欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

垃圾渗滤液处理前景大全11篇

时间:2023-12-27 14:44:47

垃圾渗滤液处理前景

垃圾渗滤液处理前景篇(1)

Abstract: this paper mainly introduces the landfill leachate treatment and the formation of the influencing factors and landfill leachate treatment to the harm of the city. Thus furtheranalyzes urban landfill leachate treatment processing technology points, introduces an operation management simple, low cost, adaptable "biological method + membrane law" handling system, and puts forward the technology in the processing of attention shall be paid to the problem, providing people with effective reference.

Key words: the city garbage, leachate, processing technology, problem

中图分类号:R124.3 文献标识码:A文章编号:

随着我国经济的快速发展,城市垃圾量也随之增加,垃圾的妥善处理已成为人们急需解决的问题。我国大多数城市采用卫生填埋或焚烧的方式处理垃圾,由此产生了大量的垃圾渗滤液。液渗滤液具有水质复杂、水量波动大、有毒有害物质含量高等污染特性,其一旦进入外部环境就会造成严重的二次污染,若渗滤液处理不当,不仅会污染土壤和地表水源,甚至会污染地下水对生态环境和人体健康带来巨大危害。因此,垃圾渗滤液的有效处理势在必行。

1 城市垃圾渗滤液的产生及影响因素

1.1 垃圾渗滤液的来源

垃圾渗滤液,又称渗沥水或浸出液,是指垃圾在堆放和填埋过程中由于发酵和雨水的淋浴,冲刷,以及地表水和地下水的浸泡而滤出来的污水,渗滤液的来源于降水、垃圾含有的水和微生物厌氧分解产生的有机废水。垃圾渗滤液是高浓度有机废水,若未经处理直接排放或未达标排放,会对周围的地下水、地表水和土壤造成严重的污染。

1.2 垃圾渗滤液的影响因素

影响垃圾填埋场的渗滤液量的主要因素有:1)垃圾自身因素,即垃圾含水量和饱和持水量,一般垃圾中有机物含量越高,则所含的水量就越多,相应的垃圾渗滤液量就越多;2)气候因素,即降水量和蒸发量,降水量越大,蒸发量越小,则垃圾产生的渗滤液就越多;3)土地因素,包括地形、地质、地貌、植被等,这些主要决定入渗量和排渗量,入渗量越大,排渗量越小,则垃圾产生的渗滤液量就可能越多;4)时间因素,上述 3 个因素都有时间的积累效应。

2 垃圾渗滤液的危害

渗滤液中含有大量的有机物、氨氮、病毒、细菌、寄生虫等有害有毒成分。其表现特征为:水质波动大,成分复杂,生物可降解性随填埋场场龄的增加而逐渐降低,金属离子含量低,污染物浓度高,持续时间长,流量小而且不均匀。如果垃圾渗滤液处理不当就会对环境造成二次污染,不仅会污染土壤和地表水源,甚至会污染地下水对生态环境和人体健康带来巨大伤害与威胁。

3 垃圾渗滤液处理中技术要点分析

《生活垃圾填埋场污染控制标准》(GB16889-2008)实施后,对垃圾渗滤液的处理控制提出了更严格的要求。渗滤液水质水量受各种因素影响而变得非常复杂,存在大量生物难以降解的有机物,目前渗滤液的处理工艺主要有土地处理、物理处理、化学处理、生物处理等,但采用单一工艺处理,往往只能在某些指标上取得好效果,很难使出水达到排放标准。因此渗滤液的处理工艺不是一种方法能够完成的,而是多种方法的组合工艺。

目前,渗滤液处理的组合工艺主要有两种,一种是以生化反应为主的“生物法+膜法(纳滤/反渗透)”处理系统;另外一种是以DT盘式膜组件为主的高压膜过滤工艺。DT盘式膜组件是独家工艺,过滤原理即为常见卷式反渗透膜过滤的原理,

本文重点介绍“生物法+膜法”的处理系统。生化法处理设备和运行管理简单,成本低,对水质和水量的变化有很好的适应能力,适合我国生化垃圾有机物含量高、渗滤液可生化能力较高的特点,当前得到了广泛应用。

3.1 早期生物处理工艺

早期的渗滤液处理工艺缺乏设计经验,对渗滤液的水质特性考虑不够充分,处理工艺主要参照城市污水处理工艺,选择生物法中的氧化沟,SBR及接触氧化工艺的比较多,由于这些工艺在曝气量、停留时间上考虑的不足,最后导致了运行的失败。

例如某城市渗滤液处理厂选择“厌氧+氧化沟+沉淀池”的处理工艺,要求出水达到GB16889-1997二级标准,但是由于渗滤液水质水量随时间变化大,尤其随着填埋场时间的增长,可生化性低,导致出水不能稳定达标;昆山市第三垃圾填埋场渗滤液处理采用的是“厌氧+生物接触氧化”工艺,运行过程中进水水质远低于设计值,结果造成厌氧效果大幅下降,整个系统出水无法达标。

3.2 膜生物反应器(MBR)应用

针对早期生化法在渗滤液处理上的不足,MBR系统在设计生化反应部分时充分考虑渗滤液的水质特性,以反硝化池和硝化池为主,在停留时间、池体深度以及曝气量方面,充分满足渗滤液中有机物降解的需要。

垃圾渗滤液处理前景篇(2)

前言

目前我国的大中城市均建有卫生填埋场,垃圾渗滤液的污染治理是生活垃圾卫生填埋场建设管理的重点之一,分析各填埋场的污染治理措施,对垃圾渗滤液治理措施中应注意的问题进行探讨。

1 渗滤液处理存在的主要问题

垃圾渗滤液的组分复杂,具有污染物种类繁多、浓度高、变化范围大、色度大、毒性强等特点。目前,处理垃圾渗滤液存在的问题主要表现在两个方面,一方面是渗滤液高浓度氨氮的问题,另一方面是渗滤液可生化性差的问题。

2 渗滤液处理工艺比较分析

从垃圾渗滤液的处理方法来看,主要有物理化学法、生物法及各种方法的组合工艺。

2.1 多级反渗透膜处理工艺

反渗透法处理渗滤液是一种离子/分子水平的物理分离技术,在高压下使渗滤液中的水份通过半透膜析出,可以有效的除去其中的细菌、悬浮物、有机污染物、重金属离子、氨氮等污染物质。可以确保出水水质符合有关排放标准。

该工艺的主要特点:

①对COD和氨氮的去除率可超过99%,出水水质稳定,可以达到国家生活垃圾填埋场污染控制标准(GB16889-1997)中一级排放要求;

②该工艺设备能够适应渗滤液水质变化,随填埋时间的延长,其出水仍能满足要求;

③占地面积小,操作简便, 维护管理方便.

但是,该技术由于存在以下几点致命的弱点,而限制了其在我国垃圾渗滤液处理领域中的运用:

①由于借助物理分离技术,与生物处理技术相比,未从根本上彻底分解除去渗滤液中的各种污染物质,而造成浓缩液中污染物浓度更高;处理过程中产生大量浓缩液,可能造成二次污染。

②该工艺的一次性投资高,一般每天处理1m3渗滤液需投资6~8万元,且由于膜组件有一定的使用寿命,后续更换膜的费用也很高;运行费用较高,一般在20元/吨以上;

2.2 生化-膜法组合工艺

由于垃圾渗滤液水质复杂,一般多采用组合工艺进行处理,生化-膜法组合工艺已有一些应用的实例。生化处理阶段可以采用活性污泥法(氧化沟、SBR及推流式曝气池)、稳定塘和生物膜法(生物转盘、接触氧化及曝气生物滤池)。而应用膜分离技术处理垃圾渗滤液主要是应用了膜对物质的截留性能,垃圾渗滤液中的有机物和氮都可被分离膜有效截留,从而达到垃圾渗滤液的净化目的。该工艺出水水质按不同阶段控制可以分别达到生活垃圾渗滤液排放控制限值三级标准和一级标准。膜法主要有微滤、纳滤、超滤和反渗透等。此组合工艺优势很明显,主要表现在以下几个方面

①生物法运行费用相对较低、处理效率高,不会出现化学污泥等造成的二次污染;

②联合使用了膜法可以使垃圾渗滤液的出水水质达标稳定;

③显著的减少了排放的污染物,同时向环境排放出高质量的净化水,大大消除了垃圾渗滤液对环境的负面影响。

但是该工艺在运用于处理垃圾渗滤液时,以下几个方面还有待进一步改进。

①采用普通生化法时,好氧活性污泥法和生物转盘法工程投资大,运行管理费用高;

②厌氧工艺地停留时间长,污染物去除率相对较低,对温度变化敏感;

③稳定塘占地面积大,处理效果随季节变化较大,接触氧化法须设置二沉池,增加了土地占地面积和处理成本。

④联合使用的膜法,由于其操作需要有一定的压力,耗电高;膜表面容易形成附着层,使膜的通量显著下降;膜法处理过程中会产生浓缩液,其处理费用很高。

2.3 高级氧化与生化组合处理工艺

目前应用和研究得比较多的高级氧化技术(AOP)包括臭氧氧化、Fenton氧化、O3/ H2O2、Fenton/UV、O3/UV、H2O2/UV以及TiO2光催化氧化等。该技术已经在废水、饮用水、地下水、有毒污泥和污染土壤等处理方面得到越来越多的应用。

高级氧化与生化组合工艺处理垃圾渗滤液在国内仅处于实验室研究阶段,结果表明在适当脱氮预处理基础上,高级氧化技术不但去除了一部分有机质,而且大大地改善了渗滤液中残余有机质的可生化性,提高了后续生物处理的效果,采用此组合工艺能够使渗滤液处理后水质达到一级排放标准。该组合工艺处理垃圾渗滤液的局限性主要表现在:

①由于采用高级氧化技术作为预处理,造成处理成本较高;

②由于垃圾渗滤液中水质构成非常复杂,其中许多无机离子将会大量消耗氧化剂,从而大大地增加了氧化剂的用量;

③残余的氧化剂会影响后续生物处理系统中微生物的活性;有些氧化过程中会产生一部分有毒副产物,因此其安全性需要大量的研究和实际运行结果来证实。

2.4 固定化微生物曝滤池

近几年来,国内研发推出了固定化微生物曝气滤池处理工艺,该工艺其生物处理原理仍然为厌氧及好氧微生物处理有机物的原理和流程,主要特点是其采用了软性多孔生物载体作填料的曝气滤池,选用高效微生物培养并固定多孔载体中,大提高其污染负荷,载体中兼氧、好氧过程同时进行,使渗滤液经处理可达到二级排放标准,该工艺投资少、脱氮效率高,运行费用为12~15元/吨,是近年有发展前景的一种渗滤液处理工艺。

我国现有垃圾渗滤液处理工艺优缺点比较分析见表1。

垃圾渗滤液处理前景篇(3)

垃圾渗滤液是在垃圾填埋过程中产生的一种成份十分复杂的高浓度的有机废水,目前还没有特别有效的治理方法。传统的生化处理法虽然常常用来处理渗滤液,但由于渗滤液中含有多种有毒有害的难降解有机物且水质水量变化很大,生化法的处理效果远不及其对城市污水的处理。“FEO技术”是我公司专门针对垃圾渗滤液开发的处理技术,在BOD5 CODcr比值低和很低时,使渗滤液达标的关键性技术。

