欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

集成电路的设计要求大全11篇

时间:2024-01-04 11:45:01

集成电路的设计要求

集成电路的设计要求篇(1)

中图分类号:TN79 文献标识码:A 文章编号:1002-7661(2015)19-0006-02

1958年,美国德州仪器公司的基尔比发明了第一块集成电路,随着半导体工艺和集成电路设计技术的发展,集成电路的规模可以达上亿个晶体管。集成电路具有速度快、体积小、重量轻等优点,广泛应用于汽车、医疗设备、手机和其他消费电子,其2012年集成电路设计市场应用结构如图1所示。

自2006年以来,我国集成电路的产值为126亿美元,占全球产业总产值的5.1%,2013年我国集成电路的产值为405亿美元,占全球产业总产值的13.3%。2006年到2013年的年复合增长率达到18%,远超过全球集成电路产业整体增速。我国集成电路行业的产值如表1所示。

近年来,半导体集成电路产业在国家政策支持下发展迅速,因此对集成电路设计人才的需求剧增。为了满足社会日益发展的需要,国家在高校内大力推广集成电路设计相关的课程,并且取得了较好的效果,使人才缺口减小,但是还是不能满足国内对集成电路设计人才实际数量的需求。为了更好地加快集成电路设计人才的的培养,本文针对《数字集成电路原理》教学中存在的问题,并且根据教学的现状,探索出集成电路设计的教学改革。

一、数字集成电路设计原理教学中的现状

集成电路设计相对于以分立器件设计的传统的电子类专业而言,偏向于系统级的大规模集成电路设计,因此,微电子专业和集成电路设计专业的学生注重设计方法的形成,避免只懂理论、不懂设计的现象。即使学生掌握了设计的方法,能够进行一些小规模的集成电路设计,但是设计出来的产品不能用,不能满足用户的需求。这就成了数字集成电路设计原理面临的问题。

二、数字集成电路设计原理教学改善的方法

(1)针对上述的问题,在多年教学的基础上,在教学方法上进行改进,改变传统的以教师为中心,以课堂讲授为主的教学方式,采用项目化教学来解决数字集成电路设计中只懂理论、不懂设计的现状。注重数字集成电路设计原理与相关课程之间的内部联系,提高学生的学习兴趣,通过将一个项目拆分成几个小项目,使学生在项目中逐渐加深了对知识点理解,并且将课程的主要内容相互衔接与融合,形成完整的集成电路设计概念。学生分成5-8人一组,通过小组的方式加强了学生的相互合作能力,让学生更有责任感和成就感。学生应用相关的EDA软件来完成项目的设计,能够掌握硬件描述语言、综合应用等数字集成电路设计工具。

(2)通过PDCA戴明环的方式改善了集成电路设计的产品可用度不高的问题。在集成电路设计过程中,通过跟踪课内外学生设计中反应的问题,对项目难易度的进行调整,提高学生计划、分析、协作等多方面的能力。结合新的技术或者领域,对项目进行适当的调整。通过PDCA戴明环的方式来持续改进教学内容和方法,使其满足社会对数字集成电路设计人才的需求。PDCA戴明环如图2所示。

(3)开展校企合作的方式,进一步提高教学质量和学生的综合素质,促进企业和学校的共同发展。这种方式实现了学校与企业的优势互补,资源共享,培养出更加适合社会所需要的集成电路设计人才,也能够让学校和企业形成无缝对接。

三、小结

随着大规模集成电路设计的发展,更多的设计工具和设计方法出现,因此,使用最新的设计工具,合理设置《数字集成电路设计原理》的教学内容,可以提高学生的设计能力和培养学生的创新能力。通过对《数字集成电路设计原理》课程教学的探索,改变了以教师为中心的传统采理论课教学方式,充分发挥了学生的能动性和协作能力,使学生理论与实践都能够满足集成电路设计人才的要求。

参考文献:

[1]殷树娟,齐巨杰. 集成电路设计的本科教学现状及探索[J].中国电力教育,2012,(4):64-65.

集成电路的设计要求篇(2)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)35-0049-03

一、引言

集成电路产业是信息产业的基础和核心,是推动信息产业发展的源泉和动力。国务院于2000年6月25日颁发了《鼓励软件产业和集成电路产业发展的若干政策(18号)》,大力支持和鼓励我国集成电路产业的发展。在国家政策的扶持下,我国集成电路设计业发展迅猛,伴随着国内集成电路的发展,对集成电路设计相关人员的需求也日益增加。教育部于2003年开始批准设置“集成电路设计与集成系统”目录外本科专业,2012年普通高等学校本科专业目录中调整为特设专业,以适应国内对集成电路设计与应用人才的迫切需求,截止2014年,全国已有28所高校设置“集成电路设计与集成系统”本科专业。国务院于2011年1月28日颁发了《进一步鼓励软件产业和集成电路产业发展的若干政策(新18号)》,要求高校要进一步深化改革,加强集成电路设计相关专业建设,紧密结合产业发展需求及时调整课程设置、教学计划和教学方式,加强专业师资队伍、教学实验室和实习实训基地建设,努力培养国际化、复合型、实用型人才。

“集成电路设计与集成系统”专业涉及的新概念、新技术、新方法不断涌现,是一个工程性和实践性很强的本科专业。集成电路领域技术和管理人才严重不足、人才质量普遍不高已成为制约我国集成电路产业健康、快速发展的瓶颈。国家集成电路产业“十二五”发展规划提出加强人才培养,着力发展芯片设计业,2014年6月,国务院印发《国家集成电路产业发展推进纲要》进一步指出,要着力发展集成电路设计业,加大人才培养力度。因此,研究适合本专业的理论与实践并重融合的课程体系,培养创新型集成电路设计人才具有十分重要的现实意义和历史意义。

二、集成电路设计与集成系统专业人才培养的特点

集成电路是推动当前经济发展的重要技术,由于集成电路设计与集成系统领域发展迅速且新知识、新技术层出不穷,多学科交叉融合,毕业生就业具有国际性,要求教学体系和实践平台建设必须跟上最新的产业需求,才能培养出适合社会和企业需要的集成电路设计与集成系统创新型人才。在进行集成电路设计与集成系统领域创新型人才培养时我们需要紧紧抓住以下几点。

1.集成电路设计与集成系统专业是新兴专业,国内还没有形成该专业的人才培养规范,目前国内各高校该专业的教学计划是从国外或者相关专业延伸来的,系统性、完备性差,还没有形成完整的知识体系。

2.集成电路设计与集成系统专业是一个涵盖通信、计算机、集成电路等多领域的交叉学科,因此要利用综合性学科知识为该类人才的素质培养服务,从注重单一知识和能力的培养,要转变到注重综合知识和能力的培养。

3.集成电路设计与集成系统是国家特设专业,根据高校自身办学特色和市场需求设置的专业,需要针对企业对该类人才的需求,将企业需求融入课程体系,与企业联合制定培养方案,建立核心课程体系,实时调整专业课程教学内容。

4.集成电路设计与集成系统专业具有较强的工程性和实践性,不仅要具有较强理论知识基础,而且要具有较好的工程实践能力以及一定的创新能力,需要建立一种基于项目驱动的多层次的实践教学体系,保障四年工程实践训练不断线,逐步提升学生的工程实践能力和创新能力。

三、集成电路设计与集成系统专业课程体系的构建

根据集成电路设计与集成系统专业人才培养特点,按照通信、计算机和集成电路融合发展的科学规律,结合我校学科专业优势特色,确立了本专业人才培养的课程体系。

(一)人才培养目标

2006年全国科技大会上提出,到2020年,我国将建成创新型国家,使科技发展成为经济社会发展的有力支撑。具有较强的自主创新能力是创新型国家的主要特征之一,只有培养具创新精神和创新能力的人才,才能提升自主创新能力。集成电路产业是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是最能体现科技进步对创新型国家贡献率的行业。

因此,本专业旨在培养德、智、体、美全面发展,适应社会主义现代化建设和信息领域发展需要,掌握宽广的人文知识、坚实的自然科学知识以及扎实的专业知识,具备工程实践能力和创新能力,具有自主学习集成电路与集成系统领域前沿理论和技术的能力,能在集成电路与集成系统领域从事研究、设计、实现、应用的高素质创新型人才,为全面实现创新型国家提供强有力的支撑。

(二)人才培养规格

集成电路设计与集成系统专业是一个涵盖通信、计算机、集成电路等多领域的交叉学科,如图1所示。其中,图1中①就是通信算法(应用)的直接IC(实现)化的ASIC、FPGA电路或者可重构电路;②就是算法(应用)的指令集合(体系结构)化的目标程序;③就是指令集合(体系结构)的IC(实现)化的处理器;④就是集成电路技术发展推动的先进处理器。

根据多学科融合发展和人才培养目标定位,确定了本专业知识、能力、素质的人才培养规格如下。

1.知识结构要求。(1)具有坚实的自然科学理论基础知识、电路与系统的学科专业知识、必要的人文社会科学知识和良好的外语基础。(2)具有通信系统、计算机系统结构、信号处理等相关学科领域的基础知识。(3)掌握集成电路与集成系统领域的基础知识和工程理论。(4)掌握集成电路与集成系统电子设计自动化(EDA)技术。

2.能力结构要求。(1)具有使用电子设计自动化(EDA)工具进行集成电路与集成系统设计的能力。(2)具有较强的科学研究、工程实践及综合运用所学知识解决实际问题的能力。(3)具有了解本专业领域的理论前沿、发展动态和独立获取知识的能力。(4)具有自主学习能力、创新能力、协同工作与组织能力。

3.素质结构要求。(1)具有良好的思想道德修养、职业素养、身心素质。(2)具有奉献精神、人际交往意识和团结协作精神。(3)具有一定的文学艺术修养、科学的工程实践方法。(4)具有一定的国际化视野、求实创新意识。

(三)课程体系

集成电路系统设计涵盖“系统设计、逻辑设计、电路设计、版图设计”四个设计层次,课程体系应覆盖四个设计层次需要的所有知识点,各知识点之间要具有连贯性、系统性和完备性。集成电路设计与集成系统专业具有很强的工程性和实践性,通过计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力以及工程创新能力的培养,强化学生的工程实践能力和创新能力。集成电路设计与集成系统专业是一个多学科的交叉新兴专业,课程体系中应该包含通信、计算机和集成电路的相关知识点,各知识点之间要具有交叉融合性。集成电路系统设计是一个高速发展的学科领域,知识和技术更新速度非常快,课程体系应该体现先进性,使得学生能够接近先进的技术前沿,同时课程体系中也应该包含一些面向企业的工程设计与实践的实用性课程,进一步提高学生的就业竞争力和工程创新能力。

因此,根据人才培养规格和特点以及课程体系的连贯性、系统性、完备性、融合性、先进性和实用性,结合我校自身优势特色,构建了如下页图2所示的知识、能力、素质协调统一的理论与实践并重融合的课程体系。课程体系以能力培养为导向,集中实践环节为支撑,核心课程为基础,一组集中实践环节和核心课程培养一种能力。同时,设置综合素质教育模块和课外科技创新活动模块,提升学生的工程素质和创新能力。

