欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

变电站结构设计大全11篇

时间:2023-07-30 10:16:46

变电站结构设计

变电站结构设计篇(1)

1变电站土建设计常见问题

1.1变电站地址选择方面的问题

变电站土建工程是工程特殊复杂,变电站内运用到高电压、大电流的电器设备,内部结构复杂,并且各电路系统之间相互交织,不良的气候条件和自然灾害的出现和发生,比如冰冻、洪涝、特大暴雨、风雪、地震以及雷电等,极易损坏电气设备,造成电路系统短路,导致火灾或爆炸等严重安全事故。与此同时,设备使用和运行过程中产生的噪音等形成噪声污染,影响周围人民的日常生活,在实际施工过程中,如果变电站选址不当,选择低洼或暴雨雷电频发区域,会引发上述问题,影响变电站的安全可靠性,造成经济损失。因此,变电站地址的选择至关重要,然而在一些变电站土建结构设计中,由于土建结构设计人员不重视变电站选址,在选址前未进行缜密调查,致使变电站选址不合理,成为土建结构设计中的凸显问题之一。

1.2土建结构稳定性和安全性方面的问题

变电站内部使用电气设备众多,且结构复杂,电气设备的工作环境也不同,安全性成为变电站土建工程设计中的重要问题。1.2.1荷载设计方面存在的问题荷载的设计值取值是永久组合值的1.5倍,但设计师通常混淆设计值与永久组合值,错误使用。当地基变形未超出设计值时,即被视为不满足设计要求,就需要增加基础底面积和深度,浪费工程材料。设计师在进行结构设计时,误认为屋面全跨布置产生最大内力,忽视半跨式设计的可荷载更大这一特点,进而影响结构的稳定性。变电站中存在大量的建筑结构,其使用性能关系到建筑的整体质量,是变电站重要的组成部分,如果建筑基础不牢固,土建结构设计不当,将会降低建筑结构稳定性和耐久性,缩减建筑本身使用寿命,影响变电站的正常运行,变电站内部使用的电气设备对工作环境要求不同,如果土建设计人员在设计变电站的主体建筑结构时,对潜在安全问题不采取相应的预防措施,会影响变电站的正常供电,甚至威胁生命安全。1.2.2建筑物结构质量不合标准变电站是电能供应的基础设施河核心部分,在变电站土建过程中,应高度重视土建结构的安全性、稳定性和耐久性,进行变电站建设时,如果选用的建筑构件质量不附和标准,变电站选址时地基不牢固,建设时为减少工程量加快施工进度,未将地基夯实,地基建筑面积未达到标准规范要求,就忙于施工,都会导致建筑物的结构性能差,安全性和稳定性降低,影响变电站安全性及使用寿命。

1.3站内整体布局方面的问题

1.3.1设计图纸方面存在的问题土建结构设计图纸是土建结构施工的重要参考依据,是整个土建结构施工中的重要一方面,如果结构设计图纸中存在较突出的设计缺陷和问题,尤其是设计图纸的科学规范性和标准化方面,将会对后续的施工建设产生错误的指导,造成施工干扰和困难。1.3.2尺寸设计存在的问题针对变电站土建结构设计工作,具体的构件尺寸设计方面存在诸多较为突出问题,特别是设计室外变配电构架中所使用的钢结构构件厚度时,设计人员缺乏专业经验,忽视节点构造需求和结构厚度的重要性,只单一依据强度以及稳定性计算数据进行设计,或者为谋求更高的利润,追求利益最大化,而选用厚度不足的设计模式,如果在后期使用中设计的相对应构件厚度不能满足构造应用的需求,就会产生一些安全隐患,影响整体土建结构设计效果以及安全稳定性。1.3.3保护层厚度设计不合理目前大量变电站存在内部布局不合理的问题,变电站除建筑整体结构外,还使用大量的电气设备,而绝大多数电气设备对安装环境都有较高要求,站内建筑平面布局的不合理直接影响电气设备的安全稳定。部分土建结构设计人员在具体设计过程中,未能充分考虑电气设备安装方面的注意事项,导致建筑结构与电气安装工程发生冲突,部分设计人员在设计过程中忽视细节问题,例如通风口直径过大且未设置防护网,为设备运行设下了潜在的安全隐患。1.3.4间距设计土建结构设计中,对于伸缩缝间距设计争议颇大,按照设计规范标准,要求如果屋面不进行隔热层设计,应确保间距不超过0.5m,由于施工材料与结构会随温差的变化发生伸缩,加之设计人员未严格按照相关设计要求标准进行伸缩缝间距设计,导致目前很多建筑即使设置伸缩缝,仍存在温度裂缝现象。

2针对现阶段建设设计问题的解决措施

2.1土建结构设计前进行可行性研究

由于变电站土建工程周期长,使用设备数量种类多,参与人员众多,在前期调研时,应对变电站选址、电网规划、供电需求、人员流动等进行综合分析,搜集变电站选址处的地质资料,对地质状况、承载能力和环境进行实际勘察,为变电站土结构设计提供可靠依据。依据变电站的选站位置、建站面积等因素及当地政府的审查批复意见,科学论证变电站土建结构设计,确保设计的可行性。

2.2合理精确进行变电站选址

进行变电站土建结构设计时,变电站选址涉及变电站的正常稳定运行及高效利用,在确保选址方案科学合理、具有可行性的前提下,还应充分考虑以下要素。2.2.1确保周围环境变电站选址应尽可能选择在周围环境良好的地区,选在负荷中心,尽可能建设在进出线走廊,以便于变电站与周围环境相协调,交通便捷,便于工作及运输人员的正常工作。选址区域最好在开阔、平坦及居民区较少的区域,能够对噪音有一定缓冲的地方,最大限度减少因设备运行产生的噪音对周围居民的影响。如选址区域整体环境较差,应在上风位建设变电站,降低周围不良环境对变电站的影响。2.2.2地质条件的选择我国地质结构复杂,地形地貌多样,影响变电站土建施工,所以变电站进行选址时要充分考虑工程所在地的实际地质情况,尤其是要避免风口、断层、滑坡、塌陷等自然灾害高发区域,避开山坡,降低因滑坡和滚石对站内电气设备的损坏,变电站站址最好选择在高地势处,避免因洪水堆积低洼区域造成影响,确保变电站充分的发挥作用。2.2.3遵循电气设备及线缆进出线的规范和用地原则变电站地址应在负荷中心较近处,且与工程所在地城乡规划相协调,在比较开阔的区域设置进出线走廊应,以便于电缆埋设及进出线架空。在不影响变电站正常建设的前提下,要严格遵循节约用地原则,减少土地占用,节约经济支出。

2.3优化结构荷载取值

在进行土建工程结构设计时,荷载取值实际设计过程中,设计人员需要综合考虑全跨布置的取值范围和半跨式结构可能承受的应力范围,以最危险状况下的极值来设计,从而确保土建结构的稳定性。此外,在分析设计积雪荷载时,应分别对全跨和半跨情形进行分析,半跨式对积雪均匀的不同情况进行分析,全跨式需分析均匀与不均匀分布产生的影响,以确保屋面结构的安全性。

2.4重视设计安全性

变电站土建设计要从多角度出发,充分考虑建筑结构寿命和周期,做好建筑设计安全措施,进行科学的预测和分析,按照变电室安全标准,科学设计配电室穿墙套管与地面之间的距离,同时还应考虑变电站内部建筑物的实用性,多将休息室与主控室临近设计,根据实际需求在配电室与主控室之间设置外开门,预防火灾发生时及时疏散人员得到,接近主变侧留门窗满足防火标准,使变电站质量达到合格的水平,严重杜绝安全隐患。

2.5重视工程建设质量

针对工程建设中的质量问题必须高度重视,变电站土建设计人员首先应从思想上提高对施工质量重要性的认识,增强责任意识,树立安全意识,着眼于工程的安全性和耐久性,通过科学分析、精确的理论计算及实验检验,进行建筑结构设计,确立科学合理的结构体系,延长变电站的使用周期到规定的使用寿命之上。

3结语

综上所述,变电站工程项目随着我国电网规模的扩大而与日俱增,变电站土建设计涉及整个工程的质量、安全性及可靠运行性,潜在安全隐患影响正常电能的供应和使用,阻碍正常生活生产的和经济运行,威胁工作和使用生命安全,必须足够重视土建结构设计,结合土建设计理论与实际工作,分析和研究变电站土建设计中常遇到的问题,制定科学合理的设计方案,提高施工质量,从根本上消除变电站土建工程中现存的以及潜在的各种问题和安全隐患,推动我国变电站土建设计工作迅速长远发展。

参考文献

变电站结构设计篇(2)

中图分类号:U386 文献标识码:A 文章编号:1009-914X(2017)14-0078-02

1 设计条件

1.1 工程地质及水文地质

经本次勘探查明,站区基础持力层选取粉质粘土混碎石:灰黄色为主,稍湿,硬可塑~硬塑,干强度中等,韧性中等~较低,无摇振反应,碎石含量20%~40%,粒径1.0~5.0cm,呈亚圆状,中风化;局部见漂石。厚度在3.2~10.6m。地基承载力特征值fak=160kPa。

拟建站区在雨季局部降雨量较大时,站区内地表水短时间内水量较大。站区水位一般在0.7~2.4m左右,水位随季节变化不大。站区地下水对混凝土无腐蚀性,对钢筋混凝土结构中的钢筋无腐蚀性,对钢结构有弱腐蚀性。

1.2 主要技术数据

基本风压值:0.87kN/m2

据《中国地震烈度区划图》(1/400万),本站设计基本地震动加速度为0.10g;据《建筑抗震设计规范》(GB50011-2001)抗震设防烈度为7度,站区建筑物按7度设防烈度进行设防;设计地震分组为第一组。建筑场地类别为Ⅱ类,属于抗震不利地段。

1.3 主要建筑材料

a)混凝土等级

素混凝土垫层C15

钢筋混凝土C25~C40

b)水泥采用42.5普通硅酸盐水泥

c)钢筋:HPB300级钢筋;HRB400级钢筋、RRB400级钢筋

d)型钢:采用Q235・B

e)块石:强度不低于MU30

f)砖:地面以下强度不低于MU15的水泥砖,地面以上采用MU10烧结多孔砖。

2 站区总平面布置与交通运输

2.1 全站总体规划

本变电站建设规模最终容量为3台180MVA主变压器,本期建2×180MVA,征地按远景占地面积一次征用。站区靠近负荷中心,出线走廊较宽敞,出线方便。变电站110kV出线向南,220kV出线向西,35kV采用电缆出线。

2.2 站区总平面布置

采用户外GIS方案,根据工艺要求,220kV屋外配电装置布置在站区西侧,110kV屋外配电装置布置在站区南侧,屋外无功补偿装置布置在站区东侧,35kV配电装置及合成泡沫喷雾室、主变场地布置在220kV屋外配电装置和主控制楼之间。主控通信楼位于站区东北侧,主控通信楼内各房间的布置方便观察各配电装置和运行维护。

2.3 竖向布置

(1)站区场地自然标高7.5~15.5m,频率为1%高水位3.29m,初步确定场地设计标高为10.93~13.10m。110kV配电装置场地设计标高12.31m,设计为一个台阶;其他场地放坡处理,坡度3%~4%。

(2)站区排水

站区生活污水考虑化粪池、污水生化处理池、人工湿地处理达到国家排放标准后,排至站外河道。

根据站区地形和土壤排水性能,场地排水方式均采用地面自然散流排渗和采用下水道排水系统相结合的方式,路边设雨水口,站区雨水、电缆沟排水、经油水分离后的事故油池排水,通过管道汇集后,排至站外河道。

(3)建筑物室内外高差,除主控制楼为0.55m外,其余均为0.30m。

2.4 交通运输

变电站大门朝北,新建进站道路与展白线相接。新建进站道路约500m。站内外道路均采用公路型,混凝土路面。站内运输变压器的道路采用4.5m宽,转弯半径12m;主变场地环行消防道路4.0m宽,转弯半径9.0m,其余道路为宽3.0m;主变运输道路转弯半径9.0m,其余均为7.0m。

2.5 站区绿化

根据“两型一化要求”,220kV、110kV出线架下设备区不设操作地坪,不采用人工绿化草坪,采用碎石地坪,为避免长出杂草无法进行机械维护。先铺土工无纺布一层,再铺200厚碎石。

3 变电站建筑

本工程按照国家电网公司关于“两型一化”的要求,按照变电站的功能要求,本工程对各建筑物进行了调整和精简。

3.1 全站建筑物一览表

站内主建筑物包括主控制楼、35kV配电装置及合成泡沫喷淋室。全站总建筑面积为1132.5m2,具体详见表1。

3.2 主控通信楼建筑

(1)主控制楼建筑平面布置:

将各工艺专业功能相近的用房尽量合并,以节约建筑面积,便于运行管理。一层布置有继电器室、蓄电池室(1)、蓄电池室(2)、安全工具间、保安室及卫生间,二层设主控室、计算机房、男值班休息室、女值班休息室、男女卫生间、备餐间、办公室。继电器室内的继电屏位按110块考虑,纵横向框架均为7.8m,综合考虑了继电器室的地面采用电缆沟所需的开间尺寸。继电器室上方布置主控室和计算机房,计算机房包括了通信的屏位。7.8m的开间和进深方便结构做成井字楼屋盖,1.95m左右的次梁间距与屏前屏后的照明相对应,使继电器室、主控室、计算机房的室内空间简洁美观。继电器室等靠近各配电装置场地,使电缆尽可能短捷,主控室内便于观察配电装置场地的运行情况。

(2)主控通信楼立面造型及建筑形象设计:

力求简洁、舒展,并充分展现现代工业建筑的特点。通过色彩的搭配,点线面的组合来体现国家电网公司企业文化特征。

(3)建筑装修:

1)外墙

采用环保型建筑涂料饰面。

2)屋面

1.5mm厚高分子防水涂料及1.5mm厚高分子防水卷材的复合防水层+钢筋混凝土刚性防水层+40mm厚聚苯乙烯挤塑保温隔热板。

3)吊顶

为了降低层高,节约投资,除卫生间采用PVC扣板吊顶之外,其余的房间均不做吊顶,用白色内墙环保型涂料刷白;蓄电池室、用耐酸涂料。

4)门

主控制楼的主入口大门采用节能型铝合金门,主控室和计算机房的外门用乙级钢质防火门,主控室和计算机房之间的门才用普通铝合金玻璃推拉门,电池室用乙级钢质防火门,余房间为成品木门。

5)窗

外窗用节能型铝合金窗,中空玻璃(卫生间用磨砂玻璃);蓄电池室用喷塑节能铝合金窗,磨砂玻璃。

6)楼地面及内墙面见表2

3.3 35kV配电装置及合成泡沫喷雾室

采用一层建筑,跨度8m,长62.20m。布置有35kV配电装置及接地变、合成泡沫喷雾室。

建筑装修外墙及屋面同主控制楼,内墙面采用普通乳胶漆墙面,屋面板底采用普通白色涂料刷白两度,氟硅自流平地面,钢质大门,节能型铝合金窗。

1.3.4 辅助建筑

在站区内的消防砂箱,位于站区西面。所有建筑立面处理均与主控制楼协调。

各建筑物门、窗色彩与主控制楼协调。

4 变电站结构

4.1 主控通信楼

主控制室、继电器室由电气工艺决定,需要空间大,中央尽量少立柱,荷载大,又要求结构整体刚度好,因此采用二层钢筋混凝土框架结构。为提高屋面防水的可靠性,屋面同楼面统一采用现浇梁板结构。地面以上部分框架填充墙采用烧结多孔砖。基础采用钢筋混凝土独立基础。

4.2 35kV配电装置及合成泡沫雾室

35kV配电装置及合成泡沫喷雾室采用单层单跨框架结构,屋面采用钢筋混凝土现浇结构,基础采用钢筋混凝土独立基础。地面以上部分框架填充墙采用烧结多孔砖。

4.3 屋外配电装置构支架

屋外变电构支架采用钢管结构。

220kV构架:220kV出线梁底标高14.5m,构架端撑及边柱采用Φ377×8,其余采用Φ325×8热镀锌钢管,钢梁采用镀锌正三角形钢桁架梁,梁、柱采用铰接;220kV构架及横梁防腐采用热镀锌防腐。

110kV构架:110kV采用双层出线,出线梁底标高分别为10.0m、16.0m,引线构架采用Φ273×8热镀锌钢管;双层出线构架采用Φ299×8热镀锌钢管,端撑及边柱采用Φ377×8热镀锌钢管,钢梁采用镀锌正三角形钢桁架梁,梁、柱采用铰接;构架及横梁防腐采用热镀锌防腐。

主变跨线梁底标高14.5m,构架采用Φ325×8热镀锌钢管;钢梁采用镀锌正三角形钢桁架梁,梁、柱采用铰接,构架及横梁防腐采用热镀锌防腐。

主变基础:主变压器由于重量大,变形要求高,采用钢筋混凝土片筏基础。

GIS设备基础及主变压器基础:220kV配电装置、110kV配电装置的GIS设备基础对沉降较敏感,采用钢筋混凝土整板式基础,结合电缆沟设计,基础顶部距室外地坪标高为-0.80m。

设备支架采用热镀锌钢管。

构支架采用杯口插入式连接,独立基础,天然地基。

4.4 其它建、构筑物

消防砂箱采用砖混结构,钢筋混凝土条形基础。

电缆沟采用砖砌电缆沟结构,过道路电缆沟采用钢筋混凝土涵洞。室内、外电缆沟均采用成品沟盖板,电缆沟纵向排水坡度≥0.5%。

事故油池采用现浇钢筋混凝土结构,油水分离式。

污水处理生化池采用现浇钢筋混凝土结构。

4.5 结构抗震措施

站址所在地根据7度抗震设防的要求,主控通信楼、35kV配电装置及合成泡沫喷雾室的结构框架抗震等级为二级。

5 地基基础

由于本工程站址范围局部地段由于地势较低,以致回填较厚,最大回填高度3.2m,基础下部考虑采用级配碎石回填。站区西侧暗塘采用级配碎石回填。对场地及建筑物地面等处的填土,施工阶段必须严格控制回填土的质量,才能保证道路、沟道等不开裂,也才能有效保证工程的整体质量。

参考文献

变电站结构设计篇(3)

引言

随着我国社会和经济水平的不断提高,在供电质量方面的要求也越来越高。在资源大量消耗的现状下,如何通过可再生资源,更好的为社会提供稳定、安全、可靠的电力,是目前我国电力行业的核心目标。随着我国的电力行业的不断发展,同时也面临着大量的机遇和挑战。大容量的发电厂往往和负荷中心的距离较远,需要进行远距离的高压输送,提高了出现故障的几率,从而导致大规模停电的产生。全球发生的多例大规模停电事件也让人们开始关注电力系统的稳定性。在现代科学技术的发展下,通信技术、计算机技术等逐渐也开始应用在电力系统中,提出了智能电网理念,可以有效保证电力输送的稳定性和安全性,更好的为社会服务。

一、智能变电站结构

1.1智能变电站和智能电网

智能变电站和智能电网之间有着密不可分的联系,可以说智能电网中包括了智能变电站。智能变电站的设计是建立在智能电网的基础之上的,智能变电站的存在保证了智能电网的数字化、智能化、互动化等多项特点,是实现智能电网的重要保证,主要体现在以下几个方面:

第一,支撑智能电网。智能变电站有着统一的标准和信息模型,可以保证智能电子设备的互动性,为智能电网的信息化奠定基础。智能变电站要建立在数字化的前提下,有着性能优良、抗干扰能力强的特点,并具备自我检测和诊断的能力。通过以太网交换技术,能够确保智能电网的精确度,使数据能准确、快速的传输,为智能电网提供数据基础。通过稳定智能变电站中的电子设备完成动态数据、稳态数据和暂态数据的采集与处理工作,提高智能电网的数据处理能力。第二,加强全网联接。变电站是智能电网能量传递的重要枢纽,因此智能变电站的存在能保证电网中各个节点的有效连接。当智能电网中发生事故时,可以进行有效的控制,并提高电网的事故预防能力,保证电网的稳定性[1]。第三,高电压等级的智能变电站能够满足智能电网中对高压输电网架的要求。根据我国的实际情况,智能电网中的主要输电网架都是高压线路,必须要通过高电压等级的智能变电站进行调节,能够解决高电压线路中大容量点电能传输所存在的问题,保证我国高压输电网架的稳定,促进我国电力建设的完善。第四,通过中低压智能变电站,可以同时支持风能发电、太阳能发电等清洁分布式电源的接入,为智能电网提供了中间歇性电源“即插即用”的功能。第五,为智能电网的实时监督提供了保障。在智能变电站中,通过大量先进电子设备的应用,可以获取到电网中的运行数据,对设备的维护检修提供基础,提高了系统的实用性。

