欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

医学图像重建大全11篇

时间:2023-10-17 09:25:27

医学图像重建

篇(1)

二、传统的图像重建方法

在核医学影像设备中,需要根据物体某一层面在不同探测器上检测到的投影值来重建该断层图像层面,即二维图像重建。传统的图像重建方法主要分为解析法和迭代法。

解析法是以中心切片定理(Central Slice Theorem)为理论基础的求逆过程。常用的一种解析法称为滤波反投影法(Filtered Back-Projection,FBP)。FBP法首先在频率空间对投影数据进行滤波,再将滤波后的投影数据反投影得到重建断层图像。滤波器选为斜坡函数和某一窗函数的乘积,窗函数用于控制噪声,其形状权衡着统计噪声和空间分辨。常用的窗函数有Hanning窗,Hamming窗,Butterworth窗以及Shepp-Logan窗。

解析法的优点是速度快,可用于临床实时断层重建。但当测量噪声较大或采样不充分时,这类算法的成像效果不甚理想,尤其是在核医学断层图像重建中对小尺寸源的成像效果差(即所谓偏体积效应)。在滤波中如果对高频信号不做抑制,截止频率高,此时空间分辨最好,但所重建的图像不平滑,易产生振荡和高频伪影; 反之,采用较低截止频率,过多压抑高频成分的低通窗函数会造成重建图像的模糊,故在变换法中低噪声和高分辨对滤波器的要求是矛盾的,需折衷选择。且难以在重建中引入各种校正和约束,如衰减校正等。

迭代法是从一个假设的初始图像出发,采用迭代的方法,将理论投影值同实测投影值进行比较,在某种最优化准则指导下寻找最优解。迭代求解方法的基本过程是:

(1) 假定一初始图像f(0);

(2) 计算该图像投影d;

(3) 同测量投影值d对比;

(4) 计算校正系数并更新f值;

(5) 满足停步规则时,迭代中止;

(6) 由新的f作为f(0)从(2)重新开始。

该方法最大优点之一是可以根据具体成像条件引入与空间几何有关的或与测量值大小有关的约束和条件因子,如可进行对空间分辨不均匀性的校正、散射衰减校正、物体几何形状约束、平滑性约束等控制迭代的操作。其中实现对比的方法有多种,施加校正系数的方法也有多种。在某些场合下,比如在相对欠采样、低计数的核医学成像中可发挥其高分辨的优势。但是迭代法收敛速度慢,运算时间长,运算量大,而且重建图像会随着迭代次数的增加而趋于“老化”甚至发散,出现高频伪影,这些缺点极大地限制了它在临床中的应用。

三、OSEM迭代算法

为了加快收敛速度,减少运算时间,提高图像质量,人们提出了很多快速算法,其中有序子集最大期望值法是很有应用前景的一种快速迭代重建算法,它是在最大似然期望法(Maximum Like-lihood Expectationmaximization,MLEM)的基础上发展起来的。

MLEM方法旨在寻找与测量的投影数据具有最大似然性(ML)的估计解,其迭代过程是由最大期望值算法(EM)来实现的。由于是以统计规律为基础,MLEM重建法具有很好的抗噪声能力,是目前公认为最优秀的迭代重建算法之一,尤其是在处理统计性差的数据时,更能显示出它相对于解析法的优越性,但是这种方法仍然存在迭代法的运算量大、运算时间长等缺点。MLEM方法在每一次迭代过程中,使用所有的投影数据对重建图像每一个象素点的值进行校正,重建图像只被替换一次。 转贴于

OSEM方法在每一次迭代过程中将投影数据分成N个子集,每一个子集对重建图像各象素点值校正以后,重建图像便被更新一次,所有的子集运算一遍,称为一次迭代过程,它所需要的运算时间与FBP重建的时间基本相等。在ML-EM方法一次迭代过程中,重建图像被更新一次,而在OSEM方法中重建图像被更新N次,所以OSEM方法具有加快收敛的作用。OSEM算法中子集的选取和划分有很多种,在SPECT中投影数据可以根据每个采样角度实时地进行划分和重建,在PET中由于各个探测器上测得的投影数据是在符合判选之后同时获得的,因此可以在全部投影数据采集完成之后划分子集。不同子集的重建顺序也可以有选择的进行,如可将两个位于相对垂直的角度上的子集按相邻顺序进行重建,以加快收敛速度。

四、数据模拟与临床实验结果

篇(2)

中图分类号:TP317 文献标识码:A 文章编号:1009-3044(2013)01-0165-03

VTK是一个开放源码、自由获取的软件系统,全世界的数以千计的研究人员和开发人员用它来进行3D计算机图形、图像处理以及可视化。VTK包含一个C++类库,众多的翻译接口层,包括Tcl/Tk,Java,Python。Visualization Toolkit是一个用于可视化应用程序构造与运行的支撑环境,它是在三维函数库OpenGL的基础上采用面向对象的设计方法发展起来的,它将我们在可视化开发过程中会经常遇到的细节屏蔽起来,并将一些常用的算法封装起来。比如Visualization Toolkit将我们在体绘制中比较常见的Raycasting算法封装起来,以类的形式给我们以支持,这样我们在对三维规则点阵数据进行重建时就不必再重复编写Raycasting算法的代码,而直接使用Visualization Toolkit中已经提供的vtkVolumeRayCastMapper和vtkVolumeRayCastCompositeFunction类共同来完成。Visualization Toolkit是给从事可视化应用程序开发工作的研究人员提供直接的技术支持的一个强大的可视化开发工具。

DICOM标准(digital imaging and communication in medicine)是由美国放射学院(American College of Radiology,ACR)和国家电气制造商协会(National Electrical Manufacturers Association,NEMA)共同制定的,它包括了医学的数字成像和通信传输两个方面。该标准的制定有效地解决了各种不同的成像设备之间交换图像的障碍,促进了数字图像设备的网络化和医学影像技术的发展。

目前在医学图像显示领域,图像二维显示已发展的较为成熟,人们也已把目光放在更高维的显示方面,但是,二维显示却也是不可或缺的。对于医生来说,在研究手术方案时,提供一组二维切片是必要的。该文借助于开源的可视化工具VTK实现DICOM图像横断面、冠状面、矢状面(以下简称为:横冠矢)三个正交面的切片显示,并利用光线投射算法对DICOM图像进行了三维重建。

1 基于VTK的DICOM图像文件读取及显示

1.1 DICOM图像文件的读取及显示

篇(3)

关键词:医学图像处理;3D图像重建;VTK;ITK

Key words: medical image processing;3D image reconstruction;VTK;ITK

中图分类号:TP393文献标识码:A 文章编号:1006-4311(2011)24-0161-02

0引言

计算机断层扫描仪(CT)、核磁共振成像(MRI)和3D-4D超声波立体影像诊断等3D医学成像诊断设备已得到广泛应用。这类设备通常使用切片扫描技术,将所得到的数码切片图像系列以DICOM文件格式保存起来,并据之还原为3D图像。这些设备所生成的数码图像数据也可以导出并存放到其他存储设备如计算机或网络硬盘中,供医生和研究人员采用医学图像软件重建其3D图像进行浏览和分析。

医学3D图像重建技术是计算机可视化领域的一部分,它使用2D切片图像系列来重建三维图像,这些2D切片图像系列可由不同种类的医学扫描设备生成,并以DICOM文件格式存放其图像和各种参数。不同类型的设备有其不同的扫描采样参数,如CT通常使用高对比度平行扫描切片,MRI使用低对比度平行扫描切片,而超声波扫描仪一般使用低对比度的平行或散射切片。一般来说,医学3D图像重建的基本步骤如下:

第一步:将2D切片图像系列(以DICOM格式存放的一组文件)读入内存并还原其位置和排列顺序,组成数据体;