课程体系主要突出计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力以及工程创新能力的培养,进行分学年重点培养。第一学年主要培养学生的计算机应用能力,第二学年主要培养学生的电子技术应用能力,第三学年主要培养学生的嵌入式系统设计能力和集成电路设计能力,第四学年主要培养学生的工程创新能力,通过设置“数字集成电路”、“混合信号集成电路”、“嵌入式系统”三个方向课程模块,实现人才的个性化培养。

通过嵌入式系统设计能力、集成电路设计能力和工程创新能力培养过程中的集中实践环节和核心课程设置,将集成电路设计与通信/计算机相结合,体现课程体系的交叉融合性。将集成电路系统设计层次中的“系统设计”贯穿于工程创新能力、嵌入式系统设计能力培养,“逻辑设计”体现在电子技术应用能力培养中,通过“电路设计”与“版图设计”实现集成电路设计能力的培养,实现了课程体系的系统性和完备性,通过教学内容的组织实现知识的连贯性。

课程体系设置了一系列集中实践环节和独立设课实验(集成电路EDA技术实验、微处理器设计实践)以及课内实验,在教学内容的组织上将软件无线电(SDR)系统(包括算法、体系结构、集成电路)设计与实现的科研成果融入教学过程,实现四年工程实践训练不断线,体现课程体系的工程性和实践性。同时通过下一代无线通信系统的核心器件――SDR系统处理芯片设计为牵引,设置通信集成电路系统工程设计与实践相关课程,采用世界主流EDA厂家先进EDA工具完成集成电路EDA技术实验以及集成电路系统设计,实现课程体系的先进性和实用性。

(四)教学内容组织思路

以“高级语言程序汇编语言程序机器指令序列计算机组成(CPU、存储器、输入输出、数据通路与控制单元)计算机部件设计计算机部件(FPGA和专用集成电路)实现整机(FPGA或专用集成电路)实现面向通信、信号处理领域系统(嵌入式系统、数字集成电路、模拟集成电路)设计与应用”为主线组织教学内容,体现知识的连贯性,培养学生的计算机应用能力、电子技术应用能力、嵌入式系统设计能力、集成电路设计能力。通过通信集成电路系统工程设计与实践(包括数字集成电路工程设计与实践、嵌入式SoC工程设计与实践、模拟集成电路工程设计与实践等),将软件无线电(SDR)系统的设计与实现的科研项目成果融入课堂教学,贯彻我校“教研统一”办学理念,突显我校信息通信行业优势特色,培养学生的工程创新能力。

四、结论

课程体系设置是专业建设中的关键核心问题,对人才的培养质量起决定性的作用。本文充分考虑了集成电路设计与集成系统专业多学科交叉融合、工程实践性强等特点,结合我校本专业在通信专用集成电路设计、专用处理系统设计方面的优势特色,形成了通信、计算机与集成电路设计相结合、理论教学与项目实践相结合的课程体系。以能力培养为导向,以集成电路设计和嵌入式系统设计融合为主线组织教学内容,培养学生的集成电路设计与嵌入式系统设计(计算机应用、电子技术应用、微系统设计)能力,通过面向通信领域的集成电路与嵌入式系统工程设计与实践,提高学生的工程创新能力。

参考文献:

集成电路的设计要求篇(3)

[中图分类号] G423.07 [文献标识码] A [文章编号] 2095-3437(2015)07-0165-02

集成电路课程是我院电子电气工程学院电子科学与技术专业的骨干课程,其与半导体物理基础、集成电路制造与工艺等课程共同构成了电子科学与技术专业微电子方向课程群。该课程旨在要求学生掌握坚实的模拟、数字集成电路的分析和设计方法,能够从事集成电路及系统设计、版图设计、芯片加工、芯片测试等方面的工作。

一、教学改革的起因

(一)人才培养目标错位

集成电路公司需求人才类型不一而同。如数字集成电路方面,包括算法设计、RTL、逻辑综合、布局布线、测试等;而模拟集成电路方面,包括电路设计、版图设计、DRC、LVS、生成GDSII、测试等。人才的需求既有高端也有低端。我院属于独立学院,以本科生培养为目标。独立学院的本科生无法与研究生竞争,相比于其他一本、二本院校也处于一定的劣势,在人才的需求端明显处于低端。然而本课程的培养目标却以算法设计、电路设计等高端人才需求为主,导致学生就业错位。

(二)实践性教学缺失

集成电路课程是门实践性很强的课程,但传统的教学过于重理论,而企业招聘,看中的是学生动手的能力,只知道一些公式、概念的学生,难以吸引企业眼球,造就了部分毕业生找不到合适的工作。

二、改革的思路

结合我院《南京理工大学泰州科技学院大学生主体性个性化教育培养方案》,在加强主体性,彰显个性化发展的目标下,坚持正确的人才培养目标定位很重要。因此,改革找准定位是关键。应在指导学生掌握系统集成电路框架知识的前提下,着力引导学生掌握集成电路制造、版图设计、RTL、逻辑综合、布局布线、测试等较基础的技能,使其具有一定的微电子工程实践能力和工程素养。

(一)弱化抽象理论

弱化抽象理论实质是定位的问题。集成电路,尤其是模拟集成电路,有过多公式的推导和抽象理论。理论的重要性在于集成电路的算法设计、电路设计等对于高端人才的培养尤为重要。而高端人才的培养明显偏离我院的培养目标。过多的强调抽象理论,不利于学生主体性的发挥。

(二)加强实践训练

该课程的教学定位于使毕业生有较高的工程素质、较强的实验技能和动手实践能力。实践训练中,引入Tanner Pro集成电路专用软件[1]和FPGA开发平台。利用课内实验和课程设计相结合,采用工程项目化管理模式有条件分级教学,突出学生个体化,挖掘学生潜能。

三、改革的具体措施

(一)改革课程体系

组建由模拟和数字集成电路、集成电路课程设计、FPGA系统设计三门课程构成的集成电路课程群。打通模拟集成电路、数字集成电路理论教学和实践环节,让学生在学中练,练中学。

1.课程合并

教学改革之前,集成电路课程由模拟集成电路设计和数字集成电路设计两门课程组成。两门课程分开教学,虽然能够更为详尽的讲解模拟和数字集成电路,然而知识点庞杂,知识量巨大,高于学生的接受能力,学生反响平平。因此,将模拟集成电路设计和数字集成电路设计两门课程合二为一,改为模拟和数字集成电路,选用王志功编著《集成电路设计(第3版)》教材。[2]该教材提供了集成电路设计从前端、版图、流片到封装测试的完整流程相关知识,并结合设计工具进一步强化了设计实例,具有难度适中,应用性强等特点。

授课过程中,注重和前期课程半导体物理基础、集成电路制造与工艺的知识衔接,避免知识讲解的跳跃性。在讲解集成电路材料、结构与理论章节和集成电路基本工艺章节时,引入视频教学,通过让学生观看教学录像、教学图片,形象地给学生展示制造集成电路的详细过程,避免纯粹语言授课的枯燥,提高教学效果,同时也解决了集成电路工艺线不适宜组织大量的学生进行实地参观的难题。在讲解模拟集成电路基本单元章节时,弱化放大器各项指标性能的公式推导,专注讲解电路工作原理,增强学生的感性认识,减轻学生学习的畏难情绪。

2.开设集成电路课程设计课程

学生能够熟练使用EDA软件,熟悉EAD软件开发设计的流程非常重要。开设集成电路课程设计课程旨在培养学生电路仿真、版图设计、布局布线等技能。该课程教学基于Tanner Pro实践教学平台。在实践教学的平台选择中,有Cadence、Synopsys等公司产品,但这些软件昂贵,使用成本较高。基于我院实际,本着经济实用性原则,最终选择了Tanner Pro实践教学平台。Tanner Pro软件是由Tanner Research 公司开发的基于Windows平台的用于集成电路设计的工具软件。该软件功能十分强大,易学易用,包括S-Edit,T-Spice,W-Edit,L-Edit与LVS,从电路设计、分析模拟到电路布局一应俱全。其中的L-Edit版图编辑器在国内应用广泛,具有很高知名度。

结合人才定位,该课程注重培养学生L-Edit版图编辑器的使用。L-Edit版图编辑器包含IC设计编辑器(Layout Editor)、自动布线系统(Standard Cell Place & Route)、线上设计规则检查器(DRC)、组件特性提取器(Device Extractor)、设计布局与电路netlist的比较器(LVS)等模块,用于电路特别是模拟集成电路的版图设计。[3]

该课程包含基础性实验和综合性实验。基础性实验,充分发挥学生主体性,要求每个学生都必须完成。综合性实验,体现学生个性化,设置难度梯度及不同的侧重训练方向,学生可根据自身掌握能力和兴趣,自由选择。

3.开设FPGA系统设计课程

FPGA系统设计课程任务是讲解Verilog或VHDL语言,要求学生利用所学硬件描述语言,编写测试脚本文件,在FPGA硬件平台上进行软件测试。[4]该课程以我院“FPGA系统设计实验室”为依托。我院“FPGA系统设计实验室”设有多套FPGA硬件开发实验箱和逻辑分析仪,选用Altera公司CycloneII系列,能够满足一般的验证和测试要求。

在FPGA系统设计课程学习中,要求学生从基本的与非门芯片开始,再到复杂的总线接口芯片。利用FPGA硬件开发实验箱搭建测试平台,在QuartusII、Modelsim软件中,完成测试脚本文件的编写,通过逻辑分析仪或者示波器观察测试波形。

(二)改革考核体系

之前的考核模式,仅通过一张试卷来考查学生掌握知识的情况,缺乏全面性与科学性。因此将考核的重心从理论转向实践,变结果性考核为过程性考核。在授课的课程中,根据学生课堂的表现,特别是实践训练课程完成实验的情况,给学生打分。完成实验难度的等级越高,得分越高,从而激发学生学习的热情。

(三)加强学生就业引导

据相关部门统计,极少数集成电路设计专业的本科毕业生会从事集成电路高端设计方向相关工作。这是因为一方面本科生基本知识储备不够,更主要的原因是设置集成电路设计专业研究生课程的高等院校越来越多。[5]然而,随着集成电路产能的急速释放,以及EDA开发工具的发展,集成电路较低端设计的人才需求逐渐从研究生向本科生倾斜。集成电路版图、集成电路工艺以及集成电路测试等与集成电路设计相关的工作岗位对集成电路设计知识的要求较低。从事上述几个工作岗位若干年将有助于从事集成电路设计工作。就个人的长远发展而言,集成电路版图、集成电路工艺以及集成电路测试等工作岗位对于本科生而言更具有竞争力。因此,在学科专业讲座时,加强学生就业引导,避免就业时与高端人才竞争,找准自我就业方向。

同时,定期举办学术报告会,让学生了解集成电路产业的最新发展现状和发展趋势,了解相关人才市场需求,了解就业前景,从而激发学生的学习兴趣,充分调动学生的学习积极性。

四、结语

随着我国经济转型升级速度加快,集成电路产业的基础性、战略性、先导性的地位愈发凸显。党中央国务院高度重视集成电路产业,并于2014年6月24日正式了《国家集成电路产业发展推进纲要》,开启了国家集成电路产业的盛宴。在集成电路人才巨大需求的形势下,找准学生定位,强化理论与实践的结合,将有助于提升我院学生的竞争力。

[ 注 释 ]

[1] 李鸿强.以工程需求为导向的集成电路设计闭环教育研究[J].教育教学论坛,2009(44):89-90.

[2] 王志功,陈莹梅.集成电路设计(第3版)[M].北京:电子工业出版社,2013.

