欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

地下通道设计大全11篇

时间:2023-06-13 16:07:29

地下通道设计

地下通道设计篇(1)

关键词:钢筋混凝土;地下通道;结构设计

市政道路工程及高速公路工程建设中,通常会遇到地下通道的结构形式,一般会采用钢筋混凝土设计的箱涵形式。国内的这类设计标准主要有《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)、《公路桥涵设计通用规范》(JTG D60-2004)等,但是民用建筑规范对地下钢筋混凝土通道的机构设计没有做具体的有关设计规定。本文以工程案例,对地下钢筋混凝土通道的结构设计进行了分析。

一、工程概况

该工程的地下通道位于高铁附近的地下车库北侧。这个通道作为连接地下车库与地面商城的必经枢纽,它全部长度为八十八米,通道内净宽为十一米,净高为六米,呈矩形箱涵形式,并且其顶板需覆土三百五十厘米。地下车库主体、出地面U形槽与地下通道之间,需要设立变形缝,缝宽设定为三十毫米。

二、工程场地地质情况

经过对工程实际地质的勘察以及相关地质资料的显示,该工程的地下通道的箱涵处于粉质粘土中,通道箱涵底部土层的地质为粉质粘土和全风化钙泥质粉砂岩的混合土质。工程场地地下水为孔隙潜水,里面含有素填土与粉质黏土,地质透水性能比较差,抗浮设计地下水稳定水位为地面以下一米。

三、地下钢筋混凝土通道结构截面尺寸的设定

(一)通道顶板厚度的设定

对于地下钢筋混凝土通道顶板厚度的设定,一般把它设置为整个通道净跨径的十二分之一到十分之一之间,本工程通道的净跨径为十一米,那么我们的顶板宽度可以取为八百八十毫米。

(二)通道底板厚度的设定

地下钢筋混凝土通道底板厚度通常取为通道净跨径的十分之一左右,根据本工程的通道净跨径,我们可以设置顶板厚度为一千一百毫米。

(三)通道侧墙厚度的设定

地下钢筋混凝土通道的侧墙厚度通常为地板的十分之七到十分之八之间,需要综合考虑,以方便通道工程施工。本工程通道侧墙厚度可以定为八百毫米。

(四)通道加腋构造的设定

如果地下通道的跨度在六米以内时,工程的主体结构框架可以做成等截面,若地下通道跨度在六米以上时,需要在板的端部加腋,所加腋的高度一般是侧墙厚度的五分之二到一倍之间,斜面与水平线成二十度至四十五度的夹角,本工程的加腋结构可以采用三百毫米的高度和六百毫米的宽度。

四、地下钢筋混凝土通道的主要荷载作用分析

地下钢筋混凝土通道的荷载作用分析准确与否将影响到建筑工程整体的安全性。地下钢筋混凝土通道的主要荷载作用可以分为三种:可变作用、永久作用和偶然作用。来往车辆荷载、车辆荷载所引起的侧压力和人群荷载都属于可变作用。永久作用一般指土地本身存在的土地重力、水压力、结构重力以及土侧压力等。偶然作用一般是无法控制的,随时可能会发生对土地有荷载的作用,比如地震的作用、汽车撞击作用等。

(一)地下钢筋混凝土通道的结构重力

地下钢筋混凝土通道的结构重力主要指结构自重、路面面层以及附属设备等所附加的重力。结构重力有国家相关的标准计算,比如《建筑结构荷载规范》(GB50009-2001)。

(二)地下钢筋混凝土通道的土压力

土压力是指挡土墙后的填土因自重或外荷载作用对墙背产生的侧向压力。地下钢筋混凝土通道的土压力包括通道顶板所受到的垂直土压力和侧墙所受到侧面的土压力。土压力的计算是个比较复杂的问题,需要具体分析它的各个压力的相互作用,按照《土力学与基础工程》等可以计算相关的水平侧面土压力和竖向垂直土压力。水平侧面土压力的计算公式为: ,竖向垂直土压力的计算公式为: 。公式中, 为土地的重力密度, 为截面到路面顶的高度, 为土的侧压力系数。

(三)地下钢筋混凝土通道的水压力

地下钢筋混凝土通道的土压力可以依照静水的压力来计算。水压力的计算公式为: ,公式中 为土质中水的重力密度, 为截面到路面顶的高度。

(四))地下钢筋混凝土通道的汽车荷载

地下钢筋混凝土通道的汽车荷载指汽车轮胎直接压在地下通道结构上,对通道的顶板及其以上表面产生竖向的压力。如果通道顶板上面所覆盖的土面厚度比较大,那么由地面汽车荷载到通道的竖向压力会比较小,通道顶板上面所覆盖的土面有足够的厚度,就能分散来自汽车荷载足够的压力,汽车荷载可以按照均匀分析荷载来考虑,可以根据荷载简化计算公式计算,文中工程中覆土为三百五十厘米,汽车荷载在顶板的等效均匀荷载可以取值为十一千牛每平方米。

(五)地下钢筋混凝土通道的汽车荷载所引起的侧墙压力

地下钢筋混凝土通道的汽车荷载所引起的侧墙压力计算时,可以将汽车均匀荷载当成地表以上对应的土的重量来计算。汽车荷载所引起的侧墙压力的计算公式为: ,公式中 为汽车均匀分布的荷载, 为土地重力密度, 为土的侧压力系数。

五、地下钢筋混凝土通道的结构计算模型分析

地下钢筋混凝土通道的结构计算模型分析可以充分把现代计算机应用进来。地下通道箱涵我们可以简化为放置在半无限弹性体地基上的板式框架结构。依照假设的模型结构来全面分析和计算工程的受力情况。一般情况下,地下通道箱涵的纵向尺寸要比横截面的尺寸大很多,所以沿着箱涵纵向取单位长度一米箱带,把箱涵结构连同与结构相连的地基结合考虑,依照荷载-结构方法对内力进行分析。在有限元计算的时候,顶板、底板和侧墙作为面截面中的壳单元输入到计算模型。考虑到地基土和底板的共同作用,在底板的底面施加节点弹簧,此时地基反力不需要再输入计算模型。

六、地下钢筋混凝土通道的计算结果分析

地下通道设计篇(2)

1工程概况

本地下通道工程位于某厂区内的熔铸车间与挤压车间之间,北起熔铸车间内部,依次穿越现有厂区道路及厂区内部铁路,南接入挤压车间内。总长度约125m,采用一组箱形双孔连续框架通道。净宽为4.3m+4.3m,净高为5.565m。框架通道的底板标高相同,并在底板以上路面标高以下采用回填处理。本工程采用通常的凹形纵剖面,详见下图1。因要求施工地下通道过铁路段时,不得中断铁路运行,因此考虑过铁路段的地下通道框架(约10m长)采用顶进法施工。

2场地工程地质条件

根据岩土工程勘察报告,本工程拟建场地面积大部分为原煤矿堆矸石山,虽经平整,但由于人工填矸、填土、取土等因素影响,使该场区沟坑凹凸不平,地势起伏较大,场地东部为农田,地形简单,地势平坦。地面标高48.72~44.46m。

3顶进结构设计

在顶进地下通道施工前,应做好工程降水,在此基础上做好基坑、顶力、滑板、后背及隔离层、预制箱体的结构设计,以及施工便梁加固线路设计、便梁支墩的结构选型等。

3.1基坑的设计

预制和顶进地下通道的工作场地称为基坑,基坑前端应紧靠穿越的既有铁路,后端需布置后背,坑内设有底板和排水设施。地下通道顶进工作能否顺利进行与基坑布置是否合理有很大关系。基坑的设置应在确保铁路行车安全和顶进施工质量的前提下,力求减少加固支撑材料,降低成本消耗。根据工程中线路情况,在保证排水和安全的前提下,选择了在铁路线北侧留出基坑,同时根据地下通道的长度、宽度在底板和后背间留出了3m的位置布置顶进设备,并在通道两侧预留了2m左右的工作宽度;在通道箱体前端预留了安装钢刃角和箱体空顶的位置。

3.2顶力计算[1]

地下通道顶进时需克服的各种阻力之和称为顶力,顶力的大小与通道箱体的重量、隔离层的力学性能、路基土质、施工机械与设备等因素都有关系。正确地确定顶力的大小,结合施工单位的设备条件对如何选用合适的顶进设备及进行后背设计,使其既简单合理又有一定的安全储备来说极为重要。当在铁路上采用便梁架空再顶进通道箱体时,两侧的土压力较小,顶力主要来自箱体底部土体的摩阻力,计算时可按简化公式:P=μN,式中:P为顶力,kN;μ为顶力系数,一般取1.0~1.5;N为通道箱体重力,kN。

根据上式计算,得出顶力大小约在12000~17000kN之间,再根据得出的顶力,考虑到施工单位的设备条件及需保证顶力均匀、局部压力满足要求等条件,笔者考虑采用起顶力为200t千斤顶,按5根/m的配置。经顶力曲线分析,当通道箱体启动时顶力较大,而后的空顶阶段,其顶力减小,但当刃角入土后顶力逐渐增加,最大顶力发生在通道箱体脱离底板时。因此在设计中,笔者考虑通过采用改善滑道的平整度、优化隔离层等措施来减小启动顶力。