第二步:使用某种绘制技术将数据体转换为3D图像。

通常用于医学图像的绘制技术有多平面绘制(MPR,Multi-Planar Rendering),表面绘制(SR,Surface Rendering)和体绘制(VR,Volume Rendering)等。我们开发的VascuView3D就是一个3D医学图像重建系统,该系统可用于将CT和MRI等设备生成的2D病患切片图像系列转换成3D图像。VascuView3D同时集成了体绘制、表面绘制和多平面绘制等3D视图。

1几种主要绘制技术

1.1 多平面绘制MPR技术多平面绘制技术用于切片结构重建,即根据垂直轴向扫描的切片系列重建出冠状轴向平面投影和矢状轴向平面投影。实际上,VascuView3D所使用的MPR算法并不局限于重构正交方向上的投影,也可以用于重构出三维空间上任意平面方向上的投影图像。MPR技术的优点是计算量较小,因此可用于配置较低的计算机。

1.2 表面绘制SR技术表面绘制技术是用一组等值面来表现3D对象。在各切片上,同一等值面中各点的密度相同。表面绘制技术用于将一种组织和其他组织区分开来,如从头部的切片系列中分离骨头和肌肉,或者从肌肉组织中分离血管等。表面绘制技术通常用于高对比度数据。

在表面绘制技术中,有两种主要的等值面重建方法:

①基于轮廓的表面绘制:使用从各切片中提取的等值面阈值来重建等值面;

②基于体素的重建:直接从标明等值面阈值的体素来重建等值面。在这类算法中,最好的是移动立方体算法,其他类似的算法还有移动四面体算法和分割立方体算法。

在VascuView3D提供的表面绘制算法中,用户可以提供一个等高值以得到更好的绘制效果。

1.3 体绘制VR技术体绘制技术使用穿过对象体的投影光束来实现对象体的透明化。沿着每一根光束,对每个体素计算其透明度和颜色,然后再根据沿各光束计算出的数据重整为图像平面上的像素。体绘制技术所产生的图像是半透明的立体灰度图像,也可以根据不同的需要对其进行着色处理。这种3D图像对理解对象的整体结构非常有用,是医学3D图像软件中最重要的界面视图。体绘制技术的缺点是计算工作量很大,如果用户的计算机配置较低,则响应时间很长,它可用于低对比度数据。在实现体绘制技术时,主要用到下面两种射线投影方法:

①对象顺序法:投影光束从对象体的后方向前投射(从对象体到图像平面);

②图像顺序或光线投射法:投影光束从前方向后穿过对象体(从图像平面到对象体)。

此外还有一些其他方法可用于3D图像合成,在医学图像处理中常用的有:最大密度投影、最小密度投影,α合成和非实感体绘制等。在实际的三维图像软件中,这些方法通常都和以上各种绘制技术结合起来使用。

在VascuView3D中,同时提供了MPR、VR和SR三种不同的绘制界面供用户选择,在不同的绘制界面中,还提供了相应的参数调整手段,以达到最好的显示效果。

2由平行切片系列重建3D图像

平行切片数据系列可由计算机断层扫描仪(CT)或核磁共振(MPR)等设备生成,并以DICOM文件系列的方式存储。除了2D图像点阵数据外,存放于DICOM文件中的还有关于患者和设备的有关信息,以及各种扫描参数。

平行切片设备所使用的扫描间距通常在0.5到2.0毫米之间。从CT数据重建3D图像比较容易,这是因为CT采用高对比度扫描。在使用上节所述的各种绘制方法得到3D图像之前,首先应在计算机内存中按原来的顺序和位置排列好平行切片来组成数据体。由于数据量很大,所以对计算机的内存容量的要求比较高。

3VascuView3D系统的开发

3D医学图像重建系统VascuVeiw3D是VascuBase医学信息管理系统的一个组成部分,用于从病患医疗档案中存放的CT和MPR图像系列文件中重建其3D图像,供医生和研究人员分析使用。VascuView3D使用Visual C++.NET开发,并使用了可视化工具包VTK(Visualization Toolkit)和ITK(Insight Segmentation and Registration Toolkit)中提供的各种3D算法。

3.1 VTKVTK是一个广泛应用于3D计算机图形图像处理和可视化编程的开源软件包。它由一组C++类库和几种交互式界面接口如Tcl/Tk、Java以及Python组成。VTK支持各种可视化算法,包括标量的、矢量的、张量的研究面向容积的算法;支持高级模型算法如:隐式模型、多边形裁剪、网格平滑、分割、等值面,以及德洛内三角(Delaunay Triangulation)算法等。VTK有一个内容丰富的信息可视化框架,有一整套3D交互组件,支持并行处理。VTK可运行于多种操作系统平台上,如Windows、Linux、Unix及Mac。

3.2 ITKITK是一个多平台的图像分析工具的开源软件包,具有强大的医学图像分割和配准功能,包括许多高水平的多维图像分析算法,如用于等值面提取的移动立方体算法。ITK软件并不提供对图像界面的直接支持,因此需要和VTK等可视化软件结合使用。ITK还包含了对DICOM文件的读取功能,这对提取存放于DICOM文件头中的各种参数非常有用。

3.3 VasucView3D软件结构图1说明了VascuView3D系统的结构。作为医学信息管理系统VascuBase的一个组件,VascuView3D被设计成内嵌于VascuBase用户界面的一个OCX控件。

3.4 VascuVeiw3D软件界面设计VascuVeiw3D的主界面类似某些商业医学软件系统,见图2。左面是2D切片系列浏览窗口,右面用于显示重建的3D图像。在3D窗口上方有一个工具条,整合了若干常用功能按钮。VascuView3D还提供了丰富的菜单功能以方便用户。

3.5 VascuView3D的主要类结构

VascuView3D的主要类有:

clsDicomIOclsImageFileReaderclsImageSeriesReaderclsItkVtkData

clsMetaDataDictionary clsMetaDataObject

clsCastImageFilter;clsExtractImageFilter;clsFlipImageFilter;

clsRescaleIntensityImageFilter

vtkMFCWindow clsVascuView

其中Filter类的结构如图3所示。

3.6 VascuView3D的主要功能

VascuView3D的主要功能如下:

①读入2D切片序列文件,从中提取DICOM信息并构造对象数据体;

②选用合适的算法重建3D图像,可提供体绘制(VR)、表面绘制(SR)和多平面绘制(MPR)等视图;

③用户可通过系统界面对生成的3D图像进行各种操作,如旋转、平移、缩放、调整对比度和亮度,以及感兴趣区操作;

④对于体绘制视图,还提供了基于颜色对照表CULT(Color look-up table)的3D图像着色。CLUT是一种将一给定的颜色范围转换为另一组颜色的转换机制,可用于对三维灰度图像的仿真着色或伪彩色着色,以提高图像辨识率;

⑤对于表面绘制,可根据用户给定的轮廓值进行绘制。

4结论

3D医学图像重建软件VascuView3D用于根据CT或MRI输出的2D医学切片图像文件重建其三维图像,供医生和研究人员使用。该系统建立在VTK和ITK之上,使用Visual C++编程。该软件是医学信息管理系统VascuBase的一个重要组成部分,拥有令人满意的三维图像重建速度和方便的用户界面。

参考文献:

[1]曾更生.医学图像重建入门[M].北京:高等教育出版社,2009.