集成电路的设计要求篇(4)

集成电路测试贯穿在集成电路设计、芯片生产、封装以及集成电路应用的全过程,因此,测试在集成电路生产成本中占有很大比例。而在测试过程中,测试向量的生成又是最主要和最复杂的部分,且对测试效率的要求也越来越高,这就要求有性能良好的测试系统和高效的测试算法。

一、数字集成电路测试的基本概念

根据有关数字电路的测试技术,由于系统结构取决于数字逻辑系统结构和数字电路的模型,因此测试输入信号和观察设备必须根据被测试系统来决定。我们将数字电路的可测性定义如下:对于数字电路系统,如果每一个输出的完备信号都具有逻辑结构唯一的代表性,输出完备信号集合具有逻辑结构覆盖性,则说系统具有可测性。

二、数字集成电路测试的特点

(一)数字电路测试的可控性 系统的可靠性需要每一个完备输入信号,都会有一个完备输出信号相对性。也就是说,只要给定一个完备信号作为输入,就可以预知系统在此信号激励下的响应。换句话说,对于可控性数字电路,系统的行为完全可以通过输入进行控制。从数字逻辑系统的分析理论可以看出,具有可控性的数字电路,由于输入与输出完备信号之间存在一一映射关系,因此可以根据完备信号的对应关系得到相应的逻辑。

(二)数字电路测试的可测性 数字电路的设计,是要实现相应数字逻辑系统的逻辑行为功能,为了证明数字电路的逻辑要求,就必须对数字电路进行相应的测试,通过测试结果来证明设计结果的正确性。如果一个系统在设计上属于优秀,从理论上完成了对应数字逻辑系统的实现,但却无法用实验结果证明证实,则这个设计是失败的。因此,测试对于系统设计来说是十分重要的。从另一个角度来说,测试就是指数字系统的状态和逻辑行为能否被观察到,同时,所有的测试结果必须能与数字电路的逻辑结构相对应。也就是说,测试的结果必须具有逻辑结构代表性和逻辑结构覆盖性。

三、数字电路测验的作用

与其它任何产品一样,数字电路产出来以后要进行测试,以便确认数字电路是否满足要求。数字电路测试至少有以下三个方面的作用:

(一)设计验证 今天数字电路的规模已经很大,无论是从经济的角度,还是从时间的角度,都不允许我们在一个芯片制造出来之后,才用现场试验的方法对这个“样机”进行测试,而必须是在计算机上用测试的方法对设计进行验证,这样既省钱,又省力。

(二)产品检验 数字电路生产中的每一个环节都可能出现错误,最终导致数字电路不合格。因此,在数字电路生产的全过程中均需要测试。产品只有经过严格的测试后才能出厂。组装厂家对于买进来的各种数字电路或其它元件,在它们被装入系统之前也经常进行测试。

(三)运行维护 为了保证运行中的系统能可靠地工作,必须定期或不定期地进行维护。而维护之前首先要进行测试,看看是否存在故障。如果系统存在故障,则还需要进行故障定位,至少需要知道故障出现在那一块电路板上,以便进行维修或更换。

由此可以看出,数字电路测试贯穿在数字电路设计、制造及应用的全过程,被认为是数字电路产业中一个重要的组成部分。有人预计,到2016年,IC测试所需的费用将在设计、制造、封装和测试总费用中占80%-90%的比例。

四、数字电路测试方法概述

(一)验证测试 当一款新的芯片第一次被设计并生产出来时,首先要接受验证测试。在这一阶段,将会进行全面的功能测试和交流(AC)及直流(DC)参数测试。通过验证测试,可以诊断和修改设计错误,测量出芯片的各种电气参数,并开发出将在生产中使用的测试流程。

(二)生产测试 当数字电路的设计方案通过了验证测试,进入量产阶段之后,将利用前一阶段调试好的流程进行生产测试。生产测试的目的就是要明确地做出被测数字电路是否通过测试的决定。因为每块数字电路都要进行生产测试,所以降低测试成本是这一阶段的首要问题。因此,生产测试所使用的测试输入数(测试集)要尽可能的小,同时还必须有足够高的故障覆盖率。

(三)老化测试 每一块通过了生产测试的数字电路并不完全相同,其中有一些可能还有这样或那样的问题,只是我们暂时还没有发现,最典型的情况就是同一型号数字电路的使用寿命大不相同。老化测试为了保证产品的可靠性,通过调高供电电压、延长测试时间、提高运行环境温度等方式,将不合格的数字电路筛选出来。

(四)接受测试 当数字电路送到用户手中后,用户将进行再一次的测试。如系统集成商在组装系统之前,会对买回来的数字电路和其它各个部件进行测试。只有确认无误后,才能把它们装入系统。

五、数字电路测试的设计

集成电路的设计要求篇(5)

中图分类号:G642 文献标识码:A

1引言

目前我国集成电路(IC)产业已初步形成了设计业、芯片制造业、封装和测试业四业并举、比较协调的发展格局,出现了长江三角洲(上海、无锡、杭州)、京津地区和珠江三角洲(深圳、珠海、广州)三个相对集中的产业区,建立了多个国家集成电路产业化基地[1]。制造业的技术工艺已进入国际主流领域,设计和封装技术接近国际水平。与之不协调的是我国集成电路人才缺口巨大,据报道到2008年中国IC产业对IC设计工程师的需求量将达到25万人。国家对IC产业高度重视,《中共中央国务院关于加强技术创新发展高科技实现产业化的决定》中将IC产业放在了电子信息产业的第一位[2]。在此背景下,教育部于2001年开始批准设置“集成电路设计与集成系统”本科专业,以适应国内对集成电路设计与应用人才的迫切需求[3]。

从《国务院关于印发鼓励软件产业和集成电路产业发展若干政策的通知》(国发[2000]18号)到《教育部、科技部关于批准有关高等学校建设国家集成电路人才培养基地的通知》(教高〔2003〕2号),足以看到集成电路设计与集成系统专业是我国目前急需发展和完善的专业。要想办好该专业首先应对该专业建立一个科学的课程体系,该专业的新概念、新技术、新方法不断涌现,因此研究和制定适合本专业的理论与实践发展的课程体系是十分重要的。

2我国IC设计与集成系统专业人才现状

2.1IC设计与集成系统专业人才需求

IC设计与集成系统专业人才的现状是:人才总量严重不足,设计人才供需矛盾尤为突出。人才层次结构不合理;人才地区分布不平衡;人才流向与地区经济发展关系明显。国家教育部、科技部共同于2003年7月确定了9个部级集成电路人才培养基地的宏伟计划。在这之后,又增加了7所大学作为人才培养基地。旨在加快集成电路产业发展的步伐,大力培养集成电路设计人才满足社会对集成电路设计人才的需求。

2.2IC设计与集成系统专业人才培养现状

根据国家教育部网上公布的信息,到目前为止具有集成电路设计与集成系统本科专业的高校有:2001批准的有电子科技大学;2003批准的有西安电子科技大学, 南通大学,杭州电子科技大学;2004批准的有山东大学,华南理工大学,黑龙江大学,哈尔滨理工大学;2005批准的有青岛科技大学,西安邮电学院;2006批准的有天津理工大学;2007批准的有北京大学,大连理工大学。其他院校也积极申办该专业。由于该专业是新兴专业,至今还没有科学完善统一的专业规范,这对该专业的发展影响颇大。

3 IC 设计与集成系统专业特点

集成电路设计与集成系统专业与其他专业相比有如下突出的特点:门槛高、内容新、发展快、属于交叉学科、与产业联系紧密、高投入、与世界同步、毕业生就业服务的范围具有国际性。

本专业是新兴专业,从宏观角度国际上该专业还没有像其他专业(例如计算机)形成完整的知识体系;其次,我国由于是在近几年兴办该专业,还没有专业的人才培养规范,我国各大学专业的教学计划是从国外或者相关专业延伸来的,系统性、完备性差;第三,由于该专业是新兴且又是不断变化的学科专业,所面临的主要挑战是识别和规范该学科的基本内容,因此,“知识结构框架”、“课程体系”的规范显得尤为重要;第四,该专业属于交叉学科专业,其内涵并不像其他专业那样清晰和单一,人才培养涉及知识很广,包括微电子学、计算机、软件工程、通讯、控制、管理等多学科专业;第五,该专业实践性很强,对学生的

运用知识解决问题的能力、总结实践经验发现新知识的能力、团队工作的能力、与人沟通和交流的能力以及创新的能力有很高的要求。

4IC设计与集成系统专业结构体系实践

4.1IC设计与集成系统专业人才培养战略

结合高校自身在教学资源上的优势和我国IC设计产业发展的实际情况,以市场需求为导向,紧跟IC技术的发展。引入CDIO(Conceive-Design-Implement-Operate)教育理念,结合高校自身的实际情况加强校企合作。培养具有创新能力和国际竞争力的、适应企业需求的国际化、实用化、个性化的高素质、高水平人才为宗旨。

4.2IC设计与集成系统专业人才培养目标

对应用型本科院校而言,应充分考虑行业和区域经济对人才的需求,适时地根据区域经济和行业发展调整专业方向,以便更好地服务于行业和区域经济[4]。加强校企合作,突出“多类型、工程型、实用型,具有国际竞争力”的人才培养目标。

培养学生具有良好的科学素养和文化修养,较完整地掌握集成电路技术的基础知识,使学生了解和掌握IC设计、综合、验证、测试、应用的整个流程;既掌握集成电路设计技术又懂得集成系统技术;既有扎实的理论基础,又有较强的应用能力;既了解集成电路应用、生产知识又精通集成电路产业的管理;既可以承担实际系统的开发,又可进行科学研究。使学生毕业时应获得以下几方面的知识与能力:

(1) 具有扎实的数理基础和宽阔的科学视野;

(2) 具备独立的科学研究和应用开发能力,同时具有运用知识解决问题的能力、总结实践经验发现新知识的能力、团队工作的能力、较强的协调、组织能力;

(3) 具有良好的与人沟通和交流的能力,能掌握文献检索、资料查询和撰写科学论文的能力以及口语交际能力;

(4) 具有较好的人文社科知识、人文素质和自然科学基本理论知识,对全球社会、工程科学和技术影响的理解力以及对自己所处领域中问题的敏感性,了解信息学科的发展动态;

(5) 掌握电子电路和大规模集成电路系统的设计技能,能从事先进大规模集成电路、集成电子系统等方面的设计以及新产品、新技术和新工艺的研究、应用开发和管理。

4.3IC设计与集成系统专业课程体系制定的指导思想

首先,跟踪、收集该专业和相关专业的知识领域,强调本专业的知识的总结、梳理、推演和挖掘,借鉴ACM和IEEE/CS[5]做法,采用科学的方法,以国外学术界的研

究成果和IC设计工业界的良性建议为基础,选择适当的知识载体,构造IC设计与集成系统恰当的教育知识结构框架,以求更好地向学生传授本学科专业的基本的问题求解方法。

其次借鉴CDIO的理念,大大加强工程实践环节,切实通过基于项目的学习培养学生获取知识的能力、运用知识解决问题的能力、总结实践经验发现新知识的能力、团队工作的能力、与人沟通和交流的能力以及创新的能力,培养学生的专业素质、职业道德和社会责任心。进而培养出符合学科专业和社会发展需要的优秀IC设计人才。