3.3后背、滑板及隔离层的结构设计

后背位于基坑后部,是顶进施工时千斤顶的承力面,承受顶进时的水力。后背虽然是临时构筑物,但对顶进施工十分重要,应根据顶力的大小、地形地貌、土质等条件来选定,必须保证安全可靠。本工程中,根据现场情况,采用了钢轨桩加夯填后背的形式,来保证顶进后背具有足够的刚度及足够的承载力和稳定性[2]。

滑板的设置也应满足预制的通道箱体所需的强度和刚度,以及顶进时的稳定要求。笔者采用了300mm厚的C20混凝土滑板,并在滑板下设置了100mm厚的碎石垫层,为提高滑板的抗滑能力,保证通道箱体在顶进时不会被带走,还在锚板以下设置了400x500的混凝土锚梁。

3.4施工便梁加固线路

地下通道顶进施工中,为保证铁路线路安全,必须对铁路线路进行加固。铁路加固形式可分为:(1)吊轨、扣轨梁加固;(2)纵挑横抬加固;(3)低高度便梁加固等三种方案。根据铁路线路、通道长度等因素,采用了D24的低高度便梁加固铁路线路,同时限制列车速度为45km/h。

4 施工注意事项

采用顶进法施工地下通道时,还需注意以下几点:(1)铁路相关管线的防护或拆建未完成之前,不允许顶进框架开工;(2)铁路路基附近有很多电缆,施工时要注意;(3)基坑开挖后应作平整处理,并采取必要的排水措施;(4)施工中应合理控制箱身裂纹,防止箱体出现“扎头”现象;(5)本通道框架钢筋较复杂,在施工时必须严格按照有关施工规范及标准办理。

5结 语

随着社会的发展和科技进步,为适应既有铁路提速要求,沟通铁路两边道路交通,在铁路线路下采用顶进法施工地下通道已经被广泛使用。实践证明,在既有铁路线路下采用顶进法施工地下通道对交通干扰小,结构轻巧,可以确保铁路不间断运行,满足生产生活的要求。

地下通道设计篇(3)

对于层数少、空间构成较为单一的地下车站,由于光线差、方向感差、通风不良、内部空间局促,中庭空间可以作为一个中心开放的“核心”来改善空间的性质,使建筑空间具有流动性。在中庭上方设自然采光更能提供地下空间与自然环境沟通的条件。中庭空间在民用建筑中广泛应用,地下中庭车站在国外已大量推行,而我国轨道交通地下车站应用实例尚少。本文结合上海市轨道交通7号线龙阳路站、11号线隆德路车站的工程实例,浅析中庭地下车站的构成因素、受控因素、设置条件等。

1轨道交通地下站中庭的构成因素

中庭式地下车站的主要构成因素:

1)具有贯通站台、站厅的共享空间。

2)站厅公共厅要有适当的集散场所。

3)通常屏蔽门立柱与车站立柱相结合。

4)辅以必要的环境设计、引入自然光线(或模拟自然光线)。

2国内外中庭式地下车站工程实例

将地铁中庭车站和自然采光结合的设计理念已在世界很多大城市轨道交通建筑中大量体现。Www.133229.COM有的工程在人流所经之处不仅设置动态水流,环绕植物,而且顶部开设采光棚,将自然光引入地下,使人在地下能与自然亲密接触,成为建筑空间设计的核心。

新加坡东北线地铁所有车站均采用中庭建筑形式,创造良好的地下空间感和通视效果,如克拉码头站船形中庭(见图1),小印度站的条形中庭(见图2),乘客在进站后即可直视站台列车及候车情况。

目前在国内不少城市正在尝试着把中庭的设计理念运用到地下车站的建筑空间设计中。

3中庭式地下车站设计实例

3.1上海市轨道交通7号线龙阳路站

上海市轨道交通7号线龙阳路站位于芳甸路东侧、花木路南侧的上海新国际博览中心停车场内,站本体公共区位于其交通集散广场下,为7号线终点站。这是上海市第一个已完成设计工作的地下中庭车站,并已开工建设。

车站形式为地下二层站前折返岛式车站。车站长度为354.8m,宽18.6m,整个地下空间呈长条形。在基于对乘客的乘车行为调研和分析的基础上,将站厅层中部乘客极少停留和穿越区域的部分楼板取消,形成两层挑空的共享空间,即形成公共区为两个长45m、36m,宽8m的双拼中庭空间。站立于中庭,不仅站厅层的乘客可以看清站台层的候车情况和列车进出站的情况,而且站台层的乘客也可享受到宽敞、明亮的候车区大空间。

这个设计理念经过几轮专家讨论,又进行了一些修改及优化。

1)立柱与屏蔽门结合设置,如图3所示。

2)车站公共区设中庭后,集散区面积减小,考虑新国际博览中心的突发客流,故需妥善处理客流组织与疏散,设计时加大非付费区面积,并预留两部楼梯。

3)根据中庭车站性能化分析报告,增设一部疏散楼梯。龙阳路站的条状中庭主要特点是具有较强的方向性和廊式组合的特征,是建筑中的主要交通流线和视觉中心,条状贯穿了整个建筑,竖向的楼梯、电梯和横跨的楼板,使空间形成垂直与水平、静与动的强烈对比,是一个颇有活力的公共交通集散中心。

由于国家《地铁设计规范》及上海市《城市轨道交通设计规范》中均未涉及中庭车站的要求,龙阳路站在中庭车站防排烟系统设计中首次在上海进行了创新设计。确保车站中庭火灾时,有效地对车站进行烟控,维持一个可接受的乘客疏散逃生的环境。2005年6月13日,由上海市消防协会组织了上海轨道交通7号线《龙阳路车站中庭及车站轨道火灾及疏散分析研究报告》消防专题专家论证会,中庭设计的方案得以通过评审,为车站的建设提供设计和消防审批依据。

3.2上海市轨道交通11号线隆德路站

1)工程概况:轨道交通11号线在普陀区曹杨路、隆德路交叉口,东侧地块内设隆德路站,与规划中沿隆德路走向的规划轨道交通13号线形成“十”字换乘。有很大的换乘客流,11号线为零覆土地下三层岛式车站,13号线为覆土3m的地下三层岛式车站。

车站设计着重处理好轨道交通之间的换乘并充分考虑换乘方便性和安全性,尽可能缩短换乘距离。

2)中庭设计:“引入自然环境、设置中庭”是设计的原则。

(1)采光天棚。一般中庭常设在交通的主要流线上或附近,从而避免形成毫无生机的死空间。因此设计在两线交汇区域设椭圆形中庭形成共享空间,并在顶板上设采光天棚引入自然环境。采光棚的设计要求地面有相对宽阔的场地,与地面部分规划绿地,结合设置,相得益彰。

透光顶棚的形式只是中庭设计的一部分,重要的是对中庭的光线质量和气候控制的技术问题。自然光线照入中庭,常受地下建筑所在地的气候影响。要考虑天空经常阴云多雨的某些地区,一个清澈使光线不受阻碍的顶棚,可以达到光线传递的最佳照度和适宜度;而阳光灿烂的某些地区,由于进入中庭的直射光太刺眼,而阴影区相对太暗,这必须采取适当的技术手段对光线进行处理,以求得较为舒适的光照条件。

采光天棚大大改善了车站内部环境,为乘客提供舒适的候车环境(见图4)。

(2)圆壳玻璃屋顶。这一几何特征为外部广场提供了一个凝聚而又多向性的核心,为建筑物及建筑外部环境带来了完整的、向心的、富有魅力的景观。在室内,为矩形的平面布局中营造了一个圆形的、高大宽阔的空间,解决了地下建筑缺乏天然光线、不良心理反应等功能方面的弊病。

4 结语

轨道交通地下站中庭建筑设计按其空间构成因素,应考虑以下要求。

1)空间的轮廓清晰明确,空间的尺度、比例适宜,具备整体感。

地下通道设计篇(4)

关键词城市地下通道构件最大内力值临时支柱梁与立柱 设计与施工

中图分类号:TU984 文献标识码:A 文章编号:

1工程概况

随着城市化进程的不断深入,长沙市的交通设施得到了显著改善,而城市的地下通道是未来交通设施发展的主要方向之一。而在城市中心修建地下通道,可以避免工程施工与地面交通的相互影响。本工程位于长沙市坡子街青和购物中心位置,是青和购物中心A、B栋建筑坡子街地下连通工程。本工程开工前,本工程两端的A、B栋建筑地下部份负一层、负二层已完成。根据现场实际情况,本工程需从两端利用A、B栋负一层、负二层空间及A、B栋基坑护壁剩余空间进行相向暗挖施工。施工时工程地表坡子街路面需保证人通行功能,不能破坏现有的路面及设施。