1垃圾渗滤液的特性

垃圾渗滤液的来源主要有直接降水、地表径流、地表灌溉、地下水、垃圾自身的水分、覆盖材料中的水分和垃圾生化反应的生成水等。其具有负荷高、水质成份复杂、浓度随季节变化大、色度高、氨氮高、有毒性物质较多、可生化性逐渐降低等特征。渗滤液水质特征见表1。

表1 垃圾渗滤液水质特性表

项目 特 性

色味 呈淡茶色或暗褐色,色度一般在2000~4000倍之间,有较浓的腐臭味。

pH值 填埋初期pH为6-7,呈弱酸性;随着时间的推移,pH可提高到7-8.5,呈弱碱性。若垃圾中煤灰多,呈弱碱性;煤灰成分少,有机物多,呈弱酸性。

BOD5 随着时间和微生物活动的增加,浸出液中的BOD5也逐渐增加,一般填埋6个月至2.5年,达到最高峰值,随后BOD5开始下降。

CODcr 填埋初期CODcr略高于BOD5,随着时间的推移,BOD5急速下降,而CODcr下降缓慢,从而CODcr高于BOD5。浸出液中的BOD5/CODcr的比值比较高,说明浸出液较易生物降解,当填埋场填满封场后的2~5年中BOD5/CODcr逐步降至0.1,则认为后期浸出液中难于生化降解的成分占主要。

TOC BOD5/CODcr值可反映浸出液中有机碳可生化状态。填埋初期,BOD5/TOC值高,随时间推移,填埋场趋于稳定,浸出液中的有机碳以氧化状态存在,则BOD5/TOC值降低。

溶解总固体 浸出液中溶解固体总量随填埋时间推移而变化。填埋初期,溶解性盐的浓度可达10000mg/l,同时具有相当高的钠、钙、氯化物、硫酸盐和铁等,填埋6~24个月达到峰值,此后随时间的增长无机物浓度降低。

SS 一般在1000mg/l以下,垃圾填埋高度增加,SS值下降。

氨氮 氨氮浓度较高,以氨态为主。

磷 浸出液中含磷量少,生化处理中应适当增加与BOD5相当比例的磷。

重金属 生活垃圾单独填埋时,重金属含量很低,一般不会超过环保标准,但若渗混入工业废物或污泥混埋时,重金属含量增加,超标可能性大。

细菌 浸出液含有毒有害物质及细菌病毒、寄生虫等,其中大肠杆菌含量最大。

2垃圾渗滤液的处理技术

2.1生物处理技术

生物处理可大致分为厌氧生物和好氧生物处理两种技术。在厌氧生物处理装置中,渗滤液中的复杂有机分子被产甲烷细菌转化成甲烷和二氧化碳,产生极少数量的需要处理的污泥,同时还具有低能耗、低运行费和所需营养物少等优点。成熟的工艺有厌氧滤池(AF)、升流式厌氧污泥床(UASB)、高效厌氧反应器(UBF)等。

对于BOD与COD比值远大于0.5的早期渗滤液,含有大量易于生物降解的脂肪酸,好氧系统是非常有效的。微生物在氧气存在的条件下作用于有机物质,为保持好氧阶段生物活性,特别是处理含有高浓度有机物的早期渗滤液时,提供大量的氧气是非常必要的,当渗滤液有机负荷随时间变化时,系统可通过改变氧气供应来调整。好氧生物处理方法包括活性污泥法、生物转盘、滴滤池和氧化塘等。

2.2 物化处理技术

物化处理技术是指通过物理化学的方法去除渗滤液中的C0D、SS、色度、重金属等。相对于生物法,物理化学法不受渗滤液水质水量的影响,抗冲击负荷能力较强,出水水质比较稳定,尤其在废水可生化性较差的时候有比较好的处理效果。近年来,用于渗滤液处理的物化法主要有活性炭吸附、化学沉淀法、吸附法、化学氧化法、反渗透法、电渗析、FEO技术等多种方法。其可作为预处理或深度处理而为渗滤液的达标排放和生物处理系统有效运行创造良好的条件。

2.3 组合式工艺处理垃圾渗滤液

渗滤液成分复杂,仅采用普通的生物处理工艺难以达到理想的效果,因此需采用合适的预处理措施来提高它的可生化性,以改善后续工艺的运行环境。对于处理垃圾渗滤液采用物化和生化组合式的处理工艺,可以避免这两种方法的缺点。我公司积累近十年的工程实践经验,成功地开发了“厌氧+FEO+氨吹脱+好氧”的处理工艺,该处理工艺已经成功应用于十几个垃圾渗滤液处理工程。实践证明该工艺处理高浓度的垃圾渗滤液是目前确保出水稳定达标的最可行技术路线之一,CODcr、BOD5、氨氮和色度的去除率均很高,是目前较先进和比较可靠的方法之一。

3FEO处理技术介绍

“FEO处理技术”是我公司专门针对垃圾渗滤液开发的渗滤液处理技术,在BOD5/CODcr比值低和很低时,使渗滤液达标的关键性技术。我公司将该技术应用于漳州市九龙岭生活垃圾填埋场渗滤液处理工程,湛江生活垃圾填埋场渗滤液处理工程、阳江生活垃圾填埋场渗滤液处理工程、福安垃圾填埋场渗滤液处理工程、合肥市龙泉山垃圾填埋场渗滤液处理工程等工程均获得成功,净化效果十分显著。

其作用如下:FEO反应器中填料主要由Fe、Al、C、Mn、Zn、石墨等二十几种物质按一定的配比均匀混合而成。FEO反应器由FE罐及高级氧化罐两部分组成,“FE”指反应器中的主要填料铁(Fe),而“O”表示氧化反应。它主要利用电解质溶液中铁屑及其它金属晶体结构与碳之间形成的许多局部微电池,来处理工业废水的一种电化学处理技术。FEO反应器在没有外加电能条件下,充分利用金属-金属、金属-非金属之间的电位差而产生的无数微小电池的作用,使废水中的污染物通过电化氧化-还原反应、凝聚、气浮和沉降等作用,达到净化的目的。其电极反应式如下:

阳极反应:FeFe2++2e,E0(Fe/ Fe2+)=-0.44V

阴极反应:2H++2e2[H]H2,E0(H+/ H2)=0.00V(酸性介质)

O2+2H2O+4e4OH-,E0(O2/ OH-)=0.41V(碱性介质)

O2+4H++4e2H2O,E0(O2/ H+)=1.23V

FEO反应器特点是作用机制多、协同效应强、适用范围广、去除效果好、运行费用低、脱色效率高。它采用多组合工业混合原料及多元催化剂,进行多种生物化学反应、电化学反应和凝絮吸附共沉淀效应,从而分解难生化和不可生化的有机物,降低色度,为后续生化处理提供良好保障。

4FEO技术处理垃圾渗滤液工程案例

合肥龙泉山垃圾填埋场渗滤液处理站为我公司于2004年设计施工,并于2005年投入运营。合肥龙泉山垃圾填埋场位于合肥市肥东县桥头集镇,该渗滤液处理站是垃圾填埋场的主要配套工程,设在填埋库区的西北面,该项目由我公司设计施工,合肥市建设投资公司负责工程建设,华夏监理公司负责工程监理。垃圾渗滤液污水调节池容积为5万m3,渗滤液处理站设计处理规模为600m3/d,处理达标后的污水,由一条约10km的管线排入店埠河,最终进入巢湖。

垃圾渗滤液处理站设计进水水质如下:

CODcr≤6000mg/L BOD5≤3000mg/L,

SS≤500mg/LNH3-N≤800mg/L

垃圾渗滤液处理站出水排放标准如下:

渗滤液处理出水水质执行《生活垃圾填埋污染控制标准》GB16889-1997标准中的二级标准,即:CODcr≤300mg/L,BOD5≤150mg/L,SS≤200mg/L,NH3-N≤25mg/L,pH=6~9。

本处理站工艺主体路线:UASB+FEO+氨吹脱+CASS是不同于其它传统处理工艺,其是以先进的专利技术及工艺处理理论为依托,以大量的工程实例为基础逐步发展改进确立起来的,具有高度的针对性及先进性,是目前垃圾渗滤液处理的成熟的处理工艺。而FEO技术作为我公司的专利工艺更是在该工艺主体线路中起到关键的作用。

经过这几年的运营实践,FEO对经过厌氧处理以后的垃圾渗滤液处理平均效果见表2。

表2FEO进出水水质对比表

水质指标 CODcr

(mg/L) BOD5

(mg/L) 氨氮

(mg/L) 色度

(倍)

进水水质 3000 1200 800 3000

出水水质 2250 1020 640 150

由此可见FEO对 CODcr有25%的去除率,对BOD5有15%的去除率,氨氮也有20%的去除率,而对色度的去除率达95%。通过测量进出水的B/C也得到了提高。实践证明,FEO有如下优势:

4.1 垃圾渗滤液的色度很高,可达2000倍以上,工艺流程的主体系统采用生化为主的处理工艺,生化处理对色度的去除能力较弱,而“FEO处理技术”对有机色度的去除率可达95%以上。

4.2 垃圾渗滤液含有10%~35%难生化降解的有机物质,特别是填埋场到中后期或封场后,难生化和不可生化物质将占主导成份,只通过生化处理无法有效去除。“FEO处理技术”中因加入特殊的催化氧化剂,可使垃圾渗滤液中的大分子难生化物质断链为小分子,同时可改变一些难生化物质的分子结构,通过投加药剂反应可生成沉淀去除。

4.3 FEO处理技术可以去除相当一部分CODcr、NH3-N,减少后续生化处理的负荷。缩短生化时间,降低运行成本。

4.4 生活垃圾中可能混入一些工业垃圾,增加垃圾渗滤液中重金属的含量,采用FEO处理技术,能有效地去除垃圾渗滤液中的重金属离子,确保处理后的重金属达标排放。

5结论

垃圾填埋场因所处地区气候(降水)、水文特点,也与填埋场运行时间密切相关,渗滤液水质是连续变化的,所以对渗滤液的处理,不仅要考虑工艺方法对渗滤液的处理效果,而且更要考虑该工艺方法对水质、水量变化的适应性。物化法控制条件灵活、调整参数方便可靠,而生物法则对连续变化的渗滤液水质具有较好的适应性,结合两者各自特点,采用组合式工艺“厌氧+FEO+氨吹脱+好氧”处理垃圾渗滤液。FEO技术对于水质水量的变化有很好的适应性,在其水质水量变化时均能够稳定的运行。FEO技术处理垃圾渗滤液将是一个发展方向,有着广阔的应用前景。

参考文献:

[1] 闫志明,普红平,王小凤.垃圾渗滤液的特征及其处理工艺评述[J].昆明理工大学学报(理工版),2003,28(3):128-134.

[2] 蒋彬,吴浩汀,徐亚明 浅谈城市垃圾填埋场渗滤液的处理技术[J].江苏环境科技,2002,15(1):32-34.

[3] 丁忠浩,刘子元,王文斌,赵素芬.垃圾渗滤液处理中SBR法脱氮研究[J].武汉科技大学学报(自然科学版),2003,26(1):24-26.

[4] 程洁红,马鲁铭.厌氧/SBR/混凝沉淀耦合工艺处理垃圾渗滤液的研究[J].水处理技术,2004,30(3):176-178.

