欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

航天工程技术大全11篇

时间:2023-09-20 10:39:02

航天工程技术

航天工程技术篇(1)

中图分类号:K826.16 文献标识码:A 文章编号:

前言航天系统是由航天器、航天运输系统、航天器发射设施、航天测控系统、用户设备(系统)以及其他保障设备组成的完成特定航天任务的工程系统。航天系统的特点是规模庞大、技术复杂、质量可靠性要求高、耗资大、研制周期长、社会和经济效益显著。一些典型的航天系统,如中国神舟十号飞船、美国航天飞机工程等都是现代典型的大工程系统。

如今,航天的作用已经远远超出科学技术领域,对国家和国际的政治、经济、军事与社会生活都产生广泛而深远的影响。因此,为了适应航天技术的发展,航天工程管理必须上水平,真正成为航天发展的助推剂,而不是绊脚石。

所谓工程管理,就是要确保在时间(进度)、成本(经费)、质量(性能)三项限制条件下,实现工程目标。工程管理是一种特别适用于那些重大、关系复杂、时间紧迫、资源有限的一次性任务的管理方法。工程管理水平的高低同样制约着航天发展的速度和质量。

一、国外航天工程管理发展

国外航天型号工程管理始于20世纪40年代的“网络计划技术”。例如“曼哈顿”计划,它使美国于1944年5月研制成功了世界第一颗原子弹。1957年美国海军为追赶前苏联导弹的优势而开展了“北极星”导弹计划,他们采用了PERT(计划协调技术)方法管理该工程,即以时间为基础使整个研制过程形象地显示出来,条理分明,目标明确,能集中力量搞好关键路线。同时,在研制过程中,还采用数理统计的方法和先进的计算机手段,从大量非肯定的环节中找出带有普遍性的规律,及时地修改计划,合理安排人力和物力,节省了成本、提高了研制效率,使“北极星”导弹研制计划周期缩短了20%~25%,并为航天工程管理提供了系统工程方法。20世纪70年代,兰德公司等机构又研究出网络评审技术(GERT),它在“阿波罗”计划中成功地用于分析宇宙飞船及其发展过程,取得很大成效。此后,这种“网络计划技术”被广泛应用于航空航天、核工业、电子、建筑等行业。经过50多年来的应用与研究,航天工程管理得到了长足的发展。

二、我国航天工程管理现状和特点

中国航天系统产品是指火箭,卫星,载人飞船,导弹等,也称为航天型号。该系统产品是由系统工程从需求出发,综合多种专业技术,通过分析、综合、试验和评价等反复改进而获得的。一个航天型号的研究、设计、试验、生产是一个复杂的组织管理过程,必须考虑到从概念研究到部署使用全寿命周期活动的目标和要求;必须综合利用多种学科和专业技术,包括已有和必须事先攻关的前沿技术;必须按计划组织成千上万名科研人员和管理人员在几年甚至十几年的研制过程中协同工作;必须保持在整个研制过程中技术、经费和进度等的协调进展。通过反复实践和摸索,中国航天工程得出一个结论,系统工程方法是组织管理这些航天型号系统研制工作的唯一选择。

我国航天型号研制应用工程管理方法是从20世纪60年代初开始的。华罗庚教授将这种观念在中国普及推广,称作统筹方法(现在通常称为“网络计划技术”)。然而,过去我们对工程管理的应用,仅仅是将PERT(计划协调技术)或CPM(关键线路法)技术应用到航天型号工程的研制计划制定过程中,并没有按工程的特点,建立工程组织,对型号工程实行工程管理,也没有应用工程管理的技术来计划、控制型号研制任务的进度、质量及成本。这使得我国航天型号工程任务在管理上与发达国家的航天企业有了一定差距。

在国外对系统工程讨论和实践的同时,中国航天科技工业通过研制、管理等实践同样获得了对这种系统方法的认识。从早期自主设计的型号开始,中国航天的科技和管理人员就在进行着系统工程方法的探索和研究,并总结了一套具有中国特色、符合科学规律的工作规范,为中国航天系统工程方法的发展奠定了基础。1978年钱学森在文汇报上发表的文章《组织管理的技术-系统工程》,钱学森认为,研制这样一个复杂系统所面临的问题是:“怎样把比较笼统的初始研制要求逐步地变为成千上万个研制任务参加者的具体工作,以及怎样把这些工作最终综合成为一个技术上合理、经济上合算、研制周期短、能协调运转的实际系统,并使这个系统成为它所从属的更大系统的有效组成部分。”这是对中国航天创建和发展时期系统工程实践的总结和理论上的升华。

为了适应航天系统工程的特点而形成的我国航天系统工程方法,它具有以下主要特点:

1. 建立总设计师制度和总体设计机构对航天系统进行系统设计和管理。航天系统和组成它的各大系统通常都设有总设计师和总体设计机构──总体设计部。总体设计部是按航天系统总体要求组织起来的科学家、工程师的常设集体,是工程系统的总体论证和设计机构,其基本任务是从用户任务的需求和上层的系统要求出发,在预算、进度和其他限制条件下,设计一个整体性能优化的系统。总体的系统工程工作,面对高水平的使用或技术要求,各种限制条件甚至苛刻的使用环境,参差不齐的技术基础,复杂的界面关系,利用原有的经验,发挥聪明才智,最终产生满足要求、整体性能优化的系统,实现的是整体功能优于各分系统功能之和,即“1+1〉2”。它既是航天系统研制的参与者,又是研制活动的组织管理者,是其他单位或机构所不能代替的。

2. 利用管理信息系统对航天系统进行科学的系统管理。航天管理信息系统是在50年代已有信息系统基础上发展起来的,在60年代由电子计算机管理的高度自动化的航天工程管理信息系统达到了相当完善的程度,成为一种整体化管理信息系统,同时指挥着成千上万人的活动。

3. 采用系统仿真技术对航天系统进行系统分析和评价。从航天系统的初始概念设计到系统研制和使用,不同形式的仿真得到了广泛应用,以实现事前的工程分析、可靠性分析和技术经济综合评价等。

4. 航天系统工程的质量体系和制度不断健全。中国航天系统工程始终将可靠性和安全性放在重要位置,始终坚持质量第一的方针。系统质量观念不仅局限于型号产品的质量,它是把满足国家要求和用户需求作为质量目标,将研制质量、产品质量和服务质量融为一体。经过多年的发展,在总结经验和教训的基础上,中国航天工程的系统质量观念和制度得到了不断的加强和完善,形成了一套有中国航天特色的质量管理制度和方法,有力地保障了中国航天事业的顺利发展。

现在,随着技术和管理人员知识结构的变化、现代信息技术的发展、先进管理方法的出现,在航天型号管理中,我们既要总结继承以往40多年的有效经验,又要借助现代工程管理的理论和方法,进一步完善对航天型号任务的组织和管理。这个过程中,创新意识和创新精神是必不可少的。

航天技术创新对于航天的发展至关重要,如航天工程的大型试验费用巨大,这也是在现有技术条件下,为满足工程的可靠性和安全性而必须进行的。若目前计算仿真分析技术能够突破现有的技术瓶颈,计算模拟仿真的精度足以替代各种大型试验,那么航天工程的经济成本和时间成本会大大降低,航天工程给我们带来的费效比会更大,这是显性的进步。同时,航天工程管理方法的创新和实践,同样会给航天工程的成本、质量、进度带来隐性的进步,往往隐性的进步用一些物理量或指标转换一下,其效果或结果并不低于显性的进步,国外很多案例无不印证了这一隐形成本的价值。

航天工程技术篇(2)

【关键词】人工智能;航天测控技术;应用探究;智能化

【Keywords】artificial intelligence; aerospace measurement and control technology; application inquiry; intelligent

【中图分类号】V55 【文献标志码】A 【文章编号】1673-1069(2017)05-0141-02

1 引言

人工智能在航天领域的应用具有巨大潜能。航天测控技术实际上是通过测控,实现对卫星的控制,这是一份较为复杂的工作过程。随着卫星功能的不断增多,航天测控技术要求也越来越高。虽然我国已经在航天事业方面位于先进的水平,但是航天测控设备多只是实现遥控与测控的自动化,与智能化的实现还有一段距离。因此,人工智能的应用还有待挖掘,人工智能在航天测控技术中的应用还有待研究。

2 人工智能的应用概述

近年来,我国在人工智能的研究领域也有了较大的进展,不少国内学者发表了有实用价值的研究著作。人工智能在医学诊疗方面取得了广泛的应用。随着航天器的多功能发展,智能化的转变,成为发挥航天事业多用途、系统化的决定性因素。因此,我国逐步加大了人工智能在航天测控技术中的研究,希望航天测控技术能够自动处理探测故障、自行进行飞行规划和路线设计等[1]。

3 航天测控技术中的设备应用要求

第一,卫星轨道测试及其引导系统。第二,航天侧控技术的安全控制。第三,根据航天侧控任务要求对卫星的形态进行分析,对其卫星轨道实施控制。第四,航天侧控系统要实时监测卫星内部的设备工作情况。第五,航天侧控技术要求能够对卫星上设备发生的故障,及时采取定位、排除和检修。航天的侧控应用,对设备的响应速度与可靠性都具有很高的要求,不仅要具有极强的通用性质,还要能够在规定时间内完成对相关设备的检测与通信,使设备间保持联系,保证遥测技术数据正常处理流程。对设备故障等任务提出控制指令,进而进行执行[2]。