本工程为主要街道路面地下建筑物,地下管线纵横交错,水文、地质条件复杂。涉及政府多个职能管理部门的社会关系,施工环境复杂。施工场地有限,开挖断面比较大,埋深比较浅。施工工期相当紧,工程难度大,场地狭小,施工干扰多等是本工程的特点。

2 通道的开挖及初期支护施工

本工程为A、B两栋商场AL、BA-BF轴线地下一、二层连通通道。平均宽22.2米、长67米、高6.5-8.5米范围内的土方开挖、立柱、临时支护及拆除、钢筋、混凝土等一系列工程。

2.1总体施工方法及原则

本工程因环境原因不能进行大开挖施工,根据浅埋工程施工特点,采用“PBB”法(即柱、梁、梁法)施工。由于工期及场地的限制,采用南、北两翼同时施工的方式。施工时考虑通道围岩自稳时间较短等特点,围岩开挖采用CRD法分段施工,使每部开挖的循环时间缩短,保证施工安全。每一段的超前注浆施工做完后再进行开挖施工,整个断面分2台阶2步开挖,每步之间拉开4-5m的距离,每步小断面采用留核心土方法施工,超前不稳定地段进行注浆封闭。

初期支护应有足够的刚度,在支护过程中,以喷砼为主,锚杆为辅。喷砼采用湿喷法施工,临时支护施工必须与开挖进度环环相连,对暂时不挖土体进行15cm素喷砼支护尽可能不留临空面太多时间。锚杆采用抗浮锚杆,高压泵压浆法(注浆压力0.3MPa,浆液配合比1:0.45)。

2.2施工要点

①严格遵循“管超前、严注浆、短进尺、强支护、紧封闭、勤量测、早反馈”的原则。通过减少对围岩的扰动,保持围岩的本身强度和稳定性。

②采用超前小导管,管棚加固围岩,以保护开挖面和洞顶围岩的稳定,防止围岩松动。

③初期支护后,应及时进行拱背后回填注浆,填充空洞,减少地层和地表沉降,控制初期支护的变形,同时无堵地下水。

④完善通道内的排水措施、遵循“防、排堵、截相结合,因地制宜,综合治理”的原则。

3 临时工程设计与施工

3.1. 结构概述

长沙坡子街地下通道地下穿越距离16.8 m,上覆土最大堆集厚度约3m,通道顶部路面为步行街,禁止车辆通行。

3.2. 荷载汇集计算

根据资料及现场实验数据得知,顶板上荷载对可以采用土与混凝土的平均值,即,恒载标准值为 ,而活荷载标准值:。

3.3. 管棚尺寸验算

本隧道暗挖施工时,拟采用的公称直径为80 mm的镀锌钢管为管棚,单根外直径=88.5 mm,内直径=80.5 mm, 管棚内钢支撑的间距为L=0.8 m,管棚之间的间距为20 cm。直接作用在单根钢管上的荷载为,

根据管棚在两榀钢支撑中的工作状况,可以近似地将钢支撑中的管棚简化为简支梁进行计算。由此可得最大挠度为

,通过计算,可以满足施工要求。

3.4. 临时支撑钢拱架尺寸验算

本隧道暗挖施工时,内支撑为18#工字钢,根据临时支护的形式,其在隧道内的受力形式也可以简化为简支梁进行计算。通过计算,可以满足施工要求。

3.5. 临时支柱与梁的计算

因临时立柱,临时冠梁等在地下通道中的受力与其所处的位置存在很大关系,如采用简化计算的方法则有可能造成材料浪费,或偏于不安全。基于以上情况,为了准确地计算临时结构在通道中的受力状况,在本次计算中采用电算方法进行,计算模型如图1所示。为消除长度方向边界效应的影响,模型为三跨长度建模,取中间一跨计算结果进行设计。

计算结果如图2、图3、图4所示,从中可以看出,中间临时支柱为轴心受压构件,而两边立柱则为偏心受压构件;横向与纵向的是梁和边梁既受弯有受剪。提取各部分构件的最大内力如下表所示:

表1 地下通道各构件最大内力值

图1 整体模型离散图2 整体轴力分布

图3 整体弯矩分布 图4 整体剪力分布

3.6施工措施

①表土层开挖:采用人工、斗车施工,施工前首先进行测量放样出桩顶高程及冠梁范围。南北两侧翼同时施作。

②区域内立柱:场采用人工挖机,红砖护壁,根据设计要求桩径安装桩身模板和柱模板后,井筒内绑扎钢筋笼,混凝土使用商品,溜桶下料,插入或振捣。

③施工防水:施工缝防水采用橡胶止水带止水,上层顶部防水在临时支护喷砼与现浇砼间加铺土工布,底部防水亦采用土工布铺设在垫层之上防水。

④当负一层顶板现浇完后进行回填灌浆,灌浆孔预埋Φ40钢管,管网间距为3000×3000mm。其它回填灌浆采用高压注浆泵注压,注浆压力控制0.3MPa,水泥浆自制配合比为1:0.45。

⑤临时立柱拆除,采用人工凿除施工。

4通道施工注意事项

①施工前应对地下管线及地面设施作充分调查核实,尤其对影响地道埋深和出口布置的控制管线,应逐一核实其类型、埋深、位置、尺寸。对施工过程中需迁改、加固保护的管线。

②如通道施工开挖遇到富水砂层地段,可采取预注浆加固地层措施封堵地下水,不宜采取抽排降水措施,以控制地面沉降。

③衬砌混凝土施工要做到捣固密实,防止出现蜂窝麻面,并特别注意变形缝、施工缝的施工质量,衬砌混凝土的质量是结构防水体系的基础。

5结语

综上所述,在现实工程设计与施工中,虽然地下通道的投资比较高,也有很多不确定因素在影响,特别是地质条件较复杂地区,但地下通道对城市景观的影响较小,随着交通的日益发达,地上的交通流量越来越大,地下通道将是未来的发展方向。城市地下通道工程因其条件、周边环境等因素的影响,具有自身的鲜明特点。因此,在地下通道的设计与施工过程中,应着重关注以下几点:

1 收集地下资料和进行既有结构的检测,通过计算结构形式以及受力特点之后,并在施工过程中不断验证。

2通道工程周边复杂,场地狭窄,需根据承载、变形控制、周边管线及构筑物的实际情况等要求选择适宜的施工方法,支护形式。

3立柱与楼板结合部等结合部位的设计与施工需足够重视。可根据计算分析结果,通过植筋并设置施工缝或变形缝来完成连接,并做好防水构造。

参考文献:

[1] JTGD70-2004,公路隧道设计规范[S].

[2] 建筑地基基础设计规范[S].中国建筑工业出版社。

地下通道设计篇(5)

一、引言

随着城市建设的发展,地铁下穿既有地下通道的工程愈来愈多。为防止盾构在掘进过程中,造成既有地下通道区内土体下沉、道床沉降,危及行车安全。穿越节点处采取推进前对既有地下通道线路预加固和对地下通道影响范围内的隧道采用加强配筋的超深埋管片。同时在盾构推进时实行信息化动态施工,及时调整盾构掘进参数,保持盾构开挖面的稳定,管片脱出盾尾时及时采用同步注浆、二次注浆来填充盾尾建筑空隙,以保工程和地下通道行车安全。以杭州轨道交通5号线打铁关站~宝善桥站区间盾构下穿环城北路地下通道进行计算分析,证明以上措施可达到预期目标。

二、工程概况

打铁关站~宝善桥站区间位于下城区,区间采用盾构法施工,设置两座联络通道,其中一座联络通道兼泵站,在建国北路与环城北路交叉口处下穿该地下通道,形成立体交叉。

区间于YDK26+490~YDK26+530段下穿环城北路地下通道,下穿角度约70°,该处地铁区间埋深约25.8m,环城北路地下通道2015年10月通车,其北线为明挖区间,底板厚800mm,距离5号线盾构区净距约18m,南线为直径11.2m、600mm厚管片大盾构区间,距离5号线盾构区间约2.1m。为防止通道沉降(特别是南线盾构隧道),环城北路地下通道盾构隧道下方土体采用Φ800@600高压旋喷桩进行加固,加固范围为:地铁盾构隧道纵向约22m,环向不小于3m。按照目前工筹,盾构掘进期间该通道已运营。

三、工程地质及水文概况

区间段线路穿越了不同时代的地层,根据勘探孔揭露的地层结构、各岩土层分别按岩土层代号自上而下描述:①1杂填土、①2素填土、③2砂质粉土、③3砂|粉土夹粉砂、③4砂质粉土夹淤泥质粉质粘土、③5砂质粉土、③6粉砂夹砂质粉土、③7砂质粉土夹淤泥质粉质粘土、④1淤泥质粉质粘土、④2淤泥质粉质粘土⑥1淤泥质粉质粘土、⑥2淤泥质粉质粘土夹粉砂、⑦1粉质粘土、⑧2粉质粘土、⑨1粉质粘土、⑨2含砂粉质粘土、⑨3砾砂、⑩2粉质粘土夹粉砂,该段盾构底部位于⑥2淤泥质粉质粘土夹粉砂中。