[5] 孟玢,李静,王蕾,季民.Fenton氧化处理垃圾渗滤液生化工艺处理的影响因素研究[J].天津城市建设学院学报,2004,10(1):41-45.

垃圾渗滤液处理前景篇(4)

1 城市生活垃圾卫生填埋处理现状及困境

城市生活垃圾卫生填埋处置方式由于具有技术可靠,工艺简单,管理方便;投资相对较省,运行费用低;适用范围广,对生活垃圾成分无严格要求,能完全消纳进场垃圾等一系列优点,在许多地区和国家都得到了广泛的运用。如1993年美国填埋处理量占垃圾总处理量的69.24%[1],英国1999年垃圾填埋处理占垃圾总处理量的67%,1991在德国年垃圾填埋处理量占垃圾总处理量的60%,在西班牙占75%,而我国在2001年统计结果显示垃圾填埋处理量占垃圾总处理量的80%。尽管垃圾卫生填埋处理技术拥有以上一系列的优点和得到了广泛的运用,然而现行传统的“式”(Dry Tomb)卫生填埋技术要求填埋过程中实行单元填埋、每日覆土、中场覆土,封场时再用自然土和粘土甚至土工膜组成最终覆盖层,严格按照上述要求施工的填埋场封场后就成了一个垃圾的“干墓穴”,由于湿度减少,微生物的活性减弱甚至停止,场内垃圾的生物降解是一个无任何控制的自然降解过程,封场后很长一段时间(数十年)内垃圾保持不变或者变化很小。此时的垃圾填埋场是一个潜在的污染源,一旦填埋场的覆盖层和防渗层部分功能失效,其污染特性必将暴露无疑。这种垃圾填埋形式实际上人为制造了一个定时炸弹,其实质只是将当代人产生的垃圾这一污染源转移给了下一代或后几代,这不符合可持续发展战略要求。现行的垃圾卫生填埋技术存在占地面积大的缺点之外,还存在如下几个无法避免的缺陷,由此严重的制约了垃圾卫生填埋技术的进一步推广和运用。

1.1 传统填埋场渗滤液水质、水量波动较大,处理难度大

现行垃圾填埋场渗滤液产量直接受进入场内的大气降水量的影响,一般填埋场运营期间渗滤液产量大,封场后渗滤液量相应减少;雨季渗滤液产量大,旱季渗滤液量则较少。受垃圾组分,大气降雨量的影响,填埋场渗滤液水质水量季节性波动显著;受填埋垃圾分解阶段的影响,填埋初期渗滤液有机污染物浓度特别高,垃圾填埋后期污染物浓度则逐渐降低。由于一般填埋场据城市污水处理厂距离较远,即使较近大量高污染物特征的渗滤液也会对城市污水处理系统的正常运行带来冲击,故一般填埋场都建设有独立渗滤液处理系统。但包括物理、化学、生物处理法等工艺在内的渗滤液处理系统都无法适应不断变化的渗滤液水质和水量的要求,经常要求随季节以及填埋阶段的不同改建渗滤液处理系统或对系统的有关运行参数进行调整。

1.2 传统填埋场渗滤液污染强度高,二次污染严重

传统填埋场渗滤液不仅污染种类繁多,成分复杂,同时污染物浓度极高。部分填埋场渗滤液COD可能高达近十万mg/L,氨氮浓度也可能高达近万mg/L,要使组分复杂,污染物浓度高的渗滤液排放前达到有关排放标准的要求,必须对其进行深度处理。深度处理费用之高,令很多填埋场的运行管理者望而止步。2001年7月国家环保总局下发了《关于开展生活垃圾处理设施环境影响调查和监测的通知》(环办[2001]72号),对全国垃圾处理设施的污染排放情况及其对周围环境的影响展开调查,调查结果显示,我国垃圾卫生填埋场渗滤液排放、地下水水质及无组织排放等无一家达到《生活垃圾填埋场污染控制标准》(GB 16887-1997)之规定,且二次污染程度较高[2]。

1.3 传统填埋场封场后维护监管期长、风险大、费用高、不利于场地及时复用

尽管传统填埋场不时有雨水进入,但受季节影响进入水量分布不均、受填埋场所布设的覆盖层影响使进入场内水分分布地点不均,因而填埋垃圾得不到均匀的、快速的降解,垃圾体的污染特征长期存在。美国EPA要求填埋场封场后监管30年,但有专家认为现行部分垃圾填埋场封场100年后还有大量垃圾未得到有效降解,仍对周围环境构成潜在威胁。长时间填埋场监管期不仅增加渗滤液处理、监测以及其他系统的维护费用,还增大了渗滤液收集系统、防渗层等系统失效的可能,从而增加了潜在的二次污染风险。

1.4 传统填埋场产气期滞后且历时较长,产气量小,资源化率低

传统填埋场进入甲烷化阶段所需时间长,还因渗滤液连续排放而损失大量可转化为甲烷气体的有机物,从而降低填埋场甲烷气体总产量;由于产气期较长而降低了产甲烷速率,使填埋场在甲烷总量减少的同时还延长了回收甲烷气体所需时间,因而降低了回收甲烷气体作为能源的经济效益。目前,除杭州、广州和深圳已在利用填埋场气体发电外,其余100多个填埋场都将填埋气体在燃烧后排放或直接排放,造成资源的严重浪费和对环境的负面影响。

1.5 传统填埋场垃圾处理费用高

由于传统填埋场的以上不足之处,自然就直接导致较高的单位垃圾填埋处理处置费用,不利于这一垃圾处置方式在更大范围的推广和运用。

2 生活垃圾生物反应器填埋技术

2.1 技术优势[3~6]

鉴于传统垃圾填埋技术以上一系列不足之处和生物技术在环境保护中的广泛运用,二十世纪后期欧美及日本等国家开始另一种改进的填埋场方式即生物反应器填埋技术的研究。生物反应器填埋技术根据填埋垃圾被微生物降解的机理和过程,利用填埋场这一天然的微生物活动场所,通过一系列手段优化填埋场内部环境使其成为一个可控生物反应器,为微生物大量繁殖提供一个最优的生存空间。生物反应器填埋技术不仅对填埋场产生的渗滤液能实现很大程度的场内就地净化,还为填埋场的提前稳定创造了良好条件,同时还增加了填埋气体回收利用的经济效益,明显提高垃圾的生物降解速度和效率,从而提高垃圾的资源化、无害化水平。生活垃圾生物反应器填埋技术较现行垃圾卫生填埋技术的主要优势:(1)通过渗滤液回灌,让渗滤液进一步参与生物反应,降低其污染物浓度,从而降低渗滤液的处理难度和处理费用;(2)加速生活垃圾的微生物降解过程,从而增加填埋场的有效容积;(3)通过控制填埋场内部的温度和湿度等条件,提高填埋气体的产气率和产气量,从而提高生活垃圾的资源化率;(4)加速填埋垃圾的稳定过程,从而降低填埋场的运行维护费用,并进一步降低对周围环境的二次污染风险等。由此可见生物反应器填埋技术具有传统卫生填埋技术不可比拟的优点。现如今生物反应器填埋技术在世界各国得到了广泛的运用,如美国EPA已着手修改现有的垃圾管理法规以推广这一新型的垃圾填埋技术。同样在1979年,生活垃圾半好氧生物反应器填埋技术被由日本健康福利部颁布的废物最终处置导则采用,该工艺还在马来西亚、印尼、菲律宾及巴西等国被广泛运用,同时该技术的培训课程也在亚太地区逐步开展。

2.2 生活垃圾生物反应器填埋技术的不同形式及其特点

生活垃圾生物反应器填埋技术根据填埋工艺不同可分为好氧、厌氧、好氧-厌氧及半好氧四种生物反应器填埋技术。与传统的卫生填埋技术相比较,四种生物反应器填埋技术都有各自的特点。

2.2.1 好氧生物反应器填埋技术

好氧生物反应器填埋技术是将渗滤液、其他液体及空气等根据场内垃圾生物降解需要,通过一种可控的方式加入至填埋场,概念图见图1。这样不仅大大地加快填埋垃圾生物降解和稳定速率,减少危害最大的温室气体——甲烷的排放,同时降低渗滤液污染强度和处理费用。国外研究表明,好氧生物反应器填埋场的生活垃圾达到稳定的时间在2~4年左右,温室气体减少50%~90%。由于需要强制通风供氧、渗滤液回灌及其他控制形式,故单位时间内运行费用很高。由于运行维护时间大大缩短,故总的运行维护费用同传统的卫生填埋技术相比,相差不大。

图1 好氧生物反应器填埋场概念图

2.2.2 厌氧生物反应器填埋技术

厌氧生物反应器填埋技术是通过向填埋垃圾体回灌渗滤液和注入其他的液体以保持填埋场内最佳的湿度条件,可生物降解垃圾在缺氧的条件下进行厌氧降解,同时快速产生富含CH4的填埋气体,概念图见图2。它具有加速填埋垃圾降解和稳定,减轻渗滤液有机污染强度,增大甲烷气体产量、产生速率,进而提高甲烷气体回收利用效益等优势,资源化率高,垃圾达到稳定化时间在4~10年左右,CH4气体产量增加约200%~250%,运行维护费用较低。缺点是渗滤液氨氮浓度长期偏高,不利于渗滤液的生物处理。

图2 厌氧生物反应器填埋场概念图

2.2.3 好氧-厌氧生物反应器填埋技术

好氧—厌氧生物反应器填埋技术是对上层新填埋垃圾进行强制通风供氧,下层垃圾仍按厌氧方式运行,概念图见图3。主要目的在于降低新填埋垃圾中易降解物酸化后对厌氧垃圾层的危害,同时向场内的湿度和其他环境条件进行控制,以实现填埋垃圾的无害化和资源化。垃圾达到稳定化时间和运行维护费用间于好氧和厌氧生物反应器填埋技术之间。

图3 好氧-厌氧生物反应器填埋场概念图

2.2.4 半好氧生物反应器填埋技术[7]

半好氧型生物反应器填埋场利用填埋场内外气体压力差,通过自然进风方式维持渗滤液收集管、排气管及中间覆土周围一定区域垃圾层的好氧状态,使部分垃圾实现好氧降解,同时向场内回灌渗滤液和其他液体,概念图见图4。其兼具好氧生物反应器填埋场的部分优点,同时建设成本和运行费用同传统的卫生填埋技术相比差别不大,二次污染程度低。

图4 半好氧生物反应器填埋场概念图

3 我国城市生活垃圾处理现状分析

2000年统计结果显示我国垃圾产量已经达到了1.4亿t,然而能达到真正意义上的、符合环境卫生要求处理的垃圾只有3%左右[8],大部分垃圾仍是通过简单的“堆填”来消纳。垃圾的“堆填”实际上是垃圾在某处的“存放”,它通常既不设防衬层,也无渗滤液收集处理和填埋气利用设施,因而,并没有改变垃圾对环境的污染状况。由于我国环保资金投入和垃圾焚烧技术等方面的限制,尤其在我国中西部地区,垃圾低位热值低,含水率高等特点,要大力推广垃圾焚烧处理还有很长一条路要走。同时我国未实现垃圾分类收集、运输和处理,垃圾堆肥处理中仍有许多问题还未解决,导致堆肥产品肥效低,产品中含有大量的玻璃粹渣,农民用户对此反应强烈,市场前景黯淡。有关媒体对四川省第一批利用国债建设的近十个垃圾综合处理厂(堆肥+焚烧或者堆肥+填埋)进行了调查,结果显示仅有个别垃圾处理厂能正常运行,究其原因之一是堆肥产品质量达不到预期的效果,市场受挫,垃圾厂变成了堆放垃圾的垃圾场,造成财力、物力和人力资源的巨大浪费。而我国地幅辽远,自然条件千变万化,有许多地方具备了建设填埋场的天然地理条件。2000年建设部、国家环保总局、科技部联合制定了《城市生活垃圾处理及污染防治技术政策》,其总则指出填埋处理是垃圾处理必不可少地最终处置手段,也是现阶段乃至今后相当长一段时间内的一种主要垃圾处理处置模式。

4 结束语

随着生物技术的不断进步和完善以及人们能源与环境意识的加强,世界垃圾填埋技术已从传统的以贮留垃圾为主向多功能方向发展,即一个垃圾填埋场应同时具有贮留垃圾、隔断污染、生物降解和资源恢复等多个功能。我国也应紧跟世界垃圾填埋技术的发展新趋势,大力研发生活垃圾生物反应器填埋技术。鉴于我国现有生活垃圾处理处置技术现有水平和基本国情,考虑到经济性和可操作性,我国当前应在回灌型生物反应器填埋技术方面加大研发和运用力度。笔者认为当前研究的重点应放在:(1)日覆盖层和中间覆盖层材料的选择,确保适当的透气性和水利渗透系数;(2)不同回灌形式(表面喷洒、水平管/沟回灌、竖井回灌以及混合回灌等)各自的适用条件和每种回灌形式的定量计算;(3)渗滤液回灌量、时间、频率的确定;(4)由于渗滤液回灌可能导致场内产酸细菌的大量繁殖,产生大量的有机酸,造成环境酸的大量积累,从而抑止产甲烷细菌的生长繁殖,因此还需解决如何有效调节场内pH值的问题;(5)由于垃圾填埋技术涉及到水力学、微生物学、环境工程学等多个学科,研发过程中应运用系统工程学的原理和方法,确定最佳计方案和运行方式,使生物反应器填埋技术在满足环境保护的前提下,实现单位垃圾建设成本和运行成本最低。

参考文献

1 建设部标准定额研究所编.城市生活垃圾处理工程项目建设标准与技术规范宣贯教材.北京:中国计划出版社,2002.7

2 李国刚.我国城市生活垃圾处理处置的现状和问题.环境保护,2002,(4):26~28

3 Mostafa W.Bioreactor landfills:experimental and field results.Waste Management,2002,22:7~17

4 Debra R.Reinhart,PhD,PE The bioreactor landfill:its status and future.Waste manage Res.,2002,20:172~186

5 EPA530-F-97-001.Landfill Reclamation,1997

垃圾渗滤液处理前景篇(5)

近年来随着城市生活垃圾填埋场的不断建设,垃圾渗滤液的处理问题也日益凸显出来,垃圾渗滤液对垃圾场周围的水体环境造成严重的污染,如何处理垃圾渗滤液成了一个需要迫切关心的问题。为了更好地控制垃圾渗滤液产生的影响,国家环保部于2008年4月颁布了《生活垃圾填埋场污染控制标准》(GB16899-2008),对新建垃圾填埋场渗滤液出水COD标准限值由100mg/l调整为60mg/l。为满足新标准的要求,本文推荐采用MBR-纳滤处理的工艺进行垃圾渗滤液的处理。

1垃圾渗滤液的性质

填埋垃圾在生物降解过程中产生的液体和各种渗入填埋场的水混合后,如总量超过了填埋场垃圾的极限含水量,多余部分就以渗滤液的形式排出。垃圾渗滤液中含有高浓度的有机物及重金属离子。渗滤液中的主要污染物指标有COD、BOD、氨氮、SS、pH、细菌、大肠菌群等。垃圾渗滤液水质的特点见表1。

表1垃圾渗滤液水质特点

指标 特点

色味 呈淡茶色或暗褐色,色度一般在2000~4000之间,有较浓的腐败臭味;

pH值 填埋初期pH为6~7,呈弱酸性;随着时间的推移,pH可提高到7~8,呈弱碱性

BOD5 随时间和微生物活动增加, BOD5也逐渐增加,填埋6个月至2.5年,达到最高峰值,此时BOD5多以溶解性为主,随后BOD5开始下降,到5~6年填埋场稳定化为止;

CODCr 填埋初期CODCr略低于BOD5,随着时间的推移,BOD5急速下降,而CODCr下降缓慢,从而CODCr高于BOD5。渗滤液中的BOD5/CODCr的比值较高,说明渗滤液较易生物降解,封场后2~5年中BOD5/CODCr的比值逐步降至0.1,后期难生化降解成分占主要。

SS 一般多在300mg/l以下,垃圾填埋高度愈高,SS值下降。

P 渗滤液中含磷量少,生化处理中应适当增加与BOD5相当比例的磷。

重金属 生活垃圾单独填埋时,重金属含量很低,一般不会超过标准,但若与工业废物或污泥混埋时,或填埋盖土为酸性红壤时,重金属含量增加,超标可能性大。

细菌 渗滤液含有毒有害物质及细菌病毒、寄生虫等,大肠杆菌数量很大。

渗滤液水质受垃圾组成、成份、填埋方式、季节、垃圾分解不同阶段等诸多因素的影响,变化范围较大。国内部分地区垃圾渗滤液的水质见表2。

表2国内部分地区垃圾渗滤液水质单位:mg/l,pH除外

BOD5 CODCr SS NH3-N pH

漳 州 2000 4000 300 500 6~9

宜 昌 1500 3000 600 300 6~7

上 海 200~4000 1500~8000 30~500 60~450 5~6.5

杭 州 400~3000 1000~5000 60~650 50~500 6~6.5

广 州 400~2500 1400~5500 200~600 130~600 6.5~7.8

2国内垃圾渗滤液处理方式

国内垃圾渗滤液常用的处理方法有回灌法、物化法和生化法。循环回灌法处理能力有限,操作环境差,不适于年降水量大的南方。物化法处理成本一般较高,不适于大水量垃圾渗滤液的处理。生物处理分为厌氧处理、好氧处理和好氧与厌氧结合处理法。目前生物处理法国内应用较多的一般为好氧和厌氧的组合工艺。组合工艺主要适用于高浓度垃圾渗滤液。在氨氮的质量浓度较高的渗滤液处理工艺流程中,一般采用先氨吹脱,再进行生物处理。组合处理工艺处理效率高,污泥沉淀性能好,经济合理,技术成熟,已在废水治理领域广泛推广,但是对于可生化性低,难降解的有机物以及毒性高的废水,则处理效果较差。深圳下坪垃圾填埋场采用氨吹脱-厌氧生物滤池-SBR工艺,设备运行良好,出水稳定达标。

近年来,随着膜技术的发展与推广,反渗透成为处理垃圾渗滤液的主要方法,这是由于反渗透具有高效的截留污水中溶解态的无机和有机污染物的特性。但是在应用过程中,反渗透的缺点和不足日益显露,主要是操作压力大,能耗较高,设备损耗大,维护管理困难。为克服上述缺点,减少操作难度,各国的研究者相继把目光转向了操作压力较低、运行管理方便的纳滤技术,本文主要介绍MBR-纳滤垃圾渗滤液处理工艺。

3MBR-纳滤处理工艺

近年来,国内MBR工艺处理垃圾渗滤液发展较快。由于MBR对垃圾渗滤液中的有机物进行了生化降解,不存在浓缩液需要进一步处理的问题,单一的MBR工艺出水不能达到国家二级以上的排放标准,往往需要配合NF、RO、活性炭等后续处理工艺以满足新的渗滤液排放标准。目前青岛小涧西垃圾填埋场、北京北神树垃圾填埋场、佛山高明白石坳填埋场、哈尔滨西南垃圾填埋场等多家垃圾处理厂采用MBR十NF系统处理垃圾渗滤液,并取得了良好的处理效果,其中处理规模最大的为佛山高明白石坳填埋场,处理规模达到860t/d。MBR十NF工艺处理垃圾渗滤液的常见工艺流程图见图1。

图1MBR+NF处理垃圾渗滤液工艺流程

3.1 MBR

MBR是生化反应器和膜分离相结合的高效废水处理系统,用膜分离(通常为超滤)替代了常规生化工艺的二沉池,大大提高了对有机物的去除率。传统活性污泥法中,受二沉池对污泥沉降特性要求的影响,当生物处理达到一定程度时,要继续提高系统的去除效率很困难,往往需要延长很长的水力停留时间也只能少量提高总的去除效率,而膜生物反应器中,由于分离效率大大提高,生化反应器内微生物浓度可从常规法的3~5g/L提高到15~30g/L,可以在比传统活性污泥法更短的水力停留时间内达到更好的去除效果,减小了生化反应器体积,提高了生化反应效率,出水无菌体和悬浮物,因此在提高系统处理能力和提高出水水质方面表现出很大的优势。

超滤膜组件主要由不对称管式陶瓷膜元件构成。陶瓷膜元件是一种无机膜,是将金属与非金属氧化物、氮化物或碳化物结合而构成,其内外表面为致密层,层面密布微孔,膜孔径0.05μm,中间是多孔支撑层。超滤过程很容易形成污染而导致通量大幅度衰减,因此需要定期清洗。清洗时可以选强酸强碱作清洗剂,也可进行反向冲洗。

MBR的主要特点:①能有效降解主要污染物COD、BOD和氨氮;②100%生物菌体分离;③出水无细菌和固性物;④反应器高效集成,占地面积小;⑤污泥负荷(F/M)低,剩余污泥量小;⑥无需脱臭装置;⑦运行费用小。

3.2 纳滤

在MBR反应器系统后加上纳滤,纳滤的作用是截留那些不可生化的大分子有机物COD,污水经纳滤系统进一步深化处理后,可使出水COD降到60mg/L左右,保证出水的达标排放,同时MBR工艺作为NF的前段处理工艺也有效地保障了纳滤的处理效率。根据有关资料,垃圾填埋场渗滤液经NF后的各项截留率指标如表3所示。

表3垃圾渗滤液经纳滤处理后的截留率

项目 进水 出水 截留率(%)

pH 6.3 6.4 /

COD(mg/l) 17000 700 95.88

BOD5(mg/l) 480 280 41.62

NH3(mg/l) 3350 1420 57.61

SO4(mg/l) 31200 2345 92.48

Ca2+(mg/l) 2670 187 93.00

Mg2+(mg/l) 1030 72.7 92.94

Na+(mg/l) 10900 5010 54.04

纳滤净化水回收率80%,纳滤过程中产生20%的回流浓缩液,采用混凝沉淀进一步处理。实践表明,使用具有混凝和吸附作用的复合型混凝剂(主要含FeCl3),COD去除率可达60%以上,混凝沉淀后上清液回调节池。纳滤回流液回生化系统进一步处理,由于其中的难降解有机物在生化处理系统中的相对停留时间延长,微生物得到有效驯化,难降解有机物也能部分降解,不会产生难降解有机物在系统中的富集现象。

3.3 污泥处理系统

渗滤液处理站的污泥来自生物处理的剩余污泥和纳滤回流液混凝沉淀产生的污泥。为了发挥生物处理的剩余污泥的生物吸附作用和改善污泥的脱水性能,工艺流程把生物处理的剩余污泥排到纳滤回流液混凝沉淀系统(即污泥浓缩池),经过混凝沉淀和污泥浓缩,上清液溢流回调节池,浓缩污泥通过污泥泵抽送到板框压滤机进行压滤,滤饼运送垃圾填埋区进行填埋,滤液经收集后用泵抽送到调节池。

4结论

垃圾渗滤液处理前景篇(6)

Abstract: with the development of economy and speed up the construction of city, city garbage problem increasingly, urban waste landfill method because of low cost, simple, processing technology relatively quickly, is most widely used at home and abroad and garbage disposal method.

Key words: the city; Life waste; Landfill site construction

中图分类号:F291.1文献标识码:A 文章编号:

一、垃圾填埋场的选址

垃圾填埋场选址是填埋场建设项目中一个重要环节,一个城市生活垃圾填埋场如果选址不当,将会给垃圾填埋场的建设和运营带来种种困难。卫生填埋场场址的选择涉及到当地经济、交通、运距、地理地形、气候、环境地质、水文地质及工程地质条件等,是一项十分复杂的工作,作为设计单位在工作的前期就应详细核实其资料的准确性,实地踏勘现场,并在此基础上做出场址是否合适的准确判断。

(一)、垃圾填埋场不应设置的地区

《生活垃圾卫生填埋技术规范》(CJJ17-2004)中明确规定,有9类地区不应建设垃圾填埋场,这属于强制性规范,必须要遵守。现场实地勘查时,若发现符合其中一项,该垃圾填埋场就必须更换场址。这9类地区为:(1)地下水集中供水水源地及补给区;(2)洪泛区和泄洪道;(3)填埋库区与污水处理区边界距居民居住区或人畜供水点500m以内的地区;(4)填埋库区与污水处理区边界距河流和湖泊50m以内的地区;(5)填埋库区与污水处理区边界距民用机场3km以内的地区;(6)活动的坍塌地带,尚未开采的地下蕴藏区、灰岩坑及溶岩洞地区;(7)珍贵动植物保护区和国家、地方自然保护区;(8)公园,风景、游览区,文物古迹区,考古学、历史学、生物学研究考察区。在实际选址过程中,应避开上述地区。经常遇到的是其中第3条情况:垃圾场不应建在填埋库区与污水处理区边界距居民居住区或人畜供水点500m以内的地区。遇到此情况,如没有其他合适的场址,评估单位通常要求在该区域内的居民搬迁。但是往往由于搬迁费用较大,执行起来较为困难。

(二)、环境地质条件

垃圾填埋场类型根据场址地形分为山谷型、平原型、坡地型。垃圾渗滤液是垃圾填埋场影响周围环境最为重要的因素,因此在对场址的勘察过程中,应重点注意环境地质条件。在选址的各项主要条件中,以其重要性为评判依据,应按照如下顺序排列:环境地质条件>环境保护条件>交通运输条件>场地建设条件>垃圾填埋场与城市的距离。这就要求我们在场地实地勘察时,应特别注意地下水的保护和废弃物的力学稳定性,并分析地下水流的途径及边界(含水层和隔水层)的分布与水力特性、场址所在位置的地下水是否为独立水系、当地的地形和土层构造、地基土的变形特性以及改善地基土层水密性的可能性等。对渗滤液可能产生渗漏等不利条件也要做出分析,并提出可行的补救措施。

二、垃圾场渗滤液的处理

(一)、垃圾渗滤液的产生及主要特点

(1)垃圾渗滤液的产生。垃圾渗滤液的产生受多种因素影响,不仅水量变化大,而且变化无规律性,其来源主要有:①垃圾自身含水及从大气和雨水中的吸附量。②垃圾降解生成水。③地下潜水的反渗。④大气降水。其中由大气降水形成的渗滤液占总量的绝大部分。因此我们在研究渗滤液处理的同时,也要关注影响其产生量的各种主要因素,如大气降水强度、频率,地下水的流向、流速、位置,地表地形、顶盖材料,温度、风、湿度、植被、太阳辐射等。

(2)垃圾渗滤液的主要特点:

①渗滤液水质极为复杂,污染物种类繁多、危害大。渗滤液中不仅含有耗氧有机污染物,还含有重金属和植物营养素等多种有毒有害物质及生物污染物,如病菌、虫卵等。

②污染物浓度大,变化范围大。垃圾填埋渗滤液的CODCr、BOD5、总氮、氨氮、碱度、硬度、重金属污染浓度都很高,且变化范围大。垃圾渗滤液的这一特性是其它污水无法比拟的,突出了处理和处理工艺选择的难度。

③水质水量的明显变化性:a.渗滤液的产生量随季节的变化而变化,雨季明显大于旱季;b.污染物组成及其浓度随季节的变化而变化,如平原地区填埋场干冷季节渗滤液的污染物组成和浓度较低;c.污染物组分及其浓度与填埋年限有关,如填埋层各部分物化和生物学特征及其活动方式都不同,“年轻”填埋场(使用5年以内)的渗滤液成黑色,有恶臭、SS(悬浮物)高、pH值较低、BOD5、CODCr、VFA、金属离子浓度和BOD5/CODCr较高,具有较好的可生化性;“年老”填埋场(使用10年以上)的渗滤液pH值近中性,BOD5、CODCr、VFA浓度和BOD5/CODCr较低,金属离子浓度下降,但氨氮浓度较高,可生化性差。

④渗滤液中含有大量微生物,但微生物营养元素比例严重失调。填埋场条件比较适合微生物的生长繁殖,所以渗滤液中含有大量微生物,其中许多微生物对渗滤液的降解起着重要作用,主要有亚硝化细菌和硝化细菌、反硝化细菌、脱硫杆菌、脱氮硫杆菌、铁细菌、硫酸盐还原菌以及产甲烷菌等7类细菌。此外,渗滤液中还有大量的病原菌和致病微生物。另外重金属元素、氨氮等物质含量过高,使得微生物营养元素比例失调,在一定程度上抑制了微生物的生长繁殖。

(二)、渗滤液处理方法及其分析

(1)物理化学法。包括吸附、化学混凝沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提、湿式氧化、消毒等法。

光催化氧化和电化学技术的应用是渗滤液污染化学控制的新发展。以TiO2作催化剂的光催化氧化深度处理垃圾渗滤液,COD去除率40%~50%。与生物法相比,物理化学法不受水质水量变动的影响,出水水质稳定,尤其是对BOD5/CODCr比值较小(0.07~0.20)的可生化性差的渗滤液有较好的处理效果,但是处理成本高,在投资费用和运行费用上不适于大量渗滤液的处理。

垃圾渗滤液处理前景篇(7)

1城市生活垃圾现状

随着现代工业的兴起和城市迅猛发展,人口大量涌入城市,使城市的生活垃圾产生量大大增加。这些垃圾占用大量的土地,且种类繁多,成分复杂、危害性强。如果处理不当,势必污染城市的大气、水、土壤等,进而降低和破坏城市自然生态系统的调节净化能力[1]。

目前国外城市垃圾采用的处置方式主要有卫生填埋、焚烧、堆肥等3种,表1为这3种处置方式的比较。

表1生活垃圾处置方式对比

工艺 优点 缺点 适用范围

卫生填埋 处理量大、方法简单、费用低 占地大、管理要求高、对外部环境要求高、使用期限有限 无机物>60%、含水量0.5 t/d

焚烧 处理量大、占地小、无害化彻底 费用高、控制不当产生二次污染物如SO2、NOx、飞灰等 垃圾低位热值>3300 kJ/kg时,不需添加辅助燃料

堆肥 处理量大、费用低、工艺相对简单 肥分含量低,长期使用影响土壤结构 垃圾中可生物降解有机物≥10%、从肥效出发应>40%

我国城市生活垃圾处置也主要采用填埋、焚烧和堆肥等方法,其中,以填埋为主,占70%以上;其次是高温堆肥,占20%以上;焚烧量甚微[2]。

焚烧与堆肥技术在我国发展较慢,原因主要为:(1)我国城市生活垃圾未实行分类收集,垃圾成分复杂不利于燃烧与堆肥;(2)焚烧厂的投资太大,运行成本太高;(3)控制不当将产生二次污染问题;(4)垃圾堆肥产品销路不畅;(5)工艺技术和设备与国外亦有较大的差距。

针对我国现阶段国情,我国绝大部分垃圾仍采用填埋进行处理为主,并且在今后相当长时间内,垃圾填埋处理还将占主导地位。

2卫生填埋技术

在我国,由于垃圾填埋场启用时间早,许多填埋场在最初的选址、设计、施工和使用中,未按现行的城市生活垃圾卫生填埋技术规范执行,填埋场底部和周边都没有采取防渗措施,垃圾产生的渗漏液和填埋气体,极易给周边环境和企业、社区带来污染和安全隐患。

2.1 填埋气体。填埋气体是城市生活垃圾中的有机成分经过厌氧降解产生的混合气体,其主要组成为CH4、CO2、H2、N2和O2,还有少量的H2S、NH3、辛烷、氯乙烯等,其中CH4、CO2(沼气主成分)占填埋气体的99.5%~99.9%,NH3、H2S等有毒的恶臭气体,占填埋气体的0.2%~0.4%。这些气体一旦遇到房屋或棚罩阻拦,将不断积累,最终可能导致火灾和爆炸事故。垃圾内的易燃易爆物质在一定条件下,也会自行燃烧爆炸。

2.2 渗漏液。垃圾渗滤液主要来源于垃圾本身、垃圾发酵过程以及受水体浸泡而产生的废水。其主要特征为:渗滤液中污染物的浓度非常高,成分复杂,水质恶劣,一般COD浓度达几千或者上万;一些年代久的垃圾填埋场,COD浓度可高达几万,并且含有高浓度的氨氮,渗滤液可生化性很差,含有大量的重金属、多种病源微生物等有毒有害物质,而且渗滤液的组成成分会随着填埋时间的延长越来越恶劣。

3填埋气与渗漏液的处理技术

3.1 填埋气的收集技术

3.1.1竖井收集系统。早期的填埋气主要用竖井收集系统,具体做法是在填埋场填埋作业后不久,通过挖掘机械或人工打井的方式建造竖井系统。

3.1.2表面收集系统。填埋场在表面覆盖完成以后,便可进行表面收集系统的安装。整个系统是由排气管编织而成的收集网,填埋气通过排气细管输送到系统的几个中央采气点进行收集。

3.1.3水平收集系统。水平式收集系统是在垃圾填埋到一定高度后,在填理场内铺设水平收集主管,然后,将水平气管收集到的气体汇集到主收集管。

3.2 填埋气的应用

3.2.1直接燃烧。对填埋气进行加工处理后,可以直接供给工业及温室用户,其中以供暖或工业生产为用途的热效率最高。填埋气的经济效益取决于填埋场到用户的距离及发生源的连续性。

3.2.2发电。主要由填埋气收集燃烧系统和发电系统组成,填埋气经收集后,经加压输送至内燃发机组,燃烧转化成电能传输出去。

3.3 渗滤液的处理现状

渗滤液水质复杂,这给渗滤液的处理处置带来了很大的困难,目前国内外还没有非常完善的处理工艺,对渗滤液的主要处理途径是:

3.3.1与城市污水合并处理。将垃圾渗滤液就近引入城市污水处理厂,与城市污水合并进行处理。

3.3.2渗滤液回灌技术处理。用适当的方法,将在填埋场底部收集到的滤渗液从其覆盖表面或覆盖层下部重新灌入填埋场。

3.3.3渗滤液处理厂处理。目前,用于垃圾渗滤液处理的方法主要有生物法和物理化学法。

3.4 渗滤液的主要处理工艺

3.4.1活性炭吸附法

在渗滤液的处理中,该方法主要用于去除水中难降解的有机物(酚、苯、胺类化合物等)、金属离子(汞、铅、铬)和色度,一般情况下,对COD和NH3-N的去除率为50%~70%[3]。活性炭吸附法处理可适应水量和有机负荷的变化,且设备紧凑,管理方便。方士等[4]用回流式两级序列间歇式活性污泥法(SBR)―活性炭吸附混凝工艺处理高氨氮、低碳氮比的垃圾渗滤液,粉末活性炭和铝盐投加量分别为1‰(W/V)和0.4‰(W/V),吸附时间为100 min,总的水力停留时间为82 h,CODCr和氨氮的去除率可以稳定在90%以上,出水中氮的主要形态为NO2--N,出水CODCr

3.4.2化学氧化

化学氧化法可以分解渗滤液中难降解的有机物,从而提高废水的生物降解性能。其中高级氧化技术因能够产生极强氧化性的・HO自由基而越来越广泛地被用于处理渗滤液。Fenton法由于费用低、操作简便而受到人们的重视。张晖等[5]介绍了Fenton 法处理垃圾渗滤液的中试试验,结果表明,当双氧水与亚铁盐的总投加比一定(H2O2/Fe2+=3.0)时,COD的去除率随双氧水投加量的增加而增加。当双氧水的总投加量为0.1 mol/L时,COD的去除率可达67.5%。Fenton 法在处理高浓度的有机污水方面有很大的潜力,但它的缺点是对pH值敏感,且处理后的废水需进行铁离子分离回收。其他的氧化剂主要有臭氧、氯和氯系氧化剂,但后者由于残留产物的高毒性,不适合采用。

值得一提的是,近年来出现的光催化氧化技术,它具有工艺简单、能耗低、易操作、无二次污染等特点,尤其对一些特殊污染物的处理具有显著的效果。因此,该方法在垃圾渗滤液的深度处理方面有很好的应用前景。谭小萍等[6]对影响垃圾渗滤液的光催化处理的因素进行了研究。结果表明:光强越大,最佳TiO2投量就越小;最佳反应时间一般宜在1.5~2.5 h;波长为253.7 nm的紫外线杀菌灯价格低廉、使用广泛、处理效果好,COD去除率可达40%~50%,脱色率可达70%~80%。

3.4.3组合工艺处理技术

如前所述,垃圾渗滤液由于水质复杂使得单一工艺不能很好地达到理想的处理效果。所以宜采用组合工艺对渗滤液进行处理。

目前国内外已经发展出许多组合工艺,且取得了较好的处理效果。Laitinen等[7]研究了SBR和淹没式膜生物反应器(MBR)组合工艺处理垃圾渗滤液,在SBR中,SS、BOD5、NH3-N和PO43--P的去除率分别达到89%、94%、99.5%和82%。MBR进一步提高了出水水质,并减少了水质的波动,其中SS和PO43--P的去除率分别超过了99%和88%,BOD5和NH3-N的去除率均超过97%,TN去除率可以达到50%~60%。王延涛[8]研究山西省平顺县填埋场渗滤液处理工艺(如图1所示),该工艺采用高效专用微生物处理单元缺氧+厌氧(UBF)―曝气生物流化床(BFB)组合工艺,运行结果表明:当进水SS为600 mg/L,NH4+-N浓度为700 mg/L,BOD、COD的浓度分别为4500 mg/L、10000 mg/L,经过处理后,出水SS、NH4+-N、BOD和COD的浓度分别降到75 mg/L、10~30 mg/L、30~50 mg/L、600~900 mg/L;总去除率:SS=95%,BOD=99%、COD=94%。

3.4.4膜渗析与分离系统

膜处理一般与其他处理方法联用,超滤或微滤常常作为反渗透的预处理。袁维芳等[9]对广州市大田垃圾填埋场渗滤液预处理出水进行了反渗透实验研究,结果表明,进水压力为3.5 MPa,pH值为5~6的条件下,当进水COD浓度为250~620 mg/L时,出水浓度几乎为0,去除效率达100%,平均透水量为30~42 L/(m2・h)。但膜分离方法一次性投资费用大,而且对浓度较高的渗滤液,处理费用很高。

4结语

在我国,卫生填埋技术是生活垃圾处理的主要手段,而填埋产生的渗滤液是一种高浓度、成分复杂、水质水量易变化的污水,人们对渗滤液的处理一直处于探索和发展之中。针对垃圾渗滤液的处理,可选用的方法虽然较多,但不同程度地都存在一些缺陷,如何选择最佳处理,工艺或将现有的处理工艺有机结合,降低运行成本,提高出水质量是目前需要研究解决的问题。

参考文献:

[1] 段丽杰,马继力,孟凡萍.城市生活垃圾对城市生态系统的破坏及防治对策分析[J]. 内蒙古环境科学,2009,21(5): 26-36.

[2] 高惠璇.应用多元统计分析[M]. 北京:北京大学出版社,2005.

[3] 周爱姣,陶涛. 垃圾填埋场渗滤液物化处理的现状及发展趋势[J]. 重庆环境科学,2001,23(6):67-70.

[4] 方士,卢航,蓝雪春. 两级SBR-PAC 吸附混凝法处理垃圾渗滤液的研究[J].浙江大学学报,2002,28(4):435-439.

[5] 张晖,Huang C P. Fenton法处理垃圾渗滤液[J].中国给水排水,2001,17(3):1-3.

[6] 谭小萍,王国生,汤克敏.光催化法深度处理垃圾渗滤液的影响因素[J].中国给水排水,1999,(5):52-54.

垃圾渗滤液处理前景篇(8)

Abstract: Landfill leach ate landfill has the characteristics of high COD concentration, high ammonia concentration, low BOD5 concentration, through to the Guangxi province Nanning MSW landfill leach ate treatment project of the station, according to the characteristics of landfill leach ate and treatment degree requirements, garbage infiltration of choice of treatment process of leach ate.

Keywords: Landfill leach ate;wastewater treatment; landfill

中图分类号:X703

前言

圾渗滤液水质浓度高,变化幅度大,其水质的变化情况与填埋场垃圾成份、垃圾处理规模、降雨量、温度、地形地质情况、填埋年限、垃圾降解状况等多因素密切相关。如不及时对其进行收集、处理,将造成对地下水、地表水及垃圾填埋场周围环境的污染和影响,尤其是它对地下水源和土壤的污染更为严重。根据我国垃圾处理"无害化、减量化、资源化"的原则,防止填埋过程中造成二次污染,必须对垃圾渗滤液进行处理,要求渗滤液处理后排放的水质达到国家《生活垃圾填埋场污染控制标准》(GB16889-1997)的相关要求。

1.工程背景

广西省南宁某生活垃圾填埋场渗滤液处理规模为出水150m3/d。最终出水水质达到《生活垃圾填埋场污染控制标准》(GB16889—2008)的排放标准。本工程采用的工艺为絮凝+氨吹脱+厌氧+好氧+膜处理,设计范围主要为垃圾渗滤液处理站范围内的水质分析,工艺单元设计。

其中进出水水质如下:

表1生活垃圾渗滤液设计进站水质

2.水质分析

垃圾渗滤液的特性如下:

(1)有机污染物种类繁多,水质复杂。垃圾渗滤液中含有大量的有机物,含量较多的有机烃类及其衍生物、酸酯类、醇酚类、酮醛类和酰胺类等。

(2)污染物浓度高和变化范围大。垃圾渗滤液的这一特性是其他污水所无法比拟的,其中的BOD5和COD浓度最高可达每升几万亳克,主要是在酸性发酵阶段产生,pH达到或略低于7,此时BOD5和COD比值为0.5~0.6。一般而言,COD、BOD5、BOD5/COD随填埋场的“年龄”增长而降低,碱度则升高。

(3)水质水量变化大。垃圾渗滤液水质水量变化大,主要体现在以下方面:产生量随季节变化大,雨季明显大于旱季;污染物组成及其浓度也随季节变化;污染物组成及其浓度随填埋时间变化。

(4)金属含量高。垃圾渗滤液中含有10多种金属离子,由于国内垃圾不像国外某些城市那样经过严格的分类和筛选,所以国内城市垃圾渗滤液的金属离子浓度与国外某些城市垃圾渗滤液中金属离子浓度有差异。

(5)氨氮含量高。城市垃圾渗滤液是一种组成复杂的高浓度有毒有害有机废水,其中高NH3-N浓度是城市垃圾渗滤液的重要水质特征之一。

(6)营养元素比例失调。对于生化处理,污水中适宜的营养元素比例是BOD5:N:P=100:5:1,而一般的垃圾渗滤液中的BOD5/P都大于300,与微生物生长所需的磷元素相差较大。

3.处理工艺选择

垃圾渗滤液处理的工艺组合有多种选择,目前国内外垃圾渗滤液的主要工艺路线有以下三种:(1)生化处理工艺为主,结合一定深度处理技术,这是最广泛采用的处理工艺组合。生化处理工艺中,各种厌/好氧和兼氧生化工艺组合可去除绝大多数有机物和氨氮,但由于渗滤液中污染物浓度高以及生化工艺对难降解有机物去除的局限性,生化处理渗滤液不能直接处理达标,必须结合相应的深度处理工艺才能满足较高的排放要求。根据现行垃圾渗滤液处理排放标准,较可靠的深度处理工艺以膜处理工艺为主。可供比选的膜系统有纳滤膜和反渗透膜。根据应用研究和类似工程经验,只有反渗透膜处理能满足新标准中对污水中所有种类污染物的去除要求因此,工艺方案采用了成熟的,具有稳定的物理截留去除能力的膜处理单元,以确保对污染物的去除效果。

4.工艺流程设计

通过以上对垃圾渗滤液的各污染物分析及其水质水量的影响,特采用以下工艺:废水原水调节池氨氮吹脱装置UASB高效厌氧沉淀池曝气池絮凝反应滤膜池次氯酸钠消毒处理达标排放本污水处理系统充分考虑了垃圾渗滤液的各污染物的成分及其水质水量受当地气候和垃圾填埋场“年龄”的影响,此系统抗冲击负荷强,保证被治理废水达标排放,资源的再次利用,污泥量小、无臭味、低能耗、基建成本及运行费用低等优点。

工艺流程如下:

图1工艺流程图

5流程说明

5.1调节池

由于垃圾渗滤液的水量受季节变化明显,枯水期水量少,而丰水期水量大且渗滤液的水质情况受垃圾填埋场的“年龄”影响,因此,为使后续处理设施正常,在此设置调节池,并在调节池内设置曝气机进行曝气,以使水质水量得到调节、均匀、水量相对稳定。

5.2混凝沉淀池

调节池出水进入混凝沉淀池,进行絮凝反应,进一步去除水中的细小悬浮物、胶体微粒、有机物、重金属物质,以及水中的色度,并且还具有去除水中的微生物、病原菌、病毒和除磷作用。所需药剂根据水中SS含量及水质特性而定,可选用三氯化铁[FeCl3]、硫酸铁[Fe¬2(SO4)3]、聚丙烯酰胺[PAM]、聚合氯化铝[PAC]。根据实验确定,该垃圾渗滤液采用三氯化铁[FeCl3]、聚合氯化铝[PAC]效果显著。