4.4IC设计与集成系统专业课程体系制定

我校(哈尔滨理工大学)从成功申办集成电路设计与集成系统专业以来,与美国西北理工大学(NPU)合作办学借鉴经验;同台湾中华大学进行了实质性合作交流与探讨;与著名的IC设计软件供应商Synopsys、Cadence以及Mentor Graphics等进行合作交流。另外,我们还走访了上海交通大学等相关院校专业;参观拜访了一些集成电路生产制造企业,与企业交流了解企业对集成电路人才的具体要求。结合我校实际情况提出了制定IC设计与集成系统专业课程体系的基本策略,基本策略包括:

(1) 保证政治理论课与军训的学分和学时要求。在新的教学计划中思想、邓小平理论、马克思主义哲学原理、马克思主义政治经济学、军事理论、军训等课程均未作调整。

(2) 压缩公共基础课,取消与集成电路设计方向关系不大的基础课程。取消计算机文化基础课程;由于部分专业课程采用双语教学,因此取消了专业外语。

(3) 专业方向课和专业任选课以市场为导向设置。为了培养符合市场需要的IC设计人才,专业方向课的设置以IC设计主流方向为导向,任选课的设置以目前流行的先进的设计方法、设计工具为主,以适应市场的需要。

(4) 加强实践教学环节,引入CDIO教育理念。增加了课程实验、课程设计、毕业设计等教学环节的学时,提高学生的实践能力。同时加大校企合作力度,采用“定制式”培养模式,将毕业生安排IC设计公司针对实际项目进行毕业设计。

(5) 动态的教学计划。由于集成电路设计与集成系统专业是一个飞速发展的学科,市场需求是不断变化的,应随时调整教学计划中的专业平台课以后的教学内容。

按照以上基本策略制定了IC设计与集成系统专业的课程体系。

IC设计与集成系统专业教学计划,拓扑图见下图。

其中主干课程包括:信号与系统、片上计算机系统、数字信号处理、半导体集成电路、数字IC设计、模拟IC设计、EDA技术与VERILOG、ASIC设计、SoC软硬件协同设计、集成电路逻辑综合技术、集成电路设计验证技术、版图设计、集成电路测试与可测性、布局与绕线等。

2009年我校集成电路设计与集成系统专业的第一届毕业将步入社会,按照“定制式”培养方式,目前已有多家企业与我校达成协议。这些企业对我校该届毕业生所具备知识水平和专业能力高度认可。

5结束语

百年大计,教育为本。发展我国集成电路设计产业,培养集成电路设计与集成系统专业的专业人才是重中之重。培养该专业的优秀的专业人才离不开一个科学的课程体系。本文结合近四年的教学、管理经验对该专业课程体系进行了探讨,对该专业的知识结构和课程体系的进一步研究与实践具有重要指导意义。

参考文献

[1] 杨媛,余宁梅,高勇. 半导体集成电路课程改革的探索与思考[J]. 中国科教创新导刊,2008,(3):78-79.

[2] 孙玲. 关于培养集成电路专业应用型人才的思考[J]. 中国集成电路,2007,(04).

[3] 方卓红,曲英杰. 关于集成电路设计与集成系统本科专业课程体系的研究[J]. 科技信息,2007,(27):9-10.

[4] 陈小虎,刘化君,朱晓春等. 电气信息与电子信息类应用型人才培养体系的创新与实践[J]. 中国大学教学,2006,(04).

[5] The Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM).Computing Curricula Final Draft-December 15,2001.

集成电路的设计要求篇(6)

集成电路的布图设计是指一种体现了集成电路中各种电子元件的配置方式的图形。集成  电路的设计过程通常分为两个部分:版图设计和工艺。所谓版图设计是将电子线路中的各个  元器件及其相互连线转化为一层或多层的平面图形,将这些多层图形按一定的顺序逐次排列  构成三维图形结构;这种图形结构即为布图设计。制造集成电路就是把这种图形结构通过特  定的工艺方法,“固化”在硅片之中,使之实现一定的电子功能。所以,集成电路是根据要实现的功能而设计的。不同的功能对应不同的布图设计。从这个意义上说,对布图设计的保护也就实现了对集成电路的保护。

集成电路作为一种工业产品,应当受到专利法的保护。但是,人们在实践中发现,由于集成电路本身的特性,大部分集成电路产品不能达到专利法所要求的创造性高度,所以得不到专利法的保护。于是,在一九七九年,美国众议院议员爱德华(Edward)首次提出了以著作权法来保护集成电路的议案。但由于依照著们法将禁止以任何方式复制他人作品,这样实施  反向工程也将成为非法,因此,这一议案在当时被议会否决。尽管如此,它对后来集成电路保护的立法仍然有着重要意义,因为它提出了以保护布图设计的方式来保护集成电路的思想;在这基础上,美国于1984年颁布了《半导体芯。片保护法》;世界知识产权组织曾多次召集专家会议和政府间外交会议研究集成电路保护问题,逐渐形成了以保护布图设计方式实现对集成电路保护的一致观点,终于在一九八九年缔结了《关于保护集成电路知识产权条约》。在此期间,其他一些国家颁布的集成电路保护法都采用了这一方式。

虽然世界各国的立法均通过保护布图设计来保护集成电路,但关于布图设计的名称却各不相同。美国在它的《半导体芯片保护法,)中称之为“掩模作品”(maskwork);在日本的《半导体集成电路布局法》中称之为“线路布局”(cir— cuitlayout);而欧共体及其成员国在其立法中称布图设计为“形貌结构”(topography);世界知识产权组织在《关于集成电路知识产权条约》中将其定名为布图设计。笔者以为,在这所有的名称中以“布图设计”一词为最佳。“掩模作品”一词取意于集成电路生产中的掩模。“掩模作品”一词已有过时落后之嫌,而“线路布局”一词又难免与电子线路中印刷线路版的布线、设计混淆。“形貌结构”一词原意为地貌、地形,并非电子学术语。相比之下,还是世界知识产权组织采用的“布图设计”一词较为妥当。它不仅避免了其他名词的缺陷,同时这一名词本身已在产业界及有关学术界广泛使用。《中国大百科全书》中亦有“布图设计”的专门词条‘

二、布图设计的特征

布图设计有着与其他客体相同的共性,同时也存在着自己所特有的个性。下面将分别加以论述。

1.集成电路布图设计具有无形性

无形性是各种知识产权客体的基本特性,,因此也是布图设计作为知识产权客体的必要条件。布图设计是集成电路中所有元器件的配置方式,这种“配置方式”本身是抽象的、无形的,它没有具体的形体,是以一种信息状态存在于世的,不象其他有形物体占据一定空间。

布图设计本身是无形的,但是当它附着在一定的载体上时,就可以为人所感知。前面提到布图设计在集成电路芯片中表现为一定的图形,这种图形是可见的。同样,在掩模版上布图设计也是以图形方式存在的。计算机辅助设计技术的发展,使得布图设计可以数据代码的方式存储在磁盘或磁带中。在计算机控制的离子注入机或者电子束曝光装置中,布图设计也是以一系列的代码方式存在。人们可通过一定方式感知这些代码信息。布图设计是无形的,但是其载体,如掩模版、磁带或磁盘等等却可以是有形的。

2.布图设计具有可复制性

通常,我们说著作权客体具有可复制性,布图设计同样也具有著作权客体的这一特征。当载体为掩模版时,布图设计以图形方式存在。这时,只需对全套掩模版加以翻拍,即可复制出全部的布图设计。当布图设计以磁盘或磁带为载体时,同样可以用通常的磁带或磁盘拷贝方法复制布图设计。当布图设计被“固化”到已制成的集成电路产品之中时,复制过程相对复杂一些。复制者首先需要去除集成电路的外封装;再去掉芯片表面的钝化层;然后采用不同的腐蚀液逐层剥蚀芯片,并随时拍下各层图形的照片,经过一定处理后便可获得这种集成电路的全部布图设计。这种从集成电路成品着手,利用特殊技术手段了解集成电路功能、设计特点,获得其布图设计的方法被称为“反向工程”。

在集成电路产业中,这种反向工程被世界各国的厂商广泛采用。集成电路作为现代信息工业的基础产品,已渗透到电子工业的各个领域,其通用性或兼容性对技术的发展有着非常重要的意义。因此,而反向工程为生产厂商了解其他厂商的产品状况提供了可能。如果实施反向工程不是单纯地为复制他人布图设计以便仿制他人产品,而是通过反向工程方法了解他人品功能、参数等特性,以便设计出与之兼容的其他电路产品,或者在别人设计的基础上加以改进,制造出更先进的集成电路,都应当认为是合理的。著作权法中有合理使用的规定,但这种反向工程的特许还不完全等同于合理使用。比如,合理使用一般只限于复制原作的一部分,而这里的反向工程则可能复制全套布图设计。改编权是著作权的权能之一,他人未经著作权人同意而擅自修改其作品的行为是侵权行为,但这里对原布图设计的改进则不应视为侵权。

综之,无论何种载体,布图设计是具有可复制性的。

3.布图设计的表观形式具有非任意性著作权客体的表现形式一般是没有限制的。同一思想,作者可随意采取各种形式来表达,因此著作权法对其表现形式的保护并不会导致对思想的垄断。布图设计虽然在集成电路芯片中或掩模版上以图形的方式存在,具备著作权客体的外在特性,但是其表现形式因受诸多客观因素的限制,却是有限的或者非任意的。

首先,布图设计图形的形状及其大小受着集成电路参数要求的限制。如果要求集成电路  具有较高的击穿电压,设计人在完成布图设计时就必须将晶体管的基区图形设计为圆形,以  克服结面曲率半径较小处电场过于集中的影响。对于用于功率放大的集成电路,其功放管图  形的面积必须较大,使之得以承受大电流的冲击。

其次,布图设计还受着生产工艺水平的限制。为了提高集成电路的集成度或者追求高频 特性,常常需将集成电路中各元件的面积减小。这样,布图设计的线条宽度也相对较细。目前国。外已达到亚微米的数量级。但如果将线条设计得太细,以致工艺难度太大将会大大地降低集成电路成品率和可靠性,这是极不经济的;同样地,如果一味,地追求功率参数,将芯片面积增大,也会降低集成电路的成品率。

此外,布图设计还受着一些物理定律以及材料类及其特性等多种因素的限制。比如,晶体管可能因为基区自偏压效应而导致发射极间的电位不等。为克服基区自偏压效应,则需在加上均压图形。

虽然从理论上讲,突破这些限制条件的图形也可以受到著作权的保护,但由于布图设计的价值仅仅体现在工业生产中,所以对那些完全没有实用价值的、由设计人自由挥洒出来的所谓“布图设计”实施保护是没有任何意义的。这些图形不是真正意义上的布图设计,称其为一种“抽象作品”或许更为恰当。布图设计在表现形式的有限性方面,与工业产权客体相似。

三、布图设计权的特性

从上面的分析可知,集成电路布图设计有其自身的特征,并同时兼备著作权客体和工业产权客体的特性。在立法保护布图设计、规定创作人的布图设计权时,应当考虑这一特点。

首先,布图设计权应具备知识产权的共同特性,即专有性;时间性和地域性。布图设计具有无形性,同一布图设计可能同时为多数人占有或使用。为保障布图设计创作人的利益,布图设计权应当是一项专有权利。另一方面,布图设计的价值毕竟是通过其工业应用才得以实现。仅就一特定的布图设计而言,使用它的人越多,为社会创造的价值就越大。如果布图设计权在时间上是无限的,则不利于充分发挥其对社会的作用,也不利于集成电路技术的发展。所以布图设计权应有一定时间期限。当然,对时间期限的具体规定应当既考虑公共利益,又照顾到创作人的个人权益。只有找到二者的平衡点,才是利益分配的最佳状态。地域性作为知识产权的共性之一,同样为布图设计权所具备,在世界知识产权组织的《关于集成电路的知识产权条约》第三条;第四条和第五条的内容都涉地域问题,这实际上肯定了布图设计权的地域性。

其次,布图设计权还具有其独特的个性。下面将其分别与著作权和工业产权相对照,从而分析其特点。

1.布图设计权的产生方式与著作权不同,只有在履行一定的法律程序后才能产生。集成电路作为一种工业产品,一旦投放市场将被应用于各个领域,性能优良的集成电路可能会因其商业价值引来一些不法厂商的仿冒。另一方面,由于集成电路布图设计受到诸多因素的限  制,其表现形式是有限的,这就可能存在不同人完全独立地设计出具有相同实质性特点的布图设计的情况。这就是说,布图设计具有一定的客观自然属性,其人身性远不及普通著作权客体那样强。所以法律在规定布图设计权的产生时,必须对权利产生方式作出专门规定,否则便无法确认布图设计在原创人和仿冒人之间,以及不同的独立原创人之间的权利归属。

2.布图设计权中的复制权,与著作权中的复制权相比,受到更多的限制。翻开各国集成电路技术的发展史,反向工程在技术的发展中有着不可取代的作用。如果照搬著作权法中关于复制权地规定,实施反向工程将被认为是侵权行为。为了电子工业和集成电路技术的发展,应当对复制权加以一定的限制,允许在一定条件下或合理范围内实施反向工程,美国《半导体芯片保护法》第906条第一款中规定,“仅为了教学、分析或评价掩模作品中的概念或技术,或掩模作品中所采用的电路、逻辑流和图及元件的布局而复制该掩模作品者”;或进行上述的“分析或评价,以便将这些工作的结果用于为销售而制造的具有原创性的掩模作品之中者”均不构成侵犯掩模作品专有权。与此相反,单纯地为复制布图设计而实施反向工程仍为侵权。反向工程是对复制权的一种限制。

集成电路的设计要求篇(7)

集成电路(IntegratedCircuit)产业是典型的知识密集型、技术密集型、资本密集和人才密集型的高科技产业,是关系国民经济和社会发展全局的基础性、先导性和战略性产业,是新一代信息技术产业发展的核心和关键,对其他产业的发展具有巨大的支撑作用。经过30多年的发展,我国集成电路产业已初步形成了设计、芯片制造和封测三业并举的发展格局,产业链基本形成。但与国际先进水平相比,我国集成电路产业还存在发展基础较为薄弱、企业科技创新和自我发展能力不强、应用开发水平急待提高、产业链有待完善等问题。在集成电路产业中,集成电路设计是整个产业的龙头和灵魂。而我国集成电路设计产业的发展远滞后于计算机与通信产业,集成电路设计人才严重匮乏,已成为制约行业发展的瓶颈。因此,培养大量高水平的集成电路设计人才,是当前集成电路产业发展中一个亟待解决的问题,也是高校微电子等相关专业改革和发展的机遇和挑战。[1_4]

 

一、集成电路版图设计软件平台

 

为了满足新形势下集成电路人才培养和科学研究的需要,合肥工业大学(以下简称"我校”从2005年起借助于大学计划。我校相继开设了与集成电路设计密切相关的本科课程,如集成电路设计基础、模拟集成电路设计、集成电路版图设计与验证、超大规模集成电路设计 、 ASIC设计方法、硬件描述语言等。同时对课程体系进行了修订,注意相关课程之间相互衔接,关键内容不遗漏,突出集成电路设计能力的培养,通过对课程内容的精选、重组和充实,结合实验教学环节的开展,构成了系统的集成电路设计教学过程。56]

 

集成电路设计从实现方法上可以分为三种:全定制(fullcustom)、半定制(Semi-custom)和基于FPGA/CPLD可编程器件设计。全定制集成电路设计,特别是其后端的版图设计,涵盖了微电子学、电路理论、计算机图形学等诸多学科的基础理论,这是微电子学专业的办学重要特色和人才培养重点方向,目的是给本科专业学生打下坚实的设计理论基础。

 

在集成电路版图设计的教学中,采用的是中电华大电子设计公司设计开发的九天EDA软件系统(ZeniEDASystem),这是中国唯1的具有自主知识产权的EDA工具软件。该软件与国际上流行的EDA系统兼容,支持百万门级的集成电路设计规模,可进行国际通用的标准数据格式转换,它的某些功能如版图编辑、验证等已经与国际产品相当甚至更优,已经在商业化的集成电路设计公司以及东南大学等国内二十多所高校中得到了应用,特别是在模拟和高速集成电路的设计中发挥了强大的功能,并成功开发出了许多实用的集成电路芯片。

 

九天EDA软件系统包括设计管理器,原理图编辑器,版图编辑工具,版图验证工具,层次版图设计规则检查工具,寄生参数提取工具,信号完整性分析工具等几个主要模块,实现了从集成电路电路原理图到版图的整个设计流程。

 

二、集成电路版图设计的教学目标

 

根据培养目标结合九天EDA软件的功能特点,在本科生三年级下半学期开设了为期一周的以九天EDA软件为工具的集成电路版图设计课程。

 

在集成电路版图设计的教学中,首先对集成电路设计的_些相关知识进行回顾,介绍版图设计的基础知识,如集成电路设计流程,CMOS基本工艺过程,版图的基本概念,版图的相关物理知识及物理结构,版图设计的基本流程,版图的总体设计,布局规划以及标准单元的版图设计等。然后结合上机实验,讲解Unix和Linux操作系统的常用命令,详细阐述基于标准单元库的版图设计流程,指导学生使用ZeniSE绘制电路原理图,使用ZeniPDT进行NMOS/PMOS以及反相器的简单版图设计。在此基础上,让学生自主选择_些较为复杂的单元电路进行设计,如数据选择器、MOS差分放大器电路、二四译码器、基本RS触发器、六管MOS静态存储单元等,使学生能深入理解集成电路版图设计的概念原理和设计方法。最后介绍版图验证的基本思想及实现,包括设计规则的检查(DRC),电路参数的检查(ERC),网表一致性检查(LVS),指导学生使用ZeniVERI等工具进行版图验证、查错和修改。7]

 

集成电路版图设计的教学目标是:

 

第熟练掌握华大EDA软件的原理图编辑器ZeniSE、版图编辑模块ZeniPDT以及版图验证模块ZeniVER丨等工具的使用;了解工艺库的概念以及工艺库文件technology的设置,能识别基本单元的版图,根据版图信息初步提取出相应的逻辑图并修改,利用EDA工具ZSE画出电路图并说明其功能,能够根据版图提取单元电路的原理图。

 

第二,能够编写设计版图验证命令文件(commandfile)。版图验证需要四个文件(DRC文件、ERC文件、NE文件和LVS文件)来支持,要求学生能够利用ZeniVER丨进行设计规则检查DRC验证并修改版图、电学规则检查(ERC)、版图网表提取(NE)、利用LDC工具进行LVS验证,利用LDX工具进行LVS的查错及修改等。

 

第三,能够基本读懂和理解版图设计规则文件的含义。版图设计规则规定了集成电路生产中可以接受的几何尺寸要求和可以达到的电学性能,这些规则是电路设计师和工艺工程师之间的_种互相制约的联系手段,版图设计规则的目的是使集成电路设计规范化,并在取得最佳成品率和确保电路可靠性的前提下利用这些规则使版图面积尽可能做到最小。

 

第四,了解版图库的概念。采用半定制标准单元方式设计版图,需要有统一高度的基本电路单元版图的版图库来支持,这些基本单元可以是不同类型的各种门电路,也可以是触发器、全加器、寄存器等功能电路,因此,理解并学会版图库的建立也是版图设计教学的一个重要内容。

 

三、CMOS反相器的版图设计的教学实例介绍

 

下面以一个标准CMOS反相器来简单介绍一下集成电路版图设计的一般流程。

 

1.内容和要求

 

根据CMOS反相器的原理图和剖面图,初步确定其版图;使用EDA工具PDT打开版图编辑器;在版图编辑器上依次画出P管和N管的有源区、多晶硅及接触孔等;完成必要的连线并标注输入输出端。

 

2.设计步骤

 

根据CMOS反相器的原理图和剖面图,在草稿纸上初步确定其版图结构及构成;打开终端,进入pdt文件夹,键入pdt,进入ZeniPDT版图编辑器;读懂版图的层次定义的文件,确定不同层次颜色的对应,熟悉版图编辑器各个命令及其快捷键的使用;在版图编辑器上初步画出反相器的P管和N管;检查画出的P管和N管的正确性,并作必要的修改,然后按照原理图上的连接关系作相应的连线,最后检查修改整个版图。

 

3.版图验证

 

打开终端,进入zse文件夹,键入zse,进入ZeniSE原理图编辑器,正确画出CMOS反相器的原理图并导出其网表文件;调出版图设计的设计规则文件,阅读和理解其基本语句的含义,对其作相应的路径和文件名的修改以满足物理验证的要求;打开终端,进入pdt文件夹,键入pdt,进入ZeniPDT版图编辑器,调出CMOS反相器的版图,在线进行DRC验证并修改版图;对网表一致性检查文件进行路径和文件名的修改,利用LDC工具进行LVS验证;如果LVS验证有错,贝懦要调用LDX工具,对版图上的错误进行修改。

 

4.设计提示

 

要很好的理解版图设计的过程和意义,应对MOS结构有一个深刻的认识;需要对器件做衬底接触,版图实现上衬底接触直接做在电源线上;接触孔的大小应该是一致的,在不违反设计规则的前提下,接触孔应尽可能的多,金属的宽度应尽可能宽;绘制图形时可以多使用〃复制"操作,这样可以大大缩小工作量,且设计的图形满足要求并且精确;注意P管和N管有源区的大小,一般在版图设计上,P管和N管大小之比是2:1;注意整个版图的整体尺寸的合理分配,不要太大也不要太小;注意不同的层次之间应该保持一定的距离,层次本身的宽度的大小要适当,以满足设计规则的要求。四、基本MOS差分放大器版图设计的设计实例介绍在基本MOS差分放大器的版图设计中,要求学生理解构成差分式输入结构的原理和组成结构,画出相应的电路原理图,进行ERC检查,然后根据电路原理图用PDT工具上绘制与之对应的版图。当将基本的版图绘制好之后,对版图里的输入、输出端口以及电源线和地线进行标注,然后利用几何设计规则文件进行在线DRC验证,利用版图与电路图的网表文件进行LVS检查,修改其中的错误并优化版图,最后全部通过检查,设计完成。

 

五、结束语

 

集成电路版图设计的教学环节使学生巩固了集成电路设计方面的理论知识,提高了学生在集成电路设计过程中分析问题和解决问题的能力,为今后的职业生涯和研究工作打下坚实的基础。因此,在今后的教学改革工作中,除了要继续提高教师的理论教学水平外,还必须高度重视以EDA工具和设计流程为核心的实践教学环节,努力把课堂教学和实际设计应用紧密结合在一起,培养学生的实际设计能力,开阔学生的视野,在实验项目和实验内容上进行新的探索和实践。

 

参考文献:

 

[1]孙玲.关于培养集成电路专业应用型人才的思考[J].中国集成电路,2007,(4):19-22.

 

[2]段智勇,弓巧侠,罗荣辉,等.集成电路设计人才培养课程体系改革[J].电气电子教学学报,2010,(5):25-26.

 

[3]唐俊龙,唐立军,文勇军,等.完善集成电路设计应用型人才培养实践教学的探讨J].中国电力教育,2011,(34):35-36.

 

[4]肖功利,杨宏艳.微电子学专业丨C设计人才培养主干课程设置[J].桂林电子科技大学学报,2009,(4):338-340.

 

[5]窦建华,毛剑波,易茂祥九天”EDA软件在"中国芯片工程〃中的作用[J].合肥工业大学学报(社会科学版),2008,(6):154-156.

 

集成电路的设计要求篇(8)

中图分类号:TP212;TP274 文献标识码:A 文章编号:1006-8937(2016)03-0070-02

1 背景概述

近年来,我国航空航天技术取得了快速的发展,智能数据采集装置也越来越多被应用于航空设计中,满足了我国航空航天发展的需要。智能数据采集装置是整个航空航天系统中的重要装置,它直接影响了我国航空航天设计的整体性能。将基于光纤以太网的智能数据采集装置应用于我国航空航天设计中,有利于我国航天设计整体性能的优化。

智能数据采集装置在航空航天设计中一般被应用于对相关直流电压及各种开关量进行采集,实现监控系统及告警节点的通信功能。监控系统对它们进行统一的监控和控制。但是,由于相关因素的制约,通信效率相对比较低,带宽也比较小,无论是监控策略还是相关装置的数字化都不够灵活。光纤的通信性能体积比较小,相对比较优越,带宽容量大,抗干扰能力很强。同时其改造成本相对比较低,有利于社会效益和经济效益的同步实现,能够从根本上提升通信质量。

2 智能数据采集装置的硬件设计

2.1 直流电压采集电路

直流电压采集电路需要直流电压采样通道对相关电路进行选择,然后对直流控制母线和合闸母线进行相应的电压采集。蓄电池组电压和霍尔线圈剩余电流所转换的电压采集电路都可以用这种方式进行电压采集。将其应用于航空航天设计过程中,能够保证其整体采集装置性能的优化,从根本上提高我国航空航天设计水平,实现航空设计过程中各项基础设备的优化[1]。

2.2 交流量采集电路

交流量采集电路由交流电压和电流的采集电路组成,能够对进线电源的电压、电流、有功和无功信息进行监控。交流采集电路的原理是在主备二路进线三相交流电压采集通过互感器降压和隔离之后,用AC/DC的有效值将芯片转换成直流电压,然后将相关结果输入芯片中来采集电压值[2]。

光耦继电器选择电路通过相关的芯片来实现,通过对输出管脚进行配置来选择合适的采样通道。降压与隔离电路对采集电流或电压通道的选择是通过电压互感器将输入端和采集端进行隔离,然后通过多路通道复用芯片CD4051实现的。有效值芯片AD736将交流电压转换成直流电压输出,然后经过电阻进行分压和电容滤波,进行相关采样。依据相关的采样数据能够进行相应的数据信息处理和有功无功的相关计算[3]。

2.3 开关量采集电路

开关量采集电路主要对各种开关的状态量、控制母线出线开关量、合闸母线出线开关量等状态量进行采集。在航空设计过程中,相关设计人员要认识到开关量采集电路系统的重要作用,结合开关量采集电路的实际发展情况和性能,对其进行优化设计。技术人员可以对开关量采集电路进行设计,依据不同的需求对路数进行不同的设置。

线路数量随着性能的需求变化而变化。设计人员在开关量采集电路的设计过程中要针对实际的航空需求来开展,避免线路设置的盲目性和不合理等。开关量输入的公共端都是相同的,其开入电源都是由内部电路依据相关情况提供的。

2.4 开出量控制电路

开出量控制电路是航空设计过程中的重要组成部分。它直接影响了设备的总体性能。开出量控制电路是结合相应的控制策略,对继电器的动作进行自动控制,以满足其告警、控制和状态等相关需求。可以对TLP521芯片的输入端引脚的高低电平进行控制,来实现继电器的相关动作,低电平控制继电器开出。设计人员在对开出量控制电路进行设计的过程中要结合设备的具体运行情况进行合理的规划和安排。

2.5 光纤以太网线路

本文通过对传统的串口通信模式进行改变,并将光纤通信应用于以太网线路中,提高整体通信质量。这些通信过程中,采用以太网数据报送文件对传输数据进行封装,以提高数据的传输质量和效率,并结合直流电源系统对数据吞吐量进行相应的要求。

光纤以太网线路主要由网络隔离变压器、光纤收发器、光电转换和收发一体化模块组成。通过相关的硬件电路实现以太网和光纤的桥接。网络隔离变压器采用的是TS6121C芯片,光纤收发器则是采用传输容量为的IP113A芯片[4]。

3 智能数据采集装置的软件设计

3.1 改进的控制策略

由于发展水平的制约,传统的智能数据采集装置不能满足相关的软件设计要求,通过监控装置实现的,智能数据采集装置对数据的反馈和相关控制命令的执行过程都相对比较复杂。不仅需要对下位装置进行逐个轮询,而且需要在下位装置的相关数据交换完成之后,才能进行下一个数据的交换,不仅浪费时间,而且不利于及时发现数据传输过程中的异常。

将光纤以太网应用于数据采集装置中,能够对控制策略进行相应的提升和优化。当智能数据采集装置在数据和信息的采集过程中发生问题,可以实现实时主动上传,并且对其他数据没有影响。

如果出现故障,能够及时将故障信息反馈给相关的监控装置。然后监控装置结合数据采集的具体情况对实时控制处理信息进行下放。

3.2 流程设计

软件流程设计由数据处理、采样和监控装置通信交互三部分组成。技术人员可以通过定时中断对开关状态量进行采集。并根据相关的采集数据和通信信息对相关数据进行解码,严格按照相关要求和流程进行相应的规划,从根本上提升整体设计质量[5]。

4 结 语

以光纤以太网为前提的智能数据采集装置不仅能够避免复杂电磁环境中受到干扰,而且能够实现数据采集和显示以及故障处理的实效性,有利于监控装置和采集装置进行相关的数据交流,实现了数据交换方式的多样化。

技术人员要充分认识到以光纤以太网为前提的智能数据采集装置在航空航天设计过程中的重要作用,从根本上对智能数据采集装置进行优化,以提高我国航空航天设计水平。

参考文献:

[1] 梁彩云,谢业平,李泳凡,等.飞/发性能一体化技术在航空发动机设计 中的应用[J].航空发动机,2015,(3).

[2] 陈起磊,王志新.基于DSP永磁智能断路器数据采集系统的分析与设 计[J].低压电器,2012,(1).

集成电路的设计要求篇(9)

中图分类号:F23 文献标识码:A

收录日期:2015年8月30日

一、前言

集成电路的整个产业链包括三大部分,即集成电路设计、生产制造和封装及测试。由于集成电路行业在我国起步晚,目前最尖端的集成电路企业几乎全被外资垄断,因此国家从改革开放以来,逐年加大集成电路产业的投入。近年来,我国的集成电路企业飞速发展,规模逐年扩大。根据中国半导体行业协会统计,2015年第一季度中国集成电路产业销售额为685.5亿元。其中,IC设计销售额为225.1亿元,生产制造业销售额为184.9亿元,封装测试销售额为275.5亿元。作为集成电路产业的IC设计得到国家的大力鼓励发展,以期望由IC设计带动整个中国的集成电路产业。我国的集成电路企业主要分布在长三角、珠三角、京津地区和西部的重庆、西安和武汉等。其中,长三角地区集中了全国约55%的集成电路制造企业、80%的集成电路封装测试企业和近50%的集成电路设计企业,该区域已经形成了包括集成电路的研发、设计、芯片制造、封装测试及其相关配套支撑等在内的完整产业链条。

集成电路行业是一个高投入、高产出和高风险的行业,动辄几十亿元甚至几百亿元的投入才能建成一条完整的生产线。国务院在2000年就开始下发文件鼓励软件和集成电路企业发展,从政策法规方面,鼓励资金、人才等资源向集成电路企业倾斜;2010年和2012年更是联合国家税务总局下发文件对集成电路企业进行税收优惠激励,2013年国家发改委等五部门联合下发了发改高技[2013]234号文,凡是符合认定的集成电路设计的企业均可以享受10%的所得税优惠政策。因此,对于这样一个高投入、高技术、高速发展的产业,国家又大力支持的产业,做好成本核算是非常必要的。长期以来,集成电路设计企业由于行业面较窄,又属于高投入、复杂程度不断提高的行业,成本核算一直没有一个明确的核算方法。

二、集成电路设计生产流程

集成电路设计企业是一个新型行业的研发设计企业,跟常规企业的工作流程有很大区别,如下图1。(图1)集成电路设计企业在收到客户的产品设计要求后,根据产品需求进行IC设计和绘图,设计过程中需要选择相应的晶圆材料,以便满足设计需求。设计完成后需要把设计图纸制造成光刻掩膜版作为芯片生产的母版,在IC生产环节,通过光刻掩膜版在晶圆上生产出所设计的芯片产品。生产完成后进入下一环节封装,由专业的封装企业对所生产的芯片进行封装,然后测试相关芯片产品的参数和性能是否达到设计要求,初步测试完成后,把芯片产品返回集成电路设计企业,由设计企业按照相关标准进行出厂前的测试和检验,最后合格的芯片将会发给客户。

对于集成电路设计企业来说,整个集成电路生产流程都需要全方位介入,每个环节都要跟踪,以便设计的产品能符合要求,一旦一个环节出了问题,例如合格率下降、封装不符合要求等,设计的芯片可能要全部报废,无法返工处理,这将会对集成电路设计企业带来很大损失。

三、成本核算方法比较

传统企业的成本核算方法一般有下面几种:

(一)品种法:核算产品成本的品种法是以产品的品种为成本计算对象,归集费用,计算产品成本的一种方法。品种法一般适用于大量大批单步骤生产类型的企业,如发电、采掘等企业。在这种类型的企业中,由于产品的工艺流程不能间断,没有必要也不可能划分生产步骤计算产品成本,只能以产品品种作为成本计算对象。

品种法除广泛应用于单步骤生产类型的企业外,对于大量大批多步骤生产类型的企业或者车间,如果其生产规模小,或者按流水线组织生产,或者从原材料投入到产品产出的全过程是集中封闭式的生产,管理上不要求按照生产步骤计算产品成本,也可以采用品种法计算成本,如小型水泥厂、砖瓦厂、化肥厂、铸造厂和小型造纸厂等。

按照产品品种计算成本,是产品成本计算最基础、最一般的要求。不论什么组织方式的制造企业,不论什么生产类型的产品,也不论成本管理要求如何,最终都必须按照产品品种计算出产品成本。因此,品种法是最基本的成本计算方法。

(二)分批法:分批法亦称订单法,它是以产品的批别(或订单)为计算对象归集费用并计算产品成本法的一种方法。分批法一般适用于单件小批生产类型的企业,如船舶、重型机械制造企业以及精密仪器、专用设备生产企业。对于新产品的试制,工业性修理作业和辅助生产的工具模具制造等,也可以采用分批法计算成本。在单件小批生产类型企业中,通常根据用户的订单组织产品生产,生产何种产品,每批产品的批量大小以及完工时间,均要根据需求单位加以确定。同时,也要考虑订单的具体情况,并结合企业的生产负荷程度合理组织产品的批次及批量。

(三)分步法:分布法是以产品的品种及其所经过的生产步骤作为成本计算对象,归集生产费用,计算各种产品成本及其各步骤成本的一种方法。分布法主要适用于大量大批复杂生产的企业,如纺织、冶金、造纸等大批量、多步骤生产类型的企业。例如,钢铁企业可分为炼铁、炼钢、轧钢等生产步骤。在这种企业里,其生产过程是由若干个在技术上可以间断的生产步骤组成的,每个生产步骤除了生产出半成品(最后步骤为产品)外,还有一些处于加工阶段的在产品。已经生产出来的半成品及可以用于下一生产步骤的再加工,也可以对外销售。

(四)作业成本法:作业成本法是一个以作业为基础的管理信息系统。它以作业为中心,作业的划分从产品设计开始,到物料供应;从工艺流程的各个环节、总装、质检到发运销售全过程,通过对作业及作业成本的确认计量,最终计算出相对准确的产品成本。同时,经过对所有与产品相关联作业的跟踪,消除不增值作业,优化作业链和价值链,增加需求者价值,提供有用信息,促进最大限度的节约,提高决策、计划、控制能力,以最终达到提高企业竞争力和获利能力,增加企业价值的目的。

由于集成电路设计企业的特殊生产工艺流程,集成电路设计企业的主要生产和封装、测试都是在第三方厂家进行,分批法、分步法和作业成本法都不太适合作为集成电路设计企业的成本核算方法,所以品种法将作为集成电路设计企业的基础成本核算方法。

四、IC产品的品种法

品种法作为一种传统的成本核算方法,在集成电路设计企业里是十分实用的。由于集成电路设计企业的生产流程比较特殊,产品从材料到生产、封装、测试,最后回到集成电路设计企业都是在第三方厂商进行,每一个环节的成本费用无法及时掌握,IC产品又有其特殊性,每种产品在生产过程中,不仅依赖于设计图纸,而且依赖于代工的工艺水平,每个批次的合格率并不尽相同,其成品率通常只有在该种产品的所有生产批次全部回到设计企业并通过质量的合格测试入库时才能准确得出,然而设计企业的产品并不是一次性全部生产出来,一般需要若干个批次,或许几十上百个批次加工,在最后几个批次返回设计企业时,早期的许多批次产品早已经发给客户使用了,因此集成电路设计企业的按品种进行成本核算应该是有一定预期的品种法,即需要提前预估该种产品的成品率或废品率,尽量准确核算每一个IC产品的成本。

五、结语

集成电路设计是个技术发展、技术更新非常迅速的行业,IC设计企业要在这个竞争非常激烈的行业站住脚跟或者有更好的发展,就必须紧密把握市场的变化趋势,不断的进行技术创新、改进技术或工艺,及时调整市场需求的产品设计方向,持续不断的通过科学合理的成本控制手段,从技术上和成本上建立竞争优势;同时,充分利用国家对于集成电路产业的优惠政策,特别是对集成电路设计企业的优惠政策,加大重大项目和新兴产业IC芯片应用的研发和投资力度;合理利用中国高等院校、科研院所在集成电路、电子信息领域的研究资源和技术,实现产学研相结合的发展思路,缩短项目的研发周期;通过各种途径加强企业的成本控制手段,来达到提高中国IC设计企业整体竞争实力,扩大市场份额。

主要参考文献:

集成电路的设计要求篇(10)

作者简介:李建军(1980—),男,四川江油,博士,副教授,主要从事超大规模集成电路教学与科研工作

当前,全球微电子技术及产业飞速发展,22nm节点技术已量产,以微电子集成电路为核心的电子信息产业已成为全球第一大产业,而我国的微电子技术及产业同国外比还有较大的差距,集成电路设计和微电子工艺方面的人才比较匮乏。当前和今后一段时期是我国微电子产业发展的重要战略机遇期和攻坚期,2014年6月我国了《国家集成电路产业发展推进纲要》以加快推进我国集成电路产业发展,并明确指出“重点支持集成电路制造领域”[1]。因此,为适应该领域技术和产业的人才需求,亟须加强对微电子和集成电路相关专业本科生的工艺实验与工程实践能力的训练,培养其创新和实践能力。

高校实验室是培养创新和实践能力重要基地,也是开展教学、科研、生产实践三结合的重要场所[2-3],特别是对于实践性强的微电子学科,实验室在教学中发挥着举足轻重的作用。因此,建设专业的实验室并开展实践与创新相结合的实验教学,才能更多、更有效地培养满足社会急需的微电子技术人才[4]。

1微电子实验室建设指导思想

微电子实验室建设及人才的培养是以国家对微电子技术人才的需求为目的,以满足社会经济快速发展的需要。近10多年来是我国微电子和集成电路产业飞速发展时期,2000年和2011年国家先后出台了《鼓励软件产业和集成电路产业发展的若干政策》、《进一步鼓励软件产业和集成电路产业发展的若干政策》,到2014年了《国家集成电路产业发展推进纲要》。在政策导向下,高校微电子专业实验的建设成就也十分显著。但是,我国的微电子技术及产业同国外比还有较大的差距,这其中缩小差距重要的一点是缩小微电子实验室技术的差距。因此,对于高校微电子专业实验室的建设发展还需进一步的改革创新[5-7]。

微电子实验室建设应以《国家中长期教育改革和发展规划纲要》为导则,明确国家教育改革战略目标和战略主题是优化知识结构,丰富社会实践,强化能力培养,要着力提高学生的学习能力、实践能力、创新能力[8]。

在实验室建设的措施实施上,一是贯彻实施《高等学校本科教学质量与教学改革工程》,进一步推动高校实验室建设和实验教学改革,促进优质教学资源共享,提升高等学校办学水平,加强学生动手能力、实践能力和创新能力的培养,全面提高教育质量;二是贯彻实施《卓越工程师教育培养计划》,面向微电子产业,按通用标准和行业标准强化培养学生的工程和创新能力[9-10]。

2微电子实验室建设

为适应国际半导体产业和我国电子信息产业的快速发展以及社会对微电子专业人才的大量需求,从2002年起我校就对微电子实验室进行了改造,并持续进行了升级换代建设,截止到目前共计投入了800余万元的建设经费。我校的微电子实验室建设主要包括2方面的内容,一是微电子设计实验室建设,二是微电子工艺实验室建设。目前,微电子实验室可满足每年500人的实验教学规模以及高水平实验项目的开设。学生在此完成集成电路芯片设计、制造的整个过程,并对制造的芯片进行测试和分析。

2.1微电子设计实验室建设

微电子设计实验室主要开展超大规模集成电路设计以及微电子器件仿真和工艺模拟的实验教学。教学目的是使学生掌握超大规模集成电路设计的基本原理和方法,初步掌握用于集成电路设计的电子设计自动化EDA(electronicdesignautomation)软件工具的使用,以及掌握用于半导体工艺流程模拟和微电子器件仿真的工艺计算机辅助设计TCAD(technologycomputeraideddesign)软件工具的使用。我校共计投资300余万元用于微电子设计教学实验室建设,建立了配备40台SUNBlade工作站、面积100m2的专用教室,并专门建立了EDA、TCAD软件校内共享第二层交换网络,多个实验室可以同时使用授权EDA、TCAD软件。

微电子设计教学内容的建设包括以下内容:

一是开设VHDL(高速硬件描述语言)程序实验,要求学生编写逻辑电路的VHDL代码,对程序代码进行仿真综合。目的使学生掌握运用VHDL语言进行逻辑电路设计的技能。

二是开设FPGA(现场可编程门阵列)实验,要求学生将综合后的网表文件下载到FPGA器件中,对设计的电路进行硬件验证。目的是使学生掌握电子设计的FPGA物理实现方法,以及应用示波器等调试仪器对电路进行诊断排错的技巧。

三是开设ASICAPR(专用集成电路自动布局布线)版图设计实验,要求学生将通过硬件验证过的电路设计,借助半定制的ASIC设计EDA工具,结合代工厂提供的标准单元库,进行自动布局布线,得到所设计电路的物理版图。目的是使学生掌握电子设计的AISC实现方法。

四是开设工艺模拟和器件仿真实验,要求学生通过TCAD软件的学习熟悉集成电路制造工艺流程,并指定产生的器件结构,在满足制造设备的能力和精度下(即给定工艺参数范围内),让学生设计实验并加以仿真实现。

2.2微电子工艺实验室建设

微电子技术的发展是以集成电路制造技术工艺节点为标志,遵循摩尔定律,变化日新月异。虽然理想的工程教育要求教学最新最前沿的技术,但是不断升级换代,昂贵的实验设备费用是任何高校都负担不起的。况且,每一代集成电路制造技术的工艺流程都具有类似性,因此,单纯追求工艺先进性的实验教学是没有必要的。所以,结合实际教学资源情况,建设主流、典型工艺技术的工艺实验线,并开展理论联系实践的实验教学是微电子工艺实验室建设的重点。

我校先后投入500余万元建设微电子工艺教学实验室,建立了面积300m2的净化室,具有主流CMOS(互补金属氧化物半导体)工艺和具有代表性的双极工艺完整流程,最小工艺线宽为1μm。并且,由于工艺设备条件的限制,因地制宜地开发了铝栅CMOS工艺。这2类工艺实验课程的学时数都为40学时,学生根据专业方向选择具体工艺类型。

微电子工艺实验课程的目的是培养学生具有一定的工艺设计和分析能力,并通过实践掌握集成电路制造工艺流程。

首先,通过TCAD软件的学习熟悉集成电路制造工艺流程,按指定器件结构设计实验并加以仿真实现。并且,TCAD软件是基于物理的器件仿真,不仅能够得到最终的电学特性,还可以了解器件工作时内部物理机制,能够直观分析器件内部能带、电场、电流以及载流子等的分布和变化,有助于学生分析工艺参数的变化对器件物理特性影响,从而最终导致电学参数的改变,从而有利于学生深入理解工艺原理与器件机理的联系。

然后,根据设计的器件尺寸参数,采用L-edit图形编辑器进行器件版图设计,并且选用已设计的器件单元来设计简单的集成电路,如倒向器、或非门、与非门等电路。最后是进行工艺实验实践环节,采用设计的版图制作掩膜版。微电子工艺实验课程的工程化能力要求也主要体现在这一环节,一方面是工程化的理念,另一方面就是相应的实践能力。在这一过程既要培养实际操作能力,更要培养分析问题、解决问题的能力,分析工艺过程中的原因以及造成芯片测试参数与设计参数差别的原因。

2.3实验教学资源建设

2.3.1实验教材编写

微电子设计实验开设的难点之一是实验步骤繁多,学生操作起来较为困难。其原因是国内外缺乏针对本科学生的实验指导书,而EDA工具厂商提供的操作指南过于繁琐,本科学生难以掌握。为配合上述实验的开展,课程组组织相关有实际ASIC设计经验的教师编写了《VLSI自动布局布线(APR)设计实验指导书》实验教材,从操作原理、操作步骤、数据管理、报告撰写等方面对学生进行指导,力求做到学生通过阅读实验教材就能按图索骥,自行完成实验流程。因此在教材的编写上,不厌其详,采用了大量的EDA工具实际操作的截面图,力争反映出每一个操作细节。

对于微电子工艺实验,由于实验内容根据学校实验工艺线实际条件开设,实验内容一是要具有代表性,二是要根据实际情况建立工艺流程。因此,也没有现成的教材或实验指导书可供选择。课程组组织具有丰富工艺实践经验的教师,根据实验室设备条件编写了对应的、适用的《微电子器件设计与制造综合性实验指导书》实验教材。

2.3.2多媒体资料制作

教学信息载体的多样化,包括文字、图片、音频、视频、网络等载体,这是现代教学发展的必然趋势。实验教学多媒体资料可以充分调动教学要素,激发学生的学习兴趣,融教与学为一体[11-12]。

为了让学生对集成电路设计和微电子制造工艺有直观的认识。课程组结合实际的实验实践教学过程,制作了全程相关单项工艺原理、流程及设备操作视频演示多媒体资料。多媒体资料将动画、声音、图形、图像、文字、视频等进行合理的处理,做到图文声像并茂。由于微电子实验课程是与实际联系很紧密的课程,形象化教学素材十分丰富,能激发学生的学习兴趣,对提高教学效果、教学质量非常有益。同时制作器件、集成电路电路的设计、仿真视频演示多媒体资料,让学生能快速熟悉设计软件并理解设计方法。在熟悉微电子器件基本理论和集成电路制造工艺的基础上,掌握器件和集成电路的设计方法,最后通过实验操作制作芯片并测试。

3微电子实验室建设成效

充分发挥了以学生为主的教学形式,完成从设计到实验制作再到测试验证整个过程。每个学生都设计了各自结构的器件,因此在器件制作过程中,每个学生就会切实关注每步工艺对器件性能的影响,在实际工艺过程中的操作锻炼了动手能力,在实践过程中了解哪些工艺因素可能对器件造成影响。微电子实验教学将理论与实践结合、创新与实践结合,培养了学生分析问题、解决问题的能力。

微电子实验采用理论联系实际的方式在国内首次实现了“微电子工艺原理”课程的完整实验教学,并因此而获得2004年四川省教学成果二等奖。此外,我校“电子科学与技术”在2012年全国学科评估中排名全国第一,其中微电子实验教学是本学科本科教学的重要组成部分。

集成电路的设计要求篇(11)

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2015)30-0070-02

21世纪被称为信息时代,电子科学与技术在信息、能源、材料、航天、生命、环境、军事和民用等科技领域将获得更广泛的应用,必然导致电子科学与技术产业的迅猛发展。这种产业化趋势反过来对本专业的巩固、深化、提高和发展起到积极的促进作用,也对人才的培养提出了更高的要求。因此,本文从人才的社会需求出发,结合我校实际情况,进行了本科专业培养方案的改革探索,并详细介绍了培养方案的制定情况。

一、人才的社会需求情况

目前,我校电子科学与技术专业的本科毕业生主要面向长三角地区庞大的微电子、光电子、光伏和新能源行业,市场对专业人才的需求基本上是供不应求的。但是也应该注意到电子科学与技术产业的分布不均,分类较细,且发展变化较快。另外,电子科学与技术产业结构具有多样性,既有劳动密集型的大型企业、大公司,更多的是小公司和小企业;既有国有企业和私营企业,更有合资、独资的外企。因此,社会需求与本专业毕业生的供需矛盾还会继续存在。

二、专业的培养目标和定位

本专业培养具备微电子、光电子领域的宽厚专业基础知识,熟练实验技能,能掌握电子材料、电子器件、微电子和光电子系统的新工艺、新技术研究开发和设计技能,有较强的工程实践能力,能够在该领域从事各种电子材料、元器件、光电材料及器件、集成电路的设计、制造和相应的新产品、新技术、新工艺的研究、开发和管理工作工程技术人才。并且结合我校“大工程观”人才培养特色,依据“卓越工程师”教育理念下工程技术型人才培养的原则,培养适应微电子和新兴光电行业乃至区域社会经济建设需求的工程技术型人才。

三、本科培养方案制定的思路

电子科学与技术专业培养方案参照工程教育认证的要求,以及专业下设微电子、光电子材料与器件两个本科培养方向的思路制定。注重培养学生的专业基础知识和实践工程能力,使毕业生能满足长三角地区微电子、光电子和新能源行业发展的需求。微电子方向的课程设置专注于电子材料与电子器件、集成电路与系统设计方面,光电子材料与器件方向则偏向于光电信息、光电材料与光电器件方面。

四、本科培养方案的改革探索

要实现电子科学与技术专业的培养目标,适应电子信息产业的不断发展,并结合我校学科发展方向和特色,对电子科学与技术专业本科人才培养方案进行了研究,并对省内外几所高校电子科学与技术专业的培养方案进行调研,最终形成了富有特色的电子科学与技术专业人才培养方案,主要内容如下:

1.培养方案的模块化设计。在设计电子科学与技术专业本科培养方案的整体框架时,根据“加强基础、拓宽专业、培养能力”和培养工程技术型人才的办学理念下,专业培养方案分人文与社会科学、专业基础和专业课三个模块,下设微电子和光电子材料与器件两个专业方向。学生在前两年学习相同的课程,到大三时根据自己的兴趣选择专业方向,选修各自方向的专业课。由于两个方向的不同培养要求,因此在专业基础选修课、专业必修课和专业选修课方面设置限选模块,每个专业方向必须修满相应的学分才能毕业。

2.改革专业基础课程。专业基础课程是为专业课程奠定基础,因此,在保留了原有电子信息类专业通常所开设的电子类课程外,增加了与专业相关的课程,如EDA技术、通信原理、数字信号处理、物理光学、应用光学、激光原理与技术等课程,删减了原先与物理类相关的一些课程,如物理学史、原子物理、热力学与统计物理学等,并删减了一些计算机软件类课程,如C++程序设计、计算机在材料科学中的应用等。专业基础选修课程分方向限选模块,两个专业方向对应有不同的专业基础选修课程。

3.优化专业课程。专业课程是整个专业教育中的主干部分,微电子方向的课程设置紧紧围绕半导体和集成电路设计方向,开设有集成电路设计、微电子工艺原理与技术、工艺与器件可靠性分析、半导体测试技术、现代电子材料及元器件、集成电路工艺与器件模拟等课程。光电子材料与器件方向围绕光电材料和光纤通信方向,开设光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤传感原理与技术、光纤通信技术等课程。另外专业课程里面还设置有专业实验,通过加强实验环节,训练学生的动手操作能力,增强学生的理论知识。

五、与省内外专业人才培养的区别

具有电子科学与技术专业的各大高校分布在不同的地区,服务于不同的区域经济,这就要求专业学生的培养具有区域化、差异化。我们分析了杭州电子科技大学、浙江工业大学、苏州大学、南京理工大学和徐州工程学院这五所不同地区、不同层次高校的电子科学与技术专业的培养方案。不仅使我们能学习到其他高校的先进办学理念、合理的课程设置体系,也可以发现与其他高校之间的差异。具体表现为以下几个方面:

1.专业定位。各个学校的电子科学与技术专业依据自身的师资力量、办学条件、区域经济要求确定专业的发展定位。杭州电子科技大学的电子科学与技术专业依托1个教育部重点实验室、2个部级实验教学示范中心、3个省部级重点实验室,人才培养定位于能从事电子元器件、电子电路乃至电子集成系统的设计和开发等方面工作的工程技术人才。浙江工业大学的电子科学与技术专业主要培养光通信、电子电路系统、集成电路设计等方面的人才。苏州大学的电子科学与技术专业定位在培养能够在电路与系统、集成电路与系统等领域从事各类系统级、板级和芯片级研发工作的高级工程技术人才。南京理工大学的电子科学与技术专业主要是突出光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的电子科学与技术专业主要定位在培养能从事光电子材料与器件开发的工程技术人才。而我校的电子科学与技术专业定位于服务长三角地区半导体和新能源行业,培养能从事集成电路设计与开发、光电子材料与器件的研发等工作的工程技术人才。

2.课程体系。杭州电子科技大学的电子科学与技术专业培养学生设计、开发电子元器件、电子电路系统、电子集成系统的能力,在课程设置上开设了通信电子电路、EDA技术、薄膜物理与技术、电子材料与电子器件、电子系统设计与实践、集成电路设计、嵌入式系统原理和应用、现代DSP技术及应用等专业课程。浙江工业大学的电子科学与技术专业培养学生设计、开发电子电路系统、集成电路系统的能力,开设了电路原理、模电数电、通信电子线路、集成电路设计、光纤通信原理、光网络技术、数字信号处理等专业课程,以及电子线路CAD实验、单片机综合实验、通信原理实验、通信电子线路大型实验、微电子基础实验、半导体器件仿真大型实验、集成电路设计大型实验等实验类课程。苏州大学的电子科学与技术专业培养学生设计与开发电路与系统、集成电路与系统,从事各类系统级、板级和芯片级研发工作的能力,开设了信号与系统、电磁场与电磁波、高频电路设计与制作、电子线路CAD、CMOS模拟集成电路设计、VLSI设计基础等专业课程,以及电子技术基础实验、信号与电路基础实验、电子线路实验、电子系统综合设计实验等实验类课程。南京理工大学培养学生从事光电子器件、光电系统和集成电路的设计、开发、应用的能力,开设了信号与系统、光学、光电信号处理、光辐射测量、光电子器件、光电成像技术、超大规模集成电路设计、光电子技术、显示技术、光电检测技术、数字图像处理、半导体集成电路、集成电路测试技术、微电子技术、光电子线路、电视原理等专业课程。徐州工程学院的电子科学与技术专业培养学生设计与开发光电子材料与器件的能力,开设有信号与系统、光电子学、光电子技术、激光原理与技术、光伏材料等专业课程,以及模拟电路课程设计、数字电路课程设计、单片机原理课程设计等实践性课程。我校的电子科学与技术专业主要培养学生集成电路设计、光电子材料与器件的设计与制备能力,开设有半导体物理学、半导体器件原理、MEMS技术、微电子工艺原理与技术、薄膜材料及制备技术、工艺与器件可靠性分析、集成电路工艺与器件模拟、EDA技术、通信原理、数字信号处理、光电子材料与器件、光电检测原理与技术、太阳能电池原理与技术、光纤通信技术等专业课程,以及近代物理实验、专业实验等实验类课程。

3.人才培养特色。杭州电子科技大学的电子科学与技术专业的人才培养特色是注重集成电路设计、系统集成方面能力的培养。浙江工业大学的人才培养注重光纤通信、集成电路设计方面能力的培养。苏州大学的人才培养注重电路与系统设计、集成电路与系统设计方面能力的培养。南京理工大学的人才培养注重光电技术和微电子与信息处理学科的交叉和融合,以光电成像探测理论与技术及微电子理论与技术为专业特色。徐州工程学院的人才培养注重光电材料与器件方面能力的培养。我校的人才培养注重电子材料与电子器件的设计与开发、集成电路设计方面能力的培养。

参考文献: