较弱。另外,实验课内容以验证型居多,致使学生对各个知识点的联系不清楚,缺乏独立解决问题的能力,难以建立连续的、渐进的设计思想和提升计算思维能力。

4 新型教学模式构建

结合目前计算机硬件教学上存在的问题,我们希望通过具体教学模式改革,使学生在潜移默化中将计算思维能力融入到个人解决问题的备选思考方式库中。经过四年的熏陶,会主动甚至无意中运用计算思维去解决实际问题。为此,进行如下改革。

4.1 优化教学内容组织

以计算思维为指导,保持原有的教学内容,挖掘知识模块之间的联系,重新组织和优化教学内容,理出教学内容的知识体系,找出知识脉络。这里给出模块化和系统化的教学内容组织方式。

模块化,一些具有计算思维特征的教学内容可设为知识模块。如,“0-1”模块、“存储程序”模块、并行模块、递归模块等。数字逻辑的逻辑部分和计算机组成原理的数据表示方法等内容设为“0-1”模块,数字逻辑的存储电路部分、计算机组成原理的多层次存期器系统、指令系统和微机原理与接口技术的存储器部分可视为“存储程序”模块等。同时,内容组织可以与社会环境中场景类比,使学生由浅入深地理解计算思维,丰富其联想能力,促进学生形成复合型思维。

系统化,以项目驱动的方式组织系统化的教学内容,帮助学生建立知识模块之间的联系,提高学生对计算技术与计算系统的宏观认识和理解。由项目的问题为导向,逐步探寻知识结论的思维轨迹和模式,改变陈旧的教学内容呈现型教学模式,以培养学生的思维过程为重点,加强教学深度,达到训练计算思维的目的。譬如:在讲授数字逻辑课程中,以设计一个复杂数字系统为例,为完成给定的系统,首先需要进行系统总体功能分析设计和各个部件的设计,然后分析数制与码制、逻辑门、逻辑电路设计及优化等相关主题,最后再总结归纳设计思想。

4.2 改进教学方法

教学模式改革,不仅是教学内容的优化和更新,更重要的是采用怎样的方法来实现教学目标,即是教学方法上改革。下面是我们已经过在实践应用的两种教学方法。

4.2.1 加强学生自主探究学习能力

当今,计算机网络的发展和普及,网络上的学习资源已经相当丰富,大学生有能力利用网络资源,学习并理解一部分知识。同时,翻转课堂教学是当前较好的教学方法,高校教师也应当合理地借鉴,将其融入自主探究式学习中。首先让学生提前在网络上学习一些课前的基本知识,在课堂教学中不再重复学生可以方便获取、自学的东西,多留出时间让师生交流。这样,一方面,教师可以充分发挥学生的自学能力,让学生自主完成部分学习任务;另一方面,教师可以通过课堂师生交流,使学生掌握知识的全面性和系统性,引导学生形成计算思维能力。

4.2.2 促进实验课程教学改革

当今的教育理念都倡导学生做课堂的主人,充分给学生动脑和动手机会,让他们主动获取知识;而教师的作用主要是引导学生发挥主观能动性,加强学生的实践能力,帮助学生梳理知识结构,提升学生计算思维能力。为此,对实验教学方法进行如下改革:

⑴实验进课堂。计算机硬件课程的共性是实践性强,如果单纯地以理论课的形式授课,学生会感到抽象,无法完全理解。如果能将验证性实验在课堂上演示(如:计算机组成原理的存储器实验、微机原理与接口技术的定时器、数码管显示实验等),不仅解决了学生的疑问,还活跃了课堂气氛。

⑵实验平台自行设计。目前,多数院校采用购置的实验仪安排实验内容,且安排相对固定,学生只需要插入少数连线,就可以将实验做完。这样,教师无法灵活安排实验内容,难以提高学生的实践能力,更谈不上系统掌握知识,提高思维能力。为此,购买一些最小系统开发板,自制实验平台具有较多好处。一是,可以选择最适合本校学生的软硬件资源,编制难度适中的实验内容;二是,有利于锻炼教师能力,改善教师专业素质,自制实验平台以教师主导,学生参与,共同提高;三是,成本低,功能全;四是,方便维护,改变实验仪维护周期长的问题。

4.3 改进综合评价体系

考核是评估教学目标完成程度的一种手段。通常,大学计算机课程的评价体系由平时成绩和期末成绩两部分组成。平时成绩是学生课堂出缺勤情况,占30%,而期末成绩则以测试记忆性的知识考核为主,占70%。但是,在计算机硬件课程中,这样的评价体系不仅不能全面反映学生对课程知识的掌握程度,更不可能有效地反映学生的计算思维能力,原因在于计算机硬件课程带有一定的综合设计和实践能力,试卷成绩根本无法体现学生运用知识的能力,更谈不上提高计算思维的能力和创新能力。

我们对计算机硬件课程采用综合的评价系统,一门课程的评价应由平时成绩(占10%)、平时实践成绩(体现运用和创新能力,占50%)和期末成绩(占40%)。这样不仅考虑到学生出勤情况和记忆知识的考核,更重要的是体现了学生的平时实践创新能力,这样,实践考核成绩不仅容易判别学生对计算思维的理解以及其运用能力,还能反映问题求解过程或方式方法的多样性,从而鼓励学生大胆创新。

5 总结

本文根据计算机硬件课程的特点,分析了当前计算机硬件教学模式存在的问题,提出了计算机硬件教学模式改革的方法,解决了培养计算思维能力难以落实到具体课程的难题,为计算机硬件课程教学改革提供重要参考。

参考文献:

[1] Wing J M. Computational thinking [J]. Communication of the ACM, 2006, 49(3): 33-35.

[2] CS2001 Interim Review [EB/OL] http:///cs2001/index.php?Title=main_page, 2008.

[3] Philips P. Computational thinking: A problem-solving tool for every classroom[EB/OL] http:///Resources/sub/ResourceFiles/ComputationalThinking.pdf, 2008.

[4] Bundy A. Computational thinking is pervasive[J]. Journal of Scientific and Practical Computing, Noted Reviews, 2007, 1(2): 67-69.

[5] 董荣胜, 古天龙.计算思维与计算机方法论[J].计算机科学,2009, 36(1): 1-4, 42.

[6] 牟琴, 谭良. 计算思维的研究及其进展[J].计算机科学,2011, 38(3): 10-15, 50.

计算机课件篇(6)

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2014)07-1461-02

1 概述

计算机硬件类课程在高校计算机专业占据非常重要的地位,从逻辑角度和应用角度为学生阐述计算机的基本原理和使用方法,让学生在计算机硬件方面打下坚实的理论基础,并为学生今后应用技能的提升奠定基础,其应用范围非常广泛且与实际工程联系紧密[1-3]。因此,计算机硬件类课程是大学计算机专业的必修课程。然而,由于这类课程理论性较强,大多数高校的硬件类课程实践环节相对薄弱,导致硬件类课程的教学一直是计算机学科体系结构教学中一个比较薄弱的环节。

计算思维是由美国卡内基·梅隆大学的周以真教授于2006年在ACM的会刊上提出来的。他指出:计算思维是运用计算机科学的基础概念去求解问题、设计系统和理解人类的行为,它包括了涵盖计算机科学之广度的一系列思维活动[4,5]。计算思维使用约简、转化和仿真等方法,利用启发式推理,采用抽象和分解处理庞杂任务的手段,将一个看似极其复杂的问题转换成一个个易于处理的小问题。也就是说,计算思维就是通过人的思维进行计算,即人通过特定的思维活动使用计算机解决实际问题,计算机在解决问题过程中充当媒介的作用,它是人和机器相结合的产物[6]。

计算机硬件类课程作为计算机学科的核心基础课程,其理论性、实用性和创新性较强,面对这样知识庞杂而又抽象的课程,融入计算思维的理念,对其进行教学改革,使学生灵活的掌握计算机硬件的基本原理和应用技能成为必然。

2 教学改革思路和方法

2.1 引入关注点分离方法,整合教学内容

大学计算机硬件类课程主要涉及电工与电子技术、数字逻辑、计算机组成原理、操作系统、微机原理、计算机网络等课程,这些课程看起来比较分散、自成体系、教学内容抽象,是教师最难教、学生最难学的课程。关注点分离是计算思维的方法之一,它将复杂抽象的问题合理分解成具体的小问题,再研究各个小问题的不同侧面,形成关注点,然后汇总各个问题的结果,形成解决方案。在大学计算机硬件类课程中,引入关注点分离方法对教学内容进行整合,可以使得抽象的问题具体化,复杂的问题简单化,对教师教学起到事半功倍的效果。例如在操作系统课程的教学过程中,选择以Windows NT操作系统的功能为主线,将课程所有的知识点(进程管理、进程调度与死锁、存储器管理、设备管理和文件管理)融入到具体的实例中,避免了学生在学习过程中感觉到知识点分散零乱、难以理解,让学生在学习操作系统课程的过程中,形成一个完整的知识体系,帮助学生更好的理解知识;在微机原理课程的教学过程中,以80386CPU的指令系统及设计为主线,将主要知识点指令系统、汇编语言程序设计、中断以及接口电路设计贯穿其中,这样既浅显易懂,又形象生动,极大的增强了学生的学习兴趣。其他硬件类课程的教学也基本采用关注点分离教学法,教学效果良好。

2.2 利用启发式教学,体现计算思维

启发式教学是针对传授的知识,先提出一个源自实际生产生活的问题,然后与学生共同探讨分析问题,引导学生逐步解决问题,在该过程中讲授分析问题和解决问题所需要的理论和方法。以操作系统课程中的进程同步为例,这是进程管理部分教学的重点,也是难点。在讲解这部分内容时,先以典型的司机—售票员问题导入,与学生共同探讨在公共汽车上司机与售票员的相互合作关系以及合作的先后次序关系,分析两者的相互制约关系,从而得出使用信号量机制解决进城同步的方法;在计算机网络课程中,局域网组建是教学的重点,在讲授这部分内容时,首先以日常实验室局域网的组建情况为例,与学生一起分析实验室局域网的工作原理,共同探讨一般局域网的组建方法,从而得出在实验室组建虚拟局域网和实际局域网的实施方法。这样既加深了学生对知识点的掌握理解,也培养了学生的计算思维能力。

2.3 使用任务驱动教学模式,训练计算思维

任务驱动教学模式是让教师和学生围绕任务展开教学活动。这种模式中,教师的主要工作是设计任务、呈现问题、辅助任务实施和总结评价,学生通过明确任务、分析问题、交流和反思训练计算思维,培养和增强学生分析和解决实际问题的能力。

以数字逻辑课程为例,教师根据课程特点,运用计算思维的方法呈现教学任务,要求学生分组完成一个具体的组合逻辑电路的设计与实现。学生以每组3—5人自由组合,每组选出负责人,教师通过展示往年学生的设计作品,向学生提供部分选题作为参考,学生也可通过调研自行选择一些有意义的与课程相关的电路进行设计。在教学过程中,教师使用关注点分离方法将组合逻辑电路审计分解为简单的小问题,然后以设计成果的形式要求学生完成课程任务,让学生在完成具体任务的过程中学习并应用教学内容,提高了教学效率。学生在教师的实时指导下,明确任务,分析问题,各组学生分工协作,定期交流,通过查阅资料和调研等途径探究解决问题的途径。最后,学生在教师指导下完成任务后,通过展示和自评,并交流自己的学习心得,教师总结点评,帮助学生拓展所学知识,训练学生的计算思维能力。

3 教学效果考核

考核评价是教学活动中不可或缺的重要环节,是检验教学效果的重要手段。随着计算机硬件类课程教学改革的深入,课程的考核评价模式也应随之改革。根据计算思维能力的培养要求,必须打破传统的只侧重于考查学生对理论知识点的掌握程度的考核评价模式,建立真正体现学生计算思维能力的考核评价模式。传统的考核评价方法是:学生成绩=平时成绩×20%+理论考试成绩×80%。改革之后,学生成绩=平时成绩×10%+理论考试成绩×45%+实验成绩×45%。实验成绩就是学生做实验完成具体任务的考核成绩。可以看出,改革之后的考核评价模式增加了实验成绩,重点考核学生运用计算思维能力分析问题和解决问题的能力。下表1是近几学年计算机硬件类课程改革之前和之后我系计算机科学与技术专业学生的平均考试成绩。

从表1可以看出,在计算机硬件类课程中贯穿计算思维能力的培养之后,学生的考核成绩明显提高,而且通过对两届学生的问卷调查显示,课程改革之后,学生的学习兴趣大幅度提高,动手实践能力也大大提高,教学效果良好。

4 结束语

计算思维作为人类的三大思维方式之一已受到了广泛的关注。该文给出了融入“计算思维”的大学计算机硬件类课程教学改革的新模式,围绕课程教学内容的整合,教学方法和考核评价模式的改进,让学生在解决实际问题的过程中领会并掌握计算思维方法,提高了学生独立思考解决问题的能力和团队创新协作能力,使教学效果得到明显提高。这种教学模式所传授的思想和方法,将广泛应用于计算机专业的其他专业课程中,这将为学生更好的学习计算机专业其他相关课程奠定坚实的基础。

参考文献:

[1] 教育部高等学校计算机科学与技术教学指导委员会. 高等学校计算机科学与技术专业公共核心知识体系与课程[M]. 北京: 清华大学出版社, 2008: 50-53.

[2] 蔡启先, 蓝红莉, 阳树洪. 计算机组成与汇编语言[M]. 北京: 清华大学出版社, 2011.

[3] 蔡启先, 蓝红莉. 计算机硬件技术基础学习及实验指导[M]. 北京: 清华大学出版社, 2011.

[4] 周以真.计算思维[J].中国计算机学会通讯,2007,3(11):83-85.

计算机课件篇(7)

目标本课程开设的目标是使学生通过大型项目的开发,熟悉项目开发流程,理解项目管理的基本理念,灵活运用需求分析及系统设计方法,提高技术的使用熟练度,充分锻炼团队开发的协作能力,理解测试过程及Bug跟踪的流程,从而积累真实的项目开发经验,拉近与企业用人需求的距离。项目培养的能力体系如表1所示。根据TOPCARES-CDIO能值指标体系,本项目重点培养八项3级能力指标。

1.2项目内容和进度安排

随着软件行业的不断发展,主流应用软件的类型也在不断变化着,从最初的桌面应用到基于Web的应用,再到目前的电脑、手机客户端与Web端多客户端平台应用。本课程要求学生开发的项目来自于合作企业中最新的项目,以达到和市场接轨的目的。在课程进度安排如表2所示,包括准备阶段和增量开发阶段。课程共200学时,50次课,进度安排包括准备阶段和三个增量阶段,表2给出了一个增量的进度安排。项目准备阶段完成整个项目的构思,各个增量阶段,按照分析、设计、实施、运行和评审等步骤进行。

2项目实施(Implementationoftheproject)

项目教学实施过程主要采用情景教学的方式和分组教学的组织形式。项目实施尽可能模拟企业的开发环境,教师担当类似项目经理的角色,负责监控项目的整个进度和项目质量,将每个学生小组视为一个开发团队,让学生模拟企业中相应的工程师角色,在教师的指导下按照规范的软件开发过程进行项目开发,使得参与一级项目的学生获得更真实的项目开发体验,就业后能更快地适应企业工作。

3考核评价(Examinationandevaluation)

教师对各小组成员项目开发过程进行监控和打分,作为本课程的形成性考核,项目结束后安排统一的关于软件项目管理和软件开发等的闭卷考试,作为课程的终结性考核。各项考核的内容与本项目的能力培养目标相对应,如表3所示。这样,当学生完成了本课程的学习,可以从八个能力方面对学生情况进行全面的评价,对其今后的发展会比以往单纯的分数有更大的帮助。

计算机课件篇(8)

1.为了公开课而制作课件。许多人制作课件,出发点并不是为了整体的教学服务,只是为了上公开课的需要。这样制作出来的课件,一般都会很好看,而且赏心悦目,这种课件用在公开课上,得到的评语是:花了大量的时间和精力来备课,课堂效果好,信息量大,学生接受效果好等等,诸如此类的说法,这样的评价是对的。但反过来一想,我们为了一节课花了“大量的时间和精力”,效果肯定好,但是否值得呢?

2.为了计算机而制作课件。在许多人眼里,计算机就是多媒体的代名词,多媒体课就成了独媒体课。计算机确实拥有传统教学工具的一切功能,但有必要让计算机来代替一切吗?

3.为了课件而制作课件。计算机课件的优势在于超文本功能、人机互动功能、网络功能等。从目前许多教师制作的课件来看,大部分不能体现这三大功能,都只不过把图片、视频、文本等内容转换计算机演示罢了,不能算是真正的课件。我们说一个课件就是一个完整的教案,就是完整的一节课,它能反映我们的教学基本功。而我们许多人制作课件,完全是为了应付差事,为了比赛,为了职称等目的,根本不花时间和精力来完成这件事,或是花了少量的时间。

二、正确认识和使用课件

1.课件制作要经常化。课件不能只为某节内容,而要考虑到整个章节的教学安排,整个学科的教学安排。制作课件时就应该花一定的时间和精力,这毕竟是自己教学水平的一个展示,所以制作课件不要只为了眼前的利益,而要和学科结合,和学生结合,要保持课件制作的经常化,抱着学习的态度,多利用别人的东西,一切问题都会迎刃而解。

计算机课件篇(9)

中图分类号:G642.3 文献标识码:A 文章编号:1002-4107(2017)07-0045-02

随着中国社会进入“互联网+”时代,在“万众创业,大众创新”的大环境下,IT领域中各项新兴技术层出不穷,例如应用于各领域的智能电子设备、可穿戴设备、人工智能等。这些新兴技术又都与计算机硬件紧密联系,于是社会对当前的计算机硬件类专业人才的培养提出了新要求。以人工智能为例,国家发改委、科技部等几部门联合的《“互联网+”人工智能三年行动实施方案》中明确提出,“培养发展人工智能新兴产业”、“推进重点领域智能产品创新”和“提升终端产品智能化水平”等三点目标,同时强调方案实施的关键是大量的“互联网+人工智能”专业人才。由此可见,时代的发展方向正要求对计算机硬件课程进行调整,势必会引领计算机的软硬件课程的协同发展,开展新一轮的计算机教学内容的整合和教学方法的改革。

一、计算机硬件类课程现状

(一)计算机硬件课程设置现状

从计算机专业本科生的培养计划可见,软件类课程仍占据主导地位,而硬件类课程则相对较少。笔者以南京邮电大学信息类各专业的培养计划为例,将与计算机硬件相关的课程整理在表1当中。根据各专业的培养计划的具体要求不同,课程会放在不同学期进行授课。

表1 计算机硬件类课程的设置

(二)计算机专业现有培养模式的特点

通过长期对计算机专业本科生在教学以及毕业设计过程中的表现的调查和研究[1-3],笔者发现“欺软怕硬”的现象很普遍。所谓“欺软怕硬”,是指学生对软件类课程的学习热情和掌握情况要远远好于硬件类课程。由此形成了学生在毕业设计选题时对软件类题目趋之若鹜,而硬件类题目则无人问津的局面。通过与学生的交流和教学过程中的思考,同时借鉴了相关文献的研究经验[4-5],笔者认为目前的局面是由现有的培养模式决定的,其特点可以总结如下。

1.想法可以快速实现并验证,因此大多数学生更喜欢软件。2.相较于软件类课程,硬件类课程内容显得较枯燥。3.不同的硬件课程采用不同的实验设备,不便于学生贯通式地掌握系统化知识。4.硬件类课程的实验教学与实际开发有较大区别,实验技能往往无法直接用于实际项目开发。5.教学实验设备无法为教师的科研项目提供支撑,教师将科研与教学实验相结合的热情不高。6.实验室人员需要花费大量时间维护各种硬件实验设备。

二、“互联网+”时代计算机硬件课程面临的挑战

“互联网+”是将互联网作为当前信息化发展的核心特征,提取出来,并与工业、商业、金融业等服务业全面融合。其核心是创新,只有创新才能让这个“+”真正有价值、有意义。在分析了目前市场上的各种“互联网+智能硬件”后,笔者认为对计算机硬件课程发展的挑战主要体现在以下几点。

(一)个体化向网络化的转变

目前的计算机硬件课程基本都是面向个体化设备的,无论是“计算机体系结构”课程中侧重对计算机系统的性能评价,还是“计算机组成原理”课程中着重于运算器、控制器、存储器、指令系统各部分的设计和组成,抑或是“微型计算机原理与接口技术”课程中关注的CPU工作原理和常用外设与主机的连接方法等,无一例外是在单一设备上进行。而“互联网+”所倚重的物联网、云技术和大数据等技术则需要网络化设备进行分布式的协同工作。这是传统的计算机硬件课程在教学和实验环节中比较欠缺的。

(二)功能化向智能化的转变

学习了计算机硬件课程后,学生大多能熟悉和了解对于实现特定功能的硬件系统的开发流程。但是目前的“互联网+智能硬件”已经不仅仅局限于实现某个或某几个简单的功能,而是更多地强调可以进行“随机应变”的智能化属性,这就要求学生不仅要学好硬件类课程,还需要对人工智能、机器学习、云计算等相关领域的知识有广泛的涉猎。

(三)低成本至高性价比的转变

在以往的硬件_发中,特别是在对价格较敏感的某些应用领域,开发者往往更重视对硬件成本的控制。随着微电子技术的快速发展,各芯片及相关的外设和传感器的价格不断降低,如今人们对成本的要求已经不像以往那么严苛了,人们往往更注重性能或者说是性价比的提升。目前的硬件课程中介绍的芯片大都是很久以前的产品,如何使课程与时俱进是课程改革中需要关注的问题。

计算机课件篇(10)

0.引言

计算机硬件基础课程是所有计算机类或通信类专业所必修的专业基础课程。当然不同的院校对于计算机硬件基础课程的开设都不尽相同,但是一般都会包括数字逻辑(或称数字电路)和计算机组成原理这两门课程。以湘南学院计算机科学系为例,该系设有计算机科学与技术、计算机科学与技术师范、网络工程、通信工程4个专业。对于不同的专业,硬件基础课程的开设也有所不同,例如,通信工程专业还会开设电子与电路这门硬件基础课程,而网络工程专业会加开汇编语言课程,而数字逻辑与计算机组成原理却是所有专业都必修的硬件基础课程。因此,针对这两门通用的硬件基础课程的实验环节,笔者提出了教学改革方案。

1.硬件基础课程实验改革的必要性

湘南学院是地方应用型本科院校,其培养目标是培养适应地方经济和社会发展需要的基础扎实、专业突出、实践创新能力强的应用型高级专门人才。实践能力与创新能力以及应用型人才的培养在课程的教学过程中主要是注重实验课程的实践教学。

实践出真知,创新源于实践。如何在实践教学中培养大学生的创新能力与动手能力一直是各高校关注的问题,也是计算机及其相关专业迫切需要解决的问题,而且也直接关系到学生的就业与发展。

目前IT产业技术日新月异,知识的更新换代比起其他学科更加迅猛。虽然目前从重点本科院校到地方性本科院校,从职业技术学院到中等专科学校都有开设计算机相关专业,但是不管哪种层次的计算机类专业的毕业生,与目前新兴IT企业人才需求之间都或多或少存在一定的差距,这个差距主要来源于实践动手能力。如何尽量地缩短这个差距,让学生一毕业就能上岗,是实验教学培养中的一个主要目标。

计算机类学科中的一个基础就是硬件基础,在硬件的基础上才能开发各种软件,在硬件的基础上才能有各种网络或者通信方面的应用,因此学好硬件的基础课程是整个专业的基石。而如何进一步理解枯燥的硬件基础知识,如何提高学生对硬件基础课程的兴趣与爱好,如何在硬件基础课程中培养学生的动手实践能力与创新能力,都需要从硬件基础课程的实验中去寻求答案。为了适应时代的需求,培养出具有实践创新能力的应用型人才,对于计算机专业中的硬件基础课程的实验改革势在必行。

2.硬件基础课程实验现状分析

实验教学是计算机硬件基础课程教学不可或缺的重要组成部分。实验课程是理论课程的重要补充。对于一些难以理解的理论知识,通过实验可以让学生更好地掌握。但是目前,硬件基础课程的实验环节还存在着许多的不足,不能满足课程培养目标的要求,主要表现在以下几个方面:

(1)实验课时不足。对于计算机硬件基础课程,根据硬件技术的发展对于每门课程所能开设的实验课程数量相对于以前都有所增加,但是实验课时却一直没有变化,显然课时不足已经影响实验内容的更新。

(2)实验内容单一。在传统的实验课程中,实验项目大多是验证型实验,设计型和综合型实验相对较少,学生只需要根据实验指导进行操作,然后观察实验结果即可,无法调动学生的积极性与创造能力。

(3)实验方式单一。在传统的实验课程中,大多数的硬件实验课程都是在已经固化好一些所需芯片的实验面包板上进行的,所有的实验过程与实验结果都是固定的,学生能自己更改的部分很少。对此,目前有部分院校在硬件基础实验课中引入了基于EDA+PLD(电子设计自动化+可编程逻辑器件)技术的实验方式。这种实验方式不仅需要仿真软件,而且需要掌握某种硬件描述语言,实验过程相对比较复杂,但比传统的实验箱更能发挥学生的设计能力和创新能力,对学生的要求相对比较高。

(4)各门硬件基础实验课之间缺少相互的联系。计算机类专业课程之间都有着或多或少的联系,特别是硬件课程之间都有着比较紧密的联系。例如,数字逻辑主要介绍构成器件的基本部件门电路,以及组合电路时序电路等的分析与设计,而计算机组成原理主要介绍计算机的组成部件及其相关原理。计算机组成部件的本质都是一些组合电路或时序电路。因此这两门课程间有着一些必然的联系,而在传统的实验课程中,这两门课程的实验课根本没有联系起来考虑,实验课程设置上也都是各上各的,没有考虑到相关性。

3.硬件基础课程实验改革方案

考虑到上述计算机硬件基础课程实验环节的各种不足,笔者提出从实验内容和实验方式两个方面对硬件基础课程实验环节进行改革实践。

1)实验内容方面。

(1)在硬件基础课程的实验项目设置上,减少验证型的实验项目,增加设计型与综合型的实验项目;在实验课时上,保证设计型与综合型实验的课时量。湘南学院计算机科学系2011版的培养方案中对各门功课的实验项目都做了一定的调整,并要求保证设计型和综合型的实验占所有实验课时的40%。调整后的培养方案保证了一定数量设计型与综合型的实验,有利于提高学生自身的设计能力与综合应用所学理论知识的能力。例如,在数字逻辑课程的实验项目设置中,共有16个实验课时,其中14个为实验课时,2个为实验考核课时;在14个实验课时中,设置了5个实验项目:实验一――门电路、实验二――译码器与编码器、实验三――半加器与全加器、实验四――触发器、实验五――计数器。其中实验一、实验二和实验四3个实验项目都是验证型实验,并且都只有2个课时;实验三是组合电路的设计型实验,给出一定的门电路和特定实验要求,让学生自己设计完成一个半加器和全加器的组合电路,占4个课时;实验五是一个时序电路的综合性实验,给出一定的实验要求,让学生自己综合所学知识设计一个计数器,也占4个课时。在计算机组成原理实验项目设置中,共有16个实验课时,其中2个为实验考核课时,而其余的14个课时分给了5个实验项目,实验一――运算器,实验二――存储器,实验三――微处理器,实验四――基本模型机,实验五――复杂模型机。其中前3个实验都是单元实验,也都是验证型的实验,每个实验都只占2个课时;而第4个实验,是要运用前3个实验,组合成一台简单的有基本计算机功能的模型机,是属于设计型的实验,占4个实验课时;第5个实验,是在第4个实验的基础上,增加一些复杂的计算机功能,组成一台复杂的模型机,此实验是综合型的实验,占用4个实验课时。

(2)在现有实验课时的基础上,增加各门硬件基础课程的课程设计环节,以课程设计作为实验课的一个有利补充和综合运用。而课程设计的命题可以紧跟当下IT技术的新发展,在课程设计中尽量让学生接触最新的技术与应用,也可以让学生自主选择感兴趣的相关命题,指导其设计与实现。例如,数字逻辑课程设计中可以综合所学的知识,结合实际应用,设置汽车尾灯控制器、简单交通灯控制器、电子密码锁、智力竞猜抢答器等设计课题供学生选择学习;计算机组成原理课程设计中可以设置多功能ALU设计、RAM故障诊断设计、使用硬连线控制器的CPU设计等综合应用型的课题供学生选择。

2)实验方式方面。

(1)实现实验方式的多元化。把单一的、传统的用实验箱做实验的方式变为多种实验方式结合,实现实验方式的多元化。例如,验证型的实验,用实验箱实现,直观易懂,而复杂些的设计型和综合型实验,试验箱就有了一定的限制,不能充分发挥学生的自主设计能力。这时,可以考虑使用其他方式来实现。例如,前面介绍的EDA+PLD方式,当然这种方式实现起来比较复杂,还可以考虑用更加方便的电子设计软件,如Multisim。Multisim是美国国家仪器有限公司(NI)推出的NI电路设计套件,是目前最先进、功能最强大的EDA软件之一,它可以实现对电路原理图形输入、分析、仿真、测试等应用,是一个完整的电路设计和仿真工具软件。应用Multisim实现数字逻辑实验课程中的设计型和综合型实验是比较简便和易操作的,而应用Multisim实现计算机组成原理实验课程中的实验相对来说比较复杂些,但也是可操作的,文献中有相关叙述。而对于非常复杂的、综合型较强的计算机组成原理中的整机实验,可以应用自主开发的实验平台根据需求进行设计开发实现。例如,湘南学院计算机科学系在VS平台上开发了基于浏览器客服端技术实现的计算机组成原理的虚拟仿真实验平台,这个平台在2013年上半年已投入试运行,极大地增加了学生对计算机组成原理实验课程的兴趣与自主设计创新能力,从实验课程的效果来看,比较理想。应用多元化的实验方式,有利于提高实验课程的吸引力,进一步提高学生对实验课程的兴趣。不同实验方式的比较也可以让学生从不同的方面更好地理解理论知识,进一步提高学生的设计创新能力。

计算机课件篇(11)

引言

随着社会的发展,计算机专业人才得到了越来越多的重视和应用。软件工程作为互联网产业中较为重要的组成部分,得到了广泛的应用。国家对计算机软件工程人才的需求也逐渐的增加。因此,探寻计算机软件工程专业课程改革势在必行。

1现阶段计算机软件工程课程现状

1.1偏重学科理论教学,学生动手能力差

在我国针对于计算机软件工程学科的教学多以理论基础讲解为主。很多的院校只注重理论知识的教学,在开展软件工程课程教学时并没有组织实践操作训练,导致学生往往理论知识了解很全面,但是缺乏实践操作能力。这样的人才很难符合企业对相关从业人员的业务素质及工作要求。

1.2教学内容陈旧,更新慢

随着科技的发展,社会的进步,计算机软件工程也得到了快速的推动。计算机软件工程教学的教学内容也必须要跟上科学技术的发展速度,及时的对教学内容进行更新。但是,我国的计算机软件工程教学内容和实际的科技发展存在着严重的差距,很多的教材并没有和现阶段的科技发展速度保持一致。

1.3教师教学能力有待提高

作为计算机软件工程专业的教师,不仅要求掌握计算机专业的基础知识、精通于软件工程的学科知识,还要具备实践操作能力和经验。通过自己精湛的授课方式来把软件工程的原理和技巧传授给学生。但是现阶段很多教师教学能力还有待提高,重理论、轻实践的教学模式普遍存在。

1.4课程教学存在问题,重视程度不高

很多的应用型本科院校存在课程设置以及教学安排不合理的现象。软件工程的学习是需要其他课程的内容为基础来进行的,和其他学科的教学来比,计算机软件工程课时安排较少,并且缺少和其他学科的有效衔接。没有形成一个相对完整的体系,加之学校对这方面的教学没有足够的重视,导致其教学效果不是很理想。

2计算机软件工程课程改革策略

2.1注重教学理论与实践相结合

计算机软件工程是一项注重实践操作[1]的学科,很多的理论性知识需要依靠实践操作能力来真正的掌握。在教学过程中,要增加实践在整个课程中的占比。将授课模式做出积极的调整,在课堂上应用翻转课堂的形式把理论教学时长缩减为总课时的1/3,给学生留出足够的课堂时间来进行实践操作,锻炼学生的实践动手能力。通过这样的方式来避免出现重理论、轻实践的软件工程专业典型的学习误区。通过理论与实践相结合的方式来将技术经验很好的应用到理论学习中去。

2.2以科技发展为导向,改革课程内容

21世纪人们的生活发生翻天覆地的变化,科技的日新月异是这个时代最显著的特征。在计算机软件工程教学的过程中要积极调整教学内容,增加技术知识的更新和变化、紧跟时代信息产业化的步骤的内容。使课程教学内容与时俱进,反映出计算机软件工程发展的新动向。注重增加一些新技术的内容,如基于组件的方法、面向Agent方法、敏捷软件方法等。同时注重传统与现代相结合的教学内容,介绍一些对象方法、UML建模技术等内容。

2.3提高教师的专业教学能力

教师的专业教学能力是开展好计算机软件工程专业重要的影响因素。仅仅依靠在课堂上的“灌输式”的学习方法很难让学生掌握理论知识,大大降低学生学习积极性。学校要加强对计算机软件工程课程的教师培训,提升授课教师的能力水平。教师自身要注重学习,不断的提升自己的专业素养,通过丰富的多媒体资源以及教学调研来提升自己的知识储备和教学水平,不断实现自我升值。通过学校和教师自身的共同努力来实现教师素养的不断提升。

2.4采用多元化[2]的教学方式

在软件工程教学过程中,教师应该采用多元化的教学方式来活跃课堂气氛,通过案例教学法来让学生掌握所学知识,通过讨论教学法来让学生积极地参与到教学过程中,激发学生的学习兴趣。多元化的教学方式很多,如网络教学平台、微信公共平台等。通过多元化的教学方式丰富了课堂的教学形式,调动了学生学习积极性,有助于计算机软件工程专业的学习。

3结论

随着计算机技术的不断发展,软件工程所发挥的作用以及价值越来越大。因此,要更加的注重计算机软件工程的课程改革工作,注重理论与实践相结合的方式,锻炼学生的实际操作能力以及动手能力,提高学习效率以及教学质量。

参考文献