1.2智能变电站与数字变电站

数字变电站是确保智能变电站实现的基础,相比之下,数字变电站更注重过程,而智能变电站更注重结果。和数字变电站有所区别,智能变电站强调的是物理集成和逻辑集成。强调了智能设备在智能变电站中的应用,不仅可以负责传统设备的测量、控制以及监测等各项功能,还可以进行相应的计量和保护等。智能设备是由一次设备和智能组件之间的组合,有着测量数字化、控制网络化、状态可视化等特征。而逻辑集成指的是智能变电站注重逻辑集成,通过对系统的虚拟装置,可以根据实际情况,选择对智能变电站的区域性或总体性的协调,支持在线决策、协同互动等多种应用。智能变电站和数字变电站的区别可以分为两个方面:

第一,出发点不同。数字化变电站的目的是满足变电站的自身需求,通过建立统一的信息通信平台,在变电站内部实现一次、二次设备的通信,注重的是变电站内部的设备和相互之间的联系。而智能变电站是建立在整体电网的要求上,建立全网统一的信息通信平台,更加注重电网中各个智能变电站之间的联系,以及变电站和控制中心之间的通信,提高电网中的通信水平。另一方面,智能电网中还可以支持风能发电、太阳能发电等多种清洁分布式电源,满足“即插即用”的要求。

第二,设备集成化程度不同。数字变电站具备一定的设备集成和功能优化,在以太网技术的基础上,将一次、二次设备之间相融合,符合了智能电子装置的标准。和数字变电站相比,智能变电站的设备集成化程度更高,智能设备体现的更加全面,促进了一次、二次设备的一体化进程[2]。

二、智能变电站数据通信网络性能要求

通信网络是变电站自动化系统内部和其他系统之间进行交流的重要途径,数据通信网络是否稳定、高效、实时是判断系统信息化、自动化的重要标准。在智能变电站中,数据通信网络是各种设备与系统之间的信息传输纽带,要满足相应的国际标准和规范,建立统一的通信接口。随着变电站自动化技术的不断发展,需要进行传输的数据越来越多,对数据通信网络的要求也在不断提高。数据通信网络必须能够应对目前大量的电量数据、操作数据以及故障数据等。另一方面,目前对数据通信网络的实时性和稳定性要求非常高,因此在对数据通信网络进行设计时,要考虑到网络的冗余性能和无扰恢复能力。从总体来说,对智能变电站通信要求的性能要求可以分为以下四方面:

第一,分层结构。智能变电站的分层结构是由分层架构决定的,数据通信网络的分层是确保智能变电站分层架构的前提,根据对智能变电站的不同需求,要选择相对应的网络通信技术和结构。

第二。实时性。在智能变电站中,需要对大量的实时运行信息和操作控制信息进行处理,这些信息往往都具备一定的实时性,所以在建立数据通信平台时要注重数据传输的实时性。

第三,可靠性。电力系统有着连续运行的特点,这就意味着智能变电站的数据通信系统也要一直处在运行状态,一旦数据通信系统出现运行故障,会对智能变电站的整体运行产生影响,造成巨大的经济损失,甚至伤及人们的人身安全。因此,数据通信系统的可靠性是在设计时要考虑的重要因素。

第四,电磁兼容性。变电站在日常的运营中会受到多方面因素的影响,例如电源、雷击、跳闸等,使得通信系统常常要在强磁干扰的环境下工作,因此对网络的电磁兼容性有着一定的要求,要避免强磁干扰而产生的通信障碍。

三、智能变电站数据通信结构体系

3.1智能变电站结构设计

根据我国电网公司对智能电网出台的相关规定,在建立智能变电站时,要包括过程层、间隔层和站控层。在过程中包括变压器、断路器、隔离开关等一次设备;在间隔层中包括继电保护装置、系统测控装置等二次设备以及一些控制器和传感器通信系统;站控层中包括各种自动化监视控制系统,对通信系统中的实时情况进行监督,对智能变电站中的设备进行全方位的监视、控制以及信息交互,保证变电站数据采集、监视控制、电能量采集等多项工作的正常进行。

和数字化变电站相比,智能化变电站的设备集成化程度更高,更好的实现了智能设备的作用,将一次、二次设备一体化,提高了变电站的工作效率。除了过程层中的测量和控制功能不变之外,智能化变电站通过集成将间隔层中的保护、控制与监视融合到过程层中。这样一来,这些智能设备除了能够进行测量和控制之外,还具备保护、监视的功能;另一方面,智能设备通过标准化接口接入电网的高速网络后,能够更好的实现智能设备和变电站之间的信息交流。在此基础上,可以对智能变电站中的数据通信网络进行结构设计[3]。

3.2智能变电站总线设计

在传统的数字变电站中,总线设计分为站级总线和过程总线两种方式。站级总线指的是变电站层和变电站层之间的通信方式,通过站级总线,各个变电站之间能够进行数据通信,并可以和上级运行中心以及调度控制中心相联,传输相应的数据信息。

过程总线指的是在过程层和间隔层之间的通信。通过过程总线,这两者之间可以进行数据通信,具有一定的稳定性和实时性。如非常规互感器采样值的传输、保护装置控制命令的传输等。根据站级总线和过程总线的特点,数字变电站中有两种组网模式:独立过程总线模式、站级总线与过程总线结合模式。独立过程总线模式中,间隔层的智能电子设备要通过两套以太网接口,分别接入站级总线和过程总线。在这种模式下间隔层和过程层的数据难以进行共享;站级总线与过程总线组合模式下,变电站中的一切智能设备同时接入同一个物理网络。无论是变电站层之间的装置还是智能电子装置之间,都能实现共性和交互,但是由于网站中存在大量的数据信息,因此很容易引发网络资源竞争问题。

和数字变电站相比,智能变电站中只有站级总线一种总线模式。在智能变电站中,逐渐开始淡化过程总线的概念,间隔层和过程层之间的数据信息传输通过变电站中的智能设备进行。设备以及系统之间的数据通信通过以太网技术实现,保证了数据通信传输的稳定性和可靠性。

3.3安全结构设计

智能变电站中的数据通信是建立在以太网技术上的,有效降低了变电站的成本。但是在智能变电站中,面临着各种网络安全威胁。其中既有变电站内部的威胁,也有来自变电站外部的威胁,其中主要包括非法使用、截获信息、篡改数据信息、恶意程序、权限管理不当等。智能变电站是以TCP/ IP协议为基础的以太网技术建设的,通过加密技术、数字签名技术、容错技术等多种方式对安全结构进行完善[4]。

四、结语

随和我国社会经济的不断发展,对电力系统的要求越来越高,智能变电站开始兴起,智能变电站中数据通信网络系统有着重要的作用,负责变电站中各类数据的传输。在智能变电站中逐渐将智能设备一体化,提高了智能变电站的工作效率,促进了我国电力行业的发展。

参 考 文 献

[1]毕艳冰. 面向智能电网的通信中间件的关键技术研究[D].山东大学,2013.

变电站结构设计篇(4)

中图分类号:TU96+3文献标识码:A

1电气主接线的确定

1.1 主接线的基本形式

主接线的基本形式,就是主要电气设备常用的几种连接方式,概括为有母线的接线形式和无母线的接线形式两大类。

(1)具有母线的电气主接线

①单母线接线:单母线接线是一种最原、最简单的接线方式。

②单母线分段接线

③双母线及双母线分段接线

③旁路母线接线方式

(2)无母线的电气主接线

①桥形接线:当具有两台变压器和两条线路时,在变压器线路接线的基础上,在其中间架一连接桥,则称为桥形接线

②单元接线:发电机与变压器直接连接成一个单元,组成发电机

1.2 箱式变电站对主接线的基本要求

概况地说,对主接线的基本要求包括安全、可靠、灵活、经济四个方面

安全包括设备安全及人身安全。要满足这一点,必须按照国家标准和规范的规定,正确选择电气设备及正常情况下的监视系统和故障情况下的保护系统,考虑各种人身安全的技术措施。

可靠就是主接线应满足对不同负荷的不中断供电,且保护装置在正常运行时不误动、发生事故时不拒动,能尽可能的缩下停电范围。为了满足可靠性要求,主接线应力求简单清晰。

灵活是用最少的切换,能适应不同的运行方式,适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使发生故障时停电时间最短,影响范围最小。

经济是指在满足了以上要求的条件下,保证需要的设计投资最少。在主接线设计时,主要矛盾往往发生在可靠性与经济性之间。

1.3 主接线的比较与选择

单母线接线是一种原始、最简单的接线,所有电源及出线均接在同一母线上,其优点是简单明显,采用设备少,操作简便,便于扩建,造价低。缺点是供电可靠性低。母线及母线隔离开关等任一元件发生故障或检修时,均需使整个配电装置停电。因此,单母线接线方式一般只在发电厂或变电所建设初期无重要用户或出线回路数不多的单电源小容量的厂中采用。

在主接线中,断路器是电力系统的主开关;隔离开关的功能主要是隔离高压电源以保证其他设备和线路的安全检修。由于隔离开关无灭弧装置,断流能力差,所以不能带负荷操作。

单母线分段接线是采用断路器(或隔离开关)将母线分段,通常是分成两段。母线分段后可进行分段检修,对于重要用户,可以从不同段引出两个回路,当一段母线发生故障时,由于分段断路器在继电保护作用下自动将故障段迅速切除,从而保证了正常母线不间断供电和不致使重要用户停电。

单母线分段接线既具有单母线接线简单明显、方便经济的优点,又在一定程度上提高了供电可靠性。但它的缺点是当一段母线隔离开关发生故障或检修时,该段母线上的所有回路到要长时间停电。

双母线分段接线有如下优点:可轮换检修母线或母线隔离开关而不致供电中断;检修任一回路的母线隔离开关时,只停该回路;

但双母线也有如下的缺点:造价高;当母线发生故障或检修时,隔离开关作为倒换操作电器,容易误动作。但可加装断路器的连锁装置或防误操作装置加以克服。

综上可知,单母线接线造价低而供电稳定性低,双母线供电稳定性高但其造价高且接线线路复杂,而单母线分段接线一方面线路简单,造价低,另一方面其供电稳定性也能在一定程度上能够得以保证。所以35kV母线选用单母线接线方式,10kV采用单母线分段接线。

1.4 高压接线方式

高压侧,采用负荷开关+限流熔断器作为就压器的主保护,一般有环网、双电源和终端三种供电方式,有两组插入式熔断器和后备保护熔断器串联进行分段范围保护。限流熔断器一相熔断时必须能联动跳开三相负荷开关,不发生缺相运行。线路侧负荷开关必须配有直流电源电动操作机构,可实现无外来交流电源状态下自启动。环网回路必需配置检测故障电流用的电流互感器或传感器。

高压开关选用可靠性高和具有自动化装置及智能化接口的先进的产品:如SF6负荷开关、压气式负荷开关、真空负荷开关等。

环网供电单元一般至少由三个间隔组成,即二个环缆进出间隔和一个变压器回路间隔。

2箱式变电站箱体的确定

2.1 箱体结构的确定

箱式变电站按结构主要有美式箱变和欧式箱变。欧式箱变造价低而美式箱变体积小,约为同容量欧式箱变的1/3~1/5。常规土建变电站占地面积最大,欧式箱变次之,美式箱变常规土建变电站建造周期最长,欧式箱变次之。综合考虑一般35kV箱式变电站的箱体选择欧式箱变。

2.2 合理配置

根据实际情况可以采用不同的箱变配置方案,一般将主变压器和电容器等充油设备,放置在箱体外,设置两个箱体,一个35kV箱体,一个10kV箱体,其中一个箱体预留保护装置的位置。考虑节省资金,也可以将35kV断路器等设备放于户外,只设置10kV箱体。

箱体的底座和骨架一般采用槽钢和角钢焊接而成,顶盖和四壁采用金属板内衬阻燃材料压制而成,能起到隔热的作用。根据当地实际情况,可在订货时对主体结构提出相应的要求。

维护走廊是箱变正常运行和检修中的重要环节,箱变的一个缺陷就是空间狭小,厂家从成本和设备紧凑性考虑,维护走廊一般都尽量压缩。在选型时应该将维护走廊作为一项指标来考虑,不然会给将来的运行和维护,造成很大麻烦。

箱体的密封和防尘是一个重要方面,特别是保护装置对防尘等指标要求较高,应引起重视。

箱体的底板下面,一般作为电缆室,在考虑箱体基础的设计时,应顾及到电缆的安装和维护方便,应考虑人员出入、通风以及照明等方面的要求。

3箱式变电站总体布置

3.135kV箱式变电站高压室额定电压35kV ,低压室额定电压10kV。主变压器额定容量为500kVA,站用变压器额定容量为50kVA,接在35kV母线上。采用电缆或架空进、出线。在结构设计上具有防压、防雨和防小动物等措施及占地面积小、操作方便,安全可靠、可以移动等特点。箱式变电站主要包括4部分,分别为框架、高压室、低压室、变压器室。

框架:基本结构是由槽钢、角钢和钢板焊接而成,外股、门和顶盖用新材料色彩钢板制作。

高压室:装备真空断路器。包括三工位负荷开关、熔断器、互感器、避雷器等。

低压室:装备全国统一设计的GGD型固定式低压配电屏、包括主开关柜、计量柜、多路出线柜、耦合电容器。

变压器室:配备500kVA干式变压器。室顶装有温度监控仪启动的轴流风扇。

参考文献

[1] 文锋. 发电厂及配电所的控制[M]. 北京, 中国电力出版社, 1998

变电站结构设计篇(5)

1 前言

目前,我国的经济处于高速发展的阶段,在各方面的问题上都需要很高的要求,对于变电站的建筑结构设计也有很高的要求。变电站建筑结构设计应该具有创新意识,价格合理,在变电站的实用方面也应该增加其实用年限,在稳定性上使变电站能够更好的投入到生产中。外界条件变化万千,时常存在暴雨,地震等自然灾害,变电站建筑结构设计上应该更能适应这些自然灾害,能够更好的在自然灾害中存活。但保证这些需要变电站具有好的质量,无论怎样对变电站建筑结构设计都要考虑到质量问题,质量是变电站的一切能力的保证。因此,变电站建筑结构的设计一定要根据科学依据,借鉴国外的先进技术,在一定条件下,选择合适的材料,设计出符合要求的变电站结构。

2 变电站建筑结构设计对于其结构体系的要求

变电站的结构对于整体有很大的影响,结构影响变电站的抵抗自然灾害的能力,对于突如其来的暴雨,地震等有很强的适应生存能力,变电站就不会因为一点自然灾害的侵袭就坍塌,良好的变电站结构设计能够很好的保护国家的财产,延长其使用寿命。变电站的一部分结构需要留有孔隙,并且有的部位对于防治水的侵袭有极高的要求,因此在这些重要部位上使用的材料也有特别的要求,最好使用混凝土结构,采取现浇钢筋的办法,确保这些部位的牢固性,能有效的防治水对变电站结构造成的危害。在能够确保的经济范围之内,在变电站结构的一些细节上,也应该得到注意,在一些节点上,使用标准化的元件进行组合,尽量使节点等细小的细节达到完美,毕竟,细节决定成败。变电站的结构材料要因地制宜,尽量在较低的价钱上能够得到更好的效益,考虑外界环境对于变电站结构的影响,更好的使变电站的结构设计投入到生产和生活中,造福人类。

3 变电站建筑结构设计对于技巧问题的探究与讨论

变电站影响作用巨大,对于生产和生活都有很大的帮助,变电站的各种使用能力是依靠其的结构来完成的,如果变电站的结构因为一些自然灾害或者一些别的原因造成了坍塌,将会对人类和自然环境的和谐造成很大的危害,而且变电站的使用年限也要尽可能的延长,如果变电站的使用年限极端,是得总是不停的更换,将影响工作效率,更换浪费国家的金钱,影响国家经济发展,不利于变电站在生产和生活方面的使用。所以变电站的结构设计成为重中之重,设计要依托于外界环境的考虑,在经济合理的条件下,力求做到各方面完美,从整体考虑。

3.1 变电站的屋外结构

变电站的屋外结构有俩种构建方法,分别是局部联合的构建方法和全联合的构建方法。这两种构建方法在构建的时候,同样要考虑外界环境和温度,压强等因素的影响。对于在构建结构的过程中,也要考虑实际情况,根据需要也可以采取别的构建方法,不同情况采取的方法不同,有的适用单杠结构,有的适用空间结构,单杠结构要注意减少弯矩,弯矩对于单杠结构能否正常使用影响很大。无论什么样的屋外结构,它的作用都应该加强变电站的使用能力,质量上一定要符合要求,使变电站各部分的作用力能很好的平衡。

3.2 变电站屋外配备装置的设计

变电站的屋外配备装置长期处在与外界接触的环境,经受着自然环境的风吹日晒,这些自然条件的侵袭都会对屋外配备的装置造成极大的腐蚀危害,影响变电站的使用年限。因此,在选用变电站的屋外配备装置材料时候,在可能的条件下,尽量使用防腐的材料。并且,根据变电站所处在的自然条件分析,各种外界因素对于其腐蚀的程度,允许范围内,人工进行防腐,避免外界条件对于变电站的腐蚀,工作人员要定期对变电站屋外配备装置进行检查维修,把损失降到最低,有效的保证变电站的正常投入使用。

3.3 变电站墙壁出现裂缝的解决设计方案

变电站的外部在外界,由于温度等的影响,墙壁屋顶等部分干缩形成裂痕。所以在变电站的结构上应该设置一些控制温度的装置,确保变电站温度的平和,温度平和则不会对变电站造成太大的裂痕问题,确保变电站的牢固。而且裂痕也在一定条件下是因为巨大的压力,所以减小屋外结构对于其产生的压力也很重要,尽量使其减小对墙体造成的压力,这样在一定程度下,也可以减少裂痕的存在。

3.4 变电站后浇带的设置

有时变电站在进行建造的时候,一部分建筑物的长度会超过一定的范围,这就需要设置后浇带。后浇带的存在不要影响变电站整体的使用效果,并且每隔一定距离就要设置一个。后浇带的设置要在变电站的横切面上,这样既可以保证变电站的使用,也可以防止一些建筑物长度过长引起的危害。

4 处在不良情况下的处理方案

在进行变电站的结构建造的时候,要对即将建造的地方进行勘测,在基础设计方面,围墙和变压器都是需要考虑的,要求方面严格。围墙的建造在土地不够使用的情况,可以建造在墙上,这样为土地的节约做出了巨大的贡献,而且根据地形来设计建造形状,即节约了人力物力,也不影响美观,使得变电站在实用的同时,能够保持美观。变压器方面对于沉降范围的控制也有很高的要求,在变压器设置方面,沉降要控制在要求的范围之内,任何一点的差异都将引起变电站整个的使用情况。

5 总结

对于变电站建筑结构设计技术是需要实践的,根据实践情况来确定最好的设计技术。实践是检验真理的唯一标准,好的实践能确定好的方法。在建造过程中也要因地制宜,根据外界条件的不同来改变设计方法,更好的确保变电站的使用情况。变电站建筑结构的设计方法也要与国际接轨,吸收国外的先进技术和经验,精益求精,对于国外的错误,也要当做教训,避免在变电站结构设计上出错。变电站的工作人员也要积极学习有关变电站的相关知识,对于变电站要经常检修,出现问题及时解决,只有学好相关知识,才能在变电站出现问题的第一时间发现并解决。整体团结一致,使变电站更好的为人民服务,推动我国经济发展。

参考文献

变电站结构设计篇(6)

一、前言

随着社会的不断进步,我国对于电量的需求越来越大,变电站的数量也在不断增多。在变电站的土建设计中,结构安全性与耐久性是十分重要的。

二、变电站土建结构安全性

变电站土建结构的安全性,主要体现在变电站土建结构设计中整体结构的安全、土建结构组成部分的安全性、土建结构设计的安全性。在变电站土建结构设计过程中,这个安全性的组成部分,构成了土建结构安全设计的核心内容,也就是说在变电站结构设计过程中,需充分关注到这几个方面的安全,保证变电站土建结构设计中发生的安全问题控制在最小范围内。

三、变电站土建结构的耐久性

变电站土建结构的耐久性与土建结构设计的稳定性有直接的关系,同时也与变电站土建结构施工中使用的材料性能有关。在变电站土建结构设计的过程中,对结构耐久性产生影响的结构设计稳定性和材料的耐久性,都是内在的影响因素。

因此,变电站土建结构设计的安全性和耐久性,是变电站土建结构使用寿命和使用安全的重要内在影响因素。除此之外还有外在因素,如外界环境因素、混凝土结构以及质量、变电站土建结构的检测等。变电站土建结构在设计过程中,需充分考虑到建设地区的环境,如果变电站土建结构建设在较差的环境中,或是不利的环境下,需要在变电站土建结构设计过程中,做一些防护措施,所以在变电站土建结构设计过程中,需要充分考虑建设场地的环境因素。

除了外部的环境因素外,土建结构施工中使用的混凝土的质量和结构也会影响变电站土建结构的安全性和耐久性。混凝土的配合比、水灰比等,需要合理、科学,才能保证混凝土的质量,除此之外,变电站土建结构的检验也是影响其安全性和耐久性的重要因素。若在土建结构设计中忽略了结构的检验,就无法保证结构设计中的安全性和稳定性,所以需要建成后,定期对变电站土建结构进行检验。

变电站土建的耐久性就是指该建筑结构在使用范围、使用周期之内满足人们使用功能的能力、耐久性主要由变电站土建的两方面共同组成:①变电站土建的安全性;②变电站土建的适用性和使用周期内性能、变电站土建基本上由混凝土构造的,耐久性很大程度上决定于混凝土的耐久性,决定于混泥土的性质和质量、就目前而言,混凝土的耐久性是全世界建筑行业所关注的焦点和热点、变电站土建由于自然界的影响,自身结构和材料的影响,使用周期严重受到影响。变电站土建的耐久性是困扰全球建筑行业的重大问题,其主要原因表现在以下一些方面:

1、混凝土质量不达标

混凝土的性能方面,缺乏合理的多元化的混凝土指标,盲目的以强度作为唯一指标,导致混凝土的细度过度增加,盲目的提高混凝土中矿物成分的比例,这些都很大程度的影响了混凝土的耐久性。

2、混凝土保养不到位

很多工程为了增强进度,混凝土在施工过程中没有得到足够的养护,没有切实的保证混凝土的养护时间,这样就很大程度上降低了混凝土的耐久性。

3、混凝土土建受恶劣环境影响

由于全球环境污染不断的加剧,自然界的环境日益的恶化,各种工业废气以及酸雨等都是腐蚀变电站土建的重要因素,就我国而言,酸雨的范围已经达到了我国国土面积的30%。

四、变电站土建结构设计中需要遵循的原则

1、统一性

在变电站土建结构设计的过程中,需要根据变电站的实际建设场所,以及变电站的运行环境等特点,尽最大可能保证变电站土建结构的设计具有安全、可靠、经济、实用等特征,并且可以将建设工作的企业文化呈现在变电站土建结构设计中。

2、可靠性

在变电站实际工作中,其安全性和耐久性,与变电站土建结构设计的可靠性和稳定性有关,所以在设计过程中,电气设备的选择要合理,变电站土建结构设计要与环境保护相结合,保证变电站土建结构设计过程中,各个设计模块的分开和组合,均可满足变电站设备的安全、可靠。在变电站土建结构设计的图纸中需要将站区总体规划呈现出来,为变电站土建结构的施工提供可靠的设计保障。

3、经济性

在变电站土建结构设计的过程中,安全可靠、技术先进等都需要达到最优化,才能满足变电站功能的有效发挥。将其中多余、无用的功能剥除,在满足变电站功能有效发挥的基础上,也需要保证变电站土建结构设计的经济性。

4、时效性

在变电站土建结构设计的过程中,可以制定变电站土建结构设计动态修订制度,跟踪科学技术、电网的发展,可以不断地更新、补充、完善变电站土建结构设计技术。

在当前的变电站土建结构设计中需要充分考虑到影响其安全胜和耐久性的因素之外,还要遵守以上设计原则,以保证变电站土建结构设计的科学性和合理性。

五、提高变电站土建安全性和耐久性的措施

白城地处东北严寒地区,极端温差大且施工周期短,因此,在对变电站进行土建设计的时候,确保土建设计的安全性和耐久性是非常重要的。下面主要以白城地区变电站的土建设计为例,探讨了如何更好的提高土建设计安全性和耐久性的措施:

1、规范变电站土建安全性和耐久性设计标准

变电站土建的安全性与耐久性是建筑结构最主要的质量标准、如果变电站土建的安全性和耐久性得不到保证,将会对国民经济安全造成重大的威胁,国家必须加强对变电站土建安全性和耐久性方面的设计标准的规范,明确指定变电站土建的最低安全系数、最低使用寿命标准,加强耐久性的审查,对耐久性要求、安全系数和使用周期明确加以限制要求、不断的完善变电站土建安全性与耐久性的技术标准体系,鼓励地方政府根据当地的具体情况设置相应的规范和体系,做好变电站土建安全性与耐久性设计标准的规范,这是提高变电站安全性与耐久性的政策措施,能够为变电站土建设计提供一定的依据和标准。

2、科学合理的设计变电站土建

变电站土建的安全性很大程度上决定于变电站土建的设计是否合理,而变电站土建的耐久性又受到混凝土性能的影响,因此,在变电站的施工过程中,要合理科学的设计,加强施工过程的质量监管,切实的保证建筑的质量,提高其安全性与耐久性、在变电站土建的设计方面,要根据国家相关的技术标准和规范来严格设计结构,要根据变电站土建的特点和使用功能来选择合适的混泥土强度,科学的配置混凝土的比例,切勿盲目的追求混凝土的强度,细度以及矿物比例等、此外,在施工过程中要加强混凝土的养护,严格控制混凝土施工规范,按照要求,保证混凝土的养护周期和时间,避免为了赶进度而缩短混凝土养护的周期,在施工过程中要做好各项质量技术交底,保证工程质量,提高混凝土的安全性和耐久性。

六、结束语

综上所述,为了确保变电站土建工程的建设质量,在施工的过程中需要对每一个施工环节进行控制,并加强对变电站土建的安全性与耐久性的把握,从而建设出更好的变电站。

参考文献:

变电站结构设计篇(7)

1.引言

变电站结构设计不但要遵循国家规定的技术经济政策,同时结构设计时应重点做到安全适用,尽可能采取先进的技术,在确保结构质量的前提下应经济合理。

2.变电站结构体系考虑

对于变电站结构设计,应根据建筑的重要性、安全等级以及抗震设防烈度等而采用合理的结构体系。通过工程实践表明,对于变电站结构的梁及柱宜采用现浇钢筋混凝土结构,对预留孔较多的部位或防水要求较高的屋面、楼面宜采用现浇钢筋混凝土板。同时,变电站建筑物在经济合理和非强侵蚀介质环境的情况下,可采用轻型钢结构,如热轧轻型型钢、轻型焊接和高频焊接型钢、冷弯薄壁型钢以及薄钢板、薄壁钢管等作为主要受力构件的结构,并在构件设计上并应优先采用定型的和标准化的构件以及标准化的节点型式,以及优先采用与轻型钢结构相适应或配套的建筑材料。对于变电站结构的屋面大梁宜采用钢筋混凝土结构或钢-混凝土组合结构,受施工限制且跨度超过15m时也可采用钢屋架,对于跨度超过18m时也可采用网架结构。

3.变电站结构设计荷载取值技巧

变电站建、构筑物应根据结构破坏可能产生的后果(危及人的生命、造成经济损失、产生社会影响等)的严重性,采用不同的安全等级。500kV变电站的主要结构(如主控制楼、500kV配电装置结构)宜采用一级,其余结构宜采用二级。对于变电站中的屋外变电构架的关于导线荷载及设备自重的取值问题。导线荷载应由工艺专业提供,应考虑最低温、最大风、最大覆冰和安装检修工况条件下导线悬挂点所产生的水平张力、垂直荷重和侧向风压的标准值,导线的偏角,弛度和荷载因子D值。

4.变电站结构设计技巧

对于变电站的构件技及其材料的选择应满足使用年限要求,并应考虑材料供应,构件加工制作以及施工安装的具体条件,力求结构合理、构造简单,合理统一构件的尺寸和规格,便于工厂化制作和机械化施工。同时对于变电站中的最低设计使用年限25年的屋外配电装置构架、支架,可根据地区的工程经验采用钢筋混凝土环形杆结构。对于最低设计使用年限为50年的屋外配电装置构架、支架宜采用镀锌钢结构或钢管混凝土结构,横梁宜采用钢结构。

(1)紧凑型的屋外构架结构可采用局部联合布置方案或全联合布置方案,构架结构布置满足联合受力的同时,应尽量减少或消除温度应力的影响。变电构架柱一般宜优先采用人字柱结构或空间桁架结构;但根据工程具体情况,在满足运行、安装和检修条件下,也可采用单杆或单杆打拉线(条) 结构。而对于组成构架柱的结构杆件应尽量减少弯矩效应,当杆件承受较大弯矩时宜采用空间桁架结构。

(2)针对变电站建筑中的屋外配电装置构架,设备支架等露天结构,必须根据大气腐蚀介质,采取有效的防腐措施。对通常环境条件的钢结构宜采用热镀锌或喷锌防腐。通过结合工程实践经验,笔者认为对于人字柱的根开与柱高之比,不宜小于1/7。打拉线构架平面内柱脚根开与柱高(地面至拉线点的高度) 之比,不宜小于1/5。构架梁的高跨比(高度与跨度之比) :格构式钢梁不宜小于1/25;钢筋混凝土梁不宜小于1/20;单钢管梁直径与跨度之比不宜小于1/40,单钢管联系梁直径与跨度之比不宜小于1/50,采用单钢管梁时应注意采取预防微风振动的措施。

同时对于构架设计应设有便利维护检修人员上下的设施。对半高型和高型布置的构架应合理设置必要的维护检修和运行操作的通道。高型及半高型屋外配电装置构架供人员上下的扶梯宽度不应小于0.60m,双侧扶手的扶梯及水平通道宽度不应小于0.80m;扶手栏杆高度不宜小于1.10 m。隔离开关操作平台的宽度应比设备尺寸大1.0m(每边加0.5m) ,同时应设置防止坠物的护沿,护沿高度不宜小于0.05m。供维护检修人员上下的直爬梯的设置应满足带电检修的上人条件,梯宽不宜小于0.30m。半高型及高型配电装置的平台,走道、扶梯及牛腿宜采用钢筋混凝土结构,当采用钢平台、钢梁及钢牛腿时,应考虑其防腐及维护的方便。

(3)另外,对于变电站中当建筑物长度大于55m时,宜设置后浇带。后浇带可每隔40m~55m设置一道,应设在对结构受力影响较小的部位,宽度为800mm~1000mm,钢筋宜贯通不切断,宜在后浇带两边配置适量的加强钢筋。在后浇带区段中间,可设置一道膨胀混凝土加强带。同时变电站结构所采用的后浇带应通过建筑物的整个横断面,分开全部墙、梁和楼板。后浇带的混凝土应在主体结构浇筑28d~60d后进行,浇筑时宜用微膨胀混凝土。

(4)对于变电站结构中的钢筋混凝土屋盖的温度变形及砌体干缩变形引起的顶层墙体的水平裂缝及各层墙体的八字裂缝,可根据具体情况采取下列措施:屋盖上设隔热板或其他保温隔热措施;减少屋盖温度变形对墙体产生推力的各种措施;减少墙体干缩变形的各种措施。

(5)对设有钢筋混凝土圈梁的带壁柱或钢筋混凝土构造柱的墙体,在柱的间距小于或等于30倍圈梁宽度且圈梁高度不小于120mm时,圈梁可视作不动铰支座来校验柱间墙体的高厚比。同时对于结构设计的承重墙,当梁跨度大于4.8m(对砖砌体)或4.2m(对砌块和料石砌体)时,梁的支承面下应设置混凝土或钢筋混凝土垫块,遇圈梁时垫块与圈梁宜浇成整体;当梁长大于或等于6m(对砖砌体)或4.8m(对砌块和料石砌体)且墙体厚度等于240mm时,其支承处宜加设壁柱或采用其他加强措施;当梁为预制结构且跨度大于或等于9m(对砖砌体)或7.2m(对砌块和料石砌体)时,其支承处应加构造柱,其端部应采取锚固措施,并应与柱或垫块锚固连接。

变电站结构设计篇(8)

Abstract : with the social progress and raising the level of economic development, the construction of national circuit network has made considerable progress. Among them, the transformer substation construction has aroused extensive attention, how to design more safety and science becomes suspends in front of civil structural designer subject. In this paper, the substation in the design of civil engineering structures for treatment are discussed, in order to seek a better way of treatment.

Keywords: substation; structure; design; solution treatment; optimization

[中图分类号] TU271.103[文献标识码]A[文章编号]

随着国家电网的发展,关于变电站在土建结构设计中的方案处理方式方法也得到了诸多关注和讨论,为了更好的发挥变电站的作用,我们需考虑其安全性、可行性、经济性和实用性等方方面面的问题,因而在土建结构中,变电站的设计方案至关重要。下文将通过前期规划、具体设计、后期处理三个方面探讨变电站在土建结构设计的方案处理。

1.前期规划

1.1 总图布置

变电站的总图布置应充分考虑远近结合,在满足工程规范、规程和工艺流程的前提下压缩建筑物间距,做到用地规整,布局紧凑合理,使得围墙内用地和站址总用地面积尽可能保证最小,在满足使用功能条件下,建筑物尽量合并为一栋综合楼,减少占地面积,顺带减少相应附属的围墙、场地平整等费用。

1.2站址选择

站址选择应结合国土部门和规划部门各方面的要求,选择能直接利用水源和市政设施、拆迁量少、道路连接短、地形平坦的地区,避开断层、滑坡、山区风口或高差较大的地形。尽量不拆迁房屋或搬迁线路或坟墓。特殊情况下采用旋转、平移、总平面局部切角等方式降低工程总体造价,减少赔偿费用。选择站址时也要注意多方案比较选择,确保最终方案的合理性。

1.3 地基处理

在前期规划阶段,地下情况是必须要充分了解的,地下是否有文物古迹、主要管道、地下文物、防空洞,地基是否处于矿区采空区、区域性断裂带、滑坡地区等,都是要提前了解的,如果做不到提前了解的话可能会造成不必要的搬迁和基地处理费用。

2.具体设计

2.1总平面布置

主要优化道路接口、给排水接口、道路接口、消防和安全距离等方面。根据规范、规程合理布置已确定规模的各建筑物,尽可能合并共用设施,向空中发展,使平面布置更紧凑、道路占地面积减少,达到节约用地的目的。户内可采取两个出线间隔公用一跨、将电容器室、配电室和主控室合为一体的方式,缩小整体面积。

2.2结构设计

在变电站设计时应以建立新型的结构体系为目标,这一新型的结构体系包括预制装配结构体系和钢结构体系。在保证结构有足够的耐久性、稳定性和强度的前提下,优先选用构建简单、结构明确的结构体系。用工厂化、通用化、标准化规范建筑构件的选择,将全寿命周期成本概念引入结构设计中,充分论证建筑和结构关系,最后对设计方案进行论证和比选,进行多专业可行性研究,确定最优方案。

2.3建筑设计

在变电站建设中,变电站内建筑物也是十分重要的一环,因此,在满足生产要求前提下,变电站内的建筑物要合理布置房间,减少不必要的附属面积,采用工业建筑标准统一模式建设。同时,要做好建筑的节水,节地,节能,和节材工作。采用框架结构,降低单位建筑面积造价,形成相对较大的空间,节约占地面积和造价,便于电气设备布置。同时还要注意尽量不设屋外水消防,尽力控制建筑物体积。

2.4地基与基础设计处理

变电站基础设计是施工设计优化的重点,建筑物基础选型时,必须因地制宜,结合地质情况,充分利用天然地基。同时要熟读地质资料,务求优化基础。尽量利用天然地基,基础满足设备安装运行要求.同时,尽量浅埋。有些地方必须要用桩做基础,这种情况下要根据地质资料选择合适的桩形。

3.后期处理

3.1做好施工图技术交底工作

在变电站设计方案完成后,要进行施工图技术交底工作,这项工作的主要目的是使参与工程建设的各方了解工程设计的主导思想、对主要建筑设备和材料的要求、所采用的新技术、新工艺、新材料、新设备的要求以及施工中应特别注意的事项。这样做既能保证工程质量,也能减少图纸中的差错、遗漏、矛盾和讹误。消除施工隐患,使设计更符合要求,避免返工造成的人力、财力、物力各方面的浪费。

3.2制定好设计变更管理制度

为了完善工程设计、保证设计和施工质量、纠正设计错误以符合施工现场条件,设计变更成为了必不可少的设计修改程序,设计变更制度在施工过程中的作用非常重要,它不仅影响着工程的进度、节奏和程度,也对造价控制有着深远的意义,它直接影响着施工的费用。因此,在对设计方案进行变更时要进行严密的方案论证,尽量控制设计变更的数量、幅度和费用。在这个过程中,制定好设计变更管理制度就显得非常重要。

3.3做好工程验收工作

设计方在设计好方案之后还需要到场验收施工方工作。例如到场验收确保施工开挖达到设计要求的地基土层或地质条件好的部位,如果出现个别设计地基与实际不符时,应根据现场实际情况改变技术方案,满足施工要求。这样一来,设计方和施工方形成了良好的互动,可以保证变电站建设更好地完成。

4.结束语:

本文探讨了变电站在土建结构设计的方案处理,从前期规划、过程设计以及后期处理三个方面对其进行详细分析,为我国遍电话土建结构设计提供了一定的借鉴。

参考文献

变电站结构设计篇(9)

引言

在变电站建设中,土建工程项目的建设已经成为了影响整个变电站建设工程比较重要的一个方面,对于这种专业性很强的土建工程项目的建设来说,土建结构设计是最为核心的一点,只有保障各个建构筑物构件具有相应的结构可靠性,才能充分发挥整个变电站社会经济效益,才能够提升其后续使用的价值,而这种结构可靠性的保障又需要重点依赖于相应的设计来进行控制和把关,因此,如果变电站土建结构设计中出现了一些问题的话,势必会对最终的变电站整体建设效果产生较大的影响。

1变电站土建结构设计存在的问题分析

1.1材料设计存在问题

对于变电站土建结构设计工作来说,相对应的材料选择是比较重要的一个方面,当前可供选择的类型越来越多,比如钢结构和混凝土结构就是比较常用的两种基本材料类型,并且具体到不同的钢结构材料和混凝土材料中来看,其具体的类型更是极为丰富,选择不同的材料进行土建工程结构的设计能够取得的效果也是大不相同的。不同的建筑材料选型直接影响建筑结构的建设成本,从这一方面来看,当前土建结构设计中存在的问题还是比较多的,尤其是为了节约土建工程成本而选择了并不是特别适合的结构材料,其影响更是极为突出。

1.2尺寸设计存在问题

对于变电站土建结构设计工作来说,在具体的构件尺寸设计方面同样存在着较多的问题,尤其是对于室外变配电构架中采用的钢结构构件的厚度,单纯按强度及稳定性计算结果进行设计,忽视节点的构造要求,一旦其相对应的构件厚度无法满足构造要求的话,就很可能在后续的使用过程中造成一些安全患的出现。这一点在当前的土建结构设计中同样是比较常见的很多的结构设计人员没有考虑到这种构造要求的结构厚度的重要性,或者说是为了谋求更高的利润而选择了厚度不足的设计模式,最终都会对于整体的土建结构设计效果产生较大的影响,这一方面的问题同样需要引起高度的重视。

1.3荷载设计方面存在问题

对于整个变电站土建工程项目结构设计工作来说,相对应的荷载设计也是比较突出的一个方面,对于这种荷载设计问题来说,其直接关系到了整个土建工程项目的稳定性,一旦设计所产生的力学荷载体系无法有效的承担整个土建工程项目的结构自重以及外界的一些相互作用力,就很容易导致一些结构危险性问题的出现;而这种荷载设计方面的问题同样是当前土建结构设计中比较常见的一个方面,也是今后需要重点改善和优化的一个目标任务所在。

1.4设计图纸方面存在问题

对于具体的土建结构设计工作来说,其最终的目的就是为了要形成相应的结构设计图纸,这种结构设计图纸的作用主要就是为了后续的具体施工建设提供有利的参考,由此可见,设计图纸是整个土建结构施工中比较核心的一个方面;但是就当前土建结构设计图纸的呈现现状而言,其中存在的问题还是比较多的,这些问题的存在主要就是指在设计图纸中出现的问题和缺陷还是比较突出的,尤其是在设计图纸的规范性和标准化方面,更是存在着较多的问题,很容易对后续的施工建设造成较大的影响和干扰。

2变电站土建结构设计存在问题的针对性措施

2.1切实加强对于材料设计的优化

对于当前变电站土建结构设计中材料选择方面存在的问题来说,其最为有效的一种优化手段就是针对具体的土建工程结构基本需求进行充分的分析,了解了这种需求之后,才能够针对所需要选择材料应该达到的一种效果进行有效地判断,进而也就能够较好的提升其最终的设计价值和水平;此外,为了最大程度上提升这种材料设计的效果和价值,还应该重点针对当前存在的各种不同类型的土建结构材料进行全面详细的了解,并且针对这些不同类型的材料进行有效地对比分析,如此才能够有效地提升其最终的材料选择效果;最后,针对所选择的结构材料还应该进行有效地审验,也就是依据这种材料进行该土建工程项目结构的设计是否能够达到较为可靠地效果,这一点对于土建结构设计工作来说是极为关键的。

2.2切实加强对于结构尺寸设计的优化

对于当前土建结构设计中各方面尺寸设计不合理存在的问题来说,其同样需要引起高度的重视,具体的优化和控制对策主要就是应该尽可能的提升设计人员对于这种尺寸设计的关注力度,避免仅仅关注于土建结构的选型,而忽略了这种尺寸的细节问题。详细来看,这种土建结构设计尺寸的优化同样需要重点针对具体的结构厚度进行密切的关注,把握好厚度的大小,确保其最终所选择的厚度能够有效地提升整个土建结构的稳定性和安全性,在此过程中可以结合相应的标准值进行参考使用。

2.3切实加强对于荷载设计的优化

为了进一步的保障整个变电站土建工程项目结构具备较为合理的可靠性和安全性,还应该重点针对相应的荷载设计进行充分的关注,这种荷载设计的关注主要就是应该尽可能的针对整个土建结构所存在的自重以及外界的相关作用力进行全面的分析,了解其竖直荷载以及水平荷载的大小,然后就能够较好的针对这一数值的大小范围来确定其相应的结构设计要求,进而也就能够针对荷载设计有一个较为全面的把握,避免出现任何的荷载设计不达标问题。

2.4针对设计图纸进行优化

对于当前土建结构设计图纸中存在的各种问题来说,同样需要进行优化和审核,这种优化主要就是针对已经设计完成的设计图纸进行全面详细的分析和查验,对于其中存在任何的不清楚或者是模糊问题进行处理,保障具体的结构施工人员能够按照该设计图纸做出最为恰当的施工操作。从这一方面来看,充分运用各种虚拟化技术手段是比较有效的,也是今后需要积极关注的一个要点所在。

3结束语

综上所述,对于变电站土建结构设计工作来说,当前存在的问题还是比较多的,无论是在材料设计、尺寸设计还是在荷载设计方面,都存在着较大的问题,因此,针对这些问题进行全面的控制和优化也就成为了今后相关工作人员需要加强重视的一个要点内容。

参考文献:

[1]安金霞.论土建结构设计存在的问题与针对性措施[J].科技与企业,2014,22:96.

[2]杨光.试析土建结构设计存在的问题及针对性措施[J].中华民居(下旬刊),2014,09:67.

[3]于洪玫.结构设计存在的问题与针对性措施分析[J].化工管理,2015,07:205-206.

变电站结构设计篇(10)

无论对于变电站的使用者还是设计者,变电站的结构安全性和耐久性都是具有重要意义的,不仅关系到基础设施的投资,还要关系到设施的经济与安全性的匹配问题。因此,设计人员高度重视土建设计的安全性与持久性非常必要。

一、土建结构安全性分析

结构的安全性是指在各种作用下防止结构遭到破坏和倒塌,使得人员受到保护不受伤害的能力。其主要取决于结构设计与施工水平的高低来决定的,正确使用结构也是一个重要影响因素。结构的安全性在土建结构工程主要体现在以下几个方面。

(一)、结构的整体牢固性

土建工程的整体牢固性是其安全性的体现,牢固性就是指在遭受局部破坏后,不会有大范围的连续破坏,使得其能力遭受破坏。

(二)、构件承受能力的安全性

结构构件的安全相关因素有两个,一个是具有承载较大的载荷规范,例如楼板的承受活载荷各国标准不同,我国的为1.5KPA,美国为2.4KPA,其将荷载标准值放大为一个细数,用以计算结构构件的实际载荷作用。另一个是对材料强度分项系数与载荷分项系数实际大小进行相应的规范。具体用量值可以体现结构构件的标准荷载作用下的安全情况。

(三)、结构的安全耐久性

我国长期以来较为重视土建结构中混凝土腐蚀钢筋造成的安全事故,把重点放在了负荷作用下结构强度的要求上了,极易忽视结构构件安全水平的设计上,因此有必要将结构构件的安全耐久性进行深入分析,重视这一问题。

二、土建工程的耐久性分析

土建结构的耐久性是工程使用期内保证正常结构功能的一项重要能力,其与工程的使用年限具有重要联系。我们说的正常功能是结构的安全性和适用性,这体现在适用性上最为明显。我们一直认为混凝土结构可以长久的使用,但是随着时间的推移,发现了一些影响工程损害的因素的情况。根据相关调查,我国的建筑一般在30左右就需要进行大修,而且很多不到20年,公共建筑及民用建筑由于使用的环境较好,在维护得当的情况下可以使用50年[1]。

三、常见的变电站土建结构安全性与耐久性问题分析

(一)、裂缝产生

1、产生裂缝的原因较多,在混凝土结构上的裂缝一般都是由于颗粒级配不良;骨科含沙量太大;涉及强度等级太高;外加剂选择有误等因素导致的,这些在施工操作中的失误都是造成结构上出现裂缝的潜在因素。

2、温差导致的裂缝

温差裂缝主要分布在继电室等砖混结构内,裂缝主要分布在建筑物四周屋檐下部的纵横墙面上,一般为水平裂缝,裂缝也可能出现在窗户的上下部位,一些高压配电室的砖混结构里,其裂缝则分布在屋檐下部的纵横墙面,也是主要是水平裂缝。温差裂缝一般较小,是一种相对稳定的裂缝,温度变化后,砖墙体与混凝土的膨胀度有所不同,导致了内部应力超过了抗压张力,最终形成了温差裂缝。

(二)、混凝土质量不合格

混凝土的检测指标往往相对过于单一,导致了水泥细度过分增加,矿物成分的比例被改变,这对于混凝土的耐久性有着较大影响,大大削弱了其耐久性。对于水泥的检测,即使有较高的强度,没有耐久度,也要视为不合格。

(三)、变电站土建工程缺乏检修与维护

变电站投入使用后,需要定期的对土建工程进行维护和检修,这与工程的安全性和耐久性具有重要作用。只有进行定期的检修与维护,一些土建工程的安全性和耐久性才能得到保障。当前的问题是,由于我国土建结构的安全性和耐久性的水平较低,一些土建工程产期以来存在较多的安全隐患,没有有效手段进行隐患的排除,导致工程失去效能。所以,在一些公共建筑必须进行定期检修,以排除发生公共安全事件的可能。一些建筑诸如外墙部件等,由于其极易发生坠落伤人,所以需要定期进行强制检测。我国的施工队伍人员素质差,缺乏相关的安全制度,对于建筑结构耐久性的要求也不高,所以存在较多的安全隐患。所以加强建筑检测的法律健全对于加强建筑质量具有重要作用。

四、变电站土建结构设计中的安全性和耐久性提高措施分析

(一)、合理设计混凝土结构体系

安全在混凝土结构体系中有效传递,进行相应的试验验证并通过精确的计算做保障。在受力钢筋骨架的配置上要计算其强度与刚度,而且在裂缝宽度的计算也要同时进行,防止钢筋由于受到裂缝开裂导致的腐蚀现象发生。

(二)、设置合理的土建结构设计安全水准,工程失效产生的风险要提前进行考虑,资源供给以及人民群众的意愿要充分考虑,这些因素对于合理设置土建结构的安全水准有重要意义。同时,进行定期的检测维护来保障土建工程使用的安全。

(三)、合理的构造措施。构造系统要合理设置,构造钢筋需要以最小配筋率来保障结构的耐久性,限裂钢筋要合理配置。不合理的约束及时消除,后浇带或变形缝要合理配置。

(四)、土建工程的结构设计人员需要高度重视工程的安全性与耐久性,具体设计说明中明确土建工程设计应该有最低使用寿命的基本考虑[2]。

(五)、考虑各种负荷作用

1、外界环境产生的负荷,如自重、风雪和温度作用产生的载荷。

2、过分强调经济利益,导致将计算模式的合理安全系数降低,配置降低导致钢筋的设置不合理,出现混凝土开裂现象严重。所以依据严格合理的设计标准是必要的。

(六)、施工图要全面

在进行施工前要认真分析施工图,详细的了解施工图的具体要求和特点,施工图要向施工单位提出严格的具体技术要求,以确保施工工程的质量要求。

(七)、计算配合比要准确

混凝土的配合比要经过精确计算,详细的进行抗拉强度的计算来提高要求,专门应对特殊环境下的混凝土施工。

五、变电站土建工程安全性与耐久性的具体设计

根据国家相关的制度标准进行审核初步设计, 调整要遵循局部到整体的原则,调整原则不能超过进行初步设计时定的原则。设计确定尺寸后要进行建筑物结构计算,以提出经济性的选择,这是一个进行就地取材和因地制宜的原则。通过进行材料及技术手段的选择,来尽可能的降低施工费用。合理的处理土建工程的基础是非常必要的,一般基础埋深要达到两米以上,不足三米不需要桩基。

(一)、总平面及竖向布置

按照初步确定原则进行总平面的设置,且进行大范围的调整是没有必要的, 进行压缩小部分调整来进行局部调整。进行总平面的调整是针对竖向布置的调整,以获得最优标高,减小场平工程量及其他工程量。

(二)、挡土坡及边坡

合理的计算高度就要根据设计场地来进行,将挡土墙的断面及边坡断面确定何时的高度。通过地质资料来设计挡土坡及边坡,护坡与挡土相结合的方式一般用于顺坡地质,逆坡则仅需要进行简单的处理即可。

(三)、建筑结构

建筑设计要尽量融合周围环境,与之协调,在满足功能要求及立面的情况下,尽量减少附属建筑设施。只要能满足要求,就可以尽量减少钢筋混凝土的施工,用砖混结构来代替,配电装置尽量在满足要求的同时利用成型预制钢筋混凝土环形杆。

六、小结

本文针对变电站土建设计的安全性和耐久性进行了详细分析,这个问题长期以来就是设计人员困扰的问题,通过分析在施工中易产生的问题,提出相关措施用以应对,理论结合实际,促使变电站土建设计能够达到要求的安全性与耐久性。

变电站结构设计篇(11)

关键词:变电站;建筑结构;钢结构;节点;设计

Key words: substation;building structure;steel;node;design

中图分类号:TM63文献标识码:A文章编号:1006-4311(2011)08-0046-02

0引言

在变电站建筑中,其结构主要是主控楼、配电楼等和构支架,在我国大部分地区的构支架已逐渐采用钢管杆代替了水泥杆,而砖混结构的变电站建筑也已由钢筋混凝土框架结构所代替,这些都大大提高了变电站的安全性。目前,我国在变电站框架结构设计中已基本实现了标准化。为此,本文作者主要就变电站建筑结构设计及钢结构节点进行了探讨。

1变电站框架结构设计内容

1.1 基础设计在柱下扩展基础宽度较宽(大于4m)或地基不均匀及地基较软时宜采用柱下条基。并应考虑节点处基础底面积双向重复使用的不利因素,适当加宽基础。

混凝土基础下应做垫层,当有防水层时,应考虑防水层厚度。当建筑地段较好,基础埋深大于3m时,建议甲方做地下室。地下室底板,当地基承载力满足设计要求时,可不再外伸以利于防水。每隔30m~40m设一后浇带,并注明两个月后用微膨胀混凝土浇筑。设置地下室可降低地基的附加应力,提高地基的承载力(尤其是在周围有建筑时有用),减少地震作用对上部结构的影响。不应设局部地下室,且地下室应有相同的埋深。可在筏板区格中间挖空垫聚苯来调整高低层的不均匀沉降。当地下室外墙为混凝土时,相应的楼层处梁和基础梁可取消。抗震缝、伸缩缝在地面以下可不设缝,连接处应加强,但沉降缝两侧墙体基础一定要分开。新建建筑物基础不宜深于周围已有基础。如深于原有基础,其基础间的净距应不小于基础间高差的1.5倍~2倍,否则应打抗滑移桩,防止原有建筑的破坏。底层内隔墙一般不用做基础,可将地面的混凝土垫层局部加厚。基础底板混凝土不宜大于C30,否则容易出现裂缝。

1.2 结构平面设计现浇板的配筋(板上、下钢筋,板厚尺寸),尽量用二级钢包括直径ф10(目前供货较少)的二级钢,直径不小于12的受力钢筋,除吊钩外,不得采用一级钢。钢筋宜大直径大间距,但间距不大于200,间距尽量用200。跨度小于2m的板上部钢筋不必断开,钢筋也可不画,仅说明钢筋为双向双排ф8@200。板上下钢筋间距宜相等,直径可不同,但钢筋直径类型也不宜过多。顶层采用现浇楼板,以利防水,并加强结构的整体性及方便装饰性挑沿的稳定。现在框架填充墙一般为轻质隔墙,过梁一般不采用预制混凝土过梁,而是现浇梁带。应注明采用的轻质隔墙的做法及图集,当过梁与柱或构造柱相接时,柱应甩筋,过梁现浇。

1.3 楼梯的设计楼梯梯段板计算方法:当休息平台板厚为80~100,梯段板厚100~130,梯段板跨度小于4m时,应采用1/10的计算系数,并上下配筋相同;当休息平台板厚为80~100,梯段板厚160~200,梯段板跨度约6m左右时,应采用1/8的计算系数,板上配筋可取跨中的1/3~1/4,并且不得过大。以上两种计算方法是偏于保守的。任何时候休息平台与梯段板平行方向的上筋均应拉通,并应与梯段板的配筋相应。梯段板板厚一般取1/25~1/30跨度。

注意:当板式楼梯跨度大于5m时,挠度不容易满足,应注明加大反拱或增大配筋。当休息平台板为悬挑板时,其内部的楼梯梯段板负筋应大于休息平台板的板上筋,长度也应大于平台板筋。楼层处休息平台板的配筋应与楼层板统一考虑配筋,主要是板的负筋。

1.4 梁的设计梁的上面有次梁的地方应附加箍筋和吊筋,并应首先使用附加箍筋。不能将次梁搭建在主梁的支座的附近,如果搭建在主梁支座的附近,就应当考虑由于次梁所引起的主梁抗扭,或者增加抗扭箍筋和纵筋。如果采用现浇板,抗扭问题不严重。理论上梁纵筋应遵循小直径和小间距的原则,这对抗裂有利,但钢筋的间距应满足要求,并且要与梁断面互相适应。挑梁应做成等截面。梁从构造上要避免冲切破坏以及斜截面的受弯破坏等。

1.5 柱的设计柱应采用高强度混凝土来应对轴压比的制约,应减小断面尺寸。应避免柱过短,短柱的箍筋应采取全高加密,短柱的纵筋不应过大。由于竖向地震的影响,对柱的轴压比和配筋应多一些考虑。独立柱的上面或中部有挑梁时,应限制挑梁的长度。绘制施工图时,较大直径的钢筋的连接方式应采用机械连接,而不应采用焊接,两者的造价相差不大,但机械连接更加可靠并且检查方便。

2钢结构构架设计

为了节省投资,一般变电站均采用架空出线,变电站内部导线均采用构架进行连接、跳线,因而构架也是常规变电站必不可少的一部分。目前在南方地区,由于经济较发达,且对变电站的使用要求较高,普遍采用钢管杆构支架,梁采用格构式或钢管梁,使整个变电站更加美观和实用。

2.1 采用空间分析程序计算内力随着科技的进步,出现了不少可以计算和分析内力的软件。例如美国REI公司开发的STADD/CHINA2000空间结构分析和设计程序,利用该程序对构架柱进行内力计算和分析,能够更加接近构架的实际受力情况,有利于缩短设计周期。也可采用东北电力设计院编制的构架计算软件(SST)进行简单的计算,根据计算结果分析杆件内力。

2.2 结构节点设计

2.2.1 钢管柱的连接方式钢管柱的长度受到加工、运输以及热镀锌的影响,一次成型比较困难,所以,要首先分段加工,然后利用剖口对焊进行连接或利用法兰进行连接。钢管利用剖口对焊进行连接,不仅外形美观,还能节省钢材,缺点是焊接需在现场操作,焊缝外还要现场喷锌,质量没有保障,焊缝处钢管内侧的防腐能力比较差。法兰连接所有的焊接工作以及热镀锌可以在工厂完成,只需要进行现场组装。由于不需现场焊缝,钢管的防腐能力很强,安装工作比较方便,可以节省工期,但缺点是耗材大,而且为了使法兰连接的接触面比较平整,对加工精度的要求很高。目前,法兰连接应用较为普遍,有刚性法兰和柔性法兰两种形式。

2.2.2 人字柱的柱头利用钢板焊接人字柱的柱头的受力情况非常复杂,它需要传递很大的轴力、剪力以及弯距。为了减小人字柱的位移,柱头连接必须保证有充足的刚度,并且应设法减少柱头连接的偏心。综合考虑,人字柱柱头应将两杆连接为整体,利用钢板进行焊接,剪力板、柱头处的顶板以及加劲板的厚度应满足规范的要求。两根人字柱中心线之间的距离一般为100mm,可基本满足固结假定要求。

2.2.3 人字柱与横撑构件采用刚性连接的方式当变电构架柱承受水平力时,破坏形式是受压柱的失稳性破坏,这时受拉杆会经过横撑而对受压杆发生约束作用。为了增强这个约束作用,柱与横撑的连接应为刚性连接,而且横撑应具有一定刚度,故横撑使用钢管材料。为了便于热镀锌和安装,横撑钢管分为两部分,分别与相应的人字柱经过剖口进行对焊刚性连接,然后再由横撑中间的法兰盘刚性连接,以实现横撑构件与人字柱的刚性连接。

2.2.4 人字柱与基础采用杯口插入形式连接基础与钢管柱的连接适合采用杯口插入形式。钢管插入到杯口的深度是由抗拔决定的,其计算公式为:H=N/(3.14D×FCV)(1)

式中:H为钢管插到杯口的深度;N为受拉杆的轴力设计值;D为受拉杆的外直径;FCV为抗粘剪的强度,如果二次灌浆细石混凝土的强度为C20,则:FCV=0.5MPa。

如果受拉的钢管插入杯口的部分焊有多于或者等于两道钢箍,剪切面可控杯口壁计算,插入杯口的深度根据(2)式进行计算:

H=N/∑SC×FCV(2)

式中:∑SC杯口内壁的平均周长。

插入杯口的深度不仅要满足计算的要求,还必须满足:H≥1.5D。此外,为了确保柱脚处局部稳定,在构架安装完成后,钢管的柱脚处应灌注C30细石混凝土。一般设备支架插入杯口的深度H≮1.0D,构架H≮1.5D。

3结语

总而言之,在变电站结构设计时,要考虑的因素很多,包括建筑结构的荷载、混凝土的结构设计、抗震性等,同时还应当考虑地方性的建筑规范。所以,要综合考虑各种因素,以设计出经济合理的结构体系。

参考文献: