欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

高中化学工艺流程总结大全11篇

时间:2022-01-27 04:58:38

高中化学工艺流程总结

高中化学工艺流程总结篇(1)

汽车制造业是推动社会经济发展水平不断提高的重要行业,加入WTO以后,我国汽车制造行业得到了迅速发展,汽车制造产量及汽车消费能力也在不断提高。与此同时,汽车制造行业引进了各种先进设备、技术及制造工艺,加快了现代化汽车制造行业生产线、流水线的快速转型。

一、车身成型工艺概述

汽车车身成型工艺是汽车制造流程中能够明显反映汽车制造流程特点的密集型工艺流程。在接到汽车生产大批量任务时,为了在规定时间内完成高质量的制造工序,车间往往会选择各种先进的汽车制造工具、机械设备、自动化控制技术等,以满足汽车制造工艺对车身成型焊接工艺提出的高要求。车身成型工艺是将汽车整体结构所需部件进行组装,包括侧围、底板、门盖、总拼等,然后通过采用焊接工艺完成整个车身的组成。汽车车身成型工艺在设计及组装焊接过程中,需要制造员工花大量时间去统计焊点,并根据车身特点进行焊数千焊点的分配,确保焊点处于正确焊接方位,便于机械设备进行零部件安装,同时保证在规定时间内完成。但是,在车身成型焊接工艺过程中,常常会面临着各种问题,比如如何在最短时间内进行工艺结构分配、如果保证焊点精确分配到正确焊点等。

二、传统汽车制造工艺设计中出现的问题

传统的汽车制造工艺设计属于独立串行设计,需要汽车制造厂和供应商两方共同完成数据信息传递,而现阶段的信息传递方式比较落后,大多数为纸质文档类,在少许应用电子数据进行传递的环节中,还存在许多问题,如双方数据传递出现前后不一致、数据版本与采集设备中的数据版本不匹配等。导致汽车制造厂无法做到随时随地管理汽车焊接工艺整个流程,无法准确把握汽车焊接工艺制造的安全性和精确性。同时,供应商也没办法在第一时间获取制造厂中的产品变动信息,很难做到与焊接工艺设计保持同步频率,不利于接下来的工艺流程。

除此之外,由于不能实现大批工艺数据传递,供应商在进行焊接工艺作业时,发现预先确定的设计方案中还存在许多与实际工艺细节不相符的情况,供应商也没有条件及工具去验证和分析这些工艺是否适合汽车制造需求,导致汽车车身焊接后续作业量急剧增加,后期的产品与模具配合、焊枪与夹具配合等工艺流程等都直接进入试制阶段,为汽车制造流程埋下许多工艺设计隐患。在后期出现问题之后再进行补救,会造成制造工艺设计成本的大量浪费。由此可见,传统汽车制造工艺设计没有做到“防范于未然”,将焊接设计工艺有可能出现的问题一股脑放在试制阶段,增加了汽车制造工艺设计风险。

三、运用数字化汽车制造技术解决汽车制造问题

数字化汽车制造工艺是为解决传统工艺设计问题提出的以软科学为代表的,具有自动化、智能化的先进工艺技术。目前,汽车制造行业最典型的就是“数字化工厂”先进制造技术,即结合汽车制造要点,通过信息平台将数字化制造理论合理运用到制造工艺、虚拟化工艺流程设计、工艺模拟实验当中,确保汽车制造工艺实施与工艺的可行性分析同步进行,改善传统制造工艺中“物理实验在后”的流程,率先运用数据验证将制造工艺设计中的风险排除在外,从而提升了汽车制造整个工艺设计流程的质量和效率。

运用数字化汽车制造技术进行工艺设计的流程主要有:根据汽车制造厂给出的车身要求,确定车身设计中的焊接点、连接点等;汽车制造工艺规划阶段,选择新产品作为流程模板匹配对象,确定工艺流程结构;在前两步基础上,得出工艺流动结构图,划分出车身焊点的具体范围;展开产品的招投标工作;确定供应商后,运用数据分解平台对初步工艺设计流程进行模拟验证和分析,确保流程在规定时间内完成;完成工艺设计后,通过数字化平台,展开制造厂与供应商之间设计数据的传递;又将汽车制造厂提出的变更设计数据传递供应商,实现汽车制造厂和供应商之间的数字化协作,最终确定项目设计工艺。

四、总结

总之,数字化制造系统在汽车制造工艺中的应用不仅仅缩短了汽车制造流程时间,还减少了制造工艺流程作业及工艺所耗费的生产成本和试制成本。目前,国内一些大型汽车制造厂商为进一步压缩制造时间,提高工艺制造质量,已经引进数字化制造工艺研发软件平台,相信今后数字化汽车制造工艺会受到更多汽车商家的青睐。

参考文献:

[1]朱俊.焊接技术在汽车制造中的应用[J].现代焊接,2013(8)

[2]李俭.浅谈汽车车身制造工艺同步工程[J].汽车工艺与材料,2010(8)

[3]周自强.戴国洪教授数字化制造工艺与装备技术研究工作评述[J].常熟理工学院学报 2012(10)

高中化学工艺流程总结篇(2)

1.引言

随着世界高新技术的发展和全球经济一体化进程的加快,各个国家在高新科技领域的发展态势和深层次竞争日趋激烈,尤其在某些国防尖端领域,如高性能战机、导弹、卫星等方面更是不惜投入力量竞相发展,因此,先进的工艺和制造技术为研发制造这些高科技产品的军工企业提供了支柱作用。

2.航天总装工艺在航天器研制中的性质

航天系统总成是航天器研制全生命周期的最后重要一环,是航天器整体质量保证的最后一道屏障,前期所有的技术手段都要在这一阶段接受考验,最终形成一介成功的产品。

而且越到研制阶段最后,可靠性模型越复杂,这就决定了航天器系统集成阶段的每一项工作都要有严格的质量保证和可靠性、安全性保证。航天器的总装过程贯穿了系统集成过程中的装配、测试、试验,以及发射场的再组装和测试的全过程,总装质量直接影响到航天器的质量和飞行试验的成败。

航天器总装工艺工作是连接设计与制造的桥梁,工艺问题不仅仅局限于工艺文件的编制,而应实现基于产品生命全周期的工艺流程设计、过程管理、技术问题处理、数据分析和信息处理。产品的加工工艺是企业指挥生产的灵魂,产品的工艺设计方案是产品生产的神经。

3.航天总装工艺的发展面临的问题

在我国航天事业高速发展的今天,传统的工艺设计也不可避免地面临着许多问题,主要体现在以下几个方面。

3.1 工艺技术发展相对滞后,难以满足航天产业发展要求

当今的航天制造业,新技术、新设备、新材料、新理论被不断运用,而工艺技术发展的落后则会制约航天产品的研制质量和效率。在实际工作中,“重设计、轻工艺”现象依然存在,致使设计师往往重视文件、图纸的“纸上谈兵”,而忽视科研生产中产品加工及试验过程的实际情况,最终导致产品质量不过关。这方面,我们是有深刻教训的,采用成熟平台技术的型号的失败,很大一部分就是这方面的原因。

3.2 缺乏工艺技术创新和工艺精细化研究

由于产业规模迅速发展,一线技术人员新老更替加快,存在着工程经验不足、技术没有完全吃透、工艺技术文件不完善的现象,从而导致质量事故时有发生。技术人员的经验和技术成熟度虽然不能在短时间内完成积累,但是可以通过信息、技术的快速沟通和响应弥补,这也是信息化的工艺技术工作所起的作用之一。

3.3 传统工艺设计方法和工艺管理方法存在的问题

在具体的航天器总装工艺设计和工艺管理工作中,过去的传统方法存在着如下不足:

a.工艺文档编制方式落后,工艺标准化程度不高,导致工艺设计效率低;

b.工艺设计流程不优化、工艺术语不规范,导劲工艺指导性不高;

c.企业传承的工艺技术和经验不能得到有效管理和利用;

d.没有有效的文档管理和查询工具,无法进行工艺知识的积累和复用,现场反馈的数据和信息缺乏数据库管理;

e.工艺管理不到位,工艺技术文件流通不充分,各方信息传递不充分,工作进度信息、技术问题处理响应速度慢;

f.标准工艺总结困难,工艺支撑数据缺乏科学汇总和管理,不能对总装工作进行科学有效的评估。

4.航天工艺技术及工艺管理的信息化

在航天器总装工艺工作中,要对工艺工作中的各种信息和过程进行管理,主要包括管理体系、工艺文件、工艺纪律、工艺技术、工艺服务、工艺师队伍等方面。管理体系及对工艺文件的管理是工艺管理中最主要的方面。管理体系以体系文件为基础,从工艺工作的各方面规范工作的方法、流程和结果,优秀的管理体系必然具有完备、便于操作的体系文件。大量的各级标准(如国军标、航天部标、中国空间技术研究院院标等)是体系文件的重要组成部分,同时,还包括根据厂、所不同的环境和条件不断积累和总结而形成的具有良好适应性的规范性文件。工艺文件属于广义的范畴,主要包括工艺总方案、物料清单、工艺规程、技术通知单、工艺文件更改单等各种工艺规程类和技术文档类文件。工艺文件应具有完整性、正确性和统一性。

航天器总装工艺信息化系统建设是根据航天器研制的整体信息化建设目标,结合工艺信息化需求特点,本着先进实用、集成开放、安全可靠的指导思想,对航天器总装工艺设计、工艺管理等进行全面的科学管理和规划。

本方案具有以下特点:

4.1 建立以标准工艺为基础的工艺设计平台,实现工艺文件数字化及成本控制航天器总装数字化的建设,除了实现工艺规程、技术文件、图纸以数字化形式到达生产现场,并实现按工艺规程按权限在线签署外,还提出了基于标准工艺文件基础之上的工艺设计系统。

在工艺设计过程中,对于某些装配加工方法相同、工艺路线相似的工序可以引用标准工艺文件,在其中加入加工数量、材料、规格等信息来生成工艺文件。生成的工艺文件反映了库房物料、耗材等成本信息,因而也实现了工艺设计阶段的成本控制。

4.2 基于面向对象的管理思想,进行有效的工艺数据管理

航天器总装工艺信息种类繁多,主要包括装配加工工艺信息、工艺定额信息以及工程管理信息等,通过基于面向对象的思想,将所有工艺信息围绕型号对象进行有机的组织。

在工艺信息合理组织的基础上,通过快速有效的历史工艺文档检索和查询手段,实现工艺信息的借用和复用。

4.3 采用项目管理的理念,实现工艺任务的自动分派和工艺过程的可控

针对航天器的工艺设计和总体装配任务,根据生产计划流程建立工艺路线代号与工作任务的对应关系,自动产生任务分派,实现技术流程和计划流程的统一。另外,对生产过程进行控制和管理,对项目完成情况进行统计汇总,为企业的绩效管理提供依据。

参考文献

[1]郑渝.机械结构损伤检测方法研究[M].太原理工大学,2009.

[2]杨春雷.浅谈机械加工影响配合表面的原因及对策[J].中华建筑报,2010.

[3]瞿继九.合理确定机械加工余量的意义[J].科技资讯,2010(12).

高中化学工艺流程总结篇(3)

一、精选课程内容,完善课程体系建设

《化工设计》是一门综合性课程,涉及的专业基础知识范围广,它要求学生具备四大基础化学知识的同时,必须掌握《化工原理》、《化工仪表及自动化》、《化工热力学》、《化工工艺学》、《化工分离工程》和《化学反应工程》等课程的专业知识。鉴于课程内容的丰富性、复杂性与教学学时限制的矛盾,选择一本合适的教材并结合本校教学实际对教学内容进行适当调整显得尤为重要。考虑到我校《化工设计》理论课只有2个学分,选择教育部高等学校化学工程与工艺专业教学指导委员会推荐教材――李国庭等编著、化学工业出版社出版的《化工设计概论》作为本课程教学的教材。在具体的教学内容上还要结合相关课程(如《化工原理》、《化工原理课程设计》和《化工技术经济分析》等)的讲授情况进行选择和取舍。例如,对《化工原理》和《化工原理课程设计》等课程已重点讲授的化工设备(如换热器、精馏塔、过滤机等)的设计与选型仅做简单介绍,而化工设计概算和技术经济这部分内容由于与《化工技术经济分析》课程重合,则由学生自学。相反,对教材中未专门提及的固定床反应器、流化床反应器的设计则加以补充介绍。为了满足工程教育认证的要求,在《化工设计》相关的课程体系建设方面,在大三上学期开设《化工原理一》、《化工技术经济分析》、《化工仪表与自动化》、《化工热力学》、《计算机在化工中的应用》等课程;在大三下学期开设《化工原理二》、《化工分离工程》、《化学反应工程》、《化工过程分析与合成》、《化工安全与环保》等课程;在大四上学期开设《化工设计》和《化工过程课程设计》课程;在大四下学期开设《毕业设计》。其中,《化工设计》课程进行化工设计程序、化工设备选型和计算、车间设计、非工艺专业设计、工程经济学和施工图设计等内容的教学,侧重于与化工设计相关的理论知识的串联与综合。而《化工过程课程设计》和《毕业设计》,则更为强调实践性,学生将综合运用学到的知识,利用计算机软件完成一个具体的、完整的化工设计任务。

二、改善课堂教学形式,加强教师和学生的交流及学生之间的交流

传统的课堂教学通常采用“教师讲、学生听”这种模式,学生缺乏学习的积极主动性,不利于学生终身学习能力、社会适应能力和创新能力的培养和提高。我校在《化工设计》课程教学过程中,根据教学进度,在可行性研究和工艺路线选择等环节,拟定若干个不同的题目,学生5人为一组,选择一个题目并围绕各主题进行资料查找、分析与讨论。工作完成后,各小组通过PPT展示介绍本组的设计工作,其他同学积极参加讨论,分析该工艺过程的优缺点并提出改进意见,最后由任课教师进行总结。通过这种教学形式,较大程度地提高了学生的主观能动性,增强了学生分析问题和解决问题的能力,学生的工程实践能力和团结协作能力也得到了锻炼和提高。

三、强化计算机在化工设计中的应用

当前,计算机在化工设计中已成为一种不可或缺的基本工具。在化工设计过程中,工艺过程的设计、设备的设计计算、3D工厂设计、工艺流程图的绘制均离不开计算机。我校在《计算机在化工中的应用》课程中重点介绍运用AutoCAD软件进行工艺流程图的设计、运用Excel软件进行化工过程的物料衡算和能量衡算、运用ASPEN Plus进行流程模拟。而利用CADWorx软件进行3D工厂设计则是在参加全国化工设计大赛以及《化工过程课程设计》中得到实际应用。

高中化学工艺流程总结篇(4)

中图分类号:U664.9+2 文献标识码:A 文章编号:

1、工程概况

近年来,天水市麦积区工业园的规模大幅度增加,重点引入食品化工、科技创新等项目,导致污水排放来源复杂,有机负荷较高。为有效解决园区污水排放问题而建立该污水处理厂。本污水处理工程针对高有机负荷、低水量的混合型污水,采用CAST反应+化学除磷的污水处理系统,具有节省占地、处理效果好、抗冲击负荷强等优点。污水处理厂设计规模6×104m3/d,配套管道约37.18km,出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准,新建厂区总体占地面积约87.9亩,总投资约1.89亿元。

2、工程设计

2.1、设计水质

进出水水质表1

2.2、工艺流程

污水处理厂针对氨氮、磷含量较高、来源复杂的原水,中心处理构筑物为CAST系统和化学除磷系统。出水采用二氧化氯消毒, 污泥采用机械浓缩脱水工艺。工艺流程如图1所示:

图1工艺流程图

2.3、污水及污泥处理系统工作原理

(1)、污水:污水经粗、细格栅进入CAST系统,CAST工艺在主反应区的前面设置了生物选择区。生物选择区呈缺氧-厌氧状态,此段有效抑制丝状菌的膨胀,预处理的污水和回流污泥进行混合,同时回流污泥中的硝酸盐氮经反硝化去除,聚磷得到释放,达到了较好的脱氮除磷效果。污水处理后经CAST反应池末端滗水器排出。整个工艺的进水、曝气、沉淀、排水4个过程都在同一池内循环运行,有别于传统活性污泥法构筑物的组成结构,各生化反应池并联排布,实现单池间歇运行,整体连续进水。

化学除磷的工作原理是进一步降低出水总磷的指标,以便达到一级B的出水标准。

(2)、污泥:来自CAST反应池的剩余污泥进入贮泥池,根据贮泥池泥位,控制开启污泥进料泵及一体化浓缩脱水机和加药计量装置,脱水后泥饼经无轴螺旋输送机送至运泥车运出。

2.4、主要构筑物选型设计

(1)沉砂池

沉砂池采用旋流沉砂池,其特点为:

① 除砂效果好,运行稳定可靠。

② 以机械搅拌形成旋流,避免曝气,对后续生物池厌氧环境的形成非常有利;

③ 土建投资低,造价不到曝气沉砂池20%。

④ 设备数量少,检修简便,设备投资低于曝气沉砂池。

⑤ 运行费用低。

(2)CAST池

作为本工程核心构筑物,生物池的合理设计至关重要。涉及的主要问题及解决办法如下:

1).停留时间

停留时间决定了生物池池容,直接影响着土建投资。本工程要求氨氮去除率为77.1%,磷去除率75%,COD去除率为88%,BOD去除率为90%,SS去除率为93.3%,根据生物池中BOD5、NH4-N、NO3-N,P等物质浓度随停留时间变化的工艺特性曲线,结合国内已投产各污水厂运行总结、生产试验以及关于CAST工艺停留时间的中试报告,最终确定本工程工艺中污水总停留时间4h,其中厌氧区0.5h,在厌氧区可获得更高的磷释放率,在好氧区可获得更高的磷摄取量,从而保证生物池磷去除率。

2).曝气方式

曝气方式决定了氧利用率,影响到污水厂长期运行费用。此次设计采用微孔曝气方式,氧转移利用率高,氧利用率在清水中达到38%,在污水中达到24%,高效节能,同时可加大池深,减小占地面积,减少地基处理费用。同时根据溶解氧浓度控制鼓风机供气量,曝气量调节更灵活,更利于节能。厌氧区有生物选择的功能,以高BOD5负荷的环境抑制丝状菌生长,避免了污泥膨胀现象,保证出水SS值低。

3).沉淀方式

反应池停止曝气,微生物利用水中剩余的溶解氧进行氧化分解,CAST池由好氧状态向缺氧状态转化,开始进行反硝化,活性污泥逐渐沉到池底。

CAST反应池沉淀过程是理想的静置沉淀,泥水分离效果好,处理水水质优于连续活性污泥法。

利用CAST专用的滗水器,以滗水的方式,不扰动沉淀后的污泥层,同时挡住水面的浮渣不外溢,将沉淀后的上清液贴水面缓慢的撇出;

滗水器的堰口负荷为20-30L/(m.s),最大上清液滗除速率30mm/min,滗水时间1h,以保证出水SS值。

4).运行方式

CAST工艺以一定的时间序列运行,其运行过程包括充水一曝气(历时2.0h),泥水分离(历时1.0h),上清液撇除(历时1.0h)四个阶段。整个系统周期循环运行,循环过程中,反应器变容积运行,曝气阶段结束后,在静置条件下使活性污泥凝聚并进行泥水分离,沉淀结束后通过滗水器排出上层清液并使反应器中的水位恢复至设计最低水位,然后,周而复始,重复运行,为保证系统在最佳条例上运行,在滗水阶段末期排泥。运行过程中,从好氧主反应区回流部分污泥至生物选择区。

(3)化学除磷池

设置单独的化学除磷池,主要有以下几个方面的原因:1.根据已有运转的CAST工艺除磷效果在60%左右,本工程要求磷去除率达75%,故需设置化学出磷;2.经过对已运转类似工程的比较分析认为将除磷剂直接投加至CAST池的第二主反应区效果不甚理想;3.增加单独的化学除磷池便于远期回用水的利用,本次采用的混凝反应+沉淀的化学除磷池可以兼作远期回用水处理工艺的前段,节省了二次投资。混合采用静式管道混合器混合,网格反应+斜板沉淀工艺保证投加药剂与处理污水的充分接触反应及排泥。

2.5、主要构筑物工程设计

(1)粗格栅及提升泵房

设粗格栅间一座,平面尺寸:18.3m×12.2m,内设2条栅渠,渠宽1.1m。设2台液压移动抓爪式清污机,栅条间隙20mm。格栅间内设电动单梁悬挂起重机一台,起重量为5t,便于设备检修。污水提升泵房规模6.0万m3/d。为了适应污水量的变化,采用大小泵搭配的方式进行提升污水。泵房内设2种型号的潜水排污泵,小型潜水排污泵,单台流量为Q=610m3/h,扬程H=19m,电机功率为N=55kW,共设2台;大型潜水排污泵,单台流量为Q=1100m3/h,扬程H=19m,电机功率为N=100kW,共设3台(两用一备),其中一台变频。

(2)细格栅及沉砂池

设细格栅间一座,内设3条栅渠,渠宽1.5m。设3台螺旋格栅除污机,栅条间隙5mm。格栅间内设电动单梁悬挂起重机一台,起重量为3t,便于设备检修。采用旋流沉砂池2座,直径3.65m,停留时间45s,有效容积15m3。搅拌机转速10~15r/min,功率1.1kw。砂水分离器功率0.37kw。

(3)CAST生化池

生化池共2座,1座分为4格,每格尺寸为:53.3X25.0m,1座总尺寸为:106.6X50.0m,有效水深为5.5m。每格有效容积为7328.75m3,其中生物选择区容积为:687.5m3,水深:5.5m,1座CAST反应池总有效容积为:29315m3,总占地面积为:5330m2。

每格反应池按时间顺序间歇运行,保证每座可以连续进水。每周期分为:进水、曝气、沉淀、滗水。根据CAST池内污泥浓度情况可在沉淀结束后排泥。采用4h1周期运行。每格每周期设计处理水量Q=1375m3,排水比为:0.18,容积负荷:0.4kgBOD5/m3池容,MLSS:4000mg/l,污泥负荷为:0.1kgBOD5/kgMLSS。

CAST池总排出含水率为99.4%的剩余污泥为1800m3/d,每天产生的干泥量为10.8t/d。经脱水机后,污泥含水率为80%,污泥量为54t/d。污泥龄为20d。需要总供气量为244m3/min。

生化池的进水-曝气(边进水边曝气)时间为2.0h。沉淀阶段历时1.0h,在沉淀阶段停止曝气、进水和回流。排水历时1.0h,滗水高度1.2m,每池反应池末端设1台旋转式滗水器,每座反应池中后部设1台剩余污泥泵:单泵流量Q=58m3/h,扬程H=6m。回流污泥泵:单泵流量Q=350m3/h,扬程H=4m。

曝气配置离心鼓风机4台,标准状态下(20℃)需空气量为98m3/min,升压68.8KPa,N=160kW,流量调节范围45%~100%。每座活性污泥生化池的好氧段采用盘式曝气器13804个。工作通气量1.5-4m3/h.个。

(4)化学除磷池

设化学除磷池1座,其主要作用是进一步降低出水总磷的指标,以便达到一级B的出水标准。采用静式管道混合+网格反应斜板沉淀工艺,平面尺寸26.9×20.85m,有效水深4.5m。网格平均流速0.13m/s。停留时间取15min。

(5)接触池

设接触池1座,使处理后的污水在出厂前与二氧化氯有足够的接触时间,保证灭菌效果。平面尺寸25×17.6m,有效水深4m。接触时间:≥30min。

(6)加氯加药间

设计投加FeCl3进行化学除磷,投加量与污水中总磷的摩尔比采用2。最大加氯量标准10mg/l,最大加氯量25kg/h。药库储存量按最大投加量10d计。

加氯加药间一座,面积145.8m2,其中包括ClO2发生器2台,HCl贮药罐1套,NaClO3贮药罐一套,计量泵4台,电动葫芦2套。投加方式采用计量泵投加。

(7)贮泥曝气池

设贮泥池一座,15.0×12.0m,有效水深4.6m。位于连续运转的污泥泵房和污泥脱水机房之间,起调节和平衡二者污泥量的作用,贮泥池内设风机辅助式推流曝气机1台。贮存8.0h反应池平均剩余污泥量及化学除磷池排泥量。推流搅拌连续运转,曝气间歇运转。

(8)污泥脱水机房

设污泥脱水机房一座,24×12×7.8m。内设污泥螺杆泵3台,两用一备,Q=40-60m3/h,H=20m,N=11kw;带式浓缩脱水一体机2台,单机处理能力40-60m3/h,功率10.25kw;螺旋输送机2台;全自动投药装置1套,内含计量泵等;空压机2台等。

脱水机每天连续运行16h。投配泵、加药装置、冲洗装置、螺旋输送机与脱水机同步运行。

污泥量(干重):10.8t/d

污泥体积:剩余污泥量共1800m3/d,污泥含水率99.4%。

脱水后泥饼含水率80%,体积60m3/d。

混凝药剂投加量4kg/t(PAM),耗量32.4kg/d。

3、结论

(1)采用CAST工艺,在同等处理水量及处理效率下,处理构筑物少,土建和设备投资较低;运行灵活、安全、可靠;在进行生物除磷脱氮操作时,整个工艺得到良好的控制,抑制了丝状菌大量繁殖,避免了污泥膨胀;采用盘式曝气器,保证较高的氧利用率;泥龄在15~25天,经好氧稳定的污泥不需要厌氧消化处理等。整个工艺合理、安全、抗冲击能力强。

(2)采用化学除磷池不仅可以有效降低出水总磷含量达到排放标准,而且便于远期回用水的利用,可以兼作远期回用水处理工艺的前段,节省了二次投资。

(3)采用生物除磷与化学除磷相结合,除磷效果更加显著。

(4)采用一体化带式浓缩脱水机,有效地降低能耗。

(5)采用二氧化氯消毒具有以下效果:

①强氧化性和广谱杀菌消毒。不生成三氯甲烷(THMS)类等有毒副产物,具有后续氧化和杀灭作用,有效PH值范围3-9;

②脱色和除臭作用;

③微絮凝作用。且对水中Fe2+、Mn2+有很好的去除效果。

(6)采用先进的控制系统和仪表,对于进水流量和水质变化引起的生物池中溶解氧的变动实行在线监控,以通过变频装置实现曝气量的自动调节;通过变频装置控制回流污泥量,减少不必要的能源消耗。

(7)整个厂区照明、通风、空调等设施,根据季节、气候的不同,合理使用,降低能耗。

参考文献:

高中化学工艺流程总结篇(5)

烟草生物碱是烟草中重要的一项化学成分。其化学分子结构大多数属于季胺类、仲胺类以及叔胺类。而烟草生物中的生物碱主要属于含氮杂环氧化物,同时也是检测烟草品质的重要特征物。由于烟草生物碱的化学成分属于特殊的含氮氧化物,不管是其结构、性质都会影响烟草的质量,所以,需要对烟草生物碱进行专门的研究。随着我国研究技术的不断深入,卷烟之中的生物碱变化规律已经成为了烟草生物碱研究中的主要对象。

1烟草生物碱的概述

降烟碱、假木贼碱、烟碱以及新烟草碱是烟草生物碱的组要组成部分。烟碱是烟草生物碱中最为重要的部分,其烟碱在总生物碱量中占有百分之九十[1]。由于烟碱在烟草生物碱中的占有量较大,因此,烟碱直接影响了烟草的生理劲头、刺激性以及吃味,间接影响了卷烟的香气。降烟碱有着多种形成途径,在一般情况下可通过烟碱脱甲基形成。在对其调制以及醇化过程中,烟碱的含量会有一定程度的提高,会对香味的品质产生直接的影响。而假木贼碱在烟草汇中的含量并不高,则对烟草香味的影响较小。烟碱属于叔胺类生物碱,假木贼碱、烟碱以及新烟草碱为仲胺类生物碱[2]。我国已经鉴定出的微量碱已经达到了二十种以上,其主要来源为烟碱、假木贼碱、烟碱以及新烟草碱这四种共同衍生化产物。而不同品种的烟草,其生物碱的含量水准不同。

2烟草生物碱的主要生产工艺流程

烟草生物碱的主要生产工艺是将新鲜烟叶制成卷包烟,其工艺流程总共分六部分完成,具体流程如下:新鲜烟叶初考打叶复烤醇化制丝工艺卷包。

3烟草生物碱在各个工艺流程中的变化

3.1初烤工艺

初烤是一种加热工艺,通过对烟叶进行不同程度的加热,将烟叶中的水分进行干燥,从而完成化学成分的转化。初烤是为了让烟叶中的水分能够维持烟叶陈化、发酵以及半发酵的过程[3]。为鉴别烟叶中化学成分的综合表现,通常由初烤烟叶的外观质量来决定。而烟叶化学成分同时也是对卷烟的平息质量与烟气特征等质量进行评判的重要标准。烟叶的质量通常由烟叶的外观质量与主要化学成分决定。陈庆园等对已初烤过的烟叶进行外观质量的评分后得出了烟叶中主要化学成分烟碱的关系:烟叶结构与烟碱、烟叶色度与其氮碱呈负相关关系;烟叶油分与烟叶烟碱含量、烟叶成熟度与其糖碱成显著的正相关关系。张保全等对烟叶在不同温度的初烤中烟叶变黄温的动态变化、去甲基烟碱含量的动态变化以及湿度条件下烟碱的动态变化进行了研究。其研究结果表明,烟叶高温变黄时,则初烤前的烟碱量高于初烤后的烟碱量;烟碱低温变黄时,烤前的烟碱量低于烤后。烟叶烤前去甲基烟碱含量较烟叶烤后去甲基烟碱含量有所增加,并且烟叶变黄期在高温高湿的环境对去甲基眼烟碱的形成有一定的促进作用。

3.2复烤工艺

由于原烟中存在着一定的质量缺陷,因此,如何提高烟叶的可用性,是现阶段卷烟制作中研究的重要话题。复烤工艺是一种将初烤后的叶片进行加料处理之后,再进行复烤的一种新技术。主要是为了将烟叶中存在的内在缺陷有针对性的进行掩盖,提高烟叶的品质与可用性。因此,牟定荣与张晓兵等对此做过一定的研究,研究结果为:复烤与复烤后放置的时间长短会对加料后的复烤烟叶样品与未加料的复烤烟叶样品中的总烟碱与烟气烟碱产生一定影响。复烤是与复烤后放置的时间越长,则总烟碱与烟气烟碱越低。复烤是与复烤后放置的时间越短,则未加料的样品总烟碱与烟气烟碱的下降幅度相比,加料后的烟叶样品的下降幅度要小[4]。其中,放置的时间越长,则二者之间的区别越小。

3.3醇化工艺

烟叶在经过初烤与复烤后,需要在自然条件之下或者人工条件之下进行发酵,因此,其过程就是醇化(陈化)。烟叶陈化的目的是为了将烟叶所具有的特性在发酵过程中使其各个方面发生深刻变化的过程,其醇化后最终的表现为烟叶化合物的复杂化。烟叶醇化是提高烟叶可通行的关键因素,对提高卷烟的质量发挥着重要作用。通过研究得出,烟叶在醇化过程中出现烟碱下降的原因是因为酶、氧气与微生物的共同作用会导致烟碱发生降解。赵铭钦与郭俊成等对醇化期间烟叶中主要化合物含量的变化与考烟连续陈化四年后的结果进行了研究,结果表明,烟碱、总氮以及还原糖等化合物的含量会随着醇化的时间逐渐下降,而糖碱的含量会逐渐增高。

3.4制丝工艺

随着国内外卷烟制丝工艺的发展,为卷烟技术提供了一定的工艺改进依据,增加了制丝加工的稳定性。蔡建宝等具体分析了卷烟制丝工艺工松片回潮后生物碱的变化。结果表明,松片回潮后,挥发性香味成分、生物碱、高级脂肪酸以及多元酸等会发生非常显著的变化。酸性成分会增加百分之二十一,碱性成分与中性香味成分分别减少了百分之十三与百分之七。魏玉玲等通过紫外光分光光度法对烟碱进行分析之后,对烤烟松散、回潮、烘丝以及切叶丝等问题进行了系列考察,其相关变化为:烟碱含量越高,则烟丝上部越窄,证明上部松散回潮的温度也越高。

4结束语

食品安全一直是国家重点关注的话题,卷烟作为一项吸食性食品,其安全性更要引起重视。生物碱作为卷烟制作中重要的影响因素,其变化规律与制作工艺是今后研究的主要目标。通过对生物碱的变化参数进行研究,能够对其中的含量进行控制,从而提高卷烟质量。

[参考文献]

[1]张瑞.烟草工艺流程中生物碱变化研究[J].昆明理工大学,2011.

[2]王泽理.烟草工艺流程中生物碱变化研究[J].科技与企业,2013.

高中化学工艺流程总结篇(6)

服装工艺课程是一门重要的实践课,主要包括四部分实践内容:缝纫机认识实践、车缝线迹练习、缝型练习、服装零部件练习,为成衣工艺课程打下基础,其中服装零部件是学习的重点。学生刚接触缝纫机时通常会表现出很大的学习兴趣,但是新鲜感过后,很多人就会感到不耐烦,通过改变教学方法,在实践教学中增加理论教学的内容、调整教学节奏,让学生劳逸结合、理论指导实践,达到良好的教学效果。

一、实物演示教学方法

在服装工艺教学中,注意素材的收集和整理,把与教学内容相关的服装保留或者购买下来,在教学中给学生示范,还可以在学生穿着的服装中找到和教学内容相关的元素。如,服装零部件的教学就可以通过对实物的演示和分析达到更好的教学效果,也可以提高学生的学习热情。在素材的收集上还可以发动学生,如,讲到口袋的工艺练习时,就可以让学生把自己一些服装中的不同类型的口袋都找来。对照实物进行练习,学生就会目标明确,标准清晰。在成衣工艺中也可以采用这个方法,效果很明显,学生制作出来的零部件工艺水平有明显提高。

在实物演示教学时可以与市场相结合,选择较为流行的服装款式,分析其工艺,鼓励学生模仿制作。但要注意学生的创新意识的培养,不要拘泥于现有款式,结合流行趋势自己设计制作。工艺上也可以大胆创新,在保证美观、实用的基础上简化工艺流程。

二、理论指导实践

在学生的实践类课程中,教师往往容易忽略理论的教学,而只是以示范为主进行教学。这样学生很容易出现不理解、做完就忘的现象。通过多年的教学实践发现,实践类课程更需要理论的指导,否则学生就会降低对工艺的要求。理论指导主要可以通过以下方法:

(一)用服装标准指导服装工艺

在进行理论指导的时候可以将服装标准作为学生的学习资料,在服装的产品标准中对服装的缝制有明确的要求和对各种缝制缺陷的判定,可以让学生对照标准对自己缝制的作品进行评判,不合格继续练习。通过对标准的学习,让学生首先做到“眼高”,然后再实践提高做到“手高”。

(二)运用先进的教学辅助手段指导服装工艺

现在各高校都有很多多媒体教室,服装工艺教室有的也配备了电脑、投影仪、电视、DVD等多媒体设备。通过对服装制作过程录像,在教室反复播放,可以减少教师的示范次数也可以让学生更清晰地看到教师的示范。避免了传统示范时学生围在一团,看不清操作的弊端。还可以利用Internet上的资源,开拓学生的视野。通过构建网上课堂,将课件和录像上传,可以建立开放型课堂,让学生在理论上加深理解。

(三)“纸上谈兵”教学方法

有的服装零部件工艺非常复杂,学生在制作时经常需要反复多次才能理解和掌握,在缝纫机上操作费时、费力,浪费资源,而且学生在多次拆、缝后往往就兴趣全无,很不耐烦。针对这种现象,我自创了一种教学方法“纸上谈兵”:用纸代替布,用笔划线迹,用胶带粘贴。学生在纸上掌握了工艺要领后,然后再用布制作,感觉就很轻松,而且通过这种转换学生也得到了一定程度的放松和休息。这种教学方法主要运用在开线口袋、挖袋等工艺复杂的教学上,教学效果非常好。

三、松弛相间的课程节奏

服装工艺课程一般学时为3周,过去学生基本上每天要在缝纫机前坐上6小时左右,每天都会感到腰酸背痛。为了改变这种状况,我调整了课程的节奏。首先是把理论教学穿实践教学中,每2小时做半小时左右的理论指导。充分调动学生的积极性,让学生参与到理论的研究中,讲完传统的工艺方法,调动学生积极创新新的工艺方法,或者自己设计零部件的样式,然后完成工艺的设计。

在课程的内容安排上适当调整顺序,难易相间。这样就可以有效避免学生作业堆积,克服学生出现退缩情绪。把复杂的工艺分解成多个步骤,化整为零。如,衬衫领的制作工艺就可以分解为翻领制作、领座制作、绱领三部分,然后再各个突破。

在动手操作前先制定好工序流程。让学生减少反复劳动,尽量做到一次完成。在成绩考核时除了考核作业的质量还考核完成改作业所用的时间。每次完成一个作业,让学生做一次工艺记录。另外,每天课间组织体育活动、定时播放音乐和课后作业展示,都可以把持续的操作分解,减少疲劳。学生通过相互交流和学习能得到更好的提高。

四、课程考核与总结

工艺课程结束时,教师和学生都要进行总结,还要给学生一个合理的成绩。以往教师往往会考核学生的作业完成情况综合给出一个分数。这样往往会出现一些争议,有很多作业水平相近,分数也很难评定。我的经验是把成绩分成若干部分,最后相加。如,车缝线迹10分、缝型20分、零部件50分、实践总结20分,其中零部件再分解成口袋工艺20分、门襟工艺10分、领工艺10分、袖工艺10分,然后再划分到每个作业中。根据学生平时的表现、作业的质量和完成时间,在平时的课堂上就把每个作业的分数给定,最后只是给出总结的成绩把平时的成绩相加即可。考核变得非常细化,分数也就更加合理化。

为了使学生的总结更加深入,应当鼓励学生编写服装工艺手册,把实习的内容(如材料准备、缝制工艺流程、操作方法等)平时就及时记录,不仅局限于文字,应当配以图片,做到图文并茂。

教师更需要及时总结,把教学过程不同教学方法取得的效果进行分析比较,使今后的教学效果进一步提高。注意各个教学环节的组织,使学生更快更好学到知识、掌握技能。

通过对服装工艺教学的研究,提高了学生对服装工艺的认识和学习兴趣,把工艺课程从过去的苦、累中解脱出来,让学生在动手、动脑中得到快乐。通过对工艺的创新和市场的结合,让学生更好地走向社会。在今后的教学实践中,还要继续摸索,让学生的工艺水平得到进一步提高,为今后进行高级成衣设计和工艺打下良好的基础。

参考文献:

高中化学工艺流程总结篇(7)

一、概述

《煤化工》课程是涵盖煤化学、化工原理、反应工程等内容的综合性学科。此门课程通过对煤化工产品开发的生产原理、生产方法、工艺计算、设计、操作条件及主要设备等的介绍,使学生具备煤化工专业的坚实基础,对煤化学工业的原料选择、工艺路线设计优化、典型单元操作及化工工艺的实现有深刻的认识和理解,具备对煤化工工艺流程进行分析、设计、改进及开发新工艺和新产品的能力,从而更好地服务于煤炭行业。淮北市是全国五大煤炭生产基地之一,地质储量100亿吨,远景储量350亿吨。2011年原煤产量达3373万吨,居全国第四位。淮北师范大学(以下简称“我校”)坐落在淮北市,发展煤化工专业有着得天独厚的地理优势。为了满足淮北及周边矿业集团对煤化工专业人才的需要,我校化学与材料科学学院在化学工程与工艺专业开设了《煤化工》专业必修课程。但是,在教学实践中作者发现学生对这门课程的学习疏于对课堂内容的理解和思考、学习兴趣不高。为了充分调动学生积极性和主观能动性,使我校学生在将来的工作岗位上更有竞争力,作者对《煤化工》课程的教学大纲、教学内容安排、教学方法和手段进行了一系列的探索和改革。

1.教学内容的相应调整

由于我校仅开设了煤化工课程,学生对煤化学相关的名词概念不了解,对于教学内容备感生疏。因此,我及时调整教学内容,制定适宜的教学大纲,首先穿插介绍一些煤化学相关内容,包括:煤的生成、煤的结构、煤岩学、煤的物理性质、煤的化学性质等内容。着重强调煤的分子结构理论,探究煤的结构与组成和性质之间的关联性,寻找组成和性质的变化规律。同时在教学中总结煤化学理论与煤化工的相关知识之间的联系,使学生对煤化工的相关知识有了深刻的认识,从而增强了对本课程的兴趣。其次是,对于煤化工课程的重点内容,如:煤焦化、煤的液化和煤的气化,做重点介绍。尤其对工艺原理,流程,以及设备装置的结构特点,结合图片和实例做细致具体讲述,使得学生对煤化工的重点知识有更加深刻的认识。既增加了学生学习的兴趣,又提高了其学习的积极性。

2.课堂教学方法多样化

考虑到三年级学生已经完成了对化学基础课程的学习,对于化学理论知识已经有了一定的认知。因此,在教学方法上,我将传统的以教师讲述为主的单一课堂教学模式,转变为讨论式、启发式的新型教学模式,让学生参与到课程的讨论中来。通过布置专业课题或就自己感兴趣的课题,让学生课下查阅相关资料,课上积极参与互动讨论,大胆提出自己的见解,突出学生的主体作用,发挥教师的导向作用,从而调动学生的学习积极性,提高学习效率,促进学生技能的全面提高。同时要强调的是,学生为查阅资料,准备材料花费了不少精力,教师须及时跟踪,认真批阅和讲评,从而提高学生的积极性。

3.充实并更新教材内容

现今,国际煤化工行业发展迅速,许多新技术、新成果不断被应用于生产之中。老的流程工艺逐渐被自动化程度更高的新工艺、新设备所取代。因此,在介绍教材上成熟老工艺流程的同时,要适当穿插与当今煤化学和煤化工发展前沿相关的内容,增加关于当今世界上的最新工艺、设备的讲述,使学生对当今新的工艺流程有更多的认识。因此对于教师而言,仅仅掌握教材上的内容是远远不够的,还需要时时跟踪当今煤化工发展的前沿理论,更好地充实自身理论水平,这样才能更好地激发学生学习的兴趣。另外,由于《煤化工》具有实践性较强的特点,教学过程中必须注意理论联系实际,把教学和实际生产过程有效结合起来,使学生既能在实践中加深对书本知识的理解,又能提高动脑、动手的能力。为此,根据学校周边厂矿企业生产实际,我们走访焦化厂,了解其生产工艺(备煤工艺,炼焦工艺,化产工艺,甲醇工艺,干熄焦工艺),并将具体生产工艺流程的相关知识增加到教学活动中,理论联系实际,使学生对实际工业生产有了更深刻的认知。既增加了学生的学习兴趣,又使学生对企业的生产流程有了更加清晰的认识,得到了用人单位的一致好评。

4.传统教学与多媒体教学相结合

煤化工课程内容涉及大量的设备图和工艺流程图,采用常规的板书,在黑板上画流程图耗时耗力,不能满足现代化教学的需要。此外,板书绘制的流程图为二维平面图,学生对设备构件的立体构型、工艺流程中原料和产品流向等没有完整的概念。学生理解起来非常吃力,教师讲授过程同样费力。引入多媒体教学可以有效地解决上述问题,实现教学目的。借助多媒体辅助教学软件,开发了煤化工多媒体辅助教学课件,尤其是工艺原理图、设备示意图,可以借助专业绘图软件直观、形象地向学生展现,可以帮助学生理解复杂的装置立体结构和工艺流程图,增加学生的学习兴趣及理解程度。此外,借助于网络上丰富的教学资源来充实课堂教学内容,在教学过程中根据具体需要,及时地向学生介绍国内外最新的煤化工生产工艺流程和技术等,并对国内外知名煤化工企业的最新动态、发展趋势需求等进行信息传递,使学生不仅加强和巩固了理论知识,增加了学习的积极性和主动性,而且提高了学生再就业环节中的适应能力和解决实际问题的能力,从而更好地服务于企业和社会。

总之,通过激发学生的学习兴趣、调整教学内容、结合煤化工研究的前沿理论、传统教学与多媒体教学相结合,能提高煤化工教学的质量,满足经济日益发展对创新型人才的需求。教师要想取得更好的教学效果,就要有创新意识和科研进取精神,不断完善教学内容,调整教学方式更好地为学生服务,提高教学质量。

参考文献:

[1]张香兰,王启宝.《煤化工工艺学》教学中问题启发式教学方法初探[J].化工时刊,2011,25(10):64.

高中化学工艺流程总结篇(8)

我们对我校化学工程与工艺专业近五年来的招生率和就业率进行了统计和分析。近5年来的第一志愿的平均报考率约为26%,就业率约为95%。低的报考率说明学生对该专业的认识不足或缺乏兴趣和自信,而高的就业率说明化工行业对该专业的需求量较大。从生源的招生率来看,重庆的约占65%,外地约占35%。从就业的人员从事行业的统计数据来分析,从事化工行业的约占70%,其他行业的约占30%。从就业率的地域分布来看,在重庆工作的约占75%,在其他省份工作的约占25%。从上述分析数据可看出:一方面是大部分学生为调剂生,存在对专业兴趣不足或缺乏专业自信,因此,必须在第一个实践性教学环节-认识实习中激发学生的专业兴趣和培养学生对化工行业的热情及专业自信心;另一方面,我校培养的化工人才绝大部分服务于本地,因此,我校化学工程与工艺专业担负着为重庆化工行业输送工程性技术人才的重任。

2全国同类高校的化学工程与工艺专业认识实习的现状 3我校化学工程与工艺专业认识实习的改革与探索

3.1强化校企产学研合作实习基地

基于重庆长寿天然气化工产业园区,涪陵化肥化工产业园区和万州盐化工产业园区三大化工基地的地域特色优势和发展,地方高校培养的化工应用型人才大部分会服务于重庆的地方支柱产业,因此,我们选择了具有地方特色的产学研合作基地,既让学生深入了解重庆化工产业的发展,同时也解决了实习经费有限和工厂不愿接收大规模学生实习等问题。选择的特色产学研合作基地如下:一是与我校开展合作共建工程技术研究中心的江津德感工业园区的“重庆三峡油漆股份有限公司”和万州盐化工园区“重庆大全新能源有限公司”等,二是我校科技特派员下乡入园进企的涪陵李渡工业园区的“中化重庆涪陵化工有限公司”和“巫山天地农业开发有限责任公司”等,三是与我校专家开展科技攻关合作的北碚产业科技园区的“重庆仪表材料研究所”、长寿化工园区的“重庆紫光化工股份有限公司”和“重庆博赛矿业(集团)股份有限公司”等,四是与我校开展广泛科研合作的科研院所“重庆化工研究院”和“重庆化工设计研究院”等。这不但使我们与各单位确定了稳定的合作关系,实习过程不会敷衍应付。企业指导老师也会因为校企合作认识到自己是实习工作的负责人员,会更加积极主动地参与实习,并愿意与学生交流,热心回答学生所提出的问题,取得较好的实习效果。

3.2打造专业的认识实习的师资队伍

学校选派教师深入实习基地或相关企业和从企业中选聘具有较高理论水平和素质的技术人员作为实习指导教师,提高教师的实践能力,为实习教学提供重要的保证条件。如为了让学生更好地了解无机化工工艺学“合成氨”的生产工艺流程,我们邀请了建峰化工有限公司的技术总工为我们讲解空分、气化、净化、合成等四个工序,充分理解原料气如何制备和净化,合成氨反应塔的结构及能量综合运用与节能减排。在学习有机化工工艺学时,我们派送了教师去紫光化工有限公司挂职学习蛋氨酸等有机产品的生产工艺,再进行认识实习的指导。通过打造专业的师资队伍,认识实习的效果明显增强。

3.3开展三大化工园区的专家大讲堂

围绕重庆的化工产业发展,为更好地让学生了解重庆化工产业链布局,邀请三大化工园区的管委会领导和实习工厂总工程师及车间技术高工来校讲学,使学生更好地了解实际工业生产,减少现场实习的盲目性。为了让学生更好地理解“天然气化工”的产业发展和高附加值精细化学品和高分子化学品产业,邀请长寿化工园区管委会主任来我校讲学,让学生理解石油化工、天然气化工、氯碱化工、生物质化工、精细化工和新材料产业的布局及相互关系,深入理解“产业项目一体化、环境保护一体化、公用工程一体化、物流配送一体化、管理服务一体化”等可持续发展观和循环经济理论,构建学生工程思维。为让学生理解“磷化工”产业在我市经济发展中的作用和地位,邀请了中化重庆涪陵化工有限公司的总工程师给学生介绍磷化工产业的概况、发展历程、市场动态,并详细讲解各车间的工业原理、工艺流程、生产设备及本专业领域最先进的新技术、新工艺、新材料、新设备、研究热点以及市场前景。这些大讲堂激发了学生的求知欲,增强对其所学专业的使命感和责任感,从而增加了他们学习专业知识的动力。

3.4引入现代CAE技术

在学生看、问、听的实习过程中,学生无法了解各种反应器、换热器、精馏塔和泵等设备的内部结构的,这对学生学习后续的专业课程,如化工原理、化学反应工程、分离工程和化工工艺学,是非常不利的。基于这方面的考虑,我们做了两方面的准备。一是准备了专门的实习课件,课件中包含了大量的实物照片(原料,反应工艺和产品分离和输送)、实景录像(具体流体输送、搅拌、精馏、吸收和干燥等单元操作)等,课件真实、形象、生动地展示出离心泵、搅拌反应器、精馏塔和换热器等设备的内部结构,并让学生对尚未学到的化工单元操作原理、典型设备结构和操作有所了解。二是我们建立了计算机仿真实习系统,将认识实习工厂的具体产品的生产工艺(如合成氨制气、净化、合成工艺),所涉及的单元操作(吸收、干燥和精馏等),典型设备(离心泵、反应器、精馏塔和换热器等)作为主要内容,对生产工艺进行模拟,让学生在计算机上模拟工业过程,对制气、净化、合成等工艺的管件、阀件和控制仪表进行操作,对工艺参数进行控制和调节,进行开、停车及事故处理等各种仿真操作。这些计算机辅助教学技术可激发学生的学习兴趣,增强学生思考问题、解决问题的能力,培养学生的创新能力。

3.5强化认识实习教学管理与指导

高中化学工艺流程总结篇(9)

传统手工印染课程强调理论与实践相结合,这门课程要求学生必须将艺术创作与印染技术相结合,最好的教学方式便是教师综合讲授知识+学生课堂动手体验,提倡通过学生亲身实践来感受传统印染工艺的魅力,使学生完完全全地参与学习过程。这样学生真正成为课堂的主角,可以最大限度发挥自己的潜能去理解传统文化,从而达到学习的目的。

一、手工印染课程教学现状

手工印染课程是一门艺术创作与印染知识相结合、要求学生具有较强动手能力的综合性实验课程。除了需要掌握相关的造型、色彩、图案设计等知识外,学生还要掌握相关的印染知识,尤其是通过实践掌握手工印染制作技法。我国传统教育模式过多地地强调基础知识,传统灌输式的教学方法是以教师为主、学生为辅,教师完全依赖教材,对照教学大纲,按照教材上的知识点进行讲解。这种教学模式不能激发学生的主观能动性,学生缺乏自主思考的能力,在课堂上一味地接受理论,师生之间的交流是单向的、封闭的,缺少互动,缺少动手实践的环节,使得学生缺乏学习热情。对于艺术设计类学生来说,这严重影响了他们创造性思维的培养。即使理论基础知识学得再扎实,对整个制作过程了解甚少,没有实践环节,也只是纸上谈兵,无法使手工印染技法真正成为学生在今后工作中进行创造设计的一种手段。

二、手工印染课程教学模式探究

手工印染课程是一门需要动手实践的课程,学校应该建立“理论教学―动手实验―实地采风―讨论总结”的教学模式。具体如下:

(一)理论教学

首先让学生在专业教室里进行系统的印染知识学习,学会正确选择相应染料及媒染剂,熟悉纺织面料的基本属性,并结合视频、案例、PPT等手段,讲授手工印染的各种技法以及在制作过程中可能出现的各种问题。基础理论知识的传授可以让学生在进行实际操作以前对手工印染知识有一个基本的了解,扫清印染知识层面的障碍,从而减少学生制作作品的失败率。

(二)动手实验

学校要建设完善的手工印染配套教学环境和教学设备等教学硬件条件,如染缸、草木染料、布料、相关染料的工具等。在课程内容设计中,还要确保大部分时间用于让学生动手体验,先做后学,边做边学,在干中学,在做中提高,增加实验次数,让学生逐渐积累经验。

(三)实地采风

在民间传统手工印染方面,全国各地各有地方特色,比如扎染有巍山彝族扎染、白族扎染,蜡染有贵族苗族丹寨蜡染,蓝印花布有河北魏县蓝印花布、江苏南通蓝印花布等。这些手工艺都历史悠久,因此学校应该为学生安排一次实地考察机会,深入了解各个地方传统印染工艺的特色,与当地手工艺人进行交流,从图案、色彩、制作流程等艺术角度品味民间艺术的魅力,对当地传统手工印染所处的生存环境、民间习俗、精神内涵等进行分析,挖掘其历史背景和文化内涵。

(四)讨论总结

学生在完成一部分作品后,教师要安排学生开展小型讨论。学生要将自己在制作过程中遇到的问题、掌握的技巧进行交流,总结经验与大家分享,这样有助于大家互相借鉴,提高学习效率,避免犯相同错误,从而创作出更好的作品。

高中化学工艺流程总结篇(10)

近年来,化工设计课程在工科类院校受到越来越多的重视。2003年,化工教指委的《“化学工程与工艺”专业创新人才培养方案》中指出:工程设计在化工高等工程教育中具有重要地位和作用。通过化工设计,培养学生综合应用各方面的知识与技能,解决工程问题的能力。这表明化工设计作为实践教学环节,在化学工程与工艺专业的学生培养过程中具有重要地位。余国琮院士等多位专家在《面向21世纪“化学工程与工艺”专业人才培养方案》制定过程中也提出:要培养学生的创新能力,应该在科学引导的前提下,保证学生有充分的自学时间,以用来收集资料、思考问题。为此,新培养计划要求精简课程内容并采取现代化教学方法提高效率。化工设计过程本身就是一个创新过程,牵涉专业广泛,与国家政策、企业行业标准、环境保护等各个领域都密切相关,学生需要运用自己对专业理论的理解,结合实践课程内容来解决实际问题。因此,对于化工设计课程,在教学过程中应充分强调其与其他课程之间的联系,并引导学生独立学习,尽量规范地完成设计工作。

一、加强化工设计与理论课程的联系

化工设计的先修课程涉及到多门基础理论课,包括物理化学、化工原理、化工热力学、化工分离工程和反应工程等,还包括一些工艺学课程,其中的专业基础知识用于分析具体工艺过程,对各类设备设计计算和选型。从设备选型、工艺计算到图纸设计也是专业课程内容的升华。

对学生而言,进行某一工艺过程的流程设计、物料衡算、设备选型等工作时,需要能正确地运用专业知识,设计的不同阶段会出现很多问题。例如,反应途径选择,目的产物及副产品的分离方式、分离顺序确定,化工体系的计算方法,相应物性数据的获取,设备选型等,这些内容又与专业课程有密切的联系。在化工设计开始之后,再让学生回顾之前的学习内容是比较困难的,往往需要教师重复讲解知识点和计算实例,增加了指导难度,也会浪费时间。因此,需要专业理论课程授课时就提前向学生说明相关知识点与化工设计之间的联系。一方面,这要求授课教师既要理解基础理论,还要理解化工设计的内容,并合理地将二者结合;另一方面,让学生了解到所学内容在化工设计中应用,增强学习目的性,激发学习兴趣。换句话说,将化工设计与专业理论课程相联系,对化工设计和理论课本身都有益处。

二、加强化工设计与生产实习的联系

化工设计是对具体的化工工艺过程进行设计分析的过程,是理论联系实际最主要的通道,生产实习作为学生接触实际装置最直接的途径,必须强调二者之间的联系。

目前,本科生在化工设计过程中,普遍表现出工程意识的缺乏,很少参考教材以外的资料。只有通过生产实习到现场了解实际情况,有直观的认识和切身的体验,才能在设计中加以运用。化工设计应该安排在生产实习之后进行,这有利于学生做设计时联系现场的装置。因此,有必要让学生带着一些具体的任务进行生产实习。例如,画出管道仪表流程图;了解各种设备、原料来源、产品规格、公用工程等;了解“三废”处理、节能措施等,这一过程也是学习思考的过程。经历这样的实习之后,学生对装置有了直观的认识,对书本上的理论有了更深的理解,这样完成理论与实践相互促进、交叉进行的学习过程,是十分有益的。

当然,工程意识的培养不是短期能够完成的,需要长期锻炼和经验积累,对于本科学生来说,大部分概念来自于指导教师,所以对教师进行培训、增加工程经历十分必要。

三、加强化工设计的规范性

化工设计是一门理论与实践结合很强的课程,要求指导教师不仅具备专业理论知识,还要有一定的现场实践经验。为此必须对化工设计指导教师进行相应的培训,可以到设计院等单位进修并参与实际设计工作,积累设计经验;同时及时了解行业内最新的设计规范和设计标准,用于指导学生,具有重要意义。

通常化工设计结束后,学生要上交设计计算书、管道仪表流程图、车间设备平立面布置图等,这需要制定统一的格式规范,有助学生建立规范意识。例如,化工装置的设计文件应参照《化工厂初步设计文件内容深度规定》HG/T20688-2000、《管道仪表流程图设计规定》HG20559-93、《石油化工企业总体布置设计规范》SH/T3032-2002、《化工装置管道布置设计规定》HG/T20549-98、《石油化工管道布置设计通则》SH3012-2000等相关技术标准规范进行编制。此外,尽管化工专业的本科生在化工设计中对公用工程、环境保护等问题涉及较浅,也应该让学生了解相关的行业规范,建立规范意识。

四、改革指导方式,鼓励学生交流

化工设计完成的好坏,与教师的指导有很大关系。指导教师要不断改革指导方式,设法引导学生思考并完成理论与实践相结合的过程,还要注意培养学生的创新能力,鼓励学生提出自己的想法,并在设计过程加以合理体现。

化工设计不同于一般的理论课,着重培养学生分析和解决实际工程问题的能力,培养工程素质、团队意识和创新精神,在设计过程中,应该鼓励学生进行讨论。指导教师引导学生交流可以采用多种形式,例如,按照不同的观点分组讨论;让学生推举代表,上讲台讲解;对同一题目进行不同方案比较或经济评价,拓宽设计思路,引导学生做更深入的思考等等。总之,应该对提出独特见解的学生加以鼓励,对设计中出现的问题予以归纳总结,不断提高指导能力。

在设计手段上,逐步引入化工绘图软件、工艺设计软件,参照华南地区高校的竞赛模式,鼓励学生用计算机辅助完成设计任务,激发学生的创造性。设计最后环节经常被忽视,大多数学生对关键知识点的理解及自己发现的问题疏于总结,对此教师可以给出具体要求,促使学生写出设计体会和总结。各届学生可以把经验介绍给下一届,使化工设计课程具备延续性、不断进步,从而提高设计效果。

五、结语

总之,随着化工设计课程在化学工程与工艺专业学生培养过程中越来越重要,一方面,我们要加强化工设计与专业理论课程之间的联系,使学生尽早建立设计理念,有意识地增强工程意识,使设计过程更加顺利;另一方面,也要加强化工设计与生产实习之间的联系,能使学生更好地理解实际装置及设备的布置特点,把理论与实践更好地结合起来,增强设计兴趣。指导教师要加强自身的工程经验,改进指导方式,引导学生主动思考、积极交流,有效地提高设计效果。

参考文献:

高中化学工艺流程总结篇(11)

1.1.1无组织散逸排放估算在概念设计阶段,工艺流程图(PFD)还不是特别详尽,不知道具体的工艺管道和设备图纸,可以用基于工艺标准化模块的方法来预测无组织排放的浓度和速率。美国环境保护机构收集了各种工艺流散逸的数据,诸如蒸汽、轻组分液体和重组分液体等。设备和管道各模块无组织散逸的估算见表1。

1.1.2空气体积流量估算工艺装置区内空气体积速率的估算是根据工艺装置的尺寸和风速得到的。工艺区域面积的尺寸由预先估计的工艺模块的面积决定。工艺装置区内所有工艺模块面积加起来得出工艺区地面面积的总和,用At表示。

1.2健康指数法HQI计算方程健康指数法的危害指数是指估计的化学品浓度与暴露接触限值的比值,危害等级划分:指数值小于1,可以接受,指数值大于1,不可以接受,而且指数越大危害等级越高。2)二氯丙醇精馏为了有利于环化反应需要对二氯丙醇进行精馏并提高其浓度,去除副反应产生的双甘油及脂等高沸点有机物并分离反应生成的部分水分。为保证分离充分,精馏塔温度设定在70~160℃之间,真空压力。精馏后,水与二氯丙醇将送往冷凝器和倾析器进行液相分层。

1.3工艺模块分析根据工艺描述和流程,C081/1-2,C581/1-2为RHT’s反应釜,C082,C582为共沸塔,C022,2健康指数(HQI)技术分析及应用本文将概念设计阶段的甘油法生产环氧氯丙烷氯化单元的工艺流程作为研究对象,对无组织排放实施健康指数HQI技术推演,以达到保护环境和保护人体健康目的,也为以后研发新技术是否科学、合理提供一个强有力的指标。

2健康指数(HQI)技术分析及应用

2.1HQI技术分析

氯化单元工艺描述1)氯化反应有机酸催化剂加入甘油,含有催化剂的甘油、氯化氢分别由蒸汽加热,达到一定温度再混合均匀后加入反应釜,进行数小时的氯化反应。该一步法包括以下两个反应步骤,第一步骤为甘油与氯化氢气体在反应生成中间产物两种单氯丙二醇异构体(3-氯-1,2-丙二醇和2-氯-1,3-丙二醇)。C522为闪蒸分离器,C181/C121,C681/C621为有机分离塔/二氯丙醇分离塔,C184为水洗塔,D081/D082/D083/D084为环氧氯丙烷反应釜,D075为中和反应釜,D182为水洗塔,D283/D285为汽提塔,E181为轻组分蒸馏塔,E182为最终产品蒸馏塔,E281为中间蒸馏塔,E283为缓冲蒸馏塔,E282为重组分蒸馏塔。氯化单元的吸收(1台)、闪蒸(2台)、蒸馏(6台)、反应(2台)工艺单元。氯化单元面积:Ai=1×82+2×72+6×129+2×95=1190m2。

2.2无组织排放量估算在确定工艺单元模块的基础上,根据美国环境保护机构EPA,1988,Protocolsforgeneratingunit-specificemissionestimatesforequipmentleaksofVOCandVHAP,publicationnumberEPA-450/3-88-070,NorthCarolina,参考其工艺单元模块无组织排放估算数据,无组织排放平均散逸系数见表2,经计算单个工艺单元模块无组织排放量(m)见表3。

2.3氯化单元无组织排放量计算根据工艺描述和流程,氯化单元工艺模块的无组织散逸量计算如下。F1:总物料0.044HL,HCl(L,20%)占43.9%为0.0193,GLC(HL)占56.1%为0.0247;F2:总物料HCl0.11G,占100%;O2/3:总物料0.156HL,其中HCl占40.9%为0.0638,DCPol占59.1%为0.0922;O3/4:-2)共沸塔C082和C582(单位kg/h):F1:总物料0.036LL,HCl(L,20%)占89.52%为0.03222,GLC(HL)占7.48%为0.00269;F2:-;O2/3:总物料0.025V,其中HCl占87.8%为0.02195,DCPol占7.6%为0.0019,H2占4.6%为0.00115;O3/4:总物料为0.217LL,其中HCl占93%为0.20181,DCPol占7%为0.01519。3)闪蒸分离器C022和C522(单位kg/h):F1:总物料0.046HL,HCl(L,20%)占40.9%为0.0188,DCPol(HL)占59.1%为0.0272;F2:-;O2/3:总物料0.021V,其中HCl占92.9%为0.0195,DCPol占7.1%为0.0015;O3/4:总物料0.165HL,其中HC(L,20%)l占7.88%为0.013,DCPol占92.12%为0.152。4)有机分离塔/二氯丙醇分离塔C181/121和C681/C621(单位为kg/h):F1:总物料0.021HL,HCl(L,20%)占7.88%为0.0017,DCPol(HL)占92.12%为0.0193;F2:-;O2/3:总物料0.025G,其中HCl占61%为0.01525,DCPol占39%为0.00975;O3/4:总物料0.137HL,其中HC(L,20%)l占68.9%为0.0944,DCPol占31.1%为0.0426。5)水洗塔C184(单位为kg/h):F1:总物料0.024G,HCl(G)占100%为0.024;F2:HCl(L,20%)占68.9%为0.043,DGLC(HL)占31.1%为0.020;O2/3:总物料0.109G,其中HCl占100%为0.109;O3/4:总物料0.134HL,其中HClL,20%)占68.9%为0.0923,DGLC(HL)占31.1%为0.0417。

2.4甘油法无组织排放总量计算综述根据上述计算,甘油法工艺路线氯化单元的排放的有害物质有二氯丙醇、氯化氢气体、盐酸等,排放总量详见表4。2.5空气体积流量估算工艺装置区内空气体积流量的估算是根据工艺装置的尺寸和风速得到的。工艺区域面积的尺寸由公式1可得。2.6有害物浓度估算根据表4,表5,由公式5可得氯化单元装置区下风向边缘平均有害物浓度,用C表示。详见表6。2.7健康指数估算[7-10]健康指数来源于危害指数,它是指化学品浓度与暴露接触限值的比值,用HQIi表示。

3分析

3.1工艺模块分析甘油法工艺单元由氯化单元、环化单元和精馏单元组成,由于篇幅原因本文只介绍了氯化单元情况,氯化单元有吸收、闪蒸、蒸馏、反应工艺模块,总面积为1190m2。

3.2无组织排放总量计算及物料毒害性分析甘油法工艺路线氯化单元排放的有害物质有二氯丙醇、氯化氢气体等,总排放速率:甘油13.72mg/s,双甘油35.25mg/s,二氯丙醇178.74mg/s,氯化氢气体42.5mg/s;从无组织排放总量计算和物料毒害性分析看,甘油法的氯化单元工艺流程较为合理,但还需适当改进。

3.3健康指数估算分析由计算可知,甘油法氯化单元工艺路线健康指数为0.0865,小于1,但可以适当改进,优化工艺。