欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

人工神经网络大全11篇

时间:2022-06-02 19:51:55

人工神经网络

人工神经网络篇(1)

《人工神经网络原理》介绍了人工神经网络的基本理论,系统地阐述了六种典型的人工神经网络模型,即早期的感知机神经网络、自适应线性元件神经网络、误差反向传播神经网络、Hopfield神经网络、B0ltzmann机和自适应共振理论神经网络,以及它们的网络结构、学习算法、工作原理及应用实例,为读者深入了解和研究人工神经网络奠定了基础。

(来源:文章屋网 http://www.wzu.com)

人工神经网络篇(2)

例如:在利用神经网络解决问题时,设计者必须选择输入和输出数据的编码方式、在梯度下降中被最小化的误差函数、隐藏单元的数量、网络的拓扑结构、学习速率和冲量等。在选择这些参量时,也可将领域特定的知识嵌入到学习算法中。

但结果仍然是归纳算法反向传播的一个实现。新的系统能将先验知识作为显式的输入给学习器,训练数据也同样作为显式输入。这样可以形成通用算法,但利用了领域的特定知识。即:最终构造的是领域无关算法,这种算法使用显式输入的领域相关的知识。

KBANN学习方法

将领域理论和训练数据结合起来进行搜索的做法可以将其看作是一种搜索多个可选假设空间的任务。为了将大多数学习任务刻画为搜索算法,需要定义待搜索的假设空间H,搜索的开始点为初始假设ho以及指定搜索目标的判据G。

用这种方法,领域理论B被用于建立一个与B一致的初始假设hO。然后以这个初始假设ho为起点应用标准归纳方法。在设计神经网络网络时可以利用先验知识确定初始网络的互联结构和权值,此初始设计的网络假设利用反向传播算法和训练数据被归纳精华。

从一个与领域理论一致的假设开始搜索,使得最终输出假设更有可能拟合此理论。这种方法被用于KBANN(Knowledge―Based Artificial NeuralNetwork,基于知识的人工神经网络)算法中。

利用人工神经网络自动构建应用系统的性能分析模型。以往为应用程序建模主要采用统计分析的方法。但随着应用程序可调参数空间的增大,如果仍使用传统的统计方法建立性能分析模型,必然会对输入参数做简化假设。

这种建模方法只能预测一些粗略的趋势预测,不能顾及每个输入参数对性能的影响,尤其是不能预测在参数空间内各种组合对性能的影响。基于这种现状考虑使用人工神经网络进行性能分析建模。KBANN算法使用先验知识的方法是将假设初始化为完美拟合领域理论,然后按照需要归纳地精华此初始假设以拟合训练数据。

KBANN与纯归纳的反向传播算法比较

理论比较:两者的关键区别在于执行权值调节所基于的初始假设。在有多个假设能拟合数据的情况下,KBANN更有可能收敛到这样的假设,他从训练数据中泛化与领域理论的预测更相似。

人工神经网络篇(3)

中图分类号:TP393

文献标识码:A

文章编号:1009-3044(2017)10-0145-02

1.引言

前神经网络(feedforwardneuralnetwork),简称前馈网络,是人工神经网络的一种。

2.概念相关概述

2.1前馈人工神经网络现实基础模型

首先,生物神经元模型。人的大脑中有众多神经元,而神经元之间需要神经突触连接,进而构成了复杂有序的神经网络。而神经元主要由树突、轴突和细胞体组成。一个神经元有一个细胞体和轴突,但是却有很多树突。树突是神经元的输入端,用于接受信息,并向细胞体财团对信息。而细胞体是神经元的信息处理中心,能够对信号进行处理。轴突相当于信息输出端口,负责向下一个神经元传递信息;其次,人工神经元。人工神经元的信息处理能力十分有限,但是,由众多人工神经元构成的神经网络系统庞大,具有巨大的潜力,能够解决复杂问题。人工神经网络与生物神经网络具有相似之处,人工神经网络能够从环境中获取知识,并存储信息。前馈人工神经网络主要包括隐含层、输入层和输出层。在前馈人工神经网络中,神经元将信号进行非线性转换之后,将信号传递给下一层,信息传播是单向的。并且,前馈人工神经网络是人们应用最多的网络模型,常见的有BP神经网络、单层感知器、RBF神经网络等模型。

2.2 LS-SVM相关概述

支撑向量机是一种基于统计学习理论的机器学习方法,能够根据样本信息进行非现象映射,解回归问题的高度非现象问题。并且,支撑向量机在解决非线性、局部极小点方问题上有很大的优势。LS-SVM也叫最小二乘支撑向量机,是支撑向量机的一种,遵循支撑向量机算法的结构风险最小化的原则,能够将支撑向量机算法中的不等式约束改为等式约束,进而将二次问题转换为线性方程问题,大大降低了计算的复杂性。并且,LS-SVM在运算速度上远远高于支持向量机。但是,LS-SVM也存在一定的缺点,在计算的过程中,LS-SVM的忽视了全局最优,只能实现局部最优。并且,LS-SVM在处理噪声污染严重的样本时,会将所有的干扰信息都拟合到模型系统中,导致模型的鲁棒性降低。另外,LS-SVM的在线建模算法、特征提取方法以及LS-SVM的支持向量稀疏性都有待改进。

2.3物联网下人工神经网络前馈LS-SVM研究的意义

物联网是互联网技术的发展趋势,为前馈人工神经网络的发展与LS-SVM研究提供了技术保障,在物联网背景下,研究人工神经网络前馈LS-SVM不仅能够创新人工神经网络的计算方法,完善人工神经网络在现实生活中的应用,而且对人们生活的自动化和智能化发展有着重要意义。另外,物联网为人们对LS-SVM的研究提供了条件,在物联网环境下,人们能够运用信息技术深化最小二乘支撑向量机研究,不断提高LS-SVM回归模型的鲁棒性,改进LS-SVM的特征提取方法和在线建模算法,完善计算机学习方法,提升计算机的运算速度。3基于LS―SVM的丢包数据模型

在选择的参数的基础上,运用IS-SVM方法,建立评估模型。本文选用LS-SVM回归方法的原因,SVM优于神经网络的方法主要是以下几点:

首先,了解数据挖掘,数据挖掘前景广阔,SVM是数据挖掘中的新方法。其次,选择合适的数据分析方法根据数据集的大小和特征。小样本训练适合SVM,样本大情况的训练适宜神经网络,这里用SVM。

然后,就是文献使用SVM和PCA建立跨层的评估QOE,实验结果表明主观MOS评分和此评价结果具有很好的一致性。

最后,本文采用SVM基础上的进一步拔高,LS-SVM,比SVM运行快,精确度高。srcl3_hrcl_525.yuv实验素材的特征是具有高清性质。525序列60HZ,帧大小为1440x486字节/帧,625序列50HZ,大小同上。YUV格式是422格式即4:2:2格式的。

时域复杂度的模型如下,视频的时域复杂度σ;编码量化参数是Q;编码速率为R;待定模型的参数为a和b。σ=Q(aR+b)。通过大量的实验和理论分析,得到模型的参数:a=l 260,b=0.003。其中,编码速率和帧率可以看作是视频的固有属性。高清视频编码速率R是512kb/s,最大帧速率为30000/1001=29.97幅,秒。量化参数是根据实验的具体情况确定的。计算σ的值如下所示:当量化参数为31时,σ=19998720.1,当量化参数为10时,σ=6451200.03,当量化参数为5时,σ=3225600.02,当量化参数为62时,σ=39997440.2,当量化参数为100时,σ=64512000.3,当量化参数为200时,σ=129024001,当量化参数为255时,σ=164505601。

对于srcl3网络环境建立考虑网络丢包的视频质量无参评估模型使用LS-SVM方法。

(1)输入x的值。XI是量化参数,X2封包遗失率,X3单工链路速度,X4双工链路速度,X5视频的时域复杂度。等权的参数。

LS-SVM要求调用的参数只有两个gam和sig2并且他们是LS-SVM的参数,其中决定适应误差的最小化和平滑程度的正则化参数是gam,RBF函数的参数是sig2。Type有两种类型,一种是elassfieation用于分类的,一种是function estimation用于函数回归的。

4.机器学习和物联网的结合

人工神经网络篇(4)

二、人工神经网络在化工企业安全管理评价体系中的体现

1人工神经网络技术在化工企业安全评价中的可行性人工神经网络的基础单元是神经元,网状连接的神经元模拟人的大脑活动方式来处理数据信息,这些信息是并行出来的,其网络结构像一个复杂局域网的拓扑图,进行非线性的信息处理和传输。人工神经网络就像人的大脑一样进行活动,接受外界来的信息后训练神经网络,这些神经网络模型边学习、边适应、联想记忆,模拟的神经网络模型避开复杂的数学运算,在非完善数学模式的状态下取得较为理想的分析效果。如今神经网络技术在多个领域受到学术研究和技术应用的青睐,应用在模式识别、智能控制、虚拟技术、人工智能等多个领域。我们知道互联网络拓扑分为多种结构,神经网络模型与之类似也存在多种拓扑连接方式。2BP神经网络结构在评价体系的设计体现BP神经网络模式是最常用的神经网络拓扑方式。BP网络模型模拟人的神经网络处理信息的机理是:当信号m进入输入单元,通过隐单元作用到输出单元,中间含非线性变换的过程,从输出单元输出信号n,神经网络训练任一样本,样本包括输入信号m和期盼的输出值k,k与n之间必然存在差异,通过隐单元的作用减小k和n之间的差异,使误差降低最低。神经网络多次进行这种训练过程,差异到最小时训练终止。BP网络模型由4个模型组成,输入输出模型、变换函数模型、计算误差模型和自我训练模型。BP神经网络在安全评价体系中的应用:首先确定神经网络的拓扑结构,该结构的层级是多少,输入层节点、输出层节点以及隐含层的节点到底有多少,信息做到具体化。将神经网络与安全管理评价体系中的相关参数关联,与评价体系关联的参数的种类、数量以及特征都有拓扑结构建立对应关系,确定各参数在管理评价体系中的状态及表达方式。筛选学习样本提供给神经网络进行训练,尽量将样本采集全面,样本越多越能全面的供神经网络学习,尽量把样本选择多样化且有代表性,样本代表企业安全生产过程的各自安全状态,样本的训练过程其实也是对网络中节点间的权值修正和误差拉近的过程。为了降低整个网络的负责度级别,尽量避免选择高难度的函数来作为处理函数,一般选择非线性复杂低的函数作为神经网络的作用函数。安全评价知识库是建立安全评价体系的集中点,输入节点、输出节点以及隐含节点是安全评价知识库的要素,赋予网络节点间的权值也是安全评价知识库的要素,这些要素构成了系统安全评价知识库,为神经网络活动提供支持。联系实际安全生产情况,神经网络不能脱离实际情况,在学习和训练过程都要将实际模拟过程的特征值导入到神经网络。依靠前面建立的系统安全评价知识库多次进行培训学习,每次学习的结果数据作为新的样本充实安全评价知识库,整个过程形成良性循环。3人工神经网络在评价体系中的优点(1)评价处理速度快,基于神经网络的特征,物理结构是并行的,信息处理方式为并行处理,通过选择所有安全评价体系中的指标内容,克服只是片面评价的弊端,全面对化工企业安全管理评价体系和所有影响参数的状态进行评价。(2)优越的自我学习能力,利用神经网络事先构建的知识库和所具有的自适应能力,通过不断训练和学习,结合历史的案例和现在的新技术新知识,建立适应当前生产实际的安全管理评价体系。(3)人工神经网络理论具有很强的容错能力,只有作用函数和数据结构选择恰当才能利用神经网络的特性进行分析处理,得到当前系统安全状态的评价值。基于神经网络的评价方式虽然有很多优点,但是一些有代表性的评价方法如AHP方法,Fuzzy评价方法也具备其存在的空间和价值。基于神经网络的评价方法是通过这些传统有代表性的评价方法总结学习达到目的的。如果评价指标体系中某个参数发生变化时,先利用传统的评价方式获得评价样本,神经网络借助于这些评价样本进一步通过学习训练达到建立完善安全管理评价体系的目的。

人工神经网络篇(5)

目前应用较广泛的BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了解决上述问题,本文应用鱼群算法对BP神经网络进行了改进,结合网络安全评价实例进行了测试,并将测试数据与标准BP神经网络进行了比较与分析,取得了理想的结果。

一、基本BP神经网络算法

BP神经网络算法是一种采用误差反向传播的多层前馈感知器。其特点是具有分布式的信息存储方式,能进行大规模并行处理,并具有较强的自学习及自适应能力。BP网络由输入层(感知单元)、计算层(隐藏层)、输出层三部分组成。输入层神经元首先将输入信息向前传递至隐含层节点,经过激活函数预处理后,隐层节点再将输出信息传送至输出层得到结果输出。输入层与输出层节点的个数取决于输入、输出向量的维数,隐含层节点个数目前并没有统一的标准进行参考,需通过反复试错来确定。

二、人工鱼群算法

2.1基本原理

人工鱼群算法是指通过长期对鱼类觅食行为的观察,构造人工鱼来模拟鱼类的觅食、群聚、尾随以及随机行为,从而完成全局最优值的寻找。算法所包含的基本过程如下:觅食行为:鱼类会利用视觉或嗅觉来感知水中食物浓度的高低,以此来选择觅食的路线。聚群行为:鱼类一般会以群体形式进行觅食,以此来躲避天敌的伤害并以最大概率获得准确的觅食路线。尾随行为:当群体中的某条鱼或几条鱼寻找到食物后,其附近的其他同伴会立刻尾随而来,其他更远处的鱼也会相继游过来。随机行为:鱼在水中的活动是不受外界支配的,基本上处于随机状态,这种随机性有利于鱼类更大范围的寻找食物及同伴。

2.2鱼群算法优化BP神经网络的原理

BP神经网络在求解最优化问题时容易陷入局部极值,并且网络的收敛速度较慢。鱼群算法通过设定人工鱼个体,模拟鱼群在水中的觅食、尾随和群聚行为,通过个体的局部寻优,最终实现全局寻优。人工鱼在不断感知周围环境状况及同伴状态后,集结在几个局部最优点处,而值较大的最优点附近一般会汇集较多的人工鱼,这有助于判断并实现全局最优值的获取。因此用人工鱼群算法来优化BP神经网络是一种合理的尝试。

2.3具体工作步骤

①设定BP神经网络结构,确定隐层节点数目;②设定人工鱼参数,主要包括个体间距离、有效视线范围以及移动步长等;③人工鱼进行觅食、群聚及尾随行为来优化BP神经网络;④通过设定的状态参量,判断是否达到目标精度;⑤若达到精度要求则输出网络优化权值,并执行网络循环,否则继续改化参数进行优化;⑥输出最终优化参数并进行计算机网络安全评价。

三、实验与结果比较

将网络安全的17项评价指标的分值作为BP神经网络的输入,网络的期望输出只有一项,即安全综合评价分值。BP神经网络需要一定数量的已知样本来训练,然后才能用训练好的网络进行评价。目前用于网络安全综合评价的数据还很少,本文采用的是文献[3]里面的15组数据,其中将1~10项用作网络训练,11~15项用作仿真输出。

人工神经网络篇(6)

中图分类号:TP18 文献标识码:A 文章编号:1674-2117(2014)20-00-01

1 前言

21世纪是网络的时代,网络已进入人们的日常生活,成为人们通信和交流的工具,人们对于网络的依赖也越来越强。

针对网络入侵检测问题,国内外许多学者进行了深入研究,提出了许多有效的网络入侵检测模型。在网络入侵检测过程,网络入侵分类器设计是网络入侵检测的关键,当前网络入侵分类器主要有基于支持向量机、K最近邻算法、神经网络等进行设计。其中出回声状态神经网络(Echo State Network,ESN)是一种新型的网络,具有简单、易实现、泛化能力优异等优点,成为网络入侵检测中的主要研究方向。人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)是一种采用自下而上信息寻优模式的智能搜索算法,具有并行性、收敛速度快等优点,为回声状态神经网络参数优化提供了一种新的工具。

2 人工鱼算法优化神经网络的入侵检测模型

2.1 回声状态神经网络

ESN是一种由输入层、内部储备池和输出层组成的非线性递归神经网络,其状态方程为:

式中,sigmoid为激活函数;Win和Wx分别为输入和储备池内部的连接矩阵;μ(t),x(t)分别表示t时刻的输入向量和储备池内部状态向量量,sin为输入项比例系数;ρ为内部储备池的谱半径。

那么ESN的输出方程为

(2)

式中,y(t)为t时刻的输出向量Wout为输出连接向量。

输出权值对ESN性能起着关键作用,常采用最小二乘法进行求解,目标函数的最小化形式为

式中 ,

,N为储备池节点数;l为训练样本数。

根据式(3)式得到解

(4)

式中,为的估计值。

从式(1)可知,参数sin和ρ的选取影响回声状态神经网络的性能,本文采用人工鱼群算法(AFSA)对参数sin和ρ的选择,以提高网络入侵的检测正确率。

2.2 人工鱼群算法

工鱼群算模拟鱼群觅食的行为,人工鱼个体的状态可表示为向量Xi=(xi1,xi2,…,xiD),食物浓度表示为Y=f(x),其中Y为目标函数值;Visual表示人工鱼的感知范围:Step表示人工鱼移动的步长;δ表示拥挤度因子。人工鱼的行为包括以下几种:①觅食行为;②聚群行为;③追尾行为;④随机行为。

2.3 人工鱼群算法优化神经网络参数

(1)初始化人工鱼群算法参数,主要包括人工鱼群数以及最大迭代次数;(2)初始位置为回声状态神经网络的参数;(3)计算适应度函数,并选择适应度函数值最大的人工鱼个体进入公告板;(4)人工鱼模拟鱼群觅食行为,得到新的人工鱼位置;(5)与公告板人工鱼的位置进行比较,如果优于公告板,那么将该人工鱼位置记入公告牌;(6)将最优公告牌的位置进行解码,得到回声状态神经网络最优参数;(7)利用最优参数建立网络入侵检测模型,并对其性能进行测试。

3 仿真实验

3.1 仿真环境

数据来自网络入侵标准测试集KDDCUP99数据集,其包括4种入侵类型:DoS、Probe、U2R和R2L,同时包括正常样本,每一个样本共有41个特征,7个符号型字段和34个数值型字段。由于KDDCup99数据集样本多,从中随机选择部分数量的数据进行测试,数据具体分布见下表。为了使本文模型的结果具有可比性,采用PSO算法优化回声状态神经网络(PSO-ESN),遗传算法优化回声状态神经网络(GA-ESN)进行对比实验。

样本集分布情况

入侵类型 训练样本 测试样本

DoS 2000 400

Probe 1000 200

R2L 500 100

U2R 100 20

3.2 结果与分析

所有模型对网络入侵数据进行建模,仿真结果如图1和图2所示。从图1和图2进行仔细分析,可以知道,相对于PSO-ESN、GA-ESN,人工鱼群算法优化神经网络的入侵检测性能最优,网络入侵检测的误报率更低,具有十分明显的优势,在网络安全领域具有广泛的应用前景。

图1几种模型的检测率比较

图2几种模型的误报率比较

4 结语

针对回声状态神经网络参数优化难题,提出一种人工鱼群算法优化回声状态神经网络参数的入侵检测模型。仿真结果表明,相对于对比模型,本文模型提高了网络入侵的检测率,同时误报率明显降低,具有一定的实际应用价值。

参考文献:

人工神经网络篇(7)

中图分类号:TP3 文献标识码:A 文章编号:1672-3791(2014)01(c)-0240-02

神经网络是一门发展十分迅速的交叉学科,它是由大量的处理单元组成非线性的大规模自适应动力系统。神经网络具有分布式存储、并行处理、高容错能力以及良好的自学习、自适应、联想等特点。该模型对于拟合现实复杂世界有着重要的实用价值。

1 神经网络简介

人工神经网络(Artificial Neural Network,ANN),亦称神经网络(Neural Network,NN),是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、统计学、物理学、计算机科学以及工程科学的一门技术。心理学家Mcculloch,数学家Pitts在20世纪40年代第一次提出了神经网络模型,从此开创了神经科学理论的研究时代,此后半个世纪神经网络技术蓬勃发展。神经网络是一种计算模型,由大量的神经元个体节点和其间相互连接的加权值共同组成,每个节点都代表一种运算,称为激励函数(activation function)。每两个相互连接的节点间都代表一个通过该连接信号加权值,称值为权重(weight),神经网络就是通过这种方式来模拟人类的记忆,网络的输出则取决于网络的结构、网络的连接方式、权重和激励函数。而网络本身通常是对自然界或者人类社会某种算法或函数的逼近,也可能是一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型向结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。

2 神经网络模型及训练

2.1 生物神经元模型

人脑是自然界所造就的高级动物,人的思维是由人脑来完成的,而思维则是人类智能的集中体现。人脑的皮层中包含100亿个神经元、60万亿个神经突触,以及他们的连接体。神经系统的基本结构和功能单位就是神经细胞,即神经元,它主要由细胞体、树突、轴突和突触组成。人类的神经元具备以下几个基本功能特性:时空整合功能;神经元的动态极化性;兴奋与抑制状态;结构的可塑性;脉冲与电位信号的转换;突触延期和不延期;学习、遗忘和疲劳;神经网络是由大量的神经元单元相互连接而构成的网络系统。

2.2 人工神经网络模型

人工神经网络,使通过模仿生物神经网络的行为特征,进行分布式并行信息处理的数学模型。这种网络依靠系统的复杂度,通过调整内部大量节点之间相互连接的关系,从而达到信息处理的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入输出数据,分析两者的内在关系和规律,最终通过这些规律形成一个复杂的非线性系统函数,这种学习分析过程被称作“训练”。神经元的每一个输入连接都有突触连接强度,用一个连接权值来表示,即将产生的信号通过连接强度放大,每一个输入量都对应有一个相关联的权重。处理单元将经过权重的输入量化,然后相加求得加权值之和,计算出输出量,这个输出量是权重和的函数,一般称此函数为传递函数。

2.3 神经网络的训练

当神经网络的结构确定以后,接下来的工作就是训练和学习。神经网络不是通过改变处理单元的本身来完成训练和学习过程的,而是依靠改变网络中各神经元节点的连接权重来完成的。因此若处理单元要学会正确的处理所给定的问题,唯一用以改变处理单元性能的元素就是连接权重。

2.4 神经网络的分类

神经网络按照不同的结构、功能,以及学习算法,对网络进行分类,可以分为:(1)感知器神经网络:最简单的神经网络类型,只有单层的神经网络结构,采用硬限值作为网络传递函数,主要适用于简单的线性二类划分问题,在此类问题中处理的效率较高。但不适合本论文的课题。(2)线性神经网络:单层结构的神经网络,采用线性函数作为网络的传递,主要也是用于解决线性逼近问题。

3 BP神经网络

目前应用最为广泛的网络,具有多层网络结构,可以由一个或者多个隐含层。BP网络采用Widrow―Hoff学习算法和非线性传递函数,典型的BP网络采用的是梯度下降算法,也就是Widrow―Hoff算法所规定的。BP,即Back Propagation,就是指为非线性多层网络训练中梯度计算是采用信号正向传播、误差反向传播的方式。通过采用非线性传递函数,BP网络能够以仁义的精度逼近任何非线性函数,由于采用隐含中间层的结构,BP网络能够提取出更高阶的统计性质,尤其是当输入规模庞大时,网络能够提取高阶统计性质的能力就显得非常重要了,结合本文的课题,将采用BP神经网络及其改进算法进行组合集成实验,用以解决财务预警的实际问题,在后面的章节会采用相关实验证明组合集成的BP神经网络的优势。

4 径向基神经网络

径向基神经网络又称为RBF网络,它与BP网络同为多层前向网络,也能够以任意的精度逼近任何非线性函数,只是它与BP网络采用的传递函数不同,BP通常采用的是Sigmoid函数或线性函数作为传递函数,而RBF网络则采用径向基函数作为传递函数。本文后面将采用径向基函网络与BP网络进行对比。

5 竞争神经网络

竞争神经网络的特点是它的各个神经元之间是相互竞争的关系,众多神经元之间相互竞争以决定胜出者,或胜神经元决定哪一种原模型最能代表输入模式。

6 反馈神经网络

BP神经网络(Fredric M.Ham Ivica Kostanic Principles of Neurocomputing for Science―Engineering 2007)BP神经网络具有sigmoid隐含层以及线性输出层,具有很强的映射能力,本节我们对BP网络神经元和网络结构进行介绍。神经网络方法的具体步骤是:向网络提供训练例子,即学习样本,包括输入和期望的输出。确定网络的实际输出和期望输出之间允许的误差。改变网络中所有连接权值,使网络产生的输出更接近于期望输出,直到满足确定的允许误差。下图给出了一个具有N个输入的基本的BP神经元模型结构。途中每一个输入都被赋予一定的权值,与偏差求和和后形成神经元传递函数的输入。

我们来看看三层BP神经网络模型的数学表达,首先我们来确定途中各个参数所代表的涵义:

(1)输入向量:X=(x1,x2,…,xi,…,xn)T;

(2)隐层输出向量:Y=(y1,y2,…,yj,…,ym)T;

(3)输出层输出向量:O=(O1,O2,…,Ok,…,Ol)T;

(4)期望输出向量:d=(d1,d2,…,dk,…,dl)T;

(5)输入层到隐层之间的权值矩阵:V=(V1,V2,…,Vj,…,Vm);

(6)隐层到输出层之间的权值矩阵:W=(W1,W2,…,Wk,…,Wl)。

BP神经网络就是通过构建上述变量来完成网络的描述。

我们从上至下,从输出层开始看BP网络的工作原理,对于输出层:

k=1,2,…,l (1)

k=1,2,…,l (2)

对于隐层:j=1,2,…,m (3)

j=1,2,…,m (4)

其中的是传递函数我们可以采用单极性Sigmoid函数: (5)

(1)网络误差与权值调整

输出误差E定义:

(6)

(7)

在这一步的基础上,进一步展开至输入层:

(8)

j=0,1,2,…,m;k=1,2,…,l (9)

i=0,1,2,…,n;j=1,2,…,m (10)

式中负号表示梯度下降,常数η∈(0,1)表示比例系数。在全部推导过程中,对输出层有j=0,1,2,…,m;k=1,2,…,l,对隐层有i=0,1,2,…,n;j=1,2,…,m

(2)BP算法推导

对于输出层,式(9)可写为:

(8)对隐层,式(9)可写为:(10),对于隐层,利用式(7):

可得: (11)

将以上结果代入式(8),并应用式(5):,得到:

(12)

(13)

至此两个误差信号的推导已完成。将式(12)代回到式(8),得到三层前馈网的BP学习算法权值调整计算公式为:

人工神经网络篇(8)

引言

林分材种出材率是林分调查工作的重要指标,它可以进一步评价森林木材资源的经济价值,而研究森林木材,又可以合理正确的经营森林资源,达到人与自然和谐相处的目的。林分林种出材率就是原木材积于立木材积之比,我国现行的森林采伐限额制度、查处乱砍滥伐林木案件、制订林业发展规划、计划和编制森林经营方案、预测和计算、开展森林资源资产评估等等,都需掌握积蓄量和材种的出材率的指标。我国已经不断学习借鉴前苏联的先进技术编制自己的材种出材率表了,随着我国天然林保护工程的全面实施和林业分类经营的逐步推行,人工商品林比例的不断提高,我国森林结构和性质也有所变化,所以传统的统计学以难以解决很多问题,运用人工神经网络在林业生成与运用则是一个不二之选的方法,对林业的发展也有很大的理论价值和推广意义。

人工神经网络(Artificial Neural Network-ANN),简称“神经网络”,是由大量处理单元过极其丰富和完善的互联组成的非线性、自适应信息处理系统。它的提出是基于现代神经科学研究成果上,以模拟大脑神经网络处理、记忆信息的方式进行信息处理。涉及学科较多,较为广泛。

1 研究内容和方法

平均树高,平均胸径,林种年龄,立地质量,积蓄量,保留密度等等因素都会影响林分材种出材率,而林分林种出材率具有非线性和非确定性的因素,一般采用统计分析方法进行预测采样,需要大量的林木样本元素,模型涉及的许多参数无法或很难有较高的精确度。

人工神经网络(Artificial Neural Network)具有非线性,非局限性,自适应,自组织,自学习的特征,相较于传统的统计学方法,不同之处在于它的容错性和储存量,通过单元之间的相互作用,相互连接能模拟大脑的局限性。ANN的独到之处,也使得人们注意了ANN,并且广泛的应用于各种学科之中,如心理学,逻辑学,数学模型,遗传算法,语音识别,智能控制等等。当然,运用人工神经网络对林分林种出材率进行预测也同样具有很好的效果与实现。

研究主要完成,通过对数据的采样和分析处理,对神经网路预测模型的结构,参数进行优化,再应用到林分材种出材率的预测中。以c++程序设计为设计平台,运用人工神经网络中的BP算法,分析各隐含层神经元的数量,训练的次数,隐含层函数,样本数量,进行优化建立林分材种出材率的预测模型。

1.1BP人工神经网络

BP(Back-Propagation Network)神经网络是一种以误差逆传播算法(BP)训练的多层前馈网络,目前应用较为广泛的神经网络模型之一。BP神经网络能学习和存贮多个输入-输出模式映射关系,而且无需事前对这种映射关系的数学方程进行描述。它通过不断反向传播来调整神经网络的权值和阈值,使神经网络的误差平方和最小。BP神经网络模型拓扑结构由三层组成分别是输入层(input)、隐层(hidelaver)和输出层(output layer)。

BP人工神经网络主要以标准BP算法为主,而标准BP算法有存在许多问题,由于是非线性梯度优化算法,就会存在局部极小值问题,使得精确度受限;算法迭代系数过多,使得学习率降低,收敛速度降低;网络对初始化的值存在发散和麻痹;隐节点不确定性的选取。所以引进了几种BP算法:动量BP算法、学习速率可变的BP算法和LM算法(Levenberg-Marquardt)。动量BP算法以上一次修正结果来影响本次的修正,动量因子越大,梯度的动量就越大。学习效率可变的BP算法怎是力求算法的稳定,减小误差。为了在近似二阶训练速率进行修正时避免计算HeSSian矩阵,选择LM算法。所以为了神经网络计算的速度与精确度,所以运用不同的优化算法来改善BP网络中的局部极小值问题,提高收敛速度和避免了抖动性。

2 基于BP人工神经网络和林分材种出材率预测模型的建立

分析了大量的材种出材率的相关资料后,均有非线性的特征,对于模型的建立和预测,传统的识别系统在研究和实践中有很大的问题,而采用人工神经网络,不仅其特征是非线性,而且人工神经网络具有较为稳定的优越性,所以,对于林分材种出材率的预测和建立采用BP人工神经网络。

2.1建模工具

研究采用c++程序设计对数值的计算和预测,对模型进行编译和实现。c++语言是受到非常广泛应用的计算机编程语言,它支持过程化程序设计,面向对象程序设计等等程序设计风格。c++是一门独立的语言,在学习时,可以结合c语言的知识来学习,而c++又不依赖于c语言,所以我们可以不学c语言而直接学习C++。

用c++来模拟BP网络是相对较好的程序设计语言,以面向对象程序设计来设计和实现林分材种出材率的BP算法,直观而简洁。

2.2BP神经网络结构的确定

对于使用BP算法,关键在于隐含层层数和各层节点数。而神经元的输入输出又影响着隐含层层数,而对于BP万罗中的输入输出层是确定的,重点就在于隐含层层数,增加隐含层数可以提高网络的处理能力,是的训练复杂化,样本数目增加,收敛速度变慢等,而隐含层的节点数越多,可以提到其精确度。

研究过程中,多层隐含层会将训练复杂化,所以我们往往选择三层就够了,即一个输入层,一个隐含层,一个输出层的基本单层BP网络结构。最后确定以下四个神经元:平均树高、平均胸径、林种年龄、每公顷积蓄量作为输入单元。输出单元为林分材种出材率。

结论

人工神经网络篇(9)

中图分类号:TP18 文献标识码:A 文章编号:1009-3044(2014)06-1285-02

Research on the Application of Artificial Neural Network

LI Hong-chao

(China University of Petroleum (East China), Qingdao 266580,China)

Abstract: Artificial neural networks are part of an integrated artificial intelligence, it is proposed is based on research of modern neuroscience. With the continuous development of artificial neural networks, and their use more widely. This article first analyzes the basic concepts and features of artificial neural networks, from six aspects of information, medicine, psychology and other details of the application of artificial neural networks.

Key words: artificial neural network; information processing; risk assessment

1 人工神经网络

人工神经网络,英文名为“Artificial Neural Network”,简称ANN,它充分分析大脑神经突触联接的结构特点,对其进行模拟,然后进行信息处理。简单来说,人工神经网络就是对人脑结构、人脑功能的模仿。它的特点有很多,比如非线性、非局限性、非常定性、非凸性等。这些特点铸就了人工神经网络的各种功能,促进了它的应用。

2 人工神经网络的应用

随着人们对人工神经网络的不断研究,人工神经网络的作用越来越大,给人们提供了更好的服务,下面就以人工神经网络在信息领域、医学、经济领域、控制领域、交通运输、心理学六个方面分别介绍其应用。

2.1 信息领域

人工神经网络在信息领域的应用分为两个方面,一个是信息处理,一个是信息识别。

1)信息处理

由于现代信息的多样化和多变性的特点,信息处理就变得复杂起来,人工神经网络可以对人的一部分思维能力进行模仿甚至代替,解决传统信息处理的困难。在通常情况下,人工神经网络可以自动诊断问题,开启问题求解模式。另外,人工神经网络系统的容错性能高,当其连接线遭到破坏,自身的组织功能还是可以保持它的优化工作状态。因此,军事系统充分利用这一优势,在其电子设备广泛应用人工网络信息系统。

2)模式识别

这项功能的理论基础有两个,一个是贝叶斯的概率论,另一个是申农提出的信息论。模式识别主要是分析和处理存在于目标体上的各种形式的信息,然后在处理和分析的基础上对目标体进行描述、辨认等过程。随着人工神经网络在模式识别中的应用,传统的模式识别逐渐被取代。随着模式识别的发展,已经逐渐应用到语音识别、人脸识别、文字识别等各个方面。

2.2 医学领域

人体是非常复杂的,在医学中,想要弄清楚疾病的类型、疾病的严重情况等,仅仅依靠传统的望闻问切诊断方法是远远不够的,医学的发展需要运用新技术。人工神经网络应用于医学中,可以分析生物信号,观察信息的表现形式以及研究信息的变化规律,将这三者的结果进行分析和比较,从而掌握病人的病情。

1)生物信号的检测与分析

在医学诊断中,医生基本上都是通过对医学设备中呈现出来的连续波形进行分析。人工神经网络中有一套自适应的动力学系统,该系统由一些数量庞大的简单处理单元互相连接。因此,它具有多种功能,比如Massively Parallelism,即所谓的巨量并行,分布式存贮功能以及强大的自组织自学习功能等。用常规处理法处理生物医学信号分析非常困难,而人工神经网络的功能可以有效解决难题,其在生物医学人脑检测与处理中的应用非常广泛,比如分析电脑信号,对心电信号进行压缩处理,医学图像的识别等,在很大程度上促进了医学的发展。

2)医学专家系统

对于传统的专家系统而言,其工作原理基本上就是先由专家根据自己多年的医学经历,总结自己的经验和所掌握的知识,以某种规则的形式将这些经验和知识存储在电脑中,建立一个专家的知识库,然后借助逻辑推理等方式开展医疗诊断工作。但是,随着专家知识的不断增长和经验的日益丰富化,数据库的规模会越来越大,极有可能产生知识“爆炸”的现象。同时,专家在获取知识的过程中也会遇到困难,导致工作效率低下。人工神经网络中的非线性并行处理方式解决了传统专家系统中的困难,在知识推理、自组织等方面都有了很大的提高,医学专家系统也开始逐渐采用人工神经网络系统。

在医学领域中,麻醉和危重医学的研究过程中,存在很多的生理方面的分析与检测工作,人工神经网络系统有良好的信号处理能力,排除干扰信号,准确检测临床状况的相关情况,有力促进了医学的发展。

2.3 经济领域

经济的快速有效增长是基于人们对市场规律良好的掌握和运用以及对经济活动中的风险评估,及时应对和解决,这样才能保障经济活动的快速发展。人工神经网络应用于经济领域,主要有预测市场价格和评估经济风险两个方面。

1)预测市场价格的波动情况

商品的价格主要是由市场的供求关系和国家宏观调控来变化的。国家的宏观调控是客观存在的,我们可以在遵循国家宏观调控的前提之下分析市场的供求关系,从而预测商品的市场价格。在传统的统计学方法中,在预测价格波动时因其自身的局限性,难以做出科学的判断。人工神经网络可以有效处理不完整数据和规律性不强的数据,它是传统统计方法所不能达到的。人工神经网络系统基于市场价格的确定机制,综合分析影响商品价格的因素,比如城市化水平、人均工资水平、贷款情况等,将这些复杂的因素综合起来,建立一个模型,通过模型中的数据显示,科学预测商品的市场价格波动情况,有效利用商品的价格优势。

2)评估经济风险

经济风险,即Economic Exposure,它指的是由于经济前景的一些不确定因素,导致经济实体出现重大的经济损失。在处理经济风险的时候,做好的措施就是防患于未然,做好评估和预测,将经济风险扼杀在萌芽时期。人为的主观判断经济风险具有一定的可靠性,但是也存在很多的不足。将人工神经网络系统应用于评估经济风险,可以有效弥补人为判断风险的不足。人工神经网络先提取具体风险来源,然后在此基础上构建出一个模型,这个模型一般要符合实际情况,通过对模型的研究,得出风险评价系数,最终确定有效的解决方案。

2.4 控制领域

随着人工神经网络的不断发展,人们开始研究其在控制领域的应用。比如现在的机器人的摄像机控制、飞机控制等。它主要是通过控制图像传感器,再结合图像表面的非线性关系,进行计算和分析,另外,它还可以将图像传感器瞄准到处于运动状态中的目标物上。

2.5 交通运输

交通问题具有高度的非线性特点,它的数据处理是非常庞大和复杂的,这与人工神经网络有很大的吻合性。就目前来讲,人工神经网络应用到交通领域有模拟驾驶员的行为、分析交通的模式等等。

2.6 心理学

人工神经网络是对人脑神经元的信息处理能力的模拟,本身就带有一定的抽象性,它可以训练很多的认知过程,比如感觉、记忆、情绪等。人们通过对人工神经系统的不断研究,多个角度分析了其认知功能。就目前来看,人工神经网络可以分析人的认知,同时对认知方面有缺陷的病人进行模拟,取得了很大的进步。当然,人工神经网络应用于心理学领域也存在很多的问题,比如结果精确度不高、模拟算法的速度不够等,这些都需要人们持之以恒的研究。突破这些难题,促使人工神经网络有效应用于心理学领域。

3 结束语

综上所述,随着人工神经网络的不断发展,它特有的非线性适应能力和自身的模拟结构都有效推动了其应用范围。我们应该不断运用新技术,不断完善人工神经网络的功能,拓宽其应用范围,促进其智能化、功能化方向发展。

参考文献:

[1] 毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2011(12).

[2] 林和平,张秉正,乔幸娟.回归分析人工神经网络[J].吉林大学学报:信息科学版,2010(3).

人工神经网络篇(10)

近年来,人们在计算机智能化领域上取得了很大的进步,但计算机领域还有很多问题无法解决,例如视觉、语言识别和计算机等技术,人们仍不能将计算机系统设计得像生物系统那样灵活。因此,大批研究者转移到仿生科学研究,希望由此找到新的技术,设计出新的智能计算机,其中人工神经网络是其中一个比较热门的领域。随着这个领域的发展,一些团队已经建立起一些创造性的、复杂的神经电路模型,并将其应用到一些项目中,也有研究团队在致力研究人工神经网络的软件和硬件方案,希望能够为智能计算机提供更高层次的理解能力。

人工神经网络模型的并行特性使它与传统的计算机模型相比具有更强的理能力,使它更有机会解决如手写文字识别这类问题。长期以来,大多数研究者都是在CPU上使用模拟的方式进行神经网络的计算,由于CPU工作模式和结构的限制,无法提供最佳的计算性能,因此本文寻求一种新的智能计算硬件平台,在硅芯片上设计神经网络电路。

一、神经网络模型

人工神经网络理论已发展了很多年,并日益趋于成熟,在各领域都得到了一定的应用。人工神经网络的运算主要由计算的基本单位神经元进行,通过若干个神经元构成神经网络以解决现实中的各种问题。

如图1所示,一组神经元构成一个神经网络系统。每一个神经元都有独立的计算单元。神经元计算公式如下:yi(t)=■W■?着ij(t-tij) (1)

公式(1)中yi(t)表示神经元的输出结果,i表示神经元序号,?着ij(t-tij)表示神经元输入值,W■表示每个神经元的权值。

人工神经网络的基本运算包括了乘法和加法运算。为了能够在硬件上执行神经网络的理功能,必须为每个神经元设计独立的加法器和乘法器,我们将其称为加乘法运算单元(MAC),每个神经元都包含了一个MAC单元。

为了使系统能够更好地模拟人类神经系统工作原理,发挥硬件的理能力,本文采用了Gerstner的尖峰神经元模型构建神经元理器的工作流程。在该模型中,每个神经元的膜电位在时间t时表示如下:

ui(t)=■■■W■?着ij(t-tij)+?浊i(t-tij) (2)

?着ij(t)=exp(-■)-exp(-■)*H(t-t■) (3)

公式(2)中,W■表示为第i神经元和第j神经元之间连接的权值,?着ij(t-tij)表示为神经元i能够提供给神经元j的突触后电位(PSP),而?浊i(t-tij)表示倔强函数。公式(3)表示突触后电位(PSP)的计算方法,其中t■和t■为时间常数,H(t-t■) 为Heaviside阶梯函数,t■为轴突传输延时系数。

二、神经元硬件设计

如图2所示,神经网络系统是由多个神经元构成,每个神经元是一个单独的实体,神经元既相互独立,又相互联系,神经元根据所受到外界的刺激(输入)和邻居神经元对自己的影响,做出判断与决策(输出),并影响到周围神经元的反应。为了能够实现神经网络功能,需要模拟神经元单位设计一个特殊的理器用于计算外界刺激而做出的反应,它包含了简单的算数逻辑运算单元、寄存器和控制器,在本文中使用PN表示该理器。

图3显示了一个PN理单元的工作流程图,每个PN理器包括了进行神经元计算必须的运算器和存储器以及相关附属器件。PN理单元的工作流程是:当外部有输入数据通过总线进入PN理器时先存放在输入事件存储器;系统根据事件时间将数据输入到突触后电势寄存器;同时输入值被编号后分别放入公共连接存储器;突触后电势PSP值与其他神经元的权值相乘后与原有膜电位值相加,相加结果更新膜电位存储器值;同时结果与阈值相比较,如果大于阈值则将结果输出到输出存储器中作为该神经元的输出结果存放在输出时间存储器。

系统是由若干个神经元理器构成。如图4所示,人工神经网络系统由若干个神经元共同构成,图5表示了人工神经网络的硬件构成。每一个人工神经网络都是由若干个神经元理单元构成,每个神经元理单元又是由逻辑运算器、存储器和通信单元构成。将这些神经元理器构建在一块电路板或者芯片上,同时理器与理器通过总线连接起来相互通信,共同完成神经网络的运算。系统还为每一个神经元单位配置了一个PN理器,理器之间相互独立,并行计算。当外部刺激(输入)进入系统时,立刻被分配到各个PN理器并行计算神经元对刺激的响应(输出),同时根据计算结果,调整神经元之间的权值系数,并更新存储其中的权值。由于PN理器是并行计算,相对于传统计算机模拟运算,极大地提高了神经网络的计算速度。

本文以Gerstner的尖峰神经元模型为基础,设计了模拟神经元工作的PN理单元,并由若干个PN理单元构成模拟人类神经系统的人工神经网络的硬件系统。相对于在传统计算机上的操作,PN理单元的并行性使新系统有更强的理能力,有效地提高了神经网络的计算速度,使神经网络系统有更好的应用前景。

(作者单位:广东肇庆科技职业技术学院)

参考文献:

[1]Gerstner,W. & Kistler,W.M.Spiking neuron models:single neurons,populations,plasticity. Cambridge,UK:Cambridge University Press,2002.

[2]Mazad S. Zaveri. Dan Hammerstrom1. Performance/price estimates for cortex-scale hardware: A design space exploration,2011,(24).

人工神经网络篇(11)

随着我国国民经济总量的增大,煤炭能源的消耗也是越来与而大,同时也对煤矿的开采提出了更高的要求。近年来,国家对煤矿安全越来越重视,管理也更加严格,很多不合安全规范的小型煤矿被关停。想在现有环境下提高采煤量,就必须加大科技方面的投入,采用最先进的自动化设备技术,宗放自动化采煤是当前世界上最为先进的采煤技术,是提高采煤生产效率的关键技术之一。人工神经系统可以较好的辅助综放工作面的工作,可对综放工作面进行控制生产,对提高采煤效率有着极为重要的意义。

一、人工神经网络的简单介绍

人工神经网络是一种非线性、交叉的科学,它通过计算机系统对生物神经信息进行模拟来解决实际工作中的问题,属于非线性、交叉的科学。经过近些年的发展,人工神经网落技术在自然科学、社会科学等各个领域的应用已经得到广泛应用。人工神经网络的广泛应用自然也推动了人工神经网路的研究,现在出现的具有不同功能作用的网络结构和算法系统,就是近年来研究的成果,人工神经网络的理论系统也日趋成熟,适用范围也越来越广。

通过模拟人体神经系统信号传输原理,人工神经网络的各个节点也与人体内的神经元相似,能够通过连接权值进行非常紧密的联系。在实际应用中,如果神经元的输出大大超过了网络内部神经元阀值的时候,这个人工神经网络就会输出信号,这个信号也就是成为了下个神经元输入的信号。人工神经网络是模拟人的神经系统创建的,自然与人的神经系统很相似,要通过不断的应用、训练才可以保持较为良好的状态,在实际操作中,人工神经网络的性能是由各个节点的激活函数、网络的拓扑结构以及网络的训练方法决定的。较为常用的BP算法就是通过对网络连接权值的不断调整来达到训练人工神经网络的目的。

二、人工神经网络的相关建模方法

就现有研究来看,人工神经网络的建模方法主要包括模糊建模和混合建模,这些具体而有效的建模方法给采煤综放工作面生产过程自动化提供了较为科学的理论指导,是提高采煤效率和降低采煤工人劳动强度的有效举措之一,以下是对人工神经网络建模的具体介绍。

(一)人工神经网络的模糊建模方法

在煤矿的实际工作中,传统的数学建模方法有其局限性,不能适应较为复杂的问题,严重影响了煤矿的生产效率。模糊理论正是在这种大背景下出现的,它通过有效的实验方法,将实验数据总结汇总,将实验汇总的数据作为模糊规则,然后依据相关模糊理论进行实际的人工神经网络建模。这种建模方法的优势是能够较为快速的预测出新输入数据接下来会输出的结果。煤矿在应用模糊建模方法后,对于生产过程的预算也就更为准确,便于企业做出相关决策。整个模糊建模方法主要由三个部分组成,既模糊化、推理机制、解模糊,这是模糊建模的一个有机整体,是这种建模方式的核心价值所在。

(二)人工神经网络的混合建模方法

除了模糊建模方法之外,人工神经网络还有一种混合建模方法,这种建模方法是依托智能算法的进步而出现的,现已广泛应用于煤矿生产。近年来,为了适应人工神经网络的发展,包括粒子群算法和遗传算法在内的智能算法取得了较大的发展,这种建模方可以对实际工作中比较复杂的参数进行优化处理,进而提高生产效率。

1.粒子群算法建模

粒子群建模简单来说就是利用较为成熟的计算机语言的算法对相关生物的群体行为进行模仿,然后进行建模,在具体操作中,粒子群算法建模要避免碰撞而飞离最近的个体、飞向目标、飞向群体中心,这也被称为粒子群建模方法的三大原则。

2.遗传算法

遗传算法就是将计算机技术和进化论联合运用于人工神经网络建模。在实际工作中,遗传算法应用了当前最为先进的编码技术和遗传操来做铺垫。在Holland体系中,GA就是一种较为简单的遗传算法,各种不同形式的二进制串就是其具体的操作对象。但在煤矿工作中,如果是要通过参数来进行问题分析,遗传算法的研究对象就可以是一个参数组,在这个参数组中,遗传算法具体是通过这个参数组的适应度来表现其好坏情况。通常情况下,遗传算法在具体操作中就是通过对基础的参数群进行有效分析,其选择个体是依据这个个体的适应值比例,然后通过交叉和变异进的方法诞生下一个组种群,这个过程可以持续下去,直到满足生产需求的参数值出现为止。遗传算法也是一种优选的方法,它将遗传算法的优点和人工神经网络的特点进行了有机结合,通过遗传算法可以进行前期模块的优选,建立一个合乎现实情况的非线性模型,然后进行与模糊建模方法相类似的实验数据收集,分析最为有效的网络结构,在满足预测的情况下实现了参数的优选。

三、人工神经网络应用在采煤技术上效果

通过上文介绍,在采煤中利用人工神经网络是为综放工作面生产过程实现自动化提供相对应的理论依据,减轻采煤的劳动强度并提高采煤效率是其目的所在;人工神经网落还能够对采煤工作中的相关生产设备的性能做有效的检查,能够在最快的时间内发现机械故障,及时的排除机械故障,极大的降低了煤矿安全事故的发生率;人工神经网络还能够将采煤生产设备工作面的具体信息,快速的反馈到地面,然后通过先进的计算机技术对数据进行相关处理,实现信息资源共享,采煤过程中对人工的依赖也会降低,为日后的无人操作打下了坚实的基础。

将现代化的人工神经网络应用于采煤,可以实现对综放工作面自动化的有效控制,它将整个采煤的综放工作面看做是个有机的整体,在条件允许的情况下进行仿真模拟,通常情况下都是应用MATLAB软件来及进行仿真模拟,可以系统化的管理整个采煤过程,排除采煤过程中的相关机械故障,在提高采煤效率的同时实现了安全生产,人工神经网络值得在采煤技术中大力推广、应用。

四、结束语

可以将综放工作面看做是整个采煤系统实现自动化,这也是日后采煤自动化发展的一个重要方向,这种思维模式有效避免了在没有考虑综放工作面控制功能而进行自动化的情况。多年的实践表明,神经网络技术应用于煤矿开采中可以有效分析、诊断采煤工作中的一些问题,为日后采煤规划提供了强而有力的依据,其在采煤领域的应用空间还非常宽阔,值得进一步研究、拓展。

参考文献:

[1]郑胜友.人工神经网络在采煤技术上的应用[J].科技风,2012(10).

[2]董丽丽,乔育锋,郭晓山.遗传算法和人工神经网络在煤矿突水预测中的应用研究[A]. 智能信息技术应用学会.Proceedings of 2010 International Conference on Management Science and Engineering (MSE 2010) (Volume 3)[C].智能信息技术应用学会:,2010(5).