4 人工智能在航天测控技术中的应用意义

传统的航天y控软件是通过算法结构和计算机而实现推理功能的,对于很多问题还无法提供最精确的答案和描述,数值的计算能力也不够强,有时只能定性推理。而人工智能的应用,可以提升其生存能力,包括航天器的自主检修能力、故障排除能力、定位能力等。对于航天器的轨道设计,自动化网络智能预先对故障检测的定位等设置好,用编程进行控制。随着航天测控技术要求的不断提升,传统的编程控制已经不能满足当代的应用需求,若不向智能化测控技术进行靠拢,其航天测绘中的数据与通信的可靠性与有效性都会受到不同程度的影响,导致接收到的数据不准确、不完整。因此,我国很多专家专门成立研究小组,对航天测控技术进行数据分析,分析其指令的序列、故障检修、定位等信息,将人为的管理逐渐转化为智能化管理。

用人工智能控制航天测控技术,不仅能够提升航天工作的安全系数,还能够减少航天器的使用寿命,降低人工控制费用,减少人工管理精力,具有很明显的优势。第一,人工智能能够代替测控专家进行智能化操作与工作,减少专家的脑力劳动。第二,人工智能中收藏了所有测控专业的各项经验,整合了测控技术的专业知识。第三,人工智能使航天系统离开了人操控的固定模式,提高了操作的变通性和实时性,降低了人为操控影响因素。第四,人工智能使航天机械更容易操控,提升了工作效率。第五,人工智能使航天系统的解决问题能力提升。第六,节约了航天器测控的维持状态的人力和物力,配置速度加快[3]。

5 人工智能在航天测控技术中应用的可行性

人工智能的应用过程,实际上是将人的思维活动进行机械化,使机械具有类似人工的处理问题的能力。人工智能在航天测控技术中的应用,是航天系统模仿测控专家的思维和操作,进行推理判断,使操控程序能够如同专家处理问题的规则一样,及时提供解决措施,根据我国现有条件可知,人工智能在航天测控任务中的应用是可行的。测控系统的功能有数据库和知识库。前者包含遥测数据、指令和故障信息。后者包括用户的接口、知识获取、知识表达等。通过外部输入数据,转换成系统能够识别的信息,进行格式压缩和处理,实现对航天器的控制,利用人工智能实现测控技术控制,减轻了人为负担,也能够提升航天测控能力。

6 航天测控技术任务中的智能化应用分析

我国传统的航天测控技术是采用一般算法实现自动化,该种方式具有封闭性,不利于技术的发展和扩充,故障维护方面也要采用人工方式进行解决,不适用航天事业发展。根据我国航天测控技术现状,我们首先要确定测控设备智能化系统,选择有针对性的部位,融合测控专家的思维,实现人工智能操作[3]。其次,使用智能化系统,还要将专家测控系统嵌入到设备中,再改变原本的算法与结构,使其逐渐适应航天事业的改变与发展。对于智能化测控系统中,可以确定的系统由遥测信息处理系统、通信跟踪系统、故障诊断系统、检测系统等。这些都是容易实现人工智能的部分,能够使遥测信息处理中,清楚航天器的轨道等情况。

7 人工智能在航天测控技术中的应用环境与目标

为了使人工智能在航天测控技术中具有可靠的应用,要遵循一定的应用环境和目标。在开发环境上,要选取经验丰富的建造及测控专家进行系统融合,先借助小型机进行专家智能系统开发应用,再根据需求进行专家系统开发。在目标方面,不仅要开发全面、智能化的航天测控大系统,还要在开发通讯上更加便捷,统一通讯接口,面向广大用户,逐步升级系统故障排除方案。真正实现系统在线实时工作。同时,人工智能在航天测控技术中的最终目标是将地面测控设备小型化,再将其移植到航天事业中,提升卫星的控制能力。

8 结论

人工智能在航天侧控技术中的应用与开发,有利于我国智能化的进一步发展研究,对于提升航天测控设备的可靠性具有重要意义。希望本文的研究,能为提升我国人工智能在航天测控技术中的应用水平提供借鉴。

【参考文献】

航天工程技术篇(3)

学科优势助推人才起飞

航空航天类专业主要研究飞行器的结构、性能和运动规律,培养如何把飞行器设计制造出来并送上太空的工程技术专业人才。从狭义上讲,航空航天类专业包括飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程、探测制导与控制技术等主体学科专业。然而,无论是飞机还是航天飞行器,都是综合科学技术的结晶,涉及材料、电子通讯设备、仪器仪表、遥控遥测、导航、遥感等诸方面。因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机、交通运输、质量与可靠性工程等都是航空航天技术不可或缺的学科专业。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。

航空航天类专业对同学们的要求是“厚基础、强能力,高素质、重创新”。同学们要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力,以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。

有同学认为航空航天类专业就业覆盖面窄,如果毕业后不能进入航空航天类企业,就很难找到专业对口的工作。其实不然,航空航天高科技辐射国民经济各个部门,航空航天类专业扎实的工程技术理论与实践基础平台,促成了其拓展性宽、应用性强、适用面广的专业特点。可供毕业生选择的对口职业有很多,如飞行器设计、制造人员,科研机构研究人员,国防部门研究管理人员,各级政府部门负责航空航天相关工作的研究管理人员,民航企事业单位的技术管理人员等。毕业生不仅可从事航空航天等领域的设计、制造、研发、管理等工作,还可在民航、船舶、能源、交通、信息、轻工等其他国民经济领域施展才华,像微软、IBM、贝尔、方正、海尔等知名企业都曾纷纷到航空航天院校招贤纳才。很多民用部门也都点名要航空航天类专业的毕业生,认为他们基础扎实、学以致用。

行业繁荣点燃人才需求

航空航天科技工业是知识密集和技术密集的高技术领域,航空航天技术的广泛应用影响到政治、经济、军事、科技、文化及通信、气象、能源、探测等领域,成为社会进步的强大动力。从世界范围来看,航空航天科技工业是朝阳产业,在提升国家整体科技水平和综合国力方面起着龙头的作用。

我国经济的快速发展为航空航天工业提供了广阔的发展空间。国务院公布的《国家中长期科学和技术发展规划纲要》中,关于大型飞机、高分辨率对地观测系统、载人航天工程与探月工程等航空航天领域范畴的工程便占到16个重大专项中的4项。未来我国航空航天发展将重点开发大型飞机设计与制造成套技术,载人航天实现航天员出舱进行航天器交会对接试验活动,直至实现登月计划等。2007年大飞机项目正式上马,给我国的航空业带来了空前繁荣,带活了一批航空类企业,也为航空航天类专业毕业生带来了良好的机遇。

航空航天科技工业极具发展前景,对人才的需求会持续旺盛。据统计,2011年最被看好的12类专业之航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理,航空航天飞机总体设计与研发、发动机研发与制造,零部件研发与设计,航空航天新材料研发、制造及总装技术、计量检测技术、航空航天电子电器设备设计开发、信息及测控技术,航空航天生物技术、航空适航管理、航空维修改装,以及航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。有关人士根据教育部公布的相关信息归纳出的“最出人意料的十个高就业专业”,便将航空航天类专业列入其中。

上海作为我国新支线飞机和未来大型民用飞机设计总装基地和重要的航天基地,举办了“上海航展”,展会上举行了航空航天人才大型招聘会。据航展招聘组负责人介绍,目前航空航天项目需要大量人才,仅空客A380一个项目组的技术人员需求数量就超过六千人,而我国这方面人才缺口非常大。

近年来,以航天科技,科工集团,航空一、二集团等为代表的航空航天类企事业单位生产和科研任务饱满,条件大为改善,待遇提高很快,一些单位的员工年薪可达十几万,稍差一些的单位其员工薪资待遇也可达到当地中上水平。航空航天事业的迅猛发展,无异于为年轻学子的成长搭建了理想的平台。像航天空间设计研究院、航空材料研究院等单位都炙手可热,受到重点院校毕业生的青睐。毕业生就业地域以北京、上海、西安、成都、沈阳、哈尔滨、深圳等省会及核心城市为主。

从个人长远发展来看,在航空航天类企事业单位工作,发展前景好,待遇高,成长快。随着载人飞船、探月工程、大飞机等重大项目的深入实施,必将有越来越多的青年才俊在锻炼中脱颖而出。

报考提示

我国目前开设航空航天类专业的重点院校有北京航空航天大学、南京航空航天大学、哈尔滨工业大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工程大学等。近年来,清华大学、复旦大学、上海交通大学、厦门大学等也相继设置了此类专业。开设航空航天类专业的普通院校有南昌航空工业学院、沈阳航空工业学院、郑州航空工业管理学院、中北大学、中国民航大学等。由于各个院校的发展历史、层次、实力不同,学科专业水平差异也较大,同学们应注意了解自己感兴趣的院校,根据自身实力,准确定位,合理选择。

学习航空航天类专业以及将来从事航空航天技术工作,需要具备较强的学习钻研及动手能力,要求同学们的数理化基础扎实,逻辑思维能力较强,严谨求实,乐于钻研。同学们应从实际出发,量体裁衣。

航天工程技术篇(4)

在中国载人航天工程副总设计师王忠贵看来,这些成就绝不是终点,而是中国载人航天征程的新起点。

这位1961年生于内蒙古的航天人,曾任中国载人航天工程办公室工程总体技术局副局长、局长,现任中国载人航天工程副总设计师、探月工程(二期)副总设计师。

他长期从事航天测控总体和载人航天工程总体工作,在测控通信、航天工程总体设计等领域的学术理论和工程实践方面有较深造诣,是目前我国载人航天和探月两大工程的飞控技术带头人。

2008年、2009年,王忠贵分获载人航天工程突出贡献者、探月工程突出贡献者奖章。

在伴随中国载人航天事业的18年里,他参与并见证的不仅是中国航天事业的成就,还有中国一日千里的基础制造业和信息化产业――正是整个国家的支持和发展,才造就了中国载人航天事业独一无二的发展速度。

日前,《望东方周刊》专访了王忠贵,解读中国载人航天工程的自主创新之路。

中央决策和人民支持成就载人航天

《望东方周刊》:你从事载人航天工作十余年,如何看待中国在这个领域不断取得成功的原因?

王忠贵:我1997年调入中国载人航天工程办公室,开始从事载人航天工程总体工作。这些年,先后参加和见证了从“神舟一号”到“神舟十号”的历次任务。担任交会对接任务论证组组长,组织了总体方案论证,明确了研制“天宫一号”作为目标飞行器,与“神舟八号”、“神舟九号”、“神舟十号”3艘飞船对接,突破交会对接技术的方案。通过这些年的工作,我有很多感受。

一是中央的战略决策和有力支持是工程顺利实施和取得重大成就的根本。党中央、国务院、中央军委始终关注工程进展,“三步走”战略每一步的实施和重要节点,中央都要专题听汇报、研究部署。正是中央的正确决策和有力支持,才使我们坚定信念、攻坚克难,调动各方力量,取得今天这样的成就。

二是全国人民的大力支持是工程发展的动力。载人航天工程立项后,无论是国家部委还是地方政府,无论是老科学家还是在校学生,无论国内民众还是海外侨胞,对工程都给予了极大的关心和支持。这些关心和支持是我们的强大精神动力。

三是载人航天工程队伍事业心强、勇于创新、成长快。经过22年的努力,我们攻克了一大批具有自主知识产权的核心关键技术,形成了一整套严谨科学的重大工程管理体系,突破和掌握了天地往返、出舱活动、交会对接三大载人航天关键技术,培育了载人航天精神,取得了举世瞩目的综合效益,奠定了后续发展的坚实基础。

特别可贵的是,在工程实施中,我们在战略层面抓人才队伍建设,依托重大工程培养了一支能够站在世界科技前沿、勇于开拓创新的高素质科技人才队伍,实现了航天人才队伍的新老交替。

只有立足创新才能赶超国际

《望东方周刊》:我国载人航天工程是在没有外部帮助的情况下起步发展起来的,初期在国产化方面有哪些主要困难和挑战?

王忠贵:我国载人航天工程从立项开始就立足自主创新,加强总体设计,积极推动国产化。当时面对的主要困难,一是载人航天对性能要求高,而国内基础相对薄弱;二是载人航天对可靠性要求高,而国内部分产品质量相对不稳定。

我们面对的最大挑战是设计和制造出总体性能好的飞船,为此采取了一些办法和举措。一是确定合理的工程规模、进度和指标。既有较高起点以实现后发优势,又不盲目求大、求快、求高。

二是加强总体方案优化设计和递进发展。以一型飞船为基础不断完善,完成单人单天、多人多天、空间出舱、交会对接等不同阶段的任务,每一阶段都有前一阶段打下的坚实基础。这种递进式发展保证了设计和工艺不断成熟,质量和可靠性不断增长。

三是始终突出自主创新意识。得有自己的认识,不能照搬照抄别人。只有立足国内自主创新,才能面向国际,赶超国际。

另一个最大挑战是如何保证质量和可靠性。一靠工业基础和大协作。国内材料、电子、机械、纺织等相关行业全力提供配套支持,针对我们的需求进行研制攻关,并为我们筛选性能最好最稳定的产品。例如“飞天”舱外航天服的面料,就是中国纺织工业协会组织全国多家纺织企业为工程专门研制的。

二靠工程设计。我们的飞船、火箭在关键部位采用了大量冗余设计,降低了对特定单个元器件的要求,确保了整体质量和可靠性。

三靠工程管理。载人航天的管理体系在质量和可靠性方面极其严格,狠抓质量问题归零,狠抓可靠性增长,最大限度地把问题暴露在地面、解决在起飞前。

《望东方周刊》:现在我国已是世界上仅有的三个能独立实施载人航天计划的国家之一,其中关键因素有哪些?

王忠贵:我认为,自主创新是实现我国载人航天跨越式发展的关键和根本途径。自主创新要选择合理的路径和优化的目标。我们的目标是,瞄准世界先进技术,实现整体性能优化,体现中国特色,确保工程一起步就有强劲的后发优势。

所以,在最能代表载人航天基础能力的载人飞船上,我们直接从三舱段飞船搞起。“神舟”飞船不但具备“联盟”飞船的功能,而且还有轨道舱留轨利用能力。航天员返回地面后,轨道舱还能够留在太空继续运行,完成各种空间科学试验。

这一自主创新,大大提高了“神舟”飞船的综合效益。经过十多年的发展,“神舟”飞船日趋完善,不但可以运送航天员和部分有效载荷在天地间往返,还具备了支持空间出舱和交会对接的能力,其基本设计从早期突破技术的阶段一直可以使用到空间站在轨运营甚至更长时间,这就是合理选择技术创新目标带来的好处。

自主产品经受住了考验

《望东方周刊》:前面你讲到保证产品质量和可靠性要靠工业基础和大协作。我国的工业基础为载人航天工程提供了什么样的有效支撑?

王忠贵:工业基础体现在设计和制造上,核心是国产化。在重视发展路径自主创新的同时,我们十分重视飞行产品和地面设备国产化工作。事实上,没有关键部件、元器件、大型试验设备的国产化作支撑,重大科技工程就很难谈得上自主。

在系统体系设计上,我们把提高国产化水平作为大系统设计中要考虑的重要工作。如即将建成的海南发射场,其信息化网络体系,包括服务器、工作站、路由器、磁盘阵列、操作系统、应用软件等,几千个信息节点,从顶层设计上立足国产化,完全采用国产设备和软件,在国内各主要信息厂商积极参与下,目前已进入竣工验收阶段。

在飞行产品研制上,实现特定功能的单机是飞行产品研制的重要环节,其国产化水平十分重要。在交会对接任务中,对接机构和交会对接测量敏感器是关键设备,技术复杂、难度大、可靠性要求高,是引进还是自研,起初意见各异。最后我们统一了意见,决定自主研制,因为只有突破了这两项关键技术,才能说真正突破和掌握了交会对接的关键技术。

最终,我们自主研制成功了能够在一两秒内完成几十个联动控制动作的交会对接机构,自主研制成功了满足高精度、轻质量、低功耗,适应严酷工作环境条件的交会对接测量敏感器,确保了首次无人交会对接任务的圆满成功,填补了国内空白,达到了世界先进水平。

在地面设备设施上,为了测试交会对接机构,我们建设了大型的六自由度综合试验台。当时俄罗斯专家认为,中国建这个台需要三年,而调试好需要更多时间,认为应该引进。但我们下定决心自己干,联合国内多家单位集智攻关,在设计和工艺上取得了多项创新,在较短时间内建成了被专家评价为世界水平最高的综合试验台。

在信息体系建设上,载人航天工程十几万人的研制队伍、上千家参研参试单位、遍布全球和太空的设施设备,相互联系紧密复杂,呈现出鲜明的巨系统特征,研制建设和飞行任务过程中的信息化十分重要。同时,信息技术还提供了工程设计、验证的新手段,通过模拟仿真将大量问题由后验发现改变为先验发现,加深了我们对理论和实践的认识,提高了工程的可靠性和安全性。

例如,交会对接任务中,我们和联想集团共建了载人航天总体仿真实验室,对“天宫一号”和“神舟”飞船交会对接的飞行控制,进行了大量的仿真计算和复核。联想提供的国产高性能服务器集群连续进行了长时间高密度的航天动力学计算,工作站网络也同步完成各种参数动态设置和可视化计算等工作,有效地预先验证了设计的正确性和各系统配合的协调性,确保了飞行任务圆满完成。

这些年,随着我国工业基础的快速发展,满足要求、可供选择的国产高性能产品越来越丰富,性能优势、服务优势越来越明显。自主产品已在载人航天、探月工程等各种复杂的重大工程中经受了全面考验,能够更大程度地满足航天产业需求。

载人航天必然向深空发展

《望东方周刊》:目前很多声音认为,我国也应该学习国外,通过产业化推进科技创新而支持载人航天工程这类高技术项目。你如何看待载人航天的前景和挑战?

王忠贵:据有关资料统计,全球航天产业2013年销售额已达3100亿美元,是10年前的近三倍。其中,在通信广播、地理信息、导航定位等产业方向,航天技术都是相关产业圈的核心,产业化和科技创新形成了良好的互动。

与此同时,近年来,传统的航天工业、主要是火箭和航天器制造业,还出现了马斯克这样的新参与者,从资金来源、技术思路、管理模式等方面大胆创新,已经深刻地影响到世界航天的发展和未来走向。

目前,载人航天由于门槛比较高,可靠性要求高,体现国家的综合实力,还主要是各国政府主导,同时带动整个航天领域的技术发展。

随着航天技术日趋成熟,产业化推进、科技和管理创新,一定会促进载人航天向更高、更远、更经济、更安全、更快速的方向发展。我认为,近地空间服务和应用市场,采用重复使用技术、机器人技术并部分引入一些商业化运营模式,不断降低载人航天活动的成本,已成为载人航天持续发展现实而迫切的需求和主要发展趋势。

航天工程技术篇(5)

关键词:航天育种;蔬菜;新品种;转化;成效

10年来,天水市农业局、天水神舟绿鹏农业科技有限公司与中国空间技术研究院、中国科学院遗传与发育生物学研究所合作,先后培育出航遗1号黄瓜、航豇1号、2号豇豆等20个航天蔬菜新品种[1],并逐步开展了航天育种遗传机理研究[2]和示范推广工作,取得了显著成绩。笔者分析了“航天蔬菜新品种科技成果转化”项目的实施成效,以期加快航天蔬菜新品种的示范推广步伐。

1 实施成效

航天蔬菜新品种科技成果转化项目遵循绿色农业发展理念[3],在加快航天蔬菜新品种育种进程,提高种子繁育能力,加快新品种示范推广的同时,注重绿色食品标准的研究与制订,2007-2010年,先后育成航天蔬菜新品种10个,其中:辣椒品种6个,即航椒4号、5号、6号、7号、8号、10号;茄子品种3个,即航茄2号、4号、5号;番茄品种1个,即宇航3号,这些品种均通过了甘肃省农作物新品种认定;完成了航遗1号黄瓜、航豇1号、2号豇豆、航椒1号、2号、3号辣椒及航茄4号茄子的稳产性和适应性分析研究;制定并颁布《绿色食品 航天豇豆生产技术规程》等6项甘肃省地方标准;建立和完善了甘肃张掖、陇南和山西3处标准化制种基地,航天蔬菜年制种面积达到65.4 hm2,年产种子44.5 t;先后在甘肃天水、陇南、张掖等市和新疆、内蒙、山西、陕西、北京等省市示范推广航天辣椒、航天豇(菜)豆34 919 hm2,总产航天蔬菜220万t,平均总增产量40万t,平均总增产值64 361.6万元,平均新增纯收益57 569.9万元,平均科技投资收益率8.46元/元,平均推广投资收益率1 727.10元/元,示范带动作用明显,取得了显著的经济、社会和生态效益, 实现了绿色农业示范区建设与航天育种工程技术的有机结合。

2 主要技术

2.1 认真分析研究,准确界定航天蔬菜新品种的适应性

在项目实施过程中,通过多点试验研究,应用作物时间稳产性系数(cst)、地域稳产性系数(csr)和综合稳产性系数(csc)分析方法,对航豇1号、2号豇豆、航遗1号黄瓜、航椒1号、2号、3号辣椒和航茄4号茄子等7个航天蔬菜新品种区域试验和生产试验结果进行综合分析,进一步明确了这些品种的稳产性和区域适应性,为大面积示范推广提供了理论依据。[论文网]

2.2 深入调查研究,制定切实可行的绿色食品生产技术规程

按照绿色农业发展理念,将绿色农业的先进意识、安全意识和可持续发展意识贯穿于项目实施的全过程,突出标准研究制定及其相应技术的示范推广,经过广泛调查研究和多次讨论修改,制定了《绿色食品 天水市航天豇豆生产技术规程》、《绿色食品 天水市太空菜豆生产技术规程》、《绿色食品 天水市航天辣椒日光温室秋冬茬生产技术规程》、《绿色食品 天水市航天辣椒塑料大中棚春提早生产技术规程》、《绿色食品 天水市航天辣椒日光温室冬春茬生产技术规程》、《绿色食品 天水市航天辣椒日光温室越冬一大茬生产技术规程》等6个甘肃省地方标准。

2.3 完善措施,提高航天蔬菜新品种的良种繁殖能力

针对种子繁育严重制约航天蔬菜新品种科技成果转化的实际情况,从建立和完善标准化制种基地入手,对甘肃陇南、张掖和山西3个制种基地进行了规范化管理,针对不同品种研究制定了制种技术规程,强化了对制种各个环节的监管,完善了播种、田间管理、种子采收、加工等技术,形成了种子生产、加工、包装到上市销售的较为完善的生产流程,不仅种子生产规模逐年扩大,生产能力逐年提高,而且逐步使航天蔬菜新品种示范推广步入良性循环轨道,大大加快了航天育种科技成果向现实生产力的转化。

2.4 立足生产实际,狠抓关键技术措施的落实

2.4.1 加大新品种示范推广力度

以试验示范为基础,以提高蔬菜品质为重点,结合各地气候条件,积极开展航天蔬菜新品种试验示范。以建设中国西部航天(太空)育种基地为重点,建立市级蔬菜新品种试验及展示示范基地;在主要蔬菜生产乡镇建立县区级蔬菜示范区;在主要乡镇建立示范点。通过在市、县区、乡镇3级开展新品种选育、展示、示范和辐射带动,大力促进航天蔬菜新品种的推广应用,优化了主产区蔬菜品种结构,提高了良种覆盖率。在品种布局上,依据区域试验和生产试验结果,科学确定不同品种的示范推广区域,做到种植区域与品种特性相吻合,良种与良法相配套。

2.4.2 大力推广设施栽培及配套技术

项目区围绕《绿色食品 天水市航天豇豆生产技术规程》等6项标准,积极推广多层覆盖保温技术、穴盘育苗技术、遮阳网覆盖栽培技术、避雨栽培技术、高效节水微灌技术等大棚设施配套技术,各项技术入户率达到95%以上,提升了设施农业发展水平。

(1)多层覆盖保温技术。冬季低温越冬栽培采用高保温eva膜,遵循“辐射、对流、传导”的热交换原理,应用“三棚四膜”(大棚+中棚+小拱棚+地膜)多层覆盖保温技术,把大棚内部空间分隔成若干个上下分隔的子空间,遏制棚内空气的上下对流和传导,减少热量散失,保障冬季大棚内农作物生长条件,促使茄果类和瓜类蔬菜提前上市。

(2)穴盘(营养钵)育苗技术。推广合理配制基质、精量播种和催芽、成苗等现代育苗技术,实行规范化管理,保证幼苗生长快、育苗质量高,提高种子有效利用率,降低生产成本,提高经济效益。

(3)遮阳网覆盖栽培技术。夏秋季高温干旱,利用遮阳网和微喷技术降低光照强度[4],及时补充土壤水分,降低棚内温度,营造一个较适合农作物生长的小气候环境,达到遮光降温、保水保温、预防灾害性天气的效果,促进设施蔬菜正常生长。

(4)避雨栽培技术。通过塑料大棚、遮阳网、防虫网覆盖,防止雨水冲击和强光直射,可大大减轻病虫害发生,减少农药等投入品的使用,防止裂果,增加果实色泽,外观质量得到明显提高,软腐病等细菌性病害明显减少,创造最佳的蔬菜生长环境,保证蔬菜健壮生长,达到提质增效的目的。

(5)高效节水技术。应用喷灌、滴灌技术,不仅提高灌溉质量,省工节水,而且肥水同施,减少养分流失,提高肥料利用率,对减轻高温影响和病害发生,提高蔬菜品质、实现增产增收效果十分明显。

2.4.3 认真落实安全生产技术

大力推广农药残留控制技术,提高蔬菜质量安全水平。在设施蔬菜虫害防治上,大力推广防虫网阻隔、黄板诱杀以及合理选择施用高效低毒农药等技术;在病害防治上广泛示范推

广覆盖流滴消雾型功能膜、膜下暗灌(滴灌)、使用抗病品种、营养钵培育壮苗、避雨栽培、夏季高温闷棚以及合理选择施用高效低毒农药等技术。露地蔬菜在虫害防治上应用频振式杀虫灯及合理选择施用高效低毒农药等技术;在病害防治上采用深沟高畦、滴灌、覆盖地膜、抗病品种、营养钵培育壮苗以及合理选择施用高效低毒农药等技术,大力发展绿色蔬菜,示范推广防虫网覆盖栽培等安全生产技术,从而保证了蔬菜产品质量,提高了经济效益。

2.4.4 广泛应用绿色、无公害施肥技术

通过大力推广测土配方施肥技术,积极推广控氮施肥、平衡施肥,合理增施有机肥、重施基肥、轻施追肥,尽量减少单元素肥料使用,实行有机肥与多元复合肥配合施用,推行氮肥施用安全间隔期,减少使用硝态氮肥和作物收获前追施化肥;根据不同蔬菜作物,适当补施微量元素肥料,防止蔬菜硝酸盐污染,项目田全部落实绿色、无公害施肥技术,提高肥料利用率,增加农民收入。

3 主要经验

3.1 加强管理是搞好项目工作的前提

为了加强对项目实施的组织领导,市农业局和天水神舟绿鹏农业科技有限公司通过成立项目领导小组和技术小组,形成了责任到人,各负其责,严格把关,认真实施的格局,保证了项目各项工作的顺利开展。

3.2 突出技术创新是搞好项目工作的关键

该项目将航天技术、生物技术与农业育种技术有机结合,充分应用设施栽培加代繁殖等技术选育蔬菜新品种,在技术上走在了全国前列,2007-2009年有航椒4号、5号、6号、7号、8号、10号,航茄2号、4号、5号和宇航3号番茄通过省级鉴定,成果均达到国内领先技术水平。通过对主要示范推广的航天蔬菜新品种的适应性研究,总结完善了种子繁育技术,编写了制种和生产技术规程,以标准化生产的形式,繁育航天蔬菜新品种,保证了种子质量,提高了种子产量,为示范推广创造了良好的条件。

3.3 注重协作交流是搞好项目工作的支撑

在项目的实施过程中,笔者积极与中国空间技术研究院、中国科学院遗传与发育生物研究所等科研院所开展经常性的技术交流与合作,充分利用这些单位的技术人才和检测设备、种质资源,强化育种进程和提高良种繁育能力,努力提高项目实施和管理水平。通过协作交流,开阔了技术人员的视野,增长了见识,掌握了最新的航天育种动态,引进了一批先进实用的新品种、新技术和新经验,成为项目顺利实施的有力支撑。

3.4 加强资金管理是搞好项目工作的保障

对项目经费设立了专门的核算账簿,对资金实行专账管理,严防挤占、截留和挪用,确保项目资金合理使用,充分发挥其投资效益。

3.5 “行政+公司+基地+农户”的运作方式是项目实施的基本途径

在天水市农业局的主持下,实行“行政+公司+基地+农户”的产业化运营方式,形成了以行政推促为手段,公司为龙头,基地为纽带,农户为基础的良种繁育和示范推广模式,对外联接国内外销售市场,对内联接技术推广部门和农户,产销衔接、风险共担、利益共享的机制,保证了农户和企业的应得利益,调动了农户和企业种子生产和示范推广的积极性和主动性,保证了各项工作的顺利开展。

4 建议

航天育种开创了一种全新的育种模式,航天(太空)新品种以其良好的优质、抗逆、增产性能,为安全、无污染、少农药残留的绿色食品生产创造了良好条件,符合当今社会可持续发展的基本要求,具有较强的市场竞争力,为发展现代农业提供了新的技术支撑。“航天蔬菜新品种科技成果转化”项目在中国航天蔬菜新品种试验研究和示范推广中积累了成功经验,随着引种、示范、推广航天(太空)蔬菜范围的逐步扩大,人民群众对航天农产品的认识不断提高,以中国西部航天(太空)育种基地为依托,加快甘肃天水航天育种示范区建设步伐[5],深入开展航天育种遗传机理研究,积极示范推广航天蔬菜新品种,促进农业科技成果转化,是发展现代农业、增加农民收入的重要途径,不仅具有巨大的发展潜力,而且可以带动和加快现代航天高新技术在农业领域广泛应用,发展前景十分广阔。

参考文献

[1] 吴洁.太空育种地上忙[n].科技日报,2001-08-27(8).

[2] 潘连公,陈彩能,包文生,等.航天育种遗传机理与选育成效分析[j].中国农村小康科技,2007(1):33-35.

航天工程技术篇(6)

“嫦娥三号”相关技术,将对我国空间科技和航天产业具有直接而广泛的推动作用,包括运载技术、卫星技术、地面遥测系统和深空测控网等一系列基础建设。另外,据专家说,“嫦娥三号”技术的二次开发带来的作用,包括对航天器本身、航天技术本身的促进,以及对于人工技能、机器人、遥控作业、办公自动化、超音速飞行、光通讯、数据处理,超高强度、超高温材料,电能微波传送,无污染飞行器,空间生命研究等高科技产业都将发挥溢出效应。如:用于“嫦娥三号”月球车的一些关键技术将可望实现“民”,被应用于商业领域,推动国内机器人产业的发展。中国航天科技集团公司第八研究院承担了“嫦娥三号”月球车四个半分系统的研制,该院正计划将用于月球车的移动系统和机械臂等机器人技术向民用领域拓展,用于服务和工业机器人,实现“民”。

事实上,航天技术推广是需要一个过程的。如美国“阿波罗”计划实施后,过了约30年时间,大量航天军用技术才被普及。从目前国内政策看,政府正鼓励相关技术的“民”,在不远的将来这些技术肯定会向民用转化。

探月工程同时也是一项全社会广泛参与的高科技工程,在“嫦娥三号”任务各系统研制过程中,一大批民营配套单位积极参与、无私奉献、发挥自身优势,为“嫦娥三号”任务作出了重要贡献。如华力创通很早就进入军品领域,目前公司的仿真业务属于军工核心领域。该公司研制的半实物仿真系统HRT-1000应用于中国“神舟”系列飞船研制、国产先进战机“歼十”的研制和自主产权的支线客机ARJ-21的航电测试系统中。华力创通的案例仍是数量稀少的个案,大批非航空航天系统的企业仍被阻挡在行业门外。

对于民营企业参与军工建设来说,有机会也有壁垒。由于军工涉及到国家的安全,具有保密性,因此其竞争并非是完全市场化的。同时,国内非航空航天系统的企业并不了解我国航空航天等军工领域的运作模式,很多民企更是抱着“赚一把”就走的目的硬闯这个领域。因而,民营企业为了更好地服务军工领域,需要做足工课。

按照加大自主创新、发展高新技术、推进产业化、提升产业规模的要求,民营企业应当研究开发科技含量高、市场前景好的航天军民两用高新技术产品,参与航空航天等军民结合高新技术产业的发展,参与航空航天科研生产任务的竞争和项目合作。民营企业可承担航空航天分系统和配套产品研制生产任务,具体承担任务的范围按照国防科技工业主管部门的武器装备科研生产许可目录及有关管理办法执行。

为了进一步推动军民结合,有关部门需要加强内部各单位之间在技术链、产业链之间的协同与配合,促进资源整合与能力的形成,同时积极推动与有关大企业集团的战略合作。打破军工集团“自成体系、部门封闭、企业全能、产研分离”的状态,通过吸收更多优势资源向武器装备科研生产领域集聚,形成开放竞争的国防科技工业发展格局。大力发展军民两用技术,提高军民通用资源和重大设施的共享程度。

航天工程技术篇(7)

1.1 民航科技产业的内涵

民航科技产业目前尚没有一个比较公认的领域界定,一般认为民航科技产业是集研发、制造和服务于一体的完整的产业链,是体系完整的系统工程[1]。从产业发展的角度来看,民航科技产业中的研发、制造和服务三个部分之间是相互关联、相互影响和相互制约的,三者之间的互动形成了一个有机的整体。其中,研发是产业发展的前提和关键,主要包括科技创新体系和支持保障体系;制造是产业发展的实现和重点,主要包括各型飞机的组装和零部件、航空发动机、航空机载设备、民航信息化设备等产品制造生产,气象雷达、通讯雷达、导航设施等空中交通管理设备的制造和生产,行李自动分拣系统设备、机场相关特种设备的制造和生产,民航信息化系统中的硬件设备、高端数据处理设备、安全保障设备等的制造和生产;服务是产业发展的持续和保障,包括产品的维修保障和技术服务。产品的维修保障主要包括:飞机维护(航线维护和飞机勤务),飞机机体维修、修理和大修,发动机维修、修理和大修,附件的维修、修理和大修,飞机重要改装等。技术服务主要包括飞行培训服务、空管培训服务、机务维修培训服务、民航信息化服务、技术培训、信息服务、产品测试认证、产品推介、售后技术支援服务等等。

1.2 民航科技产业的地位和作用

(1)民航科技产业是国家科技综合实力和竞争力的反映。民航科技产业集中应用了许多工程技术的新成就,成为众多学科和工程技术的集中体现的现代工业,被誉为“现代科技和现代工业之花”,成为衡量一个国家科学技术和工业发展综合水平的标准。凡是民航科技产业比较发达的国家都是国家综合科技水平较高的国家,如美国、德国、法国、英国、日本等。因此,大力发展民航科技产业有利于提高国家的科技综合水平,促进相关学科的发展,加速工程技术的创新。很多国家把民航科技水平视作本国科技水平的一面镜子,对民航科技产业大力进行扶持,并从提高国家综合竞争力的角度给予高度的重视。据美国商务部2003年的《美国高技术贸易与竞争能力》报告:现代军用和民用飞机都是高技术产品,美国是从在未来世界确保其军事、经济和技术霸主地位的国家最高利益出发来发展民航科技产业的。

(2)民航科技产业是国民经济中参与全球竞争的支柱。作为反映一国科技综合实力的战略性高技术产业,民航科技产业投入产出比很高,一些航空工业发达国家例如美国,民航科技产业的投入产出比可达到1∶20,远远超过其他行业,是国家高新科技发展的龙头行业。据日本通产省2002年的统计,按单位重量价值比计算,如果轮船是1,则小汽车是9,电子计算机为300,喷气客机是800,航空发动机为1400[1]。正是由于民航科技产业如此高的投入产出比和单位价值含量,使得世界上的民航科技强国特别重视其发展。

(3)民航科技产业是带动科技发展和技术外溢的龙头。航空高科技的发展不是一个独立、封闭的体系,而是国家科技发展的动力、技术外溢的源头。民航科技扩散效应一方面表现在可以促进军民科研成果的相互交流,充分发挥军事科技优势;另一方面还表现在民航科技的扩散,民航科技成果通过向地面延伸可以将原有的科技应用领域大范围扩展。据日本的统计数据显示,日本2002年的在全国500余项技术扩散案例中,航空工业的技术扩散占60%。而同时,日本航空工业技术派生出来产品的销售额是用这些技术制造的航空产品销售额的18倍。

2 天津民航科技产业发展的背景

我国航空工业主要集中在西安、沈阳、成都、上海、贵阳、哈尔滨等城市,天津只具有航空电子、航空复合材料、航空仪表、飞机导航设备、惯性导航设备、机载电源及通讯设备、飞机制造用金属材料、空气过滤机等航空配套产业。

目前,航空军转民、航空创新体制、航空产业聚集发展等正顺应国际发展规律在进行调整。随着天津滨海新区被纳入国家发展战略,借助天津良好的工业基础和丰富的科教资源,天津市正顺应历史发展趋势,把握良好的发展时机,以滨海新区为基地,将民航科技产业集群作为重点建设的六大产业创新集群之一纳入发展规划战略,意图使技术密集、代表国际综合竞争力的民航科技产业发展成为本市支柱产业之一,进而拉动新一轮的产业结构优化升级,为天津经济的发展带来新的活力。

民航科技产业在天津的发展主要以民航科技产业化基地为载体,同时,空客A320的入驻以及中国民航大学科技园的启动建设都进一步推动着天津民航科技产业的发展。

(1)民航科技产业化基地为天津民航科技产业提供良好平台。中国民航总局与天津市政府于2005年10月16日签署协议,联合共建部级民航科技产业化基地。作为国内唯一的民航科技产业化基地,其主要功能是成为民航科技产业化平台和国际民航高科技产业转移的承接地。

(2)空客A320总装线项目的落户成为天津民航科技产业发展的龙头项目。空客A320系列飞机总装线落户天津,需要各种航空产品的配套和各种服务的配套,可以在天津形成以引进大飞机总装线为主体,以飞机零部件、空管设备、机场特种设备制造和航空维修为补充,以航空技术研发和人员培训为辅助的完整产业体系。目前随着A320项目落户天津,滨海新区吸引来了各类以民航科技产业为特色的国外知名的大型民航产品配套厂商,如德国蒂森克鲁伯公司的电梯、登机廊桥项目、以色列的凯德姆飞机客改货项目、法国泰雷兹集团空管雷达项目等,且配套产业已初具规模。

(3)中国民航大学科技园的新一轮发展将为天津民航科技的发展提供良好策源地。为完善从研发设计到售后服务以及相关配套产品的民航科技产业链条,在民航科技产业化基地初具规模的基础上,民航总局以及天津市政府联合启动了中国民航大学科技园的建设。科技园的建立不仅会带动产业化基地内的科研主体的发展,而且还会将技术成果扩散到其它产业,提升天津市更多产业的技术水平,从而带动其发展,使地方经济具有核心竞争力。

3 天津民航科技产业的发展路径研究

根据我国民航运输发展对民航科技产品的市场需求、建设新一代航空运输系统的需要等,天津的民航科技产业将重点发展三大产业:一是民航科技研发产业;二是民航设备制造和加工产业;三是民航技术服务产业。民航科技产业化基地的主用功能定位是民航科技产品的研发、制 造和技术服务。

3.1 天津发展民航科技产业的路线图

(1)天津发展民航科技产业要经历四个重要发展阶段。依据《中国民航科技产业化基地发展战略》、《天津市航空城规划研究报告》、《关于推进天津滨海新区开发开放有关问题的意见》等,同时结合天津实现创新型城市的发展规划,民航科技产业作为天津重点发展的十大新型产业之一,将经历四个重要发展阶段,实现四个阶段性目标。

第一阶段(当前-2010年):发展成为具集聚效应和学习功能的创新型产业。主要任务和目标是完成天津的民航科技产业集聚,并实现该产业的引进-消化-吸收功能,使天津的民航科技产业发展成为具有集聚效应和学习功能的创新型产业。到2010年,逐步形成民航科技研发、民航科技产品制造及民航技术服务等三大产业群雏形。在进口替代方面发挥良好的效应,在重大核心装备国产化进程上实现重大突破,使天津成为世界知名的“民航科技产业城”。同时,积极吸引国际先进民航科技企业来津投资、落户,模仿、学习其先进的民航科技制造、研发、管理等多种技术、科学、方法,形成引进——消化——吸收一系列学习功能。

第二阶段(2010-2015年):发展成为具自主研发能力的创新型产业。主要任务和目标是,在民航科技园具有一定自主研发、民航科技企业孵化和出孵企业具有国际竞争优势的基础上,使天津的民航科技产业发展成为具有自主研发能力的创新型产业;完成一批拥有自主知识产权的重点项目的建设;一批拥有自主知识产权的技术产业化条件成熟并开始形成产业;将天津的民航科技产业建设成为我国民航重大科技攻关中心,建设成为具有世界水平的创新研发基地。到2015年,部级和市级研发机构达到100家,市级以上企业研发中心200家,科技服务机构50家,成为民航科技研发的核心平台,国内领先、国际一流的“民航硅谷”。

第三阶段(2015-2020年):发展成为具完整产业链条的工业化创新型产业。主要任务和目标是形成民航科技产业的完整链条,从研发、制造到技术服务,使天津的民航科技产业发展成为具有完整产业链条的工业化创新型产业。民航高科技产品的行业集中度将达到80%以上,成为专门为民航业服务的产业群带。天津的民航科技产业发展要抓住全球产业结构和产业布局战略性调整的机遇,优先考虑技术含量高、根植性好、环境污染少,对民航科技发展具有战略意义的产业项目,逐渐形成在国际民航科技产业链条中具有一定地位的产业格局。

第四阶段(2020-2050年):发展成为具有完善技术系统的知识化创新型产业。主要任务和目标是构建民航技术系统,使天津的民航科技产业发展成为具有完善技术系统的知识化创新型产业。在这一阶段,不仅完善的民航科技产业链条已经形成,而且显著地辐射和带动区域经济的发展。更为重要的特征是,在全球民航高科技产品制造的分工链条中的位置提升,民航科技高附加值产品和自主研发比例大大提高,从而提高天津市产业在全球产业中的国际地位,并使民航科技产业对经济的贡献率显著提高。

(2)天津发展民航科技产业的目标路线图。依据上述四个发展阶段及其特征,本文给出了天津建设民航科技产业的目标路线图,可见,天津的民航科技产业将由具集聚效应和学习功能的创新型产业,演变为具自主研发能力的创新型产业,进而成为具完整产业链条的工业化创新型产业,最终成为具完善技术系统的知识化创新型产业,完成民航科技产业发展的知识化和高级化演变历程。

图1 天津发展民航科技产业的目标路线图

3.2 天津发展民航科技产业的基本构成要素演化路径

(1)民航科技产业的基本构成要素体系。民航科技产业是集研发、制造和销售于一体的完整的产业链,其建设是一个系统工程。发展民航科技产业的构成要素包括创新主体、创新机制和创新环境三个方面(见图2)。

航天工程技术篇(8)

中图分类号:F12 文献标识码:A

收录日期:2014年8月8日

一、引言

党的十一届三中全会以后,党中央提出了“军民结合,平战结合,军品优先,以民养军”的方针,我国的航天军工企业全面贯彻、执行这一方针,航天军工企业在民品市场上经历了无序发展、探索调整、战略发展等几个阶段,取得了长足的进步,起到了保军促军、稳定经济的重要作用,在激烈的市场竞争中,已经逐步形成了独特的航天民品品牌。目前,在航天军工企业军品订单处于稳定,需求较缓的形势下,大力发展民品产业已成为航天军工企业实现发展及转型升级的必由之路,民品产业发展所带来的效益可使国防科技工业摆脱因国防预算削减、军品订购不足所带来的发展困境。

虽然航天军工企业在信息通信、汽车零部件产业、新兴材料、新能源及金融等民品领域不断开拓,但有竞争优势的产品很少,航天民品产业的核心竞争力尚未形成。

因此,本文将以航天军工企业民品发展为视角,深入分析航天军工企业民品发展策略工作,从而提出具有针对性的发展策略,旨在帮助航天军工企业在民品领域实现更好更快发展,提高企业核心竞争力,从而更好地为我国经济建设服务,提升综合国力。

二、航天军工企业民品SWOT分析

(一)优势――劣势(SW)分析

1、优势分析:航天军工企业充分利用军品的成熟技术和现有设备、人力资源,依靠自身的技术优势和企业特点开发了一系列与军用技术紧密关联的民品,形成了具有良好的军民通用技术、较高的产品竞争力、较好市场影响力与美誉度的航天民品谱系。近年来,中国航天科技集团重点发展的五大民用板块(卫星应用、信息技术、新材料与新能源、航天特种技术应用、汽车零部件及特种车辆)和航天科工集团重点做大的五大标志工程(信息安全、特种车、通信服务、建筑与房地产、汽车发动机)都取得了巨大成就。

2、劣势分析:航天军工企业的核心竞争优势在军品领域,其民品经营一般不具备规模经济性、优惠的原材料等优势,产品竞争优势和核心竞争力尚未形成;航天民用产业的军用技术开发与转化能力弱,产业化水平低;缺乏严格控制成本的技术和管理能力,不具备价格优势;以市场为中心的经营机制尚未确立起来,民品开发力度不够,产品单一,目标市场选择不准,产业发展的市场化、社会化程度较低。

(二)机会――威胁(OT)分析

1、机会分析:“走中国特色军民融合式发展路子”是党的十提出的要求,军民结合是中央从国家战略高度为国防科技工业发展和改革确定的重大方针,国家政策支持力度强;实施民、军民结合,大力发展民品,大大缓解了航天军工设备闲置和科研生产力量过剩的矛盾,关系到中国航天可持续发展和国民经济的长远大计。

2、威胁分析:经济全球化正在加快,国内外市场竞争愈演愈烈,经济紧缩和国内外市场总体上供大于求的形势日益明显,使得寻求新的经济增长点更难,这对还没有形成规模经济的航天军工企业民品发展来说是个挑战。

三、航天军工企业民品STP分析

根据以上SWOT分析,以“发挥优势,客服劣势,利用机会,化解威胁”为原则,进行航天军工企业民品的STP分析。航天军工企业担负着为国防建设和国民经济建设服务的双重责任,因此在企业发展上还是以军品为主导地位,发展民品必须合理地把握好军品与民品之间的良性互动关系,统筹规划,协调发展。航天军工企业处于转型初期,用于发展民品资源的有限性和民品开发的资本实力不足也决定了其民品发展不适宜多元化,宜精不宜多。

从当今世界科学技术发展趋势看,军、民技术日趋融合,高新技术两用化的特征越来越明显(在美国国防部和商务部列出的关键技术中,有80%是军民重叠的技术)。航天技术是世界公认的高新技术,要充分发挥航天军工企业在军品技术、设备、人力、资源等方面的独特优势,重点发展航天军民两用高新技术产业(如卫星技术、信息科技技术、新材料和新能源、先进制造和工艺技术等)。因此,航天军工企业民品目标市场选择上,要选择最能代表企业自身核心优势且能与军品形成战略关联(军技民用、军民两用)的民品细分市场,实现民品行业集中化、技术先进化,从而在这些高新技术领域做精做细,实现成本领先或差异化,形成独特的核心竞争力,打造出航天民品金字品牌。

四、航天军工企业民品发展策略

(一)加快调整产业结构。航天军工企业用于发展民品资源的有限性决定了民品发展要实现专业化,按照专业化协作和规模经济的原则,以核心民品企业和重点产品为主导,不断进行结构调整和优势资源整合,把优势民品做大、做精、做强。

(二)加快军用技术成果转化民用。航天军用技术是航天军工企业发展民品的主要技术来源,但按以往数据来说,军用技术成果转化民用能力偏弱,产业化水平低。因此,未来要加快军用技术成果实际转化生产力的效率值。

(三)加快民品产业市场化、社会化进程。我国航天军工企业的军品大多采用的是计划经济管理模式,而民品应该是适应市场经济管理模式。因此,民品在发展过程中,要与市场接轨,确立产品定位、品牌定位、企业定位。

(四)积极拓展融资渠道。高新技术实现产业化突出的特点之一是具有资金密集的性质,要广泛吸引社会资金加盟,通过上市、发行企业债、发起航天产业投资基金等多种方式建立多层次、多渠道的投融资体系。

(五)构建战略联盟体系。市场分工决定了构建联盟的价值。在不违反国家保密政策的前提下,鼓励国内外企业通过收购、兼并、合资、合作等方式参与军工企业民品的发展,形成战略联盟,实现资源优势互补。

(六)鼓励吸收与借鉴国际先进民品发展经验。和平利用军工技术是当今世界许多国家面临的问题,也是各国进行经济、技术合作的重要领域。我国要鼓励军技民用企业积极创造条件吸引外资、引进技术,广泛吸取国外军技民用的成功经验,推动航天工业民品产业国际化发展。

五、结论

我国航天军工企业的可持续发展离不开其民品产业的健康发展。军工企业民品的发展要选择最能代表其自身核心优势且能与军品形成战略关联的民品行业,这将有利于军民融合,促进国防建设与经济建设的协调发展。

主要参考文献:

航天工程技术篇(9)

0 引言

科学技术是航天技术的基础,而航天技术集合了现代许多科学技术的新研究成果,所以航天技术也是科学技术的延伸和发展。航天技术的发展,不仅仅预示着一个国家在该方面的强大,更是显示着整个国家科学技术水平的卓越及国力的雄厚,不可否认的是我国在航天技术的地位在世界上是首屈一指的。但是不能单单以发射了多少卫星、发送了多少载人航天飞船、研制了多少火箭和飞机来看出一个国家在该方面的实力,而如何确保航天员的人身安全和航天设备高效、顺利的运行也是其中非常重要的指标。下面就航天项目技术状态管理展开论述。

1 航天项目技术状态管理概述

技术状态管理,顾名思义属于管理系统的一个工具,也是项目管理中十分重要的一种管理途径。技术状态管理一词对于航空行业专业人士来说并不是陌生词语,而人们也可以在不同的科研、技术项目中领略到技术状态管理的重要性。只不过技术状态管理一词的是从航天项目中引进而来,且技术状态管理一词以及技术状态所选择的方法最早源自于20年代中期的美国军事行业,自此才广受各领域人们推广开来。技术状态管理自出现以来发展比较快,从20世纪末期开始技术状态管理有了突飞猛进的发展,并且ICM率先提出CMII,并给出了一整套有关技术状态管理的规范定义。

20世纪中期,美政府军事相关企业首次提出军事武器的采购计划,并拟定出了相关合同。该合同较传统不同的是对军事武器的技术性提出了更高的要求。在高要求提出的同时,美军方意识到自己必须要对相关技术项目研发进行约束和监督,如果没有对军事项目进行规范和管制,所研发出来的产品往往不合格。因此,美方政府自发规定一些条例,要求军事武器研制商家必须要保证产品质量,此时,技术状态管理的雏形已经形成。随着航空航天的快速发展,美方政府加大了对项目的监管力度,先是建立AFSCM标准,又在90年布MIL-STD-973标准,伴随着技术状态管理的高速提升,又制定了EIA-649新标准。EIA-649也是我国至今航空航天行业的项目参考执行标准。

2 航天项目技术状态管理信息系统

在航天项目技术状态管理运行中需要技术状态管理信息系统的支撑。如果在对航天项目技术状态管理中仍然沿用最传统的管理手段,必定影响航天项目整个实施工作,而陈旧的信息系统也会导致航天项目的运行效率降低。在这种情况下,就需要相关航天项目研发人员运用先进管理技术、信息技术、智能网络等技术状态管理信息系统 来保证航天项目中信息传递的精确高效运行,同时可以为航天工作人员提供更加便捷、高效的管理空间。技术状态管理信息系统在航天项目中的应用有以下。

首先,基于高效的信息系统,航天项目可以更加快捷精确地对自身技术状态存在的问题进行检查,最重要的是根据信息系统的相关警示,航天研发人员也可以根据检查结果来确保航天项目的安全性

问题。

其次,信息系统最明显的用途就是方面航天项目操作人员在执行工作中可以明确显示上级所的指示和信息。只有经过系统审核的信息才可以被系统纳入数据库,信息才能正确无误传达到位。

最后,航天项目执行中会有大量数据信息等待工作人员处理,管理信息系统则可以将批量信息自动录入、更改、删除,免去了工作人员不必要的手工麻烦。

3 航天项目技术状态管理的主要功能

众所周知, 自从美国“挑战者”航天飞机悲剧事件之后,全球人们都开始重新审视技术状态管理在航天项目中的影响。毋庸置疑,航天项目技术状态管理是个过程,只有做好过程中系统的控制、信息的精确才能够发挥航天项目技术状态管理的主要功能。PTC中国区航空国防行业业务发展经理余定方曾经说过:“技术状态管理确保了从产品的需求、设计、制造,到最后投入实际的运营,以及维护维修的产品全命周期过程中,产品性能、功能和物理特性的一致性。”很显然,航空项目技术状态管理确实关系着航天工作人员的生命、财产

安全。

3.1 技术状态标识作用

依据各种不同的方式来确定航天项目的技术状态是否良好。按照MIL-STD-973标准,由功能基线、产品基线、分配基线三种基线来判断航天项目技术状态。

3.2 技术状态控制作用

在明白航天项目技术状态情况之后,要根据项目运行中的变化来不断调整技术控制管理,这就要求对航天项目中的任何变动都必须做到严格控制。首先,必须严格加强对更改过程的控制。其次,在航天项目执行时难免因为估算差错产生一些效果偏差,这就需要对细微偏差做到精确控制。

3.3 技术状态审核作用

该功能作用非同寻常,航天项目依据技术状态管理的安全保证才得以正常运行,只有从根本上确保航天项目每一处环节的安全运行,才能够在此基础上保证航天项目顺利完成。技术状态审核中经常遇到一些问题,只有对项目进行功能审核和物理审核,才可以避免一些常见问题发生。

3.4 技术状态纪实作用

无论哪种航天项目,在整个项目实施过程中都是一个可以记录下来的历史,因此可以说技术状态纪实正是对整个过程最有凭据的记录。只有在项目实施过程中明白该项目的缺点、成绩,只有将整个项目运行记录成可读性数据,才可以将项目完整进行。技术状态纪实为航天航空行业提供了充足的历史追踪空间,也在一定程度上促进了航天项目在正确轨道上的发展越来越可观。

4 结论

通过本文对航天项目技术状态管理的概念、由来、相关信息系统和功能的简单介绍可以看出航天项目产品是关系到相关人员的性命的技术产品,为了保障航天设备高效、顺利的运行和航天相关人员的人身安全,航天技术对产品的要求是非常苛刻的,它的规范和管理容不得半点马虎存在。希望通过本文的简单分析能够引起更多的人对航天项目技术状态管理进行研究,希望我国在航天项目技术状态管理方面能够越来越规范,同时也希望我国航天项目技术管理的研究越来越多,以便保证我国航天事业能够更进一步向前发展。

参考文献

[1]陈明丽,高德记.技术状态管理及实践[J].航空兵器,2003(4):36-38.

[2]章引平.技术状态记实——兼谈技术状态管理信息系统[J].航空标准化与质量,1988(8):19-24.

[3]诸一维.采用航天产品项目管理国际标准的研究[J].航天标准化,2005(8):1-8.

[4]诸一维,罗瑛.QJ 3118-99《航天产品技术状态管理》介绍[J].航天标准化,1999(10):14-17.

[5]常燕青.项目管理在技术状态管理系统中的应用研究与实现[D].南京航空航天大学,2004:17-19.

[6]卢晓青,刘靖.航空新研电子元器件技术状态控制探讨[J].航空标准化与质量,2011(4):37-39.

航天工程技术篇(10)

一、研究背景

技术溢出(Technology Spillover)是指先进技术拥有者在从事生产、贸易或其他经济行为时,有意识或无意识地输出技术而引起的技术水平的提高[1]。航空航天业的技术溢出则指航空航天业的先进技术通过一定渠道自愿或非自愿地传播到其他工业领域,进而带动这些工业领域技术水平的整体提升。航空航天业是我国战略性高技术产业,属于技术密集型行业,技术装备多、投资费用大,是国家经济实力与科技水平的综合体现。自20世纪50年代以来,我国航空航天业经历了从无到有、从小到大的发展历程,逐步建立起平台化、系统化、专业化的研发与应用体系。它技术内涵高、产业链长、辐射面宽、连带效应强,对众多高技术产业以及传统产业的发展起到了举足轻重的拉动作用。研究表明,内涵科技因素越高的行业部门对其他部门的贡献效应越大[2]。航空航天技术是高科技领域的前沿,航空航天业必然对其他部门具有较大的贡献效应,其技术溢出也应该是显著的,本文正是基于这一前提条件进行的研究。因此,探究影响航空航天工业技术溢出的显著性因素,充分利用其技术溢出作用,对于加快我国科技进步与经济发展有着重要的战略意义。然而,目前对此问题的研究并不深入,多数学者从理论层面分析技术溢出的问题,也有学者较为系统地对技术溢出是否存在、影响技术溢出的因素以及技术溢出的机理进行了实证分析,但这些研究都局限于外商直接投资(FDI)这一领域,没有从行业层面上分析该行业部门对其他行业部门的技术溢出,并且没有在理论上形成统一的认识。本文利用我国航空航天业的数据,采用因子分析的方法,提取影响技术溢出的关键因素,进而对促进我国航空航天业技术溢出及产业自身发展提供理论支持与政策建议。

影响技术溢出的因素有很多,根据现有文献的研究将其大致归纳为:(1)人力资本因素。Keller(1996)研究发现人力资本积累的差距导致技术吸收效果与经济增长率的不同[3];Borensztein等(1998)认为人力资本存量是影响技术溢出效应的关键因素[4];王成岐,张建华,安辉(2002)得出人力资本存量与技术溢出效应不相关的结论,但他们认为人力资本投入以及人才素质是技术溢出的影响因素[5]。(2)技术差距因素。Findlay(1978)和Wang and Blomstorm(1992)的研究表明技术差距越大示范模仿空间越大,吸收技术溢出的潜力也就越大[6];Kokko(1994)的研究发现低技术水平严重阻碍技术溢出效应的产生[7];Perez(1997)从吸收能力角度考虑,认为过高的技术差距会影响示范模仿机制发挥其应有作用。(3)经济开放程度。Blomstorm and Sjoholm(1999)、认为经济开放度高的企业由于竞争压力大而进行更多的研发投入以提高自身吸收能力[8];Kokko(1994)发现经济开放程度与技术溢出效应之间的关系是不确定的[7];包群,许和连,赖明勇(2003)用出口依存度等来衡量经济的开放程度,发现我国经济开放程度的提高、基础设施的建立与完善等都是促进技术溢出的有利因素[9]。(4)研发投入因素。Kathuria(2000)指出技术溢出效应并非自动产生,技术吸收方要想从中获利,须对学习活动进行投资;田慧芳(2004)的研究则表明工业部门研发投入水平与技术溢出效应呈负相关关系。此外,市场结构、工资水平、产业关联、基础设施、经济政策等都作为影响因素引入了技术溢出的相关研究中,本文在前人研究的基础之上对此进行探讨。

二、指标构建与分析方法

目前,对技术溢出进行实证研究时,学者们通常首先选择一个影响因素,然后确定与该影响因素内容相关的指标体系,最后采用一定的计量方法(如多元回归、分组回归等)来分析这些指标。本文在分析技术溢出时,也采用了这种研究思路:选取航空航天业为研究对象,根据技术差距等影响因素建立与之相关的量化指标体系,采用因子分析的方法对这些指标与技术溢出之间的关系进行研究,并用线性回归的方法对提取出的公因子进行显著性检验。

(一)技术溢出指标体系

航空航天业是一个以现代科学为基础的高新技术产业,包括机、光、电、液综合能力的精密机械加工工业,是我国国民经济和国防建设的重要组成部分[10]。其研发成本高、风险大、周期长,具有科技含量高、连带效应强的产业特点,能够带动诸多产业的发展。理论上讲,研究技术溢出影响因素需要建立一套完整的指标体系,但为了避免信息重叠,本文根据国内外现有文献的研究成果并综合考虑我国航空航天业技术溢出的实际情况,选取如下表所示指标体系:

(二)分析方法和数据来源

因子分析是一种研究从变量群中找出共性因子的统计技术,它通过分析众多变量之间的依赖关系,探寻观测样本的内部基本结构,提取并描述隐藏在一组显性变量中无法直接测量的隐性变量,很好地发挥了降维和简化数据的作用。因子分析中的共性因子是不可直接被观测却又客观存在的重要影响因素,每一个变量都可以表示为共性因子的线性函数与特殊因子之和,即,式中为的共性因子,为的特殊因子。若满足以下条件:(1);(2),即共性因子和特殊因子不相关;(3)各共性因子不相关且方差为1;(4)各特殊因子不相关且方差不要求相等。那么,每个变量可由个共性因子和自身对应的特殊因子线性表出,因子分析的数学模型可表示为:

本文采用因子分析和线性回归相结合的方法,研究我国航空航天业技术溢出问题。用于分析的数据主要来源于《中国高技术产业统计年鉴》(1999~ 2009)中航空航天业相关数据,以及《中国统计年鉴》(1999~2009)中工业企业相关数据,统计口径为我国国有及规模以上非国有工业企业。

三、技术溢出实证研究

(一)因子分析

从《中国高技术产业统计年鉴》(1999~2009)与《中国统计年鉴》(1999~2009)整理出构建量化指标体系所需数据,并按定义计算出各指标对应值,如下表所示:

利用SPSS17.0软件做出相关系数矩阵,通过指标之间的相关系数初步判断各指标相关性较高。从已建立的量化指标体系中提取公共因子,找出影响我国航空航天业技术溢出的主要因素。因子矩阵和旋转因子矩阵如表3、表4所示:

由表3、表4可知,旋转后公共因子F1、F2的方差贡献率分别为4.803和2.795,累积方差贡献率为84.424%,进一步判断公共因子F1、F2能够代表本文所设计的衡量我国航空航天业技术溢出的量化指标体系。由表4还可知公共因子F1在X1、X2、X3、X4、X5的载荷值均大于0.7,能够反映我国航空航天业科技活动经费投入能力、研发经费投入能力、新产品研发经费投入能力、科技活动人员投入能力以及科学家与工程师投入能力,因此可将F1视为影响航空航天业技术溢出的因素之一――技术投入能力;公共因子F2在X6、X7、X8、X9的载荷值均大于0.65,能够反映我国航空航天业的新产品销售收入、新产品出口能力、新产品劳动生产率以及新产品产值比重,因此可将F2视为影响航空航天业技术溢出的因素之二――技术产出能力。

(二)线性回归

本文根据该检验模型,以公共因子F1、F2的因子得分作为自变量,以其他工业企业的全员劳动生产率LP作为因变量(具体数据见表5),构建如下回归模型:

(1)

其中LP即除航空航天业之外的其他工业企业的全员劳动生产率,是全国国有及规模以上非国有工业企业增加值与我国航空航天企业增加值的差值同全国国有及规模以上非国有工业企业全部从业人员年平均人数与我国航空航天企业从业人员年均人数差值之比。其计算公式为:

全员劳动生产率=工业增加值/全部从业人员平均人数(2)

通过回归得到人均产出变量与公因子变量之间的关系方程为:

(3)

t值:(6.240)(2.886) ( 3.320)

P值: 0.001 0.028 0.016

R2=0.749AdjR2=0.666F=8.967

由模型估计到的参数可知,我国航空航天业的技术投入能力以及技术产出能力与其他工业企业的全员劳动生产率均存在着显著的正相关关系,技术投入能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升17.541%,技术产出能力的因子得分每提高1%,其他工业企业的全员劳动生产率将上升15.9%。

四、结果分析与政策建议

航空航天业是我国国民经济的先导产业,在人才、资金、技术等方面都有着相当大的优势,产业结构具有一定的特殊性,技术溢出也不同于其他产业。因此,本文在参照前人研究成果与研究方法的基础上,构建了一个衡量技术溢出的量化指标体系,采用因子分析的方法从中提取出最为显著和最具代表性的两个因素,即航空航天业的技术投入能力及技术产出能力。科学分析这些影响因素,有效利用技术溢出效应,有利于提升传统产业的自主创新能力、推动国家整体技术进步。对此,提出如下建议:

航天工程技术篇(11)

12月18日至19日,中国宇航学会2011年学术年会在京召开。来自中国航天两大集团公司、总装备部、中科院、有关高校等单位的150多位专家、学者及工程技术人员围绕当前航天发展的热点、难点及关键技术等议题进行了深入的交流与研讨。

中国宇航学会理事长、中国航天科技集团公司总经理马兴瑞致信祝贺年会召开,中国宇航学会名誉理事长、中国航天科技集团公司高级技术顾问王礼恒院士主持报告会并讲话。中国航天科工集团公司总经理助理刘尔琦,中国航天科技集团公司科技委主任包为民院士,以及张履谦、余梦伦、戚发轫、吴宏鑫、刘永才院士出席年会。年会由中国宇航学会副理事长兼秘书长杨俊华主持。

航天科技集团公司研究发展部副部长王岩、国际合作部副部长郭建平,总装测通所所长钱卫平,航天科技集团公司一院科技委主任刘继忠,航天科工集团公司二院副院长陈国瑛,航天科工集团公司四院副院长严卫钢,航天科技集团公司五院副院长李明,航天科技集团公司七院科技委主任郭凤美,航天科技集团公司十一院科技委主任沈清,一院一部主任王小军,一院14所所长牟晨阳,航天科工集团公司六院科技委副秘书长路淑琴,航天科技集团公司九院科技委副秘书长李应选,北京航空航天大学宇航学院院长蔡国飙等参加了会议。

会上,航天科技集团公司科技委顾问吴宏鑫院士、中科院国家天文台台长助理邹永廖研究员、重庆大学李芳昱教授分别以《航天控制的现状与未来》、《深空探测的科学问题》、《引力波与引力波的探测》为题作了主题报告。《航天控制的现状与未来》主报告特别描述了我国近期进行的首次空间交会对接任务中,航天控制技术的运用与突破,引起与会者的浓厚兴趣。《深空探测的科学问题》主报告,对深空探测中的关键科学问题,特别是我国未来开展深空探测的方向进行了探讨。《引力波与引力波探测》主报告,论述了一个全新的空间信息通道基础理论问题,颇具前瞻性和启发性。与会专家和工程技术人员结合航天工程实践,围绕航天推进、空间技术、空间科学、空间应用、深空探测等领域进行了专题研讨。

中国宇航学会学术年会每年召开一次,已成为航天科技领域加强学术交流、活跃学术思想、推动航天技术自主创新的重要平台。