5.3氨氮吹脱装置

该装置是在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。该装置对去除垃圾渗滤液中的氨氮有极好的效果。经过该装置处理后,出水中的氨氮可降低50%以上。

5.4 UASB高效厌氧池

经脱氨氮装置进行脱氨氮处理后,出水进入UASB高效厌氧池,在厌氧工况下,发生酸化和腐化反应,使污水中大分子物质降解为小分子物质,难降解物质转化为易降解的物质,同时产生甲烷和二氧化碳。

由于废水在厌氧池进行厌氧反应后产生沼气,若进行处理后回收利用,则投资大,收效甚微,在此,我公司建议对厌氧池产生的沼气进行自行燃放处理,从而节省成本且避免二次污染。

5.5沉淀池

UASB厌氧池出水中含有厌氧污泥需经沉淀池进行沉淀去除, 以保证后续水泵和管道免受堵塞,并缓解后续好氧生物接触氧化反应负荷。沉淀池为自由沉淀,污泥部分回流至UASB厌氧反应池,部分定期由污泥泵提升至污泥浓缩池。该沉淀池具有处理水量大小不限,沉淀效果好;对水量和温度变化的适应能力强;平面布置紧凑,施工方便,造价低等优点。

5.6 曝气池

从厌氧处理到好氧处理,是两种完全不同的生物菌种反应。曝气池的功能主要是去除废水水中大部分有机物,曝气池中填料采用新型的立体弹性填料,其具有使用寿命长、不堵塞、充氧性能好、耗电小、启动挂膜快、脱膜易、耐高负荷冲击、耐酸耐压,处理效果显著等优点。

5.7滤膜池

好氧出水进入滤膜池,滤膜池除能有效的吸附悬浮物、重金属离子,去除部分色度降低水中的BOD和COD。

5.8消毒池

滤膜池出水进入次氯酸钠氧化单元进行杀毒灭菌处理,以降低废水中的致病细菌如大肠杆菌等的残留量。并且加入次氯酸钠消毒剂还具有脱色和去除有机物的作用。

经以上工艺处理后的垃圾渗滤液的各项指标完全达标出水排放。

5.9污泥浓缩池

污泥浓缩池将收集各沉淀池的污泥,污泥浓缩池内的污泥将通过污泥泵抽回填埋场进行处理,上清液回到调节池中继续处理。

6.工程总结

采用絮凝+氨吹脱+厌氧+好氧+膜处理工艺处理垃圾渗滤液,效果良好,出水能达标排放,但渗滤液作为一种特殊高浓度难处理废水,主要原因是渗滤液中有机物、氨氮浓度极高,生化性能较差,营养物比例失衡,从而导致生物处置的停留时间较长,处理设施、设备投资大。而垃圾渗滤液处理量一般较小,导致折旧维修费用极高。本工程总造价925万元,其中设备部分约680万元,土建造价245万元/吨,运营成本4.2元/吨。

参考文献:

垃圾渗滤液处理前景篇(9)

中图分类号: X703 文献标识码:A 文章编号:1674-098X(2014)03(b)-0049-01

随着城镇生活垃圾的增多,垃圾渗滤液处理设备逐步向着城镇方向深入,污染物的排放标准趋于严格。本文结合工程实例,着重探讨两级DTRO在规模较小的垃圾渗滤液项目中的处理方法及应用优势。

1 小规模垃圾渗滤液的水质特点

(1)色度。垃圾渗滤液的色度较大,通常在200-4000倍间及其以上,并具有高毒性,通常呈暗褐色、茶色或深褐色,味具浓烈的腐化臭味。

(2)渗滤液前、后期水质变化大。渗滤液的水质变化幅度很大,它不仅体现在同一年内各个季节水质差别很大,浓度变幅可高达几倍,并且随着填埋年限的增加,水质特征也在不断发生变化。

(3)重金属。因垃圾分类收集及填埋场的分捡不力,导致众多重金属废物残留于此,增加了渗滤液内部的重金属量。

(4)生物降解特性。垃圾填埋场初始阶段BOD/COD的值维持在0.4-0.5之间,此时的生物降解性能较佳;中、后期阶段,因BOD及COD浓度的降速各异,BOD/COD的值逐步下降到0.05-0.2。并存在未被生物降解的富里酸及腐殖酸,使生物降解特性每况愈下。

(5)氨氮浓度。由于大部分填埋场为厌氧填埋,堆体内的厌氧环境造成渗滤中氨氮浓度极高,并且随着填埋年限的增加而不断升高,有时可高达1000~3000mg/l。当采用生物处理系统时,需采用很长的停留时间,以避免氨氮或其氧化衍生物对微生物的毒害作用。

(6)电导率。渗滤液的电导率持续偏高,一般在30000~60000μs/cm间。

2 工艺设计案例

(1)预处理系统

渗滤液的pH值随环境、场龄等各类条件的变化而改变,其成分异常复杂,包含各类硅、钙、镁、钡等难溶解盐,这些难溶的无机盐透过反渗系统之后,便被高倍浓缩,当其自身浓度高于该状况下的溶解度时,就会在膜外表产生结垢。而调节原水的pH值可抵抗碳酸盐无机盐的结垢,因此,在透过反渗系统之前,要调节原水的pH值。调节池原水通过提升泵进入反渗系统的原水罐内,在原水罐内调节pH值,并掺入酸性物,在原水泵压力增大的状态下,原水罐的出水进入到石英砂过滤器中,其过滤精度为50 μm。砂滤出水之后进入到芯式过滤器中,针对渗滤液级系统而言,因原水内钙、钡及镁等结垢离子及硅酸盐量较高,通过DT膜高倍浓缩之后,这一系列硅酸盐极易在浓缩液一端呈现过饱和态,因此,依照水质状况,在芯式过滤器前掺入固定量的阻垢剂,避免硅酸盐结垢,掺入量需根据原水的水质状况加以明确。

(2)两级DTRO系统

①一级反渗透。经由芯式过滤器的渗滤液直接入至高压柱塞泵内,DT膜系统的每台柱塞泵后端均设有一减震设备,主要用途在于抵消高压泵所产生的压力脉冲,并为反渗透膜柱提供稳压力。经高压泵后端的出水进至膜柱或在线泵,因高压泵的有限流量无法为膜柱提供水源,因此,经在线泵把膜柱出口的一批浓缩液回流到在线泵的入口处,借以确保膜外表拥有充分的流动速度及流量,有效地杜绝膜污染。

②二级反渗透。二级DT膜系统实质上是对一级DT膜系统的继续处理,通过一级DT膜系统处理之后的渗滤液不必掺入任何药剂即可被送至二级DT膜系统的高压泵内。二级高压泵设有频率变化控制设备,其输出的具体流量及运行频率可依照一级渗滤液流量传感仪器的反馈值自行配合完成,二级高压泵的入口管理处配备浓缩液自补偿装备,避免一级系统所生成的水量影响到二级系统的常态运行。二级浓缩液一侧配有一台伺服电机调控阀门,其作用是严控膜组内压及回收率,当透过液进至脱气塔时,以吹脱的方式可去除CO2等诸气体,使PH的值稳定在6~9间,实现达标排放。

③系统的清洗及冲洗。膜系统的清洗包含化学清洗及一般冲洗,目的在于维持膜片的高效,有效杜绝污染物质在膜片外表残余。化学清洗一般由电子计算机系统自行控制,能在计算机界面上设置清洗的具体参数,清洗时长通常控制在1~2 h,清洗中的残留液体要排放到调节池内。清洗的周期通常取决于进水污染物质的实际浓度,当进入条件恒定不变时,若膜系统的透过液量下降10%~15%,则要开展清洗,清洗的时长根据清洗方式的不同而各异。在系统常态运行的过程中,如若停机,可选用冲洗后再停机的模式;如若发生系统出现故障而停机,则需执行具体的冲洗流程。

3 工艺特征

(1)组件养护较容易,运行相对灵活 DTRO组件通常采用标准化设计工艺,方便拆卸养护,组件一经开启即可查看膜片及其余配件,维修较简易,当零配件数目不足时,组件可安装少量的导流盘及膜片而对其使用不构成妨碍,这也是其余样式的膜组件所不可比拟的优势。DTRO系统的开启速度快,运行较灵敏,可持续或间歇性地运行,也可尽快完成系统串并联方式的调整,并同另外的工艺搭配使用,以达到水质水量的规范要求。

(2)防污性能高。DTRO系统可对SDI指数达15~20倍的进水开展有序处理,且膜的防污抗结垢的性能依然维持在较佳的状态。

(3)系统出水稳定,受外界因素制约较小。DTRO系统不受渗滤液的碳氨比及可生化性等诸要素的制约,可更好地适应各填埋时期的渗滤液水质,对于处理北方严寒地区及老垃圾场的渗滤液具有显著的优势,系统出水的水质较平稳。

(4)占地面积较小。DTRO系统属一类集成系统,其结构相对紧凑,附属设施均为型号较小的构筑物体,占地面积较小。

4 结语

DTRO系统开启时长较短暂,可满足我国北方严寒区域的需求及特征。实践表明,规模较小的垃圾渗滤液处理采用该工艺模式,均能合乎国家排放要求,并为工程创造可观的经济效益和市场发展前景。

参考文献

垃圾渗滤液处理前景篇(10)

Abstract: The city life waste leachate complicated composition, great harm, if not handled properly will cause severe environmental pollution. MBR technology is developed in recent years to a kind of high efficient municipal landfill leachate treatment new technology, the MBR technology processing, outlet water meet the requirements, the application prospect are very wide. This paper MBR technology in city life landfill leachate treatment of the application, this paper expounds some specific requirements, aims to further promote the MBR technology application.

Keywords: MBR technology; Landfill leachate treatment; MBR; Reactor; Effluent water

中图分类号: R124.3 文献标识码:A 文章编号:

随着城市化进程的不断加快,城市人口快速增长,城市生活垃圾量也在不断增大。城市生活垃圾处理方式主要有垃圾焚烧、填埋、堆肥以及综合利用等,其中,垃圾填埋以其运行费用相对较低、管理相对方便、技术较为成熟等优点成为我国现阶段主要的垃圾处理方式。垃圾填埋过程中产生的渗滤液是公认污染严重、难于处理、性质复杂的高浓度污染废水。如果处理不当就直接排放,将对环境造成严重污染,因此垃圾渗滤液的有效处理已成为目前环境保护领域的难点之一。MBR是生化反应器和膜分离相结合的高效垃圾渗滤液处理新工艺,反应器体积小,生化反应效率高,出水中无菌体和悬浮物,在垃圾渗滤液处理方面已得到广泛应用。但是MBR技术的应用时间并不长,为了更好的了解MBR技术,本文就MBR技术在城市生活垃圾渗滤液处理中的应用过程中的相关问题进行研究。

1进水COD浓度的确定

渗滤液的特点是具有较高浓度的COD和氨氮,埋龄比较短的垃圾填埋场其进水氨氮值一般在300~1000mg/L之间,而埋龄较长的填埋场其进水氨氮值可达2000~3000mg/L。按照《生活垃圾填埋场污染控制标准》(GB16889—2008)的要求,处理后的渗滤液TN值至少应达到40mg/L以下,因此要求生物处理系统应具有良好的去除氨氮的功能。

进水COD浓度是确定MBR系统好氧区容积的主要参数之一,合理确定进水COD浓度对渗滤液处理系统的设计至关重要。要满足硝化及反硝化的要求,BOD5与氨氮之比一般宜大于3~4,浓度较高的渗滤液其B/C比一般可达0.5,按此推算COD与氨氮之比一般应大于6~8。如果进水渗滤液COD与氨氮值满足上述要求,可以按进水COD值计算好氧池容积及污泥产量。如果进水COD值较低,而氨氮值较高,不满足上述要求,则说明碳源缺失,应向系统中补充碳源,并以补充碳源后的COD值进行计算。

2水温

硝化反应的适宜温度范围是30~35℃,温度不但影响硝化菌的比增长速率,而且影响硝化菌的活性。在5~35℃范围内,硝化反应速率随温度的升高而加快。当温度<5℃时,硝化菌的生命活动几乎停止。反硝化反应的最佳温度是35~45℃,温度越低,选取合理的计算温度不但可以减少工程投资,而且也可以降低运行成本,减少不必要的浪费。。,由于渗滤液处理项目进水浓度高、水力停留时间长以及采取了其他一些工程措施,使处理系统生物池内水温有较大幅度的提高。影响生化反应温度的因素分析:

①MBR生物反应器为高负荷生化反应器,生化降解过程中,有机物、氨氮氧化的部分化学能转化为热能,温度有所升高。

②动力设备风机、水泵运行过程中机械能转化为热能也使温度升高5℃以上,根据热平衡计算,超滤出水比生化进水温度要高10℃左右。

③超滤混合液回流到生化池的循环过程使液体维持相对稳定的温度。

④填埋场的调节池水力停留时间较长,而且大多数没有采取保温措施,致使冬季尤其是北方地区的渗滤液进水温度较低。但由于渗滤液为高浓度有机废水,生物处理过程中水力停留时间比较长,一般可达4~5d,虽然进水温度较低,但由于流量较小,对生物池的温度影响甚微。同时由于采用较大的回流比(一般可达1000%~1500%),致使生物池中水温受进水温度的影响很小,系统中可维持较高的温度。

虽然出水可以带走一部分热量,但由于流量较小,同样不会使生物池水温明显下降。

⑤渗滤液处理一般采用射流曝气,要求有效水深较深,通常生物池的有效水深为4~6m,而渗滤液处理系统生物池有效水深采用6~8m,从而使水面面积减小,生物反应池中热量散失较少,有利于生物池保持较高的温度。

综合上述几项因素,生物池实际运行的温度一般维持在25~35℃,在夏季温度会更高,可达40℃以上,而温度过高同样对生物处理系统不利,为保证正常运行,需设置循环冷却水系统,确保池内水温≤40℃。综合考虑,设计时一般按照不低于25℃进行计算。

我市生活垃圾填埋场垃圾渗滤液处理工程按照《生活垃圾填埋场污染控制标准》(GB16889—2008)表二及广东省《水污染排放限值标准》(DB44/26-2001)第二时段一级排放标准、且浓缩液不允许回灌的要求进行设计和建设,渗滤液处理规模为1000m3/d,其中一期340 m3/d,采用MBR处理工艺,生物池内水温常年不低于30℃,夏季水温高达40℃,目前已经运行一年多时间,出水水质完全达到排放标准的要求。

垃圾渗滤液处理前景篇(11)

 

卫生填埋作为目前最常见的垃圾处理方法,具有投资少、处理费用低、处理量大、操作简便等特点,在世界上许多国家得到广泛应用。在我国,越来越多的城镇生活垃圾也开始采用卫生填埋法处理,但卫生填埋也存在着诸多污染问题,填埋过程中产生的大量二次污染物,如不妥善处理,会对周围的水体、大气和土壤造成严重污染,因此必须采取有效措施防治垃圾填埋二次污染,减少填埋场对周边环境的影响,促进人口、资源、环境和社会的可持续发展,这是当前面临的一个重要课题。

1、垃圾填埋场周边的污染源

1.1水污染源 垃圾填埋场的水污染主要来自于垃圾渗滤液,其次还有少量的生活污水和洗车废水以及流经填埋场的地表径流可能受到垃圾填埋场的污染。垃圾渗滤液来源于五个方面:一是垃圾本身带来的水分;二是垃圾中有机物经分解后所产生的水分;三是以各种途径进入垃圾填埋场的大气降水和地下水;四是地表径流;五是灌溉水。其中进入场区的大气降水和地下水以及垃圾自身含水是决定渗滤水产生量的主要因素。垃圾渗滤液属高浓度的有机废水,主要污染物是BOD、COD、NH3-N和重金属。

1.2大气污染源 垃圾填埋场大气污染源主要是填埋气(LFG)以及垃圾填埋场的粉尘和垃圾飞扬物。LFG主要是由于微生物分解垃圾中的有机成分产生的,主要成分包括CH4、CO2以及少量的H2S、NH3、N2和H2等,对环境产生影响的主要污染物有CH4、CO2等温室气体和H2S、NH3等恶臭气体。CH4和CO2约占填埋气体的85% -99%;H2S和NH3等有毒的恶臭物质,约占填埋气体的02% -14%;填埋场释放气体中的微量气体量很少,但成分复杂,有100多种,可以归为挥发性有机组分(VOCs)。

1.3噪声源 垃圾填埋场的噪声来源于垃圾运输车辆进出填埋场的交通噪声;垃圾填埋作业时填埋机械(压实机、推土机、垃圾运输车等)工作时发生的噪声;场区渗滤液废水处理站的鼓风机和水泵等的噪声。根据类比调查可知,这些机械产生的噪声值约为80-90dB(A)。

1.4其他污染源 影响场内环境质量的污染源除以上

几种外,垃圾填埋场还存在以下的环境影响:a、固废主要来源为填埋区的废纸、粉尘、塑料等能被风吹起的轻物质以及污水处理站的污泥。b、垃圾填埋场的存在对周围景观的不利影响以及填埋中的塑料袋、纸张和尘土等在未及时压实覆土情况下可能飘出场外,造成环境污染和景观的破坏。c、填埋作业及垃圾堆体对周围地质环境的影响,如造成滑坡、崩塌、泥石流等。d、填埋场孳生的害虫、昆虫、啮齿动物以及在填埋场觅食的鸟类和其他动物可能传播疾病,这类污染直接影响填埋场职工和附近居民的生活。

2、污染源对周边环境的影响

垃圾填埋后对环境造成的污染是多方面的。论文参考网。监测结果表明:目前全国尚无一例城市生活垃圾填埋场所排放的污染物全部指标均达到国家标准的。这些污染物如不加处理排放,极易对周边环境造成影响,其中最主要的是对水、大气和土壤的污染。

2.1水污染 垃圾填埋对水产生的污染主要来自于垃圾渗滤液。这是垃圾在堆放和填埋过程中由于发酵、雨水淋刷和地表水、地下水浸泡而渗滤出来的污水。渗滤液会对周边地区的环境、经济发展和人民群众生活造成十分严重的影响。

2.2大气污染 卫生填埋场中的生活垃圾含有大量有机物,这些有机物被微生物厌氧消化、降解,会产生大量的垃圾填埋气。填埋气主要成为为CH4、CO2以及其它一些微量成分,如N2、H2S、H2和挥发性有机物等。CH4和CO2产生的温室效应会使全球气候变暖。此外,CH4是易燃易爆气体;H2S和NH3气体虽然排放量不大,但其为强刺激性气体,大量气体逸出的地方会有恶臭味,且H2S对人体有毒。

2.3土壤污染 城市生活垃圾中含有大量的玻璃、电池、塑料制品,它们直接进入土壤,会对土壤环境和农作物生长构成严重威胁,其中废电池污染最为严重,进入土壤和地下水源,最终对人体健康造成严重危害。

3污染防治措施

3.1渗滤液污染控制措施 (1)填埋场场底防渗。为防止垃圾渗滤液污染地下水,必须在填埋场底采取有效的防渗措施。之前垃圾填埋场底部都铺放一层防渗材料,主要有黏土、沥青、塑料膜等合成橡胶等。各填埋场可根据具体工程和水文地质情况,采取相应的防渗措施。(2)渗滤液的收集处理。渗滤液由于成分复杂、污染大,在排放前必须进行处理。但目前国内外尚无完善的能够适应各种垃圾渗滤液的处理工艺。一般来说,渗滤液可采取“清污分流-渗滤液回灌-预处理-汇入城市污水处理厂合并处理”的方法进行处理。

3.2填埋气的回收利用 垃圾填埋气是一种可回收利用的能源,其热值与城市煤气的热值相近,但由于填埋气回收设备复杂且投入大而效益低,我国目前运行的垃圾填埋场中,大多没有气体回收系统,大量有毒有害气体被放入空中,不仅造成污染,也是一种资源浪费。一般来讲,沼气回收利用可通过“收集-净化-利用”的方式进行。论文参考网。

(1)填埋气的收集。由于大部分沼气在填埋场填埋过程中就已形成,所以沼气采集应在填埋过程中就开始实施。在荷兰,对正在使用的垃圾场,主要采用立式或水平式收集技术。立式采气系统是在垃圾场的填埋过程中逐步建造成的,其方法是在填埋场内均匀分布竖立大口径钢管,在每个钢管外砌筑竖井,当填埋厚度达到2-5m时,将钢管向上抽一部分,并继续砌筑,直到填埋场达到设计高度,然后将钢管移走。通过将各竖井用排气管水平连接,即可实现垃圾填埋与沼气回收同步进行。对于分层堆放的填埋场,可采用水平采气系统,但要注意采气管道的铺设不要影响垃圾的填埋。对已建成封场的填埋场,可采用表面收集或竖井收集技术。

(2)填埋气的净化。溶剂吸收法是目前较为成熟的沼气净化方法,如采用双塔式溶剂吸收法提纯垃圾沼气,设备简单、成本低、操作简便,净化效果好。

(3)填埋气的利用。沼气为一种经济可用的能源,其应用主要有以下三种形式;直接供给工业以及暖房或温室,用于供暖或工业生产,这种方式沼气的热效率最高;沼气经脱水后用于燃气发动机驱动发电机发电;经加工处理升级使沼气达到天然气质量用途更为广泛

3.3土壤污染的防治 (1)搞好垃圾源头控制。垃圾减量化、无害化是解决城市生活垃圾问题的关键。要大力推行清洁生产,控制过分包装,严格限制一次性商品的生产。倡导绿色消费,呼吁老百姓重新拿起菜篮子、米袋子、饭盒子,少用或不用塑料包装物。

(2)实行垃圾分类回收。城市垃圾中含有大量污染物,也含有大量可回收再利用的资源,实行垃圾分类回收,不仅可以解决垃圾污染问题,还可以创造可观的经济效益。

(3)搞好填埋区植被覆盖。在填埋过程中,应边填埋边绿化,尽量减轻污染。论文参考网。对建成封场后的)填埋场,要大力搞好植被覆盖,为填埋区的重新开发利用创造良好条件。

3.4加强监测,消除隐患 要在场区周围设立观测井,配置有害气体检测仪,定期对地下水质和大气环境进行监测消除污染隐患。

4结语