欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

控制系统设计论文大全11篇

时间:2023-03-20 16:15:00

控制系统设计论文

控制系统设计论文篇(1)

2系统原理与结构

系统结构为典型的物联网三层结构,有感知层、网络层及应用层组成,结构如图1所示。网络层使用电力载波技术,各节点及网关之间采用载波通信。感知层由各载波传感控制节点组成,各节点设计有继电器控制接口,可对节点所连接的灯光进行开关控制。同时,各节点设计有人体红外节点、光敏传感节点等传感器,可实时测量出周围的环境情况。另外,各节点还设计有电流检测模块,可以通过电流的变化对连接到本节点灯光的故障状态进行检测。应用层主要包含远程监控、故障检测和智能控制三部分功能组成,远程监控功能是通过远程终端实时了解各节点灯光状态并可控制各路灯光的开关;故障检测功能是实时检测各节点有无灯的故障,一旦出现故障便即刻向终端发出报警信号并告知故障灯光所在节点,便于管理人员及时进行维修维护;智能控制功能则是通过终端远程发送命令,使各节点按照一定的控制规则智能地控制本节点连接的各灯光状态。

3载波传感控制节点硬件控制系统设计

①硬件选型。首先是载波模块的选型,本文选用的是HL-PLCV3.0载波通讯模块,其采用FSK通讯方式,软件采用超级模糊算法,即使传输信号扰或丢失达40%,也能准确还原出原载波信号,通讯稳定,抗干扰能力强,且能实现串口透传,使用方便。其次是MCU的选择,考虑到功能、功耗、安全、价格、抗干扰等方面因素,本文选取了宏晶STC单片机STC12C5A60S2,能很好满足使用要求,可升级性也比较好。②电源模块。有两部分组成,一是交流220V转9V,用来给载波模块供电,使用AC-DCWA5-220S09D3模块来完成转换;另一是9V转5V,用来给单片机电路供电,使用LM1117-5.0搭建稳压电路即可实现,如图2所示。③电流检测模块主要是使用电流检测芯片ACS712再通过LM321放大电路对检测信号进行放大,最后使用A/D转换来得到结果,此电路可得到610mv/A的检测信号,见图3。④控制执行模块可通过继电器来完成,其电路图如图4。⑤载波模块接口设计,根据其功能,设计如图5。

4通信协议控制系统设计

要保证无线传感节点之间以及同终端之间的数据交互能正确无误、畅通无阻,需编写一个通信协议来完成此项工作。由于本系统数据交互具有流量不大,内容并不复杂等特点,可编写简单协议来规范系统内部的通信。本通信协议设计为8字节长度,详见表1。其中类型用来区分是上位机的命令,还是无线节点的返回数据;对象标记用来区分具体的无线节点;值1、值2表示具体的命令及具体的状态。

5软件控制系统设计

5.1载波传感控制节点软件设计。载波传感控制节点的主要工作是数据信息采集、执行控制命令。为降低网络流量,各节点除上电时收发下地址确认信息等初始化数据,正常状态下只是在命令反馈时或在检测到故障时才进行数据的发送。节点的程序流程图如图6所示。图6载波传感控制节点程序流程图Main函数节点初始化、设置本地地址、频率电流传感器数据采集检测到电路异常封装异常信息YN设置标志位,等待接收命令YN接收到载波数据执行控制命令载波反馈送给网关

5.2上位机软件设计。控制界面主要是控制灯开关,同时还能显示出灯的现有状态。当电路异常的时候界面也会及时地显示出报警信息,程序运行流程图如图7示。图7控制界面程序流程图用户灯光状态控制有网关数据?数据包解析异常?显示灯状态异常报警NNYY。

控制系统设计论文篇(2)

2温湿度模糊控制器设计

2.1输入与输出变量的模糊化

根据温室大棚的实际状况,以温湿度偏差及其偏差变化率为输入变量,各输入变量的模糊化信息如表1所示。结合研究对象实际情况,既考虑控制规则的灵活性又兼顾简单易行。表1中,4个输入变量模糊集均取为A,A为{NB,NS,ZE,PS,PB};模糊论域均取为B,B为{-4,-3,-2,-1,0,1,2,3,4}。模糊控制器的输出控制变量为前窗、天窗、后窗、遮阳帘、通风机、加湿器和加热器。这7个变量均为开关量,只有开和关(0/1)两种状态,分别用符号u1、u2、u3、u4、u5、u6、u7表示这7个变量。

2.2隶属函数的确定

由于三角形隶属度函数在输入值变化时比正态分布或高斯型具有更高的灵活性[6],因此本研究中温湿度偏差与偏差变化率均选取三角形隶属度函数。图4为各输入变量的隶属度函数,选择的模糊集宽度为4。因为宽度过小会造成部分区间空缺,可能找不到相应的控制规则,收敛性不好;宽度过大会造成控制规则的重叠部分过多,相互间影响加大并且响应速度也变慢[7]。根据隶属度函数对输入变量量化为9个等级,其相应的隶属度赋值如表2所示。

2.3模糊控制规则的制定

模糊控制规则的形成实质上是把操作者的经验或专家的知识和经验进行凝练得到的若干条模糊控制规则[8]。经对实际温室控制系统的研究,发现温湿度间存在一定的耦合性,即当通过某一执行机构改变温度(湿度)时湿度(温度)也会发生变化,因此在制定模糊控制规则时就要渗透解耦的思想。基于此,对7种执行机构的开关状态做如下考虑:u1、u2和u3每打开一个设备降温和降湿效果增强一点,但速度较慢;u5开通后其降温和降湿速度明显比u1、u2、u3快;u4降温作用明显,对湿度基本无影响;u6主要起加湿作用,降温为次要作用;u7主要为增温作用,降湿为次要作用。研究中制定了温度与湿度之间、温度变化率与湿度变化率之间的两个模糊控制规则表,在此仅列出温度与湿度之间的模糊控制规则,如表3所示。表3中,U为u1到u7这7个变量的开关状态,开用“1”表示,关用“0”表示。

2.4反模糊化

模糊控制器输出的是模糊语言不同取值的一种组合,由于被控对象只接受一个精确的控制量,因此需要从组合中判决出一个精确的控制量,这也就是反模糊化的过程[9]。常用的判决方法有重心法、最大隶属度法和中位数法等,本研究采用重心法计算模糊控制输出的精确控制量。其具体表达式为u'=∑nj=1ωjμ(ωj)/∑nj=1μ(ωj)(1)其中,n为模糊变量个数,ωj为模糊变量,μ(ωj)是对应模糊变量的隶属度。本系统反模糊化的具体过程:首先温湿度误差或其误差变化率经量化后得到相应的量化等级,根据量化等级查询各个执行机构在控制规则表中对应的控制规则并使其激活。然后,由式(1)计算各个执行机构的输出值,计算结果等于0.5时,执行机构保持原来状态;计算结果大于0.5时,执行机构开;计算结果小于0.5时,执行机构关。基于这种思想,可建立各执行机构的模糊控制查询表,放在内存中,编写相应的PLC程序即可实现模糊控制器对执行机构的实时控制。

3温湿度模糊控制PLC程序设计

温湿度模糊控制PLC程序包括输入量的采样与模糊化程序、量化等级程序、模糊控制查询程序、执行机构控制程序和预警程序等[10],在此仅介绍有关输入采样、误差的计算和模糊控制查询的部分程序。本研究是在STEP7编程环境下完成的模糊控制程序。

3.1输入量采样和ET/EH计算程序

研究中应用的温湿度传感器的变送单元分别取0~50℃、0~100%RH,线性对应电流均为4~20mA,因此在编写PLC程序前需把温湿度的值与PLC中的数字量关系建立起来。具体过程如下:以温度为例,用I表示电流值,T表示温度值,X表示实时温度转换为PLC中的数字量值。由于0~50℃与4~20mA对应,4~20mA又与PLC中的数字量为6400~32000对应,因此可得曲线方程如式(2)与式(3)所示。根据式(4)即可计算0~50℃对应PLC内部的数字量值。如22℃对应数字量值为17664。同理,可求得湿度值与PLC中数字量的对应关系如式(5)所示。其中,H表示湿度。下面以温度为22℃和湿度为70%RH的情况编写相应的PLC程序,70%RH对应的数字量为24320。

3.2模糊控制查询程序

由反模糊化得到的模糊控制查询表实质上是一个9×9的二维数组,存在以VW200开始的81个字单元中。在此把数组的首地址指针设定为VD48,根据(VW20×9+WV18)×2即可计算偏移值,在查询表中定位并把相应值赋予WV28。

4系统实际运行测试

控制系统投入运行后,任选某一天对控制效果进行实际测试。测试时的起始温度和湿度分别为32℃和52%RH,控制设定值分别为22℃和70%RH。对温湿度采样时间间隔均为5min,根据采集数据绘制的曲线如图5所示。由图5可知30min左右时温湿度值均达到设定值,再经10min左右温湿值即达到预设的稳定状态值,达到了较满意的控制效果。控制系统达到稳态的时间可通过增减有关设备进行调节。

控制系统设计论文篇(3)

随着电子技术和微型计算机的迅速发展,促进了微型计算机控制技术的迅速发展和广泛应用。中小规模的单片机控制系统在工业生产及日常生活中的智能机电一体化产品得到了广泛的应用。在单片机控制系统的设计开发过程中,我们不单要突出设备的自动化程度及智能性,另一方面也要重视控制系统的工作稳定性,否则就无法体现控制系统的优越性。

1.系统受到干扰的主要原因和现象

由于单片机控制系统应用系统的工作环境往往是比较恶劣和复杂的,其应用的可靠性、安全性就成为一个非常突出的问题。单片机控制系统应用必须长期稳定、可靠地运行,否则将导致控制误差加大,严重时会使系统失灵,甚至造成巨大的损失。

影响单片机控制系统应用的可靠、安全运行的主要因素是来自系统内部和外部的各种电气干扰,以及系统结果设计、元器件选择、安装、制造工艺和外部环境条件等。这些因素对控制系统造成的干扰后果主要表现在下述几个方面。

(1)数据采集误差加大。干扰侵入单片机控制系统测量单元模拟信号的输入通道,叠加在有用信号之上,会使数据采集误差加大,特别是当传感器输出弱信号时干扰更加严重。

(2)控制状态失灵。微机输出的控制信号常依赖某些条件的状态输入信号和这些信号的逻辑处理结果。若这些输入的状态信号受到干扰,引入虚假状态信号,将导致输出控制误差加大,甚至控制失常。

(3)数据受干扰发生变化。单片机控制系统中,由于RAM存储器是可以读/写的,故在干扰的侵害下,RAM中的数据有可能被窜改。在单片微机系统中,程序及表格、常数存于程序存储器中,避免了这些数据受到干扰破坏,但对于内RAM、外扩RAM中的数据都有可能受到外界干扰而变化。根据干扰窜入的途径、受干扰数据的性质不同,系统受损坏的情况也不同.有的造成数据误差.有的使控制失灵,有的改变程序状态,有的改变某些部件(如定时器/计数器,串行口等)的工作状态等。

(4)程序运行失常。单片机控制系统中程序计数器的正常工作,是系统维持程序正常运行的关键所在。如果外界干扰导致计数器的值改变,破坏了程序的正常运行。由于受到干扰后计数器的值是随机的,因而导致程序混乱。通常的情况是程序将执行一系列毫无意义的指令,最后进入"死循环",这将使输出严重混乱或系统失灵。

2.系统可靠性设计的分析和方法

单片机控制系统应用的可靠性技术涉及到生产过程的方方面面,不仅与设计、制造、检验、安装、维护有关,还与生产管理、质量监控体系、使用人员的专业水平与素质有关。这里主要是从技术角度分析提高系统可靠性的最常用方法。

导致系统运行不稳定的内部因素主要有以下三点:

(1)元器件本身的性能与可靠性。元器件是组成系统的基本单元,其特性好坏与稳定性直接影响整系统性能与可靠性。因此,在可靠性设计当中,首要的工作是精选元器件,使其在长期稳定性、精度等级方面满足要求。随着微电子技术的发展,电子元器件的可靠性不断提高,现在小功率晶体管及中小规模IC芯片的实际故障大约为10×10-9/h。这为提高系统性能与可靠性提供了很好的基础。

(2)系统结构设计。包括硬件电路结构和运行软件设计。电路设计中要求元器件或线路布局合理以消除元器件之间的电磁耦合相互干扰,优化的电路设计也可以消除或削弱外部干扰对整个系统的影响,如去耦电路、平衡电路等。同时也可以采用冗余结构,也称容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元〔包括硬件单元或软件单元〕数目来提高系统可靠性的一种设计方法。当某些元器件发生故障时也不影响整个系统的运行。对于消减外部电磁干扰,可采用电磁兼容设计,目的是提高单片机系统在电磁环境中的适应性,即能保持完成规定功能的能力。常用的抗电磁干扰的硬件措施有滤波技术、去耦电路、屏蔽技术、接地技术等。

软件是微机系统区别于其它通用电子设备的独到之处,通过合理编制软件可以进一步提高系统运行的可靠性。常用的软件措施主要有:一是信息冗余技术,对单片机控制系统应用而言,保持信号信息和重要数据是提高可靠性的主要方面。为防止系统故障等原因而丢失信息,常将重要数据或文件多重化,复制一份或多份"拷贝",并存于不同空间,一旦某一区间或某一备份被破坏,则自动从其它部分重新复制,使信息得以恢复。二是时间冗余技术,为提高单片机控制系统应用的可靠性,可采用重复执行某一操作或某一程序,并将执行结果与前一次结果进行比较对照来确认系统工作是否正常。只有当两次结果相同时,才被认可,并进行下一步操作。

若两次结果不相同,可再次重复执行一次,当第三次结果与前两次之中的一次相同时,则认为另一结果是偶然故障引起的,应剔除。若三次结果均不相同,则初步判定为硬件永久性故障,需进一步检查。这种办法是用时间为代价来换取可靠性,称为时间冗余技术,也称为重复检测技术。三是故障自动检测与诊断技术,对于复杂系统,为了保证能及时检测出有故障装置或单元模块,以便及时把有用单元替换上去,就需要对系统进行在线测试与诊断。这样做的目的有两个:一是为了判定动作或功能的正常性;二是为了及时指出故障部位,缩短维修时间。四是软件可靠性技术:单片机控制系统运行软件是系统要实行的各项功能的具体反映。软件的可靠性主要标志是软件是否真实而准确地描述了要实现的各种功能。因此对生产工艺过程的了解程度直接关系到软件的编写质量。提高软件可靠性的前提条件是设计人员对生产工艺过程的深入了解,并且使软件易读、易测和易修改。五是失效保险技术:有些重要系统,一但发生故障时希望整个系统应处于安全或保险状态。此外,还有常见的数字滤波、程序运行监视及故障自动恢复技术等。

(3)安装与调试。元器件与整个系统的安装与调试,是保证系统运行与可靠性的重要措施。尽管元器件选择严格,系统整体设计合理,但安装工艺粗糙,调试不严格,仍然达不到预期的效果。

导致系统运行不稳定的外因是指单片机控制系统所处工作环境中的外部设备或空间条件导致系统运行的不可靠因素,主要包括以下几点:一是外部电气条件,如电源电压的稳定性、强电场与磁场等的影响;二是外部空间条件,如温度、湿度,空气清洁度等;三是外部机械条件,如振动、冲击等。

为保证系统可靠工作,必须创造一个良好的外部环境。例如:采取屏蔽措施、远离产生强电场干扰的设备;加强通风以降低环境温度;安装紧固以防振动等。

元器件的选择是根本,合理安装调试是基础,系统设计是手段,外部环境是保证,这是可靠性设计遵循的基本准则,并贯穿于系统设计、安装、调试、运行的全过程。为实现这些准则,必须采取相应的硬件或软件方面的措施,这是可靠性设计的根本任务。

中小规模的单片机控制系统在开发过程中,结合实际应用中的工作环境,采用以上的系统抗干扰优化设计的措施与方法,基本能有效地提高单片机系统的工作稳定性,充分地体现单片机控制系统在不增加控制成本的情况提高机电设备的自动化性能与智能性的优越所在。

参考文献

[1]胡连柱,姜宝山.简析单片机软硬件的抗干扰设计技术,安徽电子信息职业技术学院学报,2005,01.

控制系统设计论文篇(4)

本系统的传感器采用电位器(见图2),它通过连杆机构和轴承与提升臂相连接,与提升臂旋转轴线同轴[4]。当耕深改变时,拖拉机的下拉杆随之上下运动,与下拉杆连接的提升臂也会有一个相应的转角变化;同时,电位器的转轴也在连杆机构的作用下随提升臂同步转动,根据电位器阻值的变化检测出提升臂转动的角度,从而根据对应的几何关系所建立起的数型间接检测出此时的耕深[5];微机接收到反馈信号后,把该信号和预设耕深信号进行分析对比,然后控制步进电机的正反转,调节耕深。

1.2微机控制

本系统控制模块采用微芯公司的PIC18F23K20系列单片机作为微机控制单元。该单片机运行速度快、功耗较低,并且其内部集成A/D转换器模块、增强型CCP模块以及单片机通信需要的USART模块等,从而大大减少了外接的专业电路模块,简化了整个控制电路,能够实时、高效地实现该装置所需的各种功能的控制[6]。本系统的步进电机驱动芯片是东芝公司生产的TA8435H,其电路简单、工作可靠。该芯片是单片正选细分二相步进电机驱动专用芯片,具有以下特点:1)工作电压范围在10~40V;2)输出电流平均可达1.5A,峰值可达2.5A;3)运行方式有整步、半步、1/4细分和1/8细分多种选择;4)采用的是脉宽调试式斩波驱动方式;5)具有正反转控制功能,带有复位和时能引脚;6)可选择使用单时钟输入或双时钟输入[7]。微机和步进电机联合控制的程序流程如图3所示。系统对PIC18F23K20单片机的各个模块进行初始化设置,然后通过电位器进行耕深检测。当提升臂转动时,电位器转轴随着转动,引起电位器内部阻值变化,进而引起电压值的变化,通过线路传给微机处理。微机把反馈信号和预设值进行比较、分析,如果实测值在预设值范围内,则继续检测;如果实测值不在预设值范围内,且比标准值小,则微机发送控制信号控制步进电机正转调整实测值大小,直到实测值在预设值范围内;同理,若实测值比预设值大,则控制步进电机反转。

1.3执行机构

本系统的执行机构(见图4)是在原液压悬挂系统的基础上经过加装步进电机实现手动和自动联合控制。步进电机通过铰链安装在拖拉机上,可以随着分配器操纵杆转动,电机杆上安装1根丝杆,当微机控制信号控制电机动作时,电机的正反转可以推动操作手杆移动,实现分配器油液的流量和流向的改变,进而调节农具耕深。联合控制如图5所示。当需要手动控制耕深时,断开步进电机与操纵杆链接即可。

2试验与分析

为了检测该系统的可靠性和稳定性,在西南大学农机试验田里进行了田间试验。试验工具采用西南大学农机实验室的福田雷沃M1200-D型拖拉机,配套的农具为西南大学农机实验室的东方红1LH-535铧式犁。根据农艺要求,试验前预设耕深范围为0~20cm,安装好本装置的拖拉机在实验田进行直线行驶作业后,通过多点实测耕深,得到试验数据如表1所示。试验数据表明,该系统在使用中基本可以反映田间实测耕深,且在预设耕深允许的范围内。

控制系统设计论文篇(5)

长期以来,粉体的计量装置及控制系统在化工"制药"食品行业!以及军事工业等领域都有着广泛的应用,由于实际情况的不同!对计量及加料装置的精密程度的要求也不相同,例如在制药业中!出于对病人生命安全的考虑!对药量的控制非常严格!这就要求有一套非常精密而且可靠的系统!来完成药粉的添加和计量,在军事工业。

并能在输送过程中起到掺和拌匀物料的作用!因此应用在本系统中是非常适合的,在本设计中传统的螺杆经过改造!镂空了原有的螺杆!只留下类似弹簧状的螺棱!这样做的好处是避免了由于加料的不均!在狭窄的螺槽中可能带来的粉末被挤压成块状!导致粉末输送的不均匀性,其基本组成,电控部分采用为核心。驱动步进电机转动,利用带输出接口的电子天平测量粉体质量!并实时反馈给以调节步进电机的转速!当粉体的质量达到要求时!步进电机暂停,完成粉体质量的输送,各部分装置如下采用型为主机,其特点是外形小巧,功能强大可根据本系统的要求添加,通信板与电子天平进行通信电子天平采用上海精天电子仪器有限公司型精密电子天平主要参数如下,称量范围精度输出接口电源,称盘尺寸步进电机采用型两相混合式步进电机,其驱动电压为,既可以与专门的驱动器配合使用。

计量加料装置也可以作为弹药装填控制系统的一部分!精密控制火药的用量$本设计正是考虑到了精密计量这一关键问题!采用先进的,控制手段!配合精密的螺旋输送设备,力求达到最小的误差!最佳的效果,系统组成及工作原理本系统的基本组成如图,所示,下面从机械和电控两方面进行阐述,机械部分以螺旋输送器为主体!螺旋输送是固体物料输送的一种重要方式!它主要依靠螺杆自身的旋转将物料输送出去!由于螺旋是连续的!故可实现输送的连续性,螺旋输送器可以输送粮食饲料铁粉等颗粒或粉状物料!推荐阅读:计算机应用型教育教学方法研究毕业论文

步进电机的输出为两相四线,我们采用半步工作方式所以绕组的通电顺序为正转反转,对于驱动步进电机所需的时钟脉冲"可以采用定时器产生并控制脉冲的频率,也可以利用内部的特殊辅助继电器产生时钟脉冲比如的时钟脉冲。

也可以直接接在,的输出端,利用软件编程分配脉冲的方法来直接驱动步进电机,电控部分接线图及部分程序利用软件编程分配脉冲的方法来直接驱动步进电机的接线。

用于的通信板=可连接到系列可编程控制器的主单元,并可在设备之间进行数据传输,本系统就是通过在电子天平与之间进行数据通信的关于控制系统的流程图和部分程序图。

控制系统设计论文篇(6)

电传飞机控制系统的核心应用技术是飞控计算机,通过飞控计算机的数据分析和程序预设,最终实现飞机的自动化控制盒管理。结合本型号飞机的实际情况,工作人员在进行系统设计时进行了多种方案的甄选,最终确定将飞控计算机与伺服控制回路综合在一起,采用3×2余度配置,本系统需要三台计算机进行系统的连接,因为进行了大胆的技术尝试,同时又结合了国内外最先进的飞机控制技术,所以这套设计方案是比较科学相对合理的,具有可操作性。每台计算机有两个通道:工作通道:根据输入信号计算机控制面偏转指令,并且驱动相应的控制面;包括CPU模块、输入输出控制模块、总线模块、伺服回路模块与电源模块等。监控通道:用于检测计算机指令的正确性;包括CPU模块、输入输出控制模块、总线模块与电源模块等。

1.2作动器

升降舵、副翼和方向舵均采用电液伺服作动器,电液伺服作动器具有故障监控功能和旁通功能,在故障失效后自动转入旁通功能,不影响其它作动器工作。单个舵面所有电液伺服作动器均失效后,转入旁通功能,保持一定的阻尼,该舵面处于阻尼浮动状态。2.2.1升降舵作动器每个升降舵面采用2台台电液伺服作动器并联安装,同步工作,具有力均衡功能。每台电液伺服作动器具有单独控制单个升降舵面的能力,左右两个升降舵面共采用4个电液伺服作动器,需3套液压系统提供动力,升降舵作动器接受飞控计算机指令,控制升降舵偏转。2.2.2副翼作动器每个副翼采用2台电液伺服作动器并联安装,同步工作,具有力均衡功能。每台电液伺服作动器具有单独控制单个副翼的能力,左右两个副翼共采用4个电液伺服作动器,需3套液压系统提供动力,副翼作动器接受飞控计算机指令,控制副翼偏转。2.2.3方向舵作动器在方向舵上并联安装3台电传控制的电液伺服作动器,同步工作,具有力均衡功能。方向舵作动器接受飞控计算机指令,控制方向舵偏转,实现对飞机航向控制,需3套液压系统提供动力。

1.3传感分系统

传感器分系统负责所有的数据传输和接收,是整个系统的关键组成部分。一方面需要及时接收信息,另一方面还要对接收到的信息进行筛选和分类,最终利用具有关联性的安全信息,具体包括驾驶员指令传感器、飞行运动传感器和大气数据传感器三个部分。驾驶员指令传感器顾名思义,就是将操作人员的操作数据和操作动作,以数据的形式传输给计算机装置;飞机运动传感器将飞机在运动过程中的所有动态数据进行敏感处理和数据传送;所有的数据最终通过大气数据传感器统一进行汇总和分析。需要进行强调的是,为了保证飞机运行的安全和信号的稳定,以上三种数据传输工作不能应用飞机上的航电总线,需要安装独立的信号传输线。确保所有数据的可靠性。

1.4控制显示分系统

控制显示系统是操作人员进行飞机控制的主要参考数据来源,操作人员需要根据显示的数据采用相应的操作程序。显示的信息量大,信息复杂,主要包括几下几种重要的数据:(1)人工进行系统控制的程序指示数据,主要包括提醒操作人员进行系统切换的信息和操作人员进行不同模式转换的信息等;(2)系统运行的安全性显示。包括系统常规运行下的各项数据,以及系统运行出现故障时发出的警示信息以及相应应急自动处理信息;(3)系统定期检测和维护的信息。电传控制系统需要定期进行维护和保养,显示系统会根据设定好的程序提醒操作人员进行相应的操作和管理。

2控制律设计概略

电传飞行控制系统实现了驾驶员操纵指令(杆位移或杆力)与飞机运动参量响应相对应的控制,从而使飞行控制“目标”由原机械操纵系统的舵面偏角操纵,变成了对飞机响应的控制。作为某型飞机电传飞行系统控制模态包括基本模态和自动飞行控制模态。基本模态包括主控制模态、独立备份模态及主动控制功能;其中主控制模态与独立备份模态是系统必须具备的两个基本控制模态。主控制模态包括控制增稳、中性速度稳定性、飞行参数(法向过载,迎角限制和滚转速率等)边界限制与惯性耦合抑制等功能;其中控制增稳功能是电传飞行控制系统最基本的工作模态,在整个飞行包括内全时、全权应用。独立备份模态是电传飞行控制系统的备份模态,是独立于所有的其他控制律模态的应急工作模态。

控制系统设计论文篇(7)

1.1智能建筑设备监控系统组成与结构框图(图1)

1.2智能建筑设备监控系统组成与结构

简要介绍上图为智能建筑设备监控系统组成与结构框图,在智能建筑监控系统中,监控系统主要实现对六个子系统(照明、供配电、冷热源、空调、给排水、电梯)的监控,并可控制其运行。由中央控制器统一全分布式控制运行,但由于每个子系统都由路由器分开,所以也可独立运行,控制系统涉及智能建筑各个系统设备自动化控制,可实现高检测功能。

1.3各设备监控子系统应该实现的功能

1.3.1供配电系统

主要功能为智能建筑提供电力。楼层配电设备分布在各楼层,电设备一般放置在建筑底层。监控系统主要实现对配电设备运行参数、配电电源、每个电源蓄电池的工作状态和数据变化进行监控,同时对各楼层电设备电源运行状态进行监控,若发生故障会产生警报并记录故障数据。

1.3.2照明系统

主要功能是为智能建筑照明。其设备建设于建筑物的各个平面上,方便实现各角度全方位照明。照明监控分为室内和室外两部分,室外照明分为公共照明部分,通过监控可根据室外照度值设定开关时间,也可通过更改程序实现不同照明灯具的启动时间。室内照明监控可通过监控数据,采用总线控制方式,设定程序对不同场景开启不同的照度。

1.3.3冷热源系统

为智能建筑供给冷源和热源,其噪音较大,设备一般置于建筑底层地下室内。通过对冷热源系统运行数据和冷热源供给量的监控和分析,可通过程序控制实现不同季节冷热源供给量和供给时间。

1.3.4空调系统

保障智能建筑的环境温度处于适宜状态,空调设备一般置于各楼层高处位置,地下室也可以配置。控制子系统主要对空调机组、风机盘管的工作参数和运行状态进行监测,并通过监测数据进行分析,控制和设定主机房的温度、湿度和运行时间。同时监测子系统还具备空调漏水监视功能,可有效实现对空调系统的漏水监测和控制。

1.3.5给排水系统

既能为智能建筑提供水源,又能排除建筑产生的污水,排水设备一般置于建筑物的地下室或建筑顶层,也可设置在楼宇夹层位置。监控系统可监控水泵的工作状态,并对水池的液位随时检测,当设备出现故障或者水池液位异常时,子监控系统就会向中央控制器发出报警信号,并将故障数据记录反馈,自动显示故障发生区域和故障详细情况。1.3.6电梯系统是为高层建筑提供上下交通的便利系统,设备一般置于建筑的垂直竖井内。电梯监控子系统主要实现对电梯设备运行状态,监视电梯启动、停止、方向等,动态显示出电梯实时状况,一旦发生故障,监控系统会对电梯设备电动机、电磁制动器等进行检测,自动报警并显示故障地点、状态、时间等信息,并将故障记录记忆并反馈给中央控制器。

2建筑设备自动化控制系统设计要素

2.1各监控子系统控制功能参数明细

将上文中所述设备监控子系统功能要求进行统计和汇总,确认各子系统监控点的分布位置和分布数量,将子系统的监控点设置类型、数量、相关设备、安装需求、使用地点等详细列出,并备份保留。依据各子监控系统技术和系统设备实际特点,以系统高效性、可靠性、实用性为前提,以满足子系统功能需求为标准,以建筑设备自动控制系统设计的节能环保为核心,以建筑设备维护保养便捷性和低成本性为主要指标,详细将设备子系统的各种功能参数、控制参数、技术参数列出并进行归档,为日后整体系统搭建安装提供依据。

2.2监控系统控制器、传感器和执行器的确定

按照监控系统被控设备的控制标准和监控点数量,结合安装现场实际情况,对现场控制点进行设置和筛选,设计出被控设备安装现场控制器控制区域内部的监控点分布图,并根据实际要求确定选择现场控制器。除了现场控制器,还要确定现场传感器和执行器使用标准,传感器和执行器是对被监控设备现场数据进行现场数据采集的基本组成部分,传感器可监测设备状态和数据变化,执行器对此进行分析和反馈,可以说两者在自动监控系统中属于核心构件。根据系统设备特性,对关键设备要采用高精度和高可靠性的智能型传感器和执行器,以提高整个自动化系统的控制质量。非关键设备上可以采用传统传感器和执行器,如此可减少成本,降低整个系统造价。

2.3建筑设备监控系统

网络构建智能建筑设备自动化监控系统整体网络构建如上图2所示,建筑设备LON现场总线设备自动化控制系统是现实意义上实现了分布式监控。此系统不同类型的控制器节点都具备高智能化特性和网络通讯能力。由于控制器各节点具备通讯能力,能够使节点与节点之间实现相互通讯功能,构成完整的通讯网络。系统中的控制机构和管理机构可以通过总线现场连接为一个整体,彼此之间可以相互协作,共同完成自动化监控任务,两者可实现控制数据和信息的共享。

2.4建筑设备监控系统硬件支持

智能建筑自动化监控系统构建必须有硬件支持,在硬件方面,主要选用以下器件:中央监控器(计算机,监控系统的核心部分,处理子系统反馈的综合数据下达控制指令);监控显示屏(将监控图像实时显示,便于观察和分析故障状况);键盘(更改程序或设定程序,典型的输入设备);鼠标(输入设备);不间断电源(为监控中央系统和子系统供电,保障监控系统不间断运行,保证整体系统的可靠性);网络路由器(中继器、桥接器、配置型路由器等联合使用,实现网络分布);控制总线(无屏蔽双绞线、控制总线LON);控制节点(视具体情况而定)。

2.5建筑设备自动化监控系统软件支持

建筑设备自动化中央监控器软件功能具备操作级别和身份识别管理功能。软件系统采用8位通行字进行鉴别和管理,对操作人员实现权限设置,只允许有权限操作人员在一定范围内进行数据浏览,并对访问者身份信息、访问时间、访问内容进行识别和记录,且具备交互式菜单,为操作人员提供清晰的数据目录,节省操作时间,便于高效作业;中央控制系统设计还具备逻辑格式数据显示功能,可描述短语、数值、单位等数据,对不正常数据报警显示;具有高效数据分离终端,控制特定数据在特定端口运行,只允许一个操作人员或打印机进行处理;具备特殊指令操作功能,响应命令,逻辑显示并进行标识。

控制系统设计论文篇(8)

2、系统硬件设计

PAS200冗余控制系统中控制器硬件由电源卡件、控制器卡件、通信卡件、底座等4部分组成。其中,控制器卡件架构如图2所示,其采用AMDGeodeLXProcessor高性能、低功耗嵌入式专用处理器,主频500MHz,在板包含DMA控制器、中断控制器、定时器、实时时钟、256MDDR内存。外部接口有2个串口、3个10/100M自适应网口。其设计充分考虑了恶劣环境下的应用,采取了多种措施,确保系统在各种应用环境中均能稳定、可靠、高效的运行。它采用工业级器件,高智能布线系统,运用防静电及抗干扰电路,尽可能的降低了功耗,提高了可靠性及宽温操作能力。

3、控制器冗余

3.1主从冗余分配

PAS200冗余控制系统中的冗余控制器包括一个主控制器和一个从控制器。主从控制器角色的分配按控制器冗余上电启动两种可能出现的情况进行。一种是两个系统同时上电;在上电后,两个系统将通过同步通道发送信息来相互检测。在一个可配置的时间内一个系统检测到另一个系统,另一个系统回复并且在各自的日期和IEC程序的有效性的基础上,两个系统将协商他们的角色(主或从)。协商首先是根据操作站的联机信息进行主从分配,失败之后再根据自定义条件进行分配。如果必要会建立一个从主系统到从系统的IEC程序同步。然后,两个系统将运行此IEC程序。另一种是一个系统正在运行且另一个系统上电,此情况出现在一个系统掉电并重启的时候。当前,一个系统运行在独立模式且另一个系统上电。已经在运行中的系统成为主系统,上电系统将与主系统程序同步并成为从系统。主系统将在两个任务执行间隙短暂停止,与从系统同步数据。然后,两个系统都执行IEC程序同步。

3.2主从冗余实时通道

PAS200冗余控制系统中的两个控制器都基于Linux+RTAI+RTnet软件平台运行实时系统,并且通过一个实时同步通道同步。实时同步通道基于RTnet实时以太网实现。RTnet是一个基于RTAI的实时网络子系统,其利用标准以太网的硬件设备,支持常用的网络接口控制芯片组,实现了时间确定性的UDP/IP、ICMP和ARP协议,为实时系统的开发提供了一个稳定、实时性高的软件开发平台。这样,通过RTAI及其之上的RTnet就构建了一个实时通道在主从进行数据传输。两个完全相同的控制器并行运行,假设一个系统出现故障,那么另一个系统可以接管,接管使得两个系统紧密的同步在一起。另一个通信通道用于同步实时系统间的时钟源,使两个系统上的调度程序可以选择相同的任务来运行。

3.3主从冗余同步

冗余控制器同步按内容主要划分为任务同步、IEC程序同步、数据同步、时钟同步、RS485通信同步几大部分。其中,任务同步是由主系统的调度程序开始,任务号和全局变量数据发送到从系统;从系统响应一条回复信息;当一个任务完成后,第二个任务同步开始执行。而在RS485通信同步点主系统和从系统都需等待他们的触发信息,此触发信息来自在达到同步点后的主系统。当从系统达到RS485通信同步点后,如果不能收到来自主系统的同步信息,从系统将检测系统状态是否发生变化,如果系统状态未发生变化则报错。当主系统达到RS485通信同步点后,如果不能收到来自从系统的同步信息,主系统记录错误并正常通信。

4、RS485通信冗余

控制器通信扩展卡上有两路RS485通信,系统启动阶段通过诊断获取两路RS485通信状态。如果主控制器上两路RS485均能正常通信。主控制器则选择其中一路RS485作为通信链路,另一路RS485作为诊断链路;从控制器两路RS485都进行监听。如果主控制器上一路RS485能正常通信,另一路RS485不能正常通信。主控制器以能正常通信的那路RS485作为通信链路;从控制器两路RS485都进行监听。如果主控制器上两路RS485均不能正常通信,且从控制器上RS485能正常通信,则主从控制器进行切换。运行阶段,如果主控制器两路RS485通信正常工作,从控制器两路RS485通信就监听。如果主控制器通信链路失败且另一路诊断成功,则切换诊断为通信链路。如果主控制器通信链路失败,另一路诊断失败,且从控制器监听成功,则主从切换。

控制系统设计论文篇(9)

2基于AT89C51单片机的水温控制系统设计

2.1系统设计

基于AT89C51单片机的水温控制系统采用了当前应用广泛的AT89C51单片机,以AT89C51单片机做为核心部件,以汇编语言对其进行编程控制其它辅助系统,用PID算法来控制PWD波的产生,进而实现系统温度的控制。

2.2硬件设计

基于单片机水温控制系统硬件主要由单片机基本系统、温度传感器、电炉、继电器、显示电路、报警电路、键盘等组成。

(1)单片机基本系统。单片机基本系统采用了AT89C51芯片,它由基本供电电路、时钟电路和复位电路组成。键盘、显示电路、报警电路将信号输入到单片机基本系统当中,单片机基本系统根据温度传感器采集到的数据,进行数据分析与处理,得到相应的控制信号,由控制信号驱动继电器工作,从而达到控制电炉工作的结果,最终达到控制温度的目标。

(2)温度传感器。温度传感器的作用是对水温进行温度的检测,并实时将数据传送至单片机基本系统,以供其进行数据分析。

(3)继电器。继电器的作用是控制电炉工作,它通过接收单片机基本系统的控制信号,实现对于电炉的控制。

(4)电炉。电炉是用来实现对水加热的功能,由继电器根据控制信号对其进行控制。

(5)键盘。本设计采用61板自带按键,不需要另外连接硬件即可使用。

(6)显示电路。由六个八段数据管以及数码管的驱动电路组成,前三段用于显示控制温度,后三段用于显示实际测量温度。

(7)报警电路。报警系统是出于电炉的安全考虑进行设计的。温度传感器获得数据传递给单片机基本系统,单片机基本系统分析数据后,当水温过高或过低,即达到预设最大值与最小值时,单片机驱动报警电路,实现报警功能。以上各组件与单片机芯片引脚连接方式为:温度传感器输入端连接到P3.1口,按键接在P3.1、P3.2、P3.3,分别控制设定温度的十位、个位和小数位,单片机的输出控制信号由P3.5输出;实际水温显示的字型码是由P0口送出,十位、个位和小数位分别由P1.0、P1.1、P1.2选通;设定温度显示的字型码是由P2口送出,十位、个位和小数位分别由P1.3、P1.4、P1.5选通。

2.3软件设计

(1)主程序设计:系统采用汇编语言进行编程,由主程序进行控制。即由主程序调用子程序。其功能主要对传感器采集的数据送入单片机定单元,然后一方面进行在LED显示,另一部分与设定值进行比较,通过PID算法得到控制量并经由单片机输出去控制电动调节阀进行水温调节。

(2)子程序设计:主要由显示子程序、键盘中断子程序、进制转换子程序、温控子程序、报警子程序等组成。显示子程序用于显示实际温度和设定温度;键盘中断子程序用于对系统进行设定控制;进制转换子程序用于把采集的温度信号换算为对应的温度值;温控子程序把采集的实际温度与设定温度值比较,调用PID算法,输出控制信号;报警子程序用于控制非法输入温度值。3.4温度控制系统的数学模型温度控制系统可采用采用比例积分调节器来校正,按照一定采样周期采集r(k)和F(k),其偏差值为e(k)=r(k)-F(k)(1)根据偏差值来计算输出u(k),其对应差分方程为:u(k)=u(k-1)+a0e(k)-a1e(k-1)(2)其中:a0=Kp(1+T/T1)a1=Kpe(k)=(rk)-F(k)

控制系统设计论文篇(10)

引言

随着微电子工业的迅速发展,单片机控制的智能型控制器广泛应用于电子产品中,为了使学生对单片机控制的智能型控制器有较深的了解。经过综合分析选择了由单片机控制的智能型液位控制器作为研究项目,通过训练充分激发学生分析问题、解决问题和综合应用所学知识的潜能。另外,液位控制在高层小区水塔水位控制,污水处理设备和有毒,腐蚀性液体液位控制中也被广泛应用。通过对模型的设计可很好的延伸到具体应用案例中。

一、系统设计方案比较说明

对于液位进行控制的方式有很多,而应用较多的主要有2种,一种是简单的机械式控制装置控制,一种是复杂的控制器控制方式。两种方式的实现如下:

(1)简单的机械式控制方式。其常用形式有浮标式、电极式等,这种控制形式的优点是结构简单,成本低廉。存在问题是精度不高,不能进行数值显示,另外很容易引起误动作,且只能单独控制,与计算机进行通信较难实现。

(2)复杂控制器控制方式。这种控制方式是通过安装在水泵出口管道上的压力传感器,把出口压力变成标准工业电信号的模拟信号,经过前置放大、多路切换、AD变换成数字信号传送到单片机,经单片机运算和给定参量的比较,进行PID运算,得出调节参量;经由DA变换给调压变频调速装置输入给定端,控制其输出电压变化,来调节电机转速,以达到控制水箱液位的目的。

针对上述2种控制方式,以及设计需达到的性能要求,这里选择第二种控制方式,同时考虑到成本需要把PID控制去掉。最终形成的方案是,利用单片机为控制核心,设计一个对供水箱水位进行监控的系统。根据监控对象的特征,要求实时检测水箱的液位高度,并与开始预设定值做比较,由单片机控制固态继电器的开断进行液位的调整,最终达到液位的预设定值。检测值若高于上限设定值时,要求报警,断开继电器,控制水泵停止上水;检测值若低于下限设定值,要求报警,开启继电器,控制水泵开始上水。现场实时显示测量值,从而实现对水箱液位的监控。

二、工作原理

基于单片机实现的液位控制器是以AT89C51芯片为核心,由键盘、数码显示、AD转换、传感器,电源和控制部分等组成。

工作过程如下:水箱(水塔)液位发生变化时,引起连接在水箱(水塔)底部的软管管内的空气气压变化,气压传感器在接收到软管内的空气气压信号后,即把变化量转化成电压信号;该信号经过运算放大电路放大后变成幅度为0~5V标准信号,送入AD转换器,AD转换器把模拟信号变成数字信号量,由单片机进行实时数据采集,并进行处理,根据设定要求控制输出,同时数码管显示液位高度。通过键盘设置液位高、低和限定值以及强制报警值。该系统控制器特点是直观地显示水位高度,可任意控制水位高度。

三、硬件设计

液位控制器的硬件主要包括由单片机、传感器(带变送器)、键盘电路、数码显示电路、AD转换器和输出控制电路等。

3.1单片机

单片机采用由Atmel公司生产的双列40脚AT89C51芯片。

3.2传感器

传感器使用SY一9411L—D型变送器,它内部含有1个压力传感器和相应的放大电路。压力传感器是美国SM公司生产的555—2型OEM压阻式压力传感器,其有全温度补偿及标定(O~70℃),传感器经过特殊加工处理,用坚固的耐高温塑料外壳封装。在水箱底部安装1根直径为5mm的软管,一端安装在水箱底部;另一端与传感器连接。水箱水位高度发生变化时,引起软管内气压变化,然后传感器把气压转换成电压信号,输送到AD转换器。

3.3键盘电路

P1口作为键盘接口,连接一个4×4键盘。

3.4液位显示电路

液位显示采用数码管动态显示,范围从0~999(单位可自定),选择的数码管是7段共阴极连接,型号是LDSl8820。在这里使用到了74LS373,它是一个8位的D触发器,在单片机系统中经常使用,可以作地址数据总线扩展的锁存器,也可以作为普通的LED的驱动器件,由于单独使用HEF4511B七段译码驱动显示器来完成数码管的驱动显示,因此74LS373在这里只用作扩展的缓冲。

3.5AD转换电路及控制输出

AD转换电路在控制器中起主导作用,用它将传感器输出的模拟电压信号转换成单片机能处理的数字量。该控制器采用CMOS工艺制造的逐步逼近式8位AD转换器芯片ADC0809。在使用时可选择中断、查询和延时等待3种方式编制AD转换程序。控制输出主要有上下限状态显示、超限报警。另外在设计过程中预留了串行口,供进一步开发使用。

四、软件设计

4.1键盘程序

由于键盘采用的是4×4结构,因此可使用的键有16个,根据需要分别定义各键,0~9号为数字键,10~15号分别是确定键、修改键、移位键、加减键、取消键和复位键。

值得注意的是,在用汇编语言编写控制器程序时,相对会比较麻烦,如果用C语言编写程序会简单很多,这里就不再做具体说明。

五、结束语

基于单片机实现液位控制器模型设计的关键在于硬件电路的正确构建,只有在电路准确的前提下再进行软件编程才能取得成功。

参考文献:

控制系统设计论文篇(11)

2、Dupline现场总线系统

该工程中用Dupline现场总线系统采集皮带机保护信号送入选煤厂PLC控制系统,使用Dupline现场总线系统可降低选煤厂建设总投资,据统计,当选煤厂内带式输送机累计长度超过270m时,使用Dupline总线系统作为皮带保护的总投资将小于将保护信号直接送入PLC的总投资。该厂主厂房生产控制系统皮带机累计长度560m,需用跑偏开关26对、拉绳开关19个、失速开关7个和堵溜槽开关7个。Dupline现场总线系统由四种基本元件组成:网关模块、输入模块、输出模块和两芯电缆。在主厂房控制系统中网关模块型号为:G38910020,网关模块负责将Dupline数据转换成Profibus-DP现场总线协议,反之亦然。网关模块为PLC和Dupline现场总线网关之间的自动数据传输提供了一种标准化方法,每个网关可带数字量点数为128个,但距离长达几公里时其所带数字量点数要适当减少。本厂所用数字量输入模块型号为G50101106和G50102206,跑偏开关和失速开关内装2206数字量输入模块,拉绳开关和堵溜槽开关内装1106数字量输入模块,1106模块和2206模块的区别在于1106为1通道,2206为2通道,这两种数字量输入模块都可以通过Dupline网络直接供电,无需再拉电源线。Dupline系统所用总线电缆为:RVVSP2×1.5型屏蔽双绞线,所有Dupline数字量输入模块通过同一条两芯电缆与Dupline网关模块相连接,通过编码工具为每个数字量输入模块设置唯一的地址编码。主厂房生产控制系统中用到G38910020型网关模块1块、数字量输入模块G50101106型和G50102206型分别为26块和33块、测试工具1套、编码工具1套和配套总线电缆。

3、现场施工过程中的问题

3.1厂家配套电控箱的安装问题

电控箱包括阀门控制箱、压滤机电控柜、电子皮带秤、除铁器控制箱等,这些电控箱由电气施工单位安装还是配套厂家安装的问题。在技术协议中,厂家不负责设备安装,只负责现场安装技术指导;这部分的安装费及附加耗材无法在电气图纸中体现,导致电气厂家和电气施工单位都不愿意做这部分工作。解决方法:在技术协议中要求配套厂家配齐成套设备所需电缆,并负责设备现场安装与调试,另外,机制专业在画设备安装图时应体现设备配套电控柜。