场地浅层地下水属孔隙性潜水,由大气降水径流补给以及河水的侧向补给,排泄主要通过蒸发形式。由于场地地势较低,地下水与地表水水力联系较强,地下水位高程受降雨及内河水位涨落影响较大。潜水水量较大,地下水位随季节变化。水位埋深一般为1.00~4.50m,高程3.70~5.26m。

四、数值计算分析

在分析新建地下工程对既有地下结构安全性影响的过程中,目前常用的方法主要还是利用数值分析软件(如迈达斯GTS、ABAQUS、FLAC3D、ANSYS等),通过建立数值仿真模型进行计算分析从而判断新建地下工程是否会对既有结构的正常运营造成威胁。

4.1 控制标准

由于盾构下穿大盾构工程案例较少,结合《城市轨道交通监测规范》及杭州、上海及宁波等软土地区其他工程经验。盾构下穿环城北路地下通道,其结构沉降及水平位移分别为10mm和5mm。

4.2 计算模型建立

用迈达斯GTS对区间下穿在建通道进行分析。数值模型水平长120m,向下延伸60m,径向延伸70m。计算模型采用摩尔库伦模型,地下通道结构及地铁盾构管片采用板单元、土体采用实体单元进行模拟。地层参数参照《杭州地铁5号线岩土工程详勘报告》并加以合理概化。

通过数值模拟分析,杭州地铁5号线盾构下穿环城北路地下通道引起该通道最大沉降为:南线大盾构3.61mm,北线明挖区间:4.05mm;最大水平位移为:南线大盾构4.82mm,北线明挖区间:1.71mm;变形量较小,故可判定5号线盾构区间下穿环城北路地下通道施工处于安全可控状态。

五、安全保护方案及应急预案

通过以上分析,杭州地铁5号线区间盾构下穿环城北路地下通道施工安全可控,但考虑到地铁及大型地下交通工程社会影响巨大,不容有任何意外发生,因此需制定安全保护方案及应急预案。

5.1安全保护方案

保护措施主要包括以下措施:

a)地层损失率控制在5‰以内。

b)利用盾构推进的初始100m长度作为试验段,掌握盾构掘进参数与地层位移间的规律,进行智能化施工;

c)根据隧道覆土厚度、地面附加荷载等情况,结合模拟段施工时总结的最佳参数,确定最佳的穿越通道的盾构机土压平衡值;

d) 盾构推进过程速度保持稳定,确保盾构均衡、匀速地穿越,减少盾构推进对土体造成的扰动。

e) 在盾构机穿地下通道时,将出土量控制在理论出土值的99.5%左右,保证盾构切口上方土体能有微量的隆起(不超过1mm),以便抵消一部分土体的后期沉降量;

5.2监测方案

穿越前(30m)、穿越中(40m)及穿越后(30m)过程中,应加强地面沉降及变形的监测。以地铁盾构下穿处为中心在环城北路地下通道两侧各30m范围内布设自动监测断面,对地层做变形量测。盾构通过期间,每10min提供一组监测数据。为保证既有地下通道的行车安全和正常运营,在盾构穿越铁路期间,必须对既有线路实施全天24小时的监控。

1)监测项目

(1)对地铁盾构隧道的监测包项目括隧道拱顶沉降和管片衬砌变形等。

(2)对地下通道的监测项目包括通道结构沉降、上浮、水平位移、裂缝观测及地表沉降等。

2)监测要求

(1)地面沉降监测点需布置纵向(沿轴线)剖面监测点和横剖面监测点,取每隔5 ~6.5米在沿轴线方向布置一个测点。

(2)监测横剖面:每隔10~15m布置一个横剖面,在横剖面上从盾构轴线由中心向两侧由近到远,按测点间距为2m;布设的范围为盾构外径的2~3倍,即线路左右各12 ~18m范围。

(3)对于轨面的监测,在每根轨道上沿轨道方向每3m设一个观测点,测点用红油漆标记,并统一编号。

(4)监测频率:盾构掘进时,地面监测频率为1次/2h,监测范围为机头前10m和后20m。

5.3施工应急措施

在施工掘进过程当地下通道的沉降及变形较大时,主要采取以下应急措施:

1)隧道内应急措施:立即停止盾构掘进,并保持土仓压力,有效控制地表继续沉降。

2)对已拼装成形的盾构隧道,在沉降区内进行管片背后补注浆,在此期间提高监测的频率,及时绘制变形曲线图,以便根据变形发展情况采取相应措施。

3)施工时还应准备好足够的抢险物资及设备,如发泡聚氨脂、盾尾油脂等,并成立行之有效的应急机构。

六、结论

经过上述分析计算,通道最大沉降约4.82mm,满足通道保护标准;同时盾构自身竖向变形及水平收敛也满足规范要求。因此,该工程方案可行,安全可控。但是考虑到地铁和大盾构都是重要市政工程一旦出现问题后果不堪设想,故建议施工采取保护措施。

参考文献:

[1] 施仲衡,张弥等.地下铁道设计与施工[M].西安:陕西科学技术出版社,2006.

[2] 中铁隧道勘测设计院有限公司.杭州市5号线打铁关站~宝善桥站区间施工图设计杭州,2015

地下通道设计篇(6)

中图分类号:U231+.3 文献标识码:A 文章编号:

1、地铁综合接地设计

为满足地铁供电、通信、信号等设备系统的工作接地及安全接地要求,防止可能发生的触电事故,地铁一般设置综合接地系统。与地面工程接地系统相比,地铁综合接地系统要兼顾防止地铁直流牵引供电系统产生的杂散电流向道床和地下结构泄漏。整个接地系统包括全线所有车站的共用接地装置和区间跟随所接地装置等。各车站及区间跟随所的接地装置通过敷设在区间隧道的镀锌接地扁钢及电缆的金属铠装层进行连接,从而使整个地铁线构成一套完整的综合接地网。地铁综合接地设计应满足以下功能要求:

保护运营人员及乘客安全,防止电击。

满足沿线因接触导线和馈电线断线可能搭触到设备的安全接地要求。

满足变电所设备工作接地与安全接地要求。

满足各类通信、信号、计算机等弱电设备的工作接地和安全接地要求。

满足车站其它设备工作接地和安全接地要求。

满足接触网系统工作接地和车辆基地防雷接地要求。

车站共用接地装置由接地网及用来连接强弱电设备及金属管线、架构和接地网的接地线构成。接地网由多个垂直接地体和水平连接导体构成,通过接地引出线连接到强、弱电接地母排,并通过强、弱电接地母排连接至车站系统机房接地端子箱。接地网设计要结合各车站的具体结构形式,其工频接地电阻应不大于1Ω,跨步电压与接触电势应满足安全标准。

2、沈阳地铁九号线首批开工段4站综合接地设计

2.1、沈阳地铁九号线工程概况

沈阳地铁九号线是近期沈阳地铁建设规划中“两L”线中的一条重要线路。本工程近期实施范围为线路起点至建筑大学站,线路全长28.996km,均为地下线,共设23座车站,平均站间距约1.282km。首批开工的四个车站分别为吉力湖街站、汪河路站、曹仲站和沈苏西路站。

2.2、首批开工段4站综合接地系统设计中出现的问题

根据首批开工段岩土工程勘察报告,这4个车站在人工接地体设置位置的土壤电阻率见下表。

表14站土壤电阻率情况

依据上表中数据,结合车站结构形式,对4个车站接地网的接地电阻进行了核算,计算公式如下:

式中 ——任意形状边缘闭合接地网的接地电阻,Ω;

——等值(即等面积、等水平接地极总长度)方形接地网的接地电阻,Ω;

S——接地网的总面积,m²;

d——水平接地极的直径或等效直径,m;

h——水平接地极的埋设深度,m;

L0——接地网的外缘边线总长度,m;

L——水平接地极的总长度,m;

ρ——土壤电阻率,Ω·m。

经计算,当仅采用人工接地体做车站的综合接地装置且不采取其他措施(如使用降阻剂)时,汪河路站、沈苏西路站接地装置的工频接地电阻理论计算值分别为0.57Ω和0.9Ω,能满足设计要求。而吉力湖街站、曹仲站综合接地装置的工频接地电阻的理论计算值不满足不大于1Ω的要求,需采取降低接地电阻措施。

2.3、降低接地电阻的措施及优缺点分析

减小接地电阻的措施主要有以下几种,下面分别对其优缺点及适用情况进行分析:

(1)增大接地网面积

在接地网埋设深度及土壤电阻率固定的情况下,接地网的工频接地电阻主要取决于接地网的有效面积,有效面积越大,其工频接地电阻值就越小。在地铁工程中,由于受地下工程结构外部条件的限制多采用外引式接地装置,将外引式接地装置埋设在车站结构范围以外土壤电阻率较低的地下。此方法降低接地电阻的效果比较明显,但对工程造价的影响较大。

(2)深打垂直接地极

地铁车站的接地网是由水平接地极和垂直接地极组成的立体接地网。流过大地的电流在均匀电阻率的土壤中呈半球形等位面扩散,深打垂直接地极可充分利用电流在垂直方向的扩散分量,将较大的电流引入大地的深层,同时增大了接地体与土壤的有效接触面积。

(3)换土和使用降阻剂

当接地电阻达不到要求时,可对接地网埋设区域局部换土或使用降阻剂。置换土一般采用电阻率较低的土壤,如粘土、黑土等。降阻剂常见的有化学和物理两大类,其表面有活性剂,能够使接地体与土壤紧密接触,形成足够大的电流流通面。换土和使用降阻剂对降低接地电阻的效果比较明显,但一般来看流失都比较严重,时效性相对较差,且降阻剂一般对接地体都有较强的腐蚀性。地铁为百年工程,工程建成后一般没有条件对地下车站接地系统进行置换。

(4)利用自然接地体

目前国内的城市轨道交通工程中,有些综合接地系统的接地网在采用人工接地体的同时也利用了自然接地体。此方法适用于土壤电阻率较大的环境中,用于减小接地网的工频接地电阻,投资小,效果较明显。利用自然接地体又有两种做法,其一是将车站综合接地装置直接与车站主体结构钢筋进行电气连接,使整个车站成为一个等电位的“法拉第笼”。其二是利用结构围护桩钢筋,按一定的距离将结构围护桩内的钢筋用镀锌扁钢进行焊接,连成一圈接地体,而后将车站底板下埋设的人工接地体与这圈接地体进行电气连接。

2.4、沈阳地铁已开通线路的综合接地设计情况

沈阳地铁既有一、二号线车站接地装置设计均未采取降阻剂的措施,也未利用自然接地体,仅利用了人工接地体。接地装置与车站结构钢筋绝缘。

2.5、设计方案

通过上述分析,考虑九号线综合接地设计方案尽量与既有线路方案一致,对吉力湖街站和曹仲站采用利用结构围护桩钢筋降低工频接地电阻的方案,同时以深打垂直接地极的方法做为实测电阻率仍不满足要求时的补救措施。连接结构围护桩钢筋的做法见图1和图2。

图1 利用镀锌扁钢连接围护桩钢筋示意图

图2 利用镀锌扁钢连接围护桩钢筋剖面图

如图所示,连接结构围护桩钢筋后,相当于将车站底板下埋设的人工接地体与结构围护桩主筋及连接主筋的扁钢构成的接地体进行了并联。人工接地体采用的是材质为T2紫铜的扁铜排,考虑到不同金属材质之间的电离反应,在焊接时要求采用热熔焊,且搭接长度不小于100mm。我们对连接结构围护桩钢筋后的接地网接地电阻进行了核算,计算公式如下:

式中R——接地装置的计算电阻,Ω;

——单根钢筋体的接地电阻,Ω;

——结构围护桩钢筋的总电阻,Ω;

K——钢筋体的形状系数;

L——单根钢筋体的长度,m;

n——做为接地体的结构围护桩钢筋的根数,根;

——结构围护桩钢筋之间的屏蔽系数。

根据核算,吉力湖街站及曹仲站采用利用结构围护桩钢筋降低工频接地电阻的方案后,综合接地装置工频接地电阻分别为0.56Ω和0.57Ω,均能满足不大于1Ω的要求。

3、结束语

沈阳地铁九号线工程吉力湖街站和曹仲站最终采用利用结构围护桩钢筋降低接地电阻的设计方案。对后续设计的车站,在设计综合接地方案前应对综合接地装置的接地电阻进行核算,若不能满足不大于1Ω要求,则也应进一步考虑采用其他措施。

综合接地系统是城市轨道交通长期、安全、可靠运行的重要保障。因各地的地质条件差异很大,故选择接地装置的设计方案应因地制宜,以满足功能要求为前提,适当考虑工程实施的可行性和经济因素。

参考文献

[1] 《地铁设计规范》GB 50157-2003 北京:中国计划出版社,2003

[2] 《民用建筑电气设计规范》JGJ 16-2008 北京:中国建筑工业出版社,2008

地下通道设计篇(7)

地铁工程项目的施工与普通工程的施工完全不同,其施工难度非常大,并且还要求施工单位在对地下结构施工过程中加强其防水方面的设计。过去,施工单位为了保证施工现场的干燥与整洁,一般会将防水材料应用在其中,使其实现防水的效果。但是经过长期实践证明,这一方法并没有解决实质问题,加大了其施工难度,无法提高地铁工程的防水效果。因此我们必须要对该方法进行改造,选用一种科学合理的防水混凝土设计方案,提高其防水性能,避免其出现裂缝,提高工程的施工质量。

1 地下结构防水设计的基本原则

在对地铁工程施工过程中,施工人员应当遵循“以防为主、刚柔结合、多道防线、因地制宜、综合治理”等基本原则对地下结构进行防水设计,要求将防水混凝土材料应用在其中,从而使其具有抗裂能力与防渗性能,从而延长工程的使用寿命。

2 混凝土结构出现裂缝的具体原因

2.1结构变形

结构变形是导致混凝土结构出现变形的重要原因之一,是由于混凝土在凝固阶段受到环境影响导致其出现干缩而导致的。在混凝土凝固阶段,混凝土内部的水分快速蒸发,如果技术人员没有对其进行洒水养护,那么混凝土内部就会产生一定的拉应力,当这一拉应力超过混凝土的抗拉强度时,混凝土表面便会出现裂缝,导致结构在使用过程中出现渗水情况,降低了整个结构的防水性能。

2.2混凝土的实际强度偏高

在混凝土结构施工过程中,若其实际强度等级超过了规定中混凝土的强度等级,同样也会影响到混凝土的防水性能。根据长期实践证明,混凝土的强度越大、抗渗标号越高,那么混凝土在施工过程中更容易出现裂缝。很多施工人员在实际施工中,往往会将C30、P8的混凝土应用在其中,从其表面上看,其指标都达到了规定的要求,但是其防水性能却达不到要求,这是由于施工人员只注重混凝土的强度与抗渗性能而忽略了抗裂性能而导致的。由此可以看出,施工人员在选用防水混凝土材料的过程中,不仅要重视其强度与抗渗能力,还应当重视其抗裂性能。通过长期实践证明,如果施工人员选用的混凝土材料的实际强度过高,那么就会导致混凝土表面出现具有规律性的裂缝。

2.3水泥用量以及坍落度没有得到合理的控制

2.3.1水泥用量

众所周知,施工人员在对混凝土进行配制的过程中,水泥的用量直接影响到混凝土的强度,如果水泥用量过多,那么其强度也就越高,出现裂缝的概率也就越高。因此在实际工作中,为了避免混凝土出现裂缝,施工人员应当在混凝土中掺入适量的粉煤灰,减少水泥的用量,这样也就可以避免其出现裂缝。

2.3.2混凝土坍落度的控制

一般来说,在对工程进行实际施工过程中,为了方便工程施工,施工人员一般会提高混凝土的坍落度,但是这同样也会导致混凝土出现裂缝,导致整个结构出现渗水等不良现象。因此在实际工作中,施工人员应当在确保施工简便的基础上尽量降低混凝土的坍落度,从而避免裂缝的发生,提高其施工质量。

3 防水混凝土设计及控裂措施

3.1 防水混凝土设计要求

1)严格控制主体结构的实际强度。在满足抗渗和耐久性要求的前提下,尽可能选用中低强度的混凝土,主体结构防水混凝土的设计标号不得超过C35、P8。

2) 钢筋布置遵循细而密的原则。地下结构设计时,迎水面结构纵向分布钢筋的间距宜小于150 mm,钢筋直径不大于14 mm,且宜配置在竖向受力筋的外侧。

3)优化配合比设计。选用低水化热水泥,水泥比表面积必须小于350 m2/kg,尽量降低胶凝材料总用量和水泥的用量,但胶凝材料最少用量不宜小于320kg/m3,水泥用量不应大于280 kg/m3,水胶比不得大于0.45。选用优质粉煤灰(Ⅱ级以上),且尽量提高其掺量,粉煤灰占胶凝材料比例应控制在20%~30%。

4)严格控制混凝土的坍落度,明确混凝土的坍落度控制在120 mm 以内。

5) 内衬墙结构适量掺加纤维。由于一般的纤维(如聚丙烯纤维)变形模量低,所以在混凝土中应掺入合成纤维。混凝土受力后,合成纤维能承受较大的变形而使混凝土裂而不断,从而提高结构的延性比。

3.2 防水混凝土控裂措施

由于结构抗裂是地铁工程质量的关键,为确保每一个施工环节的质量,在主体结构的施工中应作以下规定。

1) 主体结构施工缝间距宜控制在16~20 m 以内,底板、边墙、中板、顶板应分别灌注混凝土,严禁板与墙同时灌注混凝土。

2)严格控制混凝土的入模温度。入模温度不宜大于28 ℃,负温下施工时不宜低于12 ℃,同时入模温度以温差控制,混凝土的表面温度与大气温度的差值不得大于20 ℃,混凝土的表面温度与中心温度的差值不得大于20 ℃。

3)对采用排桩复合式结构的围护结构,其桩柱间用喷射混凝土补平,并堵漏修补,同时必须在围护结构无渗漏条件下施作内衬,以确保二次混凝土灌注质量。

4) 主体结构施工时应采取多项防止混凝土开裂的有效措施,主要有:拆模时间不宜过早;混凝土的养护要及时到位;使用混凝土养护自动水喷淋系统等。

5)混凝土按相同标号的普通商品混凝土计价,并由商品混凝土供应商提供优质、高效的混凝土输送泵,可使混凝土的坍落度大幅降低。

4 结语

防水问题是地下工程建设中面临的一大难题。防水设计涉及到防水材料、混凝土材料及配合比、施工工艺等方面的研究,需以大量的试验数据、完整的施工记录、持续的跟踪调查成果等作为支撑,需要材料供应商、设计单位、科研单位、承包商、建设单位的共同参与。■

参考文献

地下通道设计篇(8)

广州市轨道交通三号线体育西路站设于天河区体育西路路面下,与已建地铁一号线形成“+”字型的换乘节点。其功能定位是:支线与主线呈“Y”字型运营,在一定条件下应能独立运营、折返及存车。新建三号线体育西路站能缓解一号线体育西路站的交通紧张状况。 以下通过对轨道交通三号线与地铁一号线换乘节点的乘客换乘方式、途径的研究,提出几个解决方案,以期从中找出解决多线交汇的最佳换乘方式。

1换乘节点研究

平面换乘方式一般有“+”、“T”、“L”、站台同平面和通道等5种。竖向换乘方式,有站台与站台之间的上下换乘和站台与站厅之间的上下换乘2种。关键是如何合理组合和运用。

1.1客流分析 1.2换乘方式研究

1.2.1平面换乘方式的选择

在线路可行和运营功能合理的前提下,采用排除法,对五种方式的换乘进行综合分析。“T”、“L”换乘方案,换乘客流行走距离远,换乘点少,且与正常上、下车客流有冲突;通道换乘方案,换乘客流行走距离偏远,投资偏大;同平面换乘方案,由于线路路网的不可实施性,不可能采用;“+”换乘方式,因具有换乘客流分布均匀,换乘距离短,工程投资少等特点而被采用。

1.2.2竖向换乘方式研究

由于地铁一号线站厅规模偏小,也未按“+”方式预留与轨道交通三号线的连接条件,仅在车站站厅层的南侧预留接口,因此,希望通过三号线车站的修建,改善一号线站厅的局促局面,并方便各方向乘客换乘。按尽量减小对地铁一号线 影响 ,合理利用车站南侧的预留接口的思路提出四个方案进行比较。

1)方案一。上13m、下8m重叠双岛地下四层结构方案,见图1。

方案一具有以下特点:

(2)可实施性强。车站宽度小,与地下管线干扰少,便于工程实施。三号线通过一号线部分的结构处理可分步实施。

(3)结构形式新颖,车站空间感觉好。

(4)综合投资小。三号线主、支线上下重叠,虽然埋深加大,但拆迁费用、基坑开挖量都比较小。因此,其综合规模最小、总投资最省。

2)方案二。平面双8m岛结构方案,见图2。 方案二具有以下特点: (2)车站埋深浅。乘客进出车站方便、快捷,节省工程费用和运营费用。但两站台间的反向客流换乘不方便。

3)方案三。上、下12m全重叠双岛结构方案,见图3。

该方案的结构及特点基本同方案一。其换乘方式为站台与站台之间的换乘。由于结构尺寸比方案一窄1m,车站施工时占用道路较少。整个环控系统比较合理。

存在的 问题 是,根据支线客流及一号线体育西路站的现状,主线规模偏小,支线规模偏大。

4)方案四。平面双10m岛结构方案,见图4。

地下通道设计篇(9)

1 工程概况

某客运中心及综合配套系统工程是集既有火车站、城铁常州站、长途客运站(旅游巴士枢纽)、轨道交通1号线车站、公交枢纽站(含BRT支线)、社会停车场、出租车停靠站等多种交通功能以及商业、商务办公于一体的现代化大型综合交通枢纽。工程项目位于火车站北侧,东至规划道路四,南至沪宁城际铁路线,西至规划道路三,北至规划站前路。地面总建筑面积106450m2,地下总建筑面积83670m2,工程项目2009年3月开工,2010年5月竣工。

站前路、广场环路交叉口人行地道为行人过站前路的通道,站前路地下车库通道与北广场客运中心地下室车库连接。站前路地下车库通道由东、西两个车道组成,分别与站前广场北侧8-19~8-21轴及8-4~8-5轴两处车道口连接。西侧车道挖深为-9.25~-1.65m由西向东逐渐升高;东侧车道挖深为-6.40~-1.80m由东向西逐渐升高。

场地范围内基土构成除表层土为杂填土,其余主要由粘土、粉土夹粉砂及粉砂等组成。地基土自上而下可划分为五个工程地质层见表1。

2 支护设计方案

站前路与广场环路交叉口地下汽车通道支护结构的设计采用土钉墙放二级坡(1:0.5)进行支护详述如下:

1-1剖面:挖深9.35-5.99m,采用二级放坡,坡比1:0.5,平台1m。设六排土钉,从地面下分别为:1.5m处TD48*3.0L=9000@1500钢管,3.0m处TD48*3.0L=9000@1500钢管;4.5m处TD48*3.0L =8000@1500钢管;6.0m处TD48*3.0L=8000@1500钢管;7.5m处TD48*3.0L=9000@1500钢管;9.0m处TD48*3.0L=9000@1500钢管;所有土钉均水平向下15°取孔。

2-2剖面:挖深5.99-1.55m,采用一级放坡,坡比1:0.5,设四排土钉,从地面下分别为:0.9m处TD48*3.0L=6000@1500钢管,2.4m处TD48*3.0L=6000@1500钢管;3.9m处TD48*3.0L=6000@1500钢管;5.4m处TD48*3.0L=6000@1500钢管;所有土钉均水平向下15°取孔。

3-3剖面:挖深6.6-1.655m,采用一级放坡,坡比1:0.5,设四排土钉,从地面下分别为:1.5m处TD48*3.0L=7000@1500钢管,3.0m处TD48*3.0L=6000@1500钢管;4.5m处TD48*3.0L=7000@1500钢管;6.0m处TD48*3.0L=6000@1500钢管;所有土钉均水平向下15°取孔。

土钉成孔后注1:0.5的纯水泥浆,每米水泥用量为45kg。面网为1目金属网加φ8@200×200双向筋,喷射砼厚100mm,配比=水泥:黄砂:米石=1:2:2。

3 施工方案

3.1 土方开挖方案

广场环路呈“C”型,由南北两条自动扶梯斜坡道及连接坡道的地下通道组成。地下通道开挖深度9.54m,局部集水井部位落深1.2 m。开挖时先从南侧的自动扶梯开始退挖,由东向西挖至地下通道,再由南向北退挖至北侧的自动扶梯,最后由西向东退挖北侧自动扶梯斜坡道,挖机停靠在北侧自动扶梯东面收头。

开挖时,分层分段开挖。根据土钉的分布,每层土开挖深度为每道土钉以下0.5~1m,开挖一皮土后立即开始土钉支护的施工,支护施工完成后进行下一皮土开挖。挖土退至北侧自动扶梯斜坡段时,由于是由深至浅退挖,因此自动扶梯斜坡道两侧土钉需搭设脚手架施工。

3.2 土方开挖技术要求

土方开挖应在降水达到要求后进行。坡道周边留土坡度按1:05,开挖后及时做好土钉支护及喷浆。严禁超设计标高开挖。坑底应保留0.3m厚基土,采用人工挖除整平,并防止坑底土扰动。砼垫层应随挖随浇,即垫层必须在见底后24小时以内浇筑完成。待垫层混凝土达到一定强度后再进行桩头凿除和钢筋绑扎工作,以减少基坑暴露时间和墙体变位。基坑边严禁大量堆载,地面超载应控制在20kN/m2以内,并严格控制不均匀堆载。机械进出口通道应铺设路基箱扩散压力。

3.3 成孔注浆管钉墙施工方案

土方开挖沿基坑四周分层分段进行。

掏孔:现场技术员按施工图和测量控制点放样孔位,采用人工洛阳铲掏孔,孔径Ф130mm,2至3人一组送一把铲,最前一位需引导方向(水平向下15°)并随时向孔内加水,一组人员用力的大小、方向需均匀一致。每次重复切土、转变杆、拔杆、取土、浇水工作,直至达到设计深度。掏孔至中途如遇障碍,需在其旁补掏。

置放管钉:将加工好的管钉由三人抬送入孔,如遇障碍,可用空压汽锤击入。

孔内注浆:锚杆注浆分为两次,第一次为填充注浆。主要目的是以水泥浆充满钻孔和封口布袋。注浆压力一般为0.3~0.6Mpa,当注浆至封口布袋处,则需将注浆枪置于布袋中,至浆液充满布袋为止。第二次注浆为压密注浆。在第一次注浆后,在浆体强度达到5Mpa时即可进行,通常为一昼夜左右,第二次注浆压力为1.0Mpa。每次注浆完毕,应用清水通过注浆枪冲洗塑料管,直至塑料管内流出清水为止,以便下次注浆时能顺利地插入注浆枪。

喷射混凝土面层:底层钢筋网片由Ф8钢筋绑扎和焊接而成,外压横向Ф12通长钢筋。网片安装应随土方开挖进程而进行,压网筋应与注浆管钉焊接,钢筋网片并应固定在土体上。喷射混凝土采用风量不小于9m3/h,喷头水压不小于0.15Mpa的空压机进行混凝土的喷射,喷射混凝土采用C20细石混凝土,配合比:水泥:砂:细石=1:2:2;砂采用中砂,细石粒径不超过10mm。混凝土喷射厚度平均为10cm。

4 监测方案

地下通道设计篇(10)

Abstract: Taking Shenyang Shengjing Street underpass 3 as an example, introduces the city open excavation underpass waterproof design idea and construction main points of waterproof, for similar open-cut underground street passage waterproof design provides the reference example.

Key words: Open excavation underpass;Waterproof design;construction main points of waterproof

中图分类号: TU99 文献标识码:A 文章编号:2095-2104(2012)

随着我国经济的发展,城市交通愈加繁忙,有效组织人流与车流的通行是每个城市交通管理部门必须重视解决的课题。地下过街通道能有效的把人流与车流分开,增加城市道路的通行能力,确保行人过街安全,且对市容影响小。基于地下过街通道的以上优点,近年来,设置地下过街通道已经成为城市道路人流集中地段行人过街的主要选择。

工程概况

盛京大街3号地下过街通道,位于盛京大街―蒲田南一路丁字路口南侧,盛京大街道路全宽为94米。本通道下穿盛京大街,主通道净宽7.0 m,净高3.65 m,过街通道长100.7m,主通道截面形式为单口矩形框架结构;通道在盛京大街两侧各设置2个出入口,出入口净宽4.5m,,全通道共4个出入口。主体结构为现浇钢筋混凝土结构,采用明挖顺筑法施工,基坑采用放坡开挖。盛京大街3号地下过街通道平面布置见图1。

图1盛京大街3号地下过街通道平面图

结构防水设计

2.1场地水文地质

勘察期间在钻孔内测得地下水稳定水位埋深为2.0~4.5m,地下水初见水位埋深3.2~4.3。其主要补给为大气降水和区域径流。地下水随季节变化,年变幅为1.0~2.0m。根据岩土工程勘察报告,设计抗浮水位按照水位标高70.000考虑。地下过街通道主通道板顶标高为70.000。

2.2 结构防水设计原则及标准

(1)结构防水设计遵循“以防为主、防排结合、刚柔相济、多道防线、综合治理”的原则。

(2)确立钢筋混凝土结构自防水体系,即以结构自防水为根本,采取措施控制结构混凝土裂缝的开展,增加混凝土的密实性、抗渗性、抗裂性、防腐蚀性和耐久性等性能;以变形缝、施工缝(包括后浇带)等接缝防水为重点,同时在结构迎土面设置柔性全包防水层。

(3)结构采用“结构自防水+附加全包柔性防水层”的防水方案,满足一级防水标准,通道结构不允许出现渗水部位,结构表面不得有湿渍。

2.3结构防水材料

结构自防水采用C30钢筋混凝土,抗渗等级P8。

全包柔性防水层:底板和侧墙采用预铺式冷自粘防水卷材,顶板采用聚氨酯涂膜防水层。地下过街主通道防水横断面图见图2。

图2地下过街主通道防水横断面图

2.4重点部位防水设计

重点部位主要指变形缝和施工缝等特殊位置,这些部位是结构自防水的薄弱位置,也是地下水渗入结构内部的首选部位,重点部位防水设计关系到整个结构防水成败,必须给予重视。

盛京大街3号地下过街通道变形缝防水设计:侧墙和底板采用35cm宽钢边橡胶止水带+32cm宽的背贴式止水带进行防水处理。同时在侧墙结构内表面预留凹槽,设置不锈钢板接水盒。由于明挖顶板无法设置背贴式止水带,采用结构外侧变形缝内嵌缝密封的方法与侧墙背贴式止水带进行过渡连接形成封闭防水,同时在结构内表面变形缝两侧预留凹槽,设置不锈钢板接水盒。顶板、底板及侧墙的变形缝防水节点图见图3。

图3顶板、底板及侧墙变形缝防水节点图

盛京大街3号地下过街通道施工缝防水设计:迎水面结构施工缝部位均采用单条止水胶(专指遇水膨胀止水胶)并预埋注浆管的方法进行防水处理。遇水膨胀止水胶应具有一定的缓胀性能,属不定型产品,挤出后固化成型,成型后的宽度为20mm,高度为10mm,高宽误差均不大于-2mm,采用专用注胶器均匀挤出粘结在施工缝表面。注浆管采用专用扣件固定在施工缝表面结构中线上,注浆管应与施工缝表面密贴设置,任何部位不得出现空鼓,固定间距20~25cm,沿施工缝通长设置。注浆管采用搭接法进行连接,有效搭接长度不小于2cm(即出浆段的有效搭接长度)。顶板、底板及侧墙的施工缝防水节点图见图4。

图4 顶板、底板及侧墙施工缝防水节点图

结构防水施工要点

3.1聚氨酯涂膜防水层施工要点

(1)基层处理要求

1)顶板结构混凝土浇筑完毕后,用木抹子反复收水压实(采用钢抹子压光时,会造成基层表面过于光滑,降低涂膜与基层之间的粘结强度),使基层表面平整,其平整度用2m靠尺进行检查,直尺与基层的间隙不超过5mm,且只允许平缓变化。

2)基层表面的气孔、凹凸不平、蜂窝、缝隙、起砂等,应修补处理,基面必须干净、无浮浆、无水珠、不渗水;当基层上出现大于0.3mm的裂缝时,应骑缝各10cm涂刷1mm厚的聚氨酯涂膜防水加强层,然后设置聚酯布增强层,最后涂刷防水层。

3)所有阴角部位均应采用5×5cm的1:2.5水泥砂浆进行倒角处理。

(2)防水层施工顺序及方法

1)基层处理完毕并经过验收合格后,先在阴、阳角和施工缝等特殊部位涂刷防水涂膜加强层,加强层厚1mm,涂刷完防水涂膜加强层后,立即在加强层涂膜表面粘贴聚酯布增强层。严禁涂膜防水加强层表面干燥后再铺设聚酯布增强层。加强层施工完毕后开始进行大面的涂膜防水层施工,防水层采用多道(一般3~5道)涂刷,上下两道涂层涂刷方向应互相垂直。当涂膜实干后,才可进行下道涂膜施工。

2)聚氨酯涂膜防水层施工完毕并经过验收合格后,应及时施做防水层的保护层,平面保护层采用7cm厚的细石混凝土,在浇筑细石混凝土前,需在防水层上覆盖一层350号的纸胎油毡隔离层。立面防水层(如反梁的立面)采用厚度不小于6mm的聚乙烯泡沫塑料板进行保护。

3.2预铺式自粘防水卷材施工要点

(1)基层处理要求

1)所有铺设防水层的基层表面均应坚实、干净、平整。平整度应满足:D/L≤1/20,其中D为相邻两凸面间的最大深度,L为相邻两凸面间的最小距离。并不得有疏松、起砂、积水和明水流。

2)底板采用垫层混凝土自找平,局部不满足铺设要求的部位采用1:2.5的水泥砂浆进行找平处理。

3)侧墙保护墙结构表面采用水泥砂浆进行找平。

4)所有阴阳角部位均采用1:2.5水泥砂浆倒角,阴角可做成5cm×5cm的倒角。阳角可采用水泥砂浆圆顺处理,R≥30mm。

(2)防水层施工工艺

1)首先在达到设计要求的阴、阳角部位铺设加强层卷材,加强层卷材宽度为50cm。防水层采用单面粘预铺式卷材,靠近底板垫层及围护墙面一侧为非粘结面(PE面),与结构外表面密贴面为有隔离膜面(粘贴面)。

2)侧墙防水层采用机械固定法固定于围护墙表面,固定点距卷材边缘2cm处,钉距不大于50cm。钉长不得小于27mm,且配合垫片将防水层牢固地固定在基层表面,垫片直径不小于2cm,厚度不小于1.0mm;底板除阴阳角等特殊部位需要机械固定外,大面防水层可直接搭接;顶板采用专用底涂粘结。

3)相邻两幅卷材搭接宽度10cm。将钉孔部位覆盖住。要求上幅压下幅进行搭接。

4)底板防水层铺设完毕,在绑扎钢筋前,除掉卷材的隔离膜,及时施做细石混凝土保护层。侧墙防水层应采取临时保护措施确保防水层不受破坏。

5)防水层破损部位应采用同材质材料进行修补,补丁满粘在破损部位,补丁四周距破损边缘的最小距离不小于10cm。

6)卷材末端及切口处搭接,应使用专用胶带封口。混凝土应在防水层安装结束后40天内浇捣完成。

3.3止水带的施工要点

1)止水带固定在结构钢筋上的间距不得大于40cm,固定应牢固、可靠,不得出现扭曲、变形等现象。

2)底板和顶板变形缝部位的止水带应采用盆式安装,保证振捣时产生的气泡能够顺利排出,使止水带部位的混凝土与止水带之间咬合密实不透水。

3)止水带部位的混凝土应进行充分的振捣,保证变形缝部位的混凝土充分密实,这是止水带发挥止水作用的关键,应切实做好。振捣时严禁振捣棒触及止水带。采用钢边橡胶止水带的变形缝两侧各350mm范围内混凝土结构的厚度不应小于300mm,否则需要在此部位采用与结构同标号混凝土加厚处理。

4)钢边橡胶止水带的现场接头均应采用热硫化法对接。

5)止水带纵向轴线与变形缝中线应对齐,偏差不得大于30mm,止水带与变形缝表面应垂直布置,误差不得大于15度,止水带任意一侧混凝土的厚度不得小于15cm。

结束语

(1)沈阳盛京大街3号地下过街通道于2011年建成,防水设计良好,通道结构未出现渗水部位,表面无湿渍。

(2)通过对盛京大街3号地下过街通道防水设计主要思想及防水施工要点的阐述,希望对其他类似地下明挖过街通道的防水设计有参考意义。

参考文献

[1]贺少辉主编《地下工程》,清华大学出版社,北京交通大学出版社,2006年。

[2]规范《地下工程防水技术规范》(GB50108-2008)

[3]规范《水工混凝土结构设计规范》(SL/T191-96)

地下通道设计篇(11)

Abstract: in the rapid development of the city today, municipal infrastructure especially underground engineering development pipeline speed rapid, we TieXi in phase iii will be buried pipeline and pipe with public channel channel decorate, give full play to their respective advantages, more effective use of underground space.

Key words: public channel, comprehensive environment, municipal pipeline, reinforced concrete box culverts

中图分类号:TU37文献标识码:A 文章编号:

随着城市化进程的不断深入,国内城市建设高速发展,规模不断扩大,土地开发强度逐年增加,城市道路规划设计将地上空间有效分割,构成城市交通骨骼,其下部空间,为各类市政管线、地铁等市政设施提供了有利的建设条件,市政设施往往沿路而建,形成城市看不见的血脉,随着城市基础设施水平的不断提高,城市工程管线种类越来越多,城市道路下的市政管线也日益复杂。城市的地下空间已成为城市发展的重要空间资源,地下空间的合理利用成为当前城市发展的重要课题,作为地下空间的重要组成部分,地下市政设施的规划、建设和管理工作问题显得日益突出。

在当前,市政基础设施建设已成为城市建设的重要前提,建设力度,速度都在不断提高,但由于很多地区对于城市前期规划的忽视,对后期的发展速度估计不足,造成众多开发公司竞相争夺有限的地下空间资源,各类管线无序开发,给城市发展带来诸多问题,为国家浪费大量资源,也使居民生活极为不便,为解决以上问题,我们借鉴发达国家的设计成果,引入了综合管沟的设计理念。综合管沟即在地下建造集成化隧道,集电力、通讯、燃气、给水、排水、热力等各种市政管线于一体,同时设置专门的检修口、吊装口、排水设施、消防设施、通风设施和监测控制系统,将所有管网实施统一的规划、设计、建设和管理。

综合管沟的理念非常先进,具有耐久性好,节省地下空间,有利于市政管网的维护检修等等多种优势,但其自身也具有两个最大的缺点,①一次性投入大,建设费用昂贵;

②各工程管线的建设、运营分属不同部门,不明造成管沟的建设和维护费用分担,难以使各部门都达到满意。

因此,其自身特点造成综合管沟目前还难以在国内大面积成规模的展开建设。

如何更好满足城市管网快速发展的需要,更充分合理的利用城市地下空间?在鄂尔多斯市铁西三期开发片区基础设施工程中,我们的设计团队独辟蹊径,将综合管沟体积小型化,功能简单化,设计为仅满足各类市政管线横穿道路的管线公共通道,结合道路、市政管网规划设计,分别发挥直埋管线与综合管沟各自优势,更加有效的利用地下空间。

1、管线公共通道的布置

鄂尔多斯铁西项目为典型的开发片区市政基础设施工程,项目业主要求片区开发建成后,尽量避免因铺设管线而重新开挖、破坏道路,项目规划期间,我们对用地性质、各类规划指标均进行了详细的资料收集工作并加以研究分析,将给水、排水、热力、燃气、电力、通信等市政管线合理铺设及预留,但是,在社会、经济飞速发展的今天,市政管线在规划时期内可能已满足不了日常使用要求,不得不升级、增容或增量,而且随着很多新兴产业的发展,一些新型能源管线可能会投入到日常生活中,而这些管网势必要横穿道路,对原有道路造成破坏。

为避免上述状况的发生,最大限度的满足未知管线的过路需要,我们开发设计了管线公共通道,在每条道路十字交叉口的八字口外布置一个通道,如果一条道路的两个交叉口间距超过400米,则在路段中间,也布置一个通道,通道平面走向均垂直于道路方向。

2、管线公共通道的结构形式

横断面布置形式:

横断面形式参考世界范围内综合管沟的设计样本,其横断面主要有以下几种设计方式:

铁西三期项目的管沟设计,主要用途是在道路工程完工后,当有

规划以外的市政管线需要横穿道路时,为了避免道路的反复开挖破坏而修建,重力流排水管线不布置在通道内,结合其主要用途、当地施工条件,我们选择施工工艺相对简单的单室、双室矩形截面作为公共通道的设计横断面。(如图一图二)

图一

图二

根据管线公共通道横断面的设计形式,且其全地下的结构特点,我们采用类似钢筋混凝土箱涵的结构形式进行计算。

通道内部净空不小于2米,以满足检修、通行需求,整个通道采用现浇方式,结构整体性好,对地基承载力要求相对较低,底板可模拟倒屋盖式的结构形式进行计算,确定其厚度。

作用于壁板侧向的土压力标准值,可分两部分计算,地下水位以上可按朗金公式计算主动土压力,地下水位以下侧压力为主动土压力与静水压力之和。

3、管线公共通道的埋深设计

此次公共通道的埋深,确定为顶板覆土1米,根据道路边坡形式的差异,个别通道顶板覆土适当增加,1米以上的埋设深度不破坏道路本身的路面结构,结构顶板主要计算上部静土压力,对于汽车荷载已可忽略不计。

公共通道底板高程约在地面以下3.5米左右,当地地下水埋深约2.0~3.4米,因此抗浮计算完全满足设计要求。

公共通道的主要用途是在道路建成后,满足管线的穿越要求,埋设过深必将对公共通道的查找增加很大难度,因此埋设深度的确定既要考虑设计条件,又要满足使用要求,综合考虑以上因素才能确定合理的埋设深度。

4、管线公共通道的防水、防火、通风处理

防水:在沟体外壁刷1.5mm厚自闭式防水涂料或采用建筑防水措施。

防火:本工程通道最长约80米,小于常规一个防火分区,不做特别处理。

通风:本工程采用自然通风方式,公共通道两侧均设置上人孔,兼作通风孔使用,通道使用时,同时打开通风孔,使通道内空气流通,达到自然通风效果。

5、对特殊管线要求

排水管线:排水管线为重力流管线,因此尽量不进入通道。

燃气管线:燃气管线危险性较大,因此不进入通道,必须进入通道时,可视情况单独建立小室。

热力管线:热力管线应避免与电力管线同室通过,且通道内不可设置热力固定支架。

管线公共通道的作用及优势

在当代社会,城市化进程逐步加快,市政建设如火如荼,如何最大限度的避免市政基础设施被反复破坏,更加充分有效的利用有限的地下空间,节约资源是摆在每个城市开发部门和设计者面前的课题,在铁西项目中,管线公共通道与直埋管线共同布置,相辅相成,充分发挥各自优势,直埋管线造价相对较低,布置灵活,管线公共通道具备综合管沟的主要优点,不必破路就可以对市政管线进行敷设和增设。避免了路面的破坏,降低了道路的翻修费用,增加了路面的完整性和工程管线的耐久性。规避了造价高、不明等主要缺陷。由于管线公共通道内部工程管线布置紧凑合理,有效利用了道路下的空间。为城市节省下宝贵的地下空间资源,也为今后工程管线的发展扩容提供了方便。

参考文献:

[1] 公路桥涵设计通用规范JTG D60-2004