篇(4)

人们幵始利用计算机对二维切片进行分析和处理,比如分割提取,三维重建,显示等。这种技术便于医生从多角度,多层次对人体器官,软组织和病变体进行观察和分析,可以帮助医生对人体的病变部位或感兴趣区域做出定性甚至准确的定量分析,这大大提高了医疗诊断的正确性和准确性。这些变化大大的提高了影像数据的应用价值,具有十分深远的意义。随着传统的医学影像处理技术和计算机图形处理技术的融合,逐渐产生了专门研究医学影像三维可视化技术的新学科。所谓的医学影像三维可视化技术[2],是指使用一系列通过二维图像重建成三维模型同时进行定性,定量分析的技术。该技术可以从二维图像得到三维的结构信息,为医生提供更逼真的显示和定量分析工具和手段,能够弥补成像设备在成像方面的不足,为医生提供了一个更有真实感的三维医学影像,而且可以使医生可以直接参与到数据的处理和分析中,便于医生从多个角度,多层次进行观察和分析。

这种技术在模拟手术,引导治疗中都可以发挥重要的作用。但是,重建出医学影像的三维模型并不是人们追求的最终目标,人们不仅仅要“看”到三维模型,还需要能够和三维模型进行交互,如旋转,缩放和平移等,使得医生们可以获得更好的视角,以便对疾病做出正确的判断。医学影像的三维重建和交互应用是当前的两个研究热点,它在医学上具有重要的意义。首先,它能够提高医生的诊断准确率和医院的效率。因为将二维数据重建成三维模型,能够方便医生观察人体内部的结构,使医生获得感兴趣的器官的定量描述,比如大小,形状和空间位置等,这将提高医生的诊断水平。第二,由于现在大多数医院仍使用传统形式的胶片来帮助医生诊断,这些胶片不仅有存储的问题,而且本身就是一笔不小的开支。实现数字化医院,可以将这些胶片保存成电子文档,这将大大的节省医院的支出。因此,展开医学影像的三维重建研究具有十分重要的意义。

1.2医学影像三维重建的临床应用

临床医学应用是可视化技术应用得最早最成功的领域之一,过去医生主要根据CT图像,磁共振成像和超声图像对病人做出诊断。但这些图像都是2维的图像序列,只有经过培训的医生才能通过这些图像获得器官或组织的整体认知。所以可视化的任务是揭示物体内部的复杂结构,让人们可以看到通常看不到的内部结构。由于三维可视化技术的日渐成熟,医学图像三维重建技术在临床医学中应用越来越广泛,具体概括如下:

一、 在检测诊断中的应用

在对病人身体的检测过程中,CT图像、磁共振图像和超声波图像一直都是一种十分重要的医疗诊断手段。而三维可视化技术可以对图像进行处理,构造出三维的几何模型,而且对重建出的模型能够从不同的方向进行观察,使得医生对感兴趣的部位的大小、形状和空间位置不仅有定性的认识,也能够得到定量的认识,这样可以极大的提局医生的诊断水平。

第二章医学图像和医学图像的预处理技术

在三维医学影像重建中,首先需要获得二维的医学图像即医学体数据,才能在此基础上进行三维重处理,本章将侧重于介绍各种医学体数据的采集方法和医学影像的预处理方法,及对比各方法的优缺点。

2.1医学体数据来源

医学体数据是一个数据场,人们通过医疗成像设备扫描器官和软组织得到断层图像后,将这些图像叠加在空间中的同一个方向,这样便构成一个立体的数据场,这个数据场就称为体数据。目前,医学影像数据的采集主要通过以下途径:X射线断层扫描(CT),磁共振成像(MRI),超声成像(UI),正电子发射计算机断层扫描(PET)等,其中两个最常用的医学影像来源是CT和MRI图像[5]。

篇(5)

中图分类号:TP391.41-4 文献标识码:A 文章编号:1007-9599 (2012) 21-0000-03

我校在开设《数字图像处理》课程的基础上,结合医学院校图像处理的对象——医学图像(片)的特点开设了《医学图像处理》,是计算机各专业及影像学专业重要的专业基础课程。如何在学习图像处理技术的同时体现各专业特色,提高学生的图像处理技术的应用能力,是医学图像处理课程建设、课程改革的重要内容。现就接合经过两轮的课程教学活动,并融合学生的反馈信息,对该课程进行了教学模式的探索,希望有助于教学效果和教学水平的提高。

1 理论教学

1.1 专业素养的培育[1]

建立在数学及信号处理技术基础上的医学图像处理,以计算机算法为工具,并充分考虑解剖学的知识、临床医学的知识,对医学图像的采集、传输中产生的如噪声、失真、退化等现象分析处理,以提高医学图像的质量,并为后续的图像感兴趣区域的选取,病灶区域的分割等临床应用提供依据。但《医学图像处理》课程涉及的内容多、广,其中的算法更是以数学公式的推导为基础。而医学院校的学生普遍缺乏理工科知识,造成学生对理解抽象概念的困难,很易造成畏难情绪。与此同时,学生对通过本课程的学习对知识结构的构建及就业的帮助心存疑虑。缘于此,授课之初,需要进行专业素养教育。

1.1.1 按专业,分内容克服学生的畏难心理

因计算机专业与影像学专业的培养方向,教学内容和侧重点不同,计算机专业专注于各种图像处理算法和编程实现。而影像专业应从繁琐的数学公式的推导中解脱出来,而更注重实际应用,并进一步了深化对图像处理的理解、分析。

1.1.2 课程设置对就业的影响[2]

图像处理是计算机视觉、模式识别,图像理解、分析的基础。熟练掌握各种算法可以为将来从事如指纹、条码、人脸、虹膜识别、车辆和其他与医学图像相关工作提升竞争力。因具有医学知识背景,也可去医疗器械公司或医疗软件开发公司,当然因具备医学知识背景的同时,掌握图像处理的各种算法及实现为应聘到医院的医疗技术部门提供了保障,我校已有此专业学生成功应聘三甲医院的事例。通过这些学生身边鲜活的事例提高学生的自信心,拓宽学生的思路和视野,引导学生找到自己的发展方向和目标,因此可以更有效地利用时间。

1.2 打破了传统的章节式教学方法,探索“串烧”式教学

传统的灌输式教学中,重点内容并突出,讲解中存在片面性,局限性,没有深挖跨学科知识的内在关系。医学图像处理是一个注重实际应用的课程,应根据设置的专业特点设置知识点,并融合基于案例的教学内容,根据其内部逻辑关系“串烧”涉及的相关的知识。

1.2.1 内容选择上的“串烧”

医学图像处理教学的要求是了解医学图像的特点和图像处理的基本概念,掌握医学图像(片)处理的基本原理、技巧,能够利用计算机来完成对各种医学图像的处理,现以我校两专业的两本不同教材为基础,在充分涉列大量的医学图像处理技术、文献的基础上,根据各类知识点间的相关性以及课时要求将课程分为:医学图像的描述表达、图像的运算、图像的增强、图像的变换、形态学处理、图像分割及特征提取等专题。

“串烧”的医学图像处理的内容是完成后,接下来考虑如何在传授知识的过程“串烧”,如在讲授医学影像的运算操作时,如基本的“加”,“减”,“乘”,“除”时,把医学图像中的减景技术及数字减影在血管造影中的应用“串”到讲授内容中;在图像的采集表示时,可以“串”进各种成像设备及其成像原理,可以把数学运算中的差分运算内容串入医学图像的边缘检测算法中。

1.2.2 教学形式上的“串烧”

教学形式上采用了传统教学方式与“串烧”式教学相结合的形式,讲授基本知识时,以传统按授课方式为主,让学生了解对医学图像处理的整个过程。授课内容中选取了学生感兴趣的内容,让学生们图书馆自己查资料,寻根问源,调动学生学习的积极性,下次课时选一二名学生在课堂上对内容进行阐述,教师对学生阐述的内容进行补充[3]。选择了图像表示和图像分割两个知识点让学生在教学过程中的“客串”讲授,通过本环节的实施,充分调动了学生的积极性,激发了学习热情,迸发出许多有趣的想法,可以方便地了解学生对知识的掌握程度与存在的问题,与此同时,结合本课程的特点及影像学专业学生人数较少(08级71人,09级90人)的特点,把课堂教学过程移至计算机机房,可以边讲授边演示准备好的在临床中采集到的X 光、MRI等医学图片, 让学生直接观察对这些图片进行处理和改善的效果,课堂气氛非常活跃,授课效果较好。

1.2.3 充分利用多媒体教学技术,搭建医学图像处理平台[4]。

通过“串烧”方式的实施,使学生通过在课堂上的医学图像处理的演示,了解、掌握了各种医学图像处理方法和其在医学临床中的应用,但众多算法都需要计算机仿编程仿真实现,为缓解由此给学生带来的压力,提高学习效率,搭建了以淋球菌感染图为例的济宁医学院医学图像处理演示平台,学生通过平台的实用,加深了对所学的医学图像处理知识的理解,提高了学生的实际应用能力。

1.2.4 教师的医学知识积累

我校的信息工程学院的教师承担着医学图像处理课程的授课任务,授课教师虽有较高的计算机编程能力,但缺乏医学知识,使在为强调应用的影像专业学生上课时,在如何淡化数学推理,着重临床医学图像处理应用中遇到了很大的压力。特别是在第一轮次的讲授医学图像分割时,面对一个陌生的医学图像,不知道如何选择图像的特征点,纵有丰富的编程思想却无从下手。缘于此,医学图像处的授课教师需自觉地将医学和工程学结合,通过广泛的与医护人员的交流,并积极参加医学相关的知识讲座丰富自己医学方面的知识,我校信息工程学院组织的院内专家、学者的信息大讲堂是一有益的尝试。

2 实践教学[5]

实验教学是教学课程的重要组成部分,通过本环节的实施,不仅加深了对理论的理解,同时也培养了学生的独立思考、创新能力,虽然很多关于图像处理实验指导书,但他们中的大多数并不适用于医学院校的学生,接合医学院校学生的实际对相关的实验内容的选取及验收进行了相应的改革。

2.1 实验方案的实施

2.1.1 实验的准备

根据医学图像处理的要求,选用了工具箱使用方便,计算能力强的MATLAB软件作为实验教学软件,并准备好医学图像(片)的采集。

2.1.2 实验内容的选择

实验内容的选择上,考虑到不同的专业的特点和医学图像处理的内容,选择了医学影像的表达,图像运算,图像增强,图像变换,形态学处理,图像分割,特征提取等内容。根据难易程度分为基本实验、开放型实验和演示实验。让学生不仅学习图像处理的基本知识,并能独立进行实验设计,使学生快乐的获取知识,在实践中提升应用能力。

2.1.3 医工结合,分工协作

依托我校的教学医院中的众多的医疗影像设备,鼓励计算机和影像专业的学生假期期间多去医院参观实习,了解各种医疗设备仪器的功能,工作原理。为开放型实验的实施做好充分准备。

医学院校医学生最大优势是具有一定的医学基础,因此在为学生开设开放型实验时,充分考虑使医工学生相结合,每个开放型实验安排2名影像专业的学生,负责对相关医学图片的认识、理解和提炼。4名计算机专业的学生进行相应的编程实现。

2.1.4 实验的扩展-科学素养的提高

经过《医学图像处理》理论的讲授和实验教学活动的实施,学生具备了运用图像处理的基本理论知识处理具体医学图像的能力,为学生提供机会参与任课教师的研究活动,提高实践能力和创新能力。为学有余力且有兴趣的学生开设了基于任课教师的科研项目的课程设计,主要涉及到了涉及医学图像处理课程建设、动态医学图像处理算法展示又包括下一步医学图像处理的实验平台的搭建。通过学生的积极参与,一方面,加深了对所学专业知识的理解,同时培养学生主动学习的良好习惯,另一方面通过在理论教学、实践教学的“串烧”方式的实施,学生的团队意识得到明显提升。

3 验收考查环节

根据专业设置的特点和课时的安排,为准确反映出学生学习差异性,对传统的考核方式进行适当的调整,加强实施“一加一减一强化”[6]的系统的评估方法。“一减”:根据学科特点和各业课程设置对学生的要求,在不同专业不同试卷的前提下,改传统闭卷考试为开卷考试,在心理上减轻学生对数学公式推导和恐惧,也减少了记忆量,使学生可以更专注于医学图像处理应用、理解,“一加”,以加强学生的积极思维,勇于表达自己的想法的意识。“一强化”,主要指强化了实践环节验收的多样性,根据医工各专业特点,验收的侧重点体现出差异性。具体做法是,对医科生实验结果的验收,强调理解、临床应用、效果分析,而对工科生的实验结果的验收,主要侧重算法的编程实现。如对上图的淋球菌感染图进行分割实验时,以医科生的图像的特征选取的有效性、可行性,实验报告的撰写为主要对像,而工科生则侧重编程实现的效率,当然在后继的课程建设及课题中,工科学生做的课程网页,各种算法的flash动态展示也可成为验收结果,实践结果验证了学生对此考查验收方式给予的肯定。

4 结语

结合我校计算机、影像各专业对图像处理的要求和数字图像处理本身的特点,充分考虑医工学生的差异,对课程教学环节的实施过程进行了探讨,把教学、科研及学生能力结合起来,经过三个年级的教学节实施,学生的综合能力得以提高。与此同时,如何依托医科院校的医学优势,实现医工间“无缝连接”,培养具有医学特色的创新人才,必将需长期的探索研究。

参考文献:

[1]罗敏敏.医学图像处理教学经验浅探.教学研究,2006(8):89-93.

[2]张俊兰.VTK在医学图像处理实验教学中的应用.智能计算机与应用,vol.2.no.2 apr.2012.47-50.

[3]武杰.开放式医学图处理与设计实验平台建设 中国医学物理学杂志,vol.28.no.3 may,2011.94-98.

[4]胡彦婷.生物医学工程专业医学图像处理课程教学探讨.西北医学教育,vol 20.no.3.2012.6.87-92.

[5]吴凯.生物医学工程专业创新性人才培养的探索与实践.医疗卫生装备,2007,28(9).35-38.

篇(6)

“影像融合”是近来被国内医学影像界提及频率很高的一个词,7月19日,由中国医科院主办的“首届医学影像高峰论坛”在北京举行,该会议的主题即为“融合共赢”。复旦大学副校长、中华医学会放射学分会主任委员冯晓源在会议间隙接受《e医疗》专访时说:“影像医学必然要以影像为根本,但这个‘影像’不是CT、核磁等单种技术的图像,而是多种影像的融合。从目前以形态(解剖)为基础的诊断向功能诊断、分子水平诊断的发展过程中,影像融合是必经的阶段。”同样的内容,他在2012年的中华医学会放射学分会年会上也提到过。

中国医科大学附属盛京医院院长郭启勇认为,以内、外科为代表的临床学科对影像检查的依赖性日益增加;以产前诊断为代表的特殊学科对影像检查的需求认识不断加深;综合影像诊断的重要性被临床广泛认知……知识附加值在影像诊断中将日益显现。

诚然,影像对于临床有着非常重要的作用,而影像医学的发展也必须围绕临床进行,因为作为“医技科室”的影像科,其终极目的必然是为“医”提供服务。

影像融合概念的提出,与医学的发展方向有着直接的关系。未来医学的发展将朝着以预测(Predictive)、预防(Preventive)、个性化(Personalized)和参与性(Participatory)为特征的P4医学方向进行,这正在逐渐成为医学界的共识。冯晓源认为,个性化医学将是新医学模式的核心之一,而影像医学检查技术,将可能是个性化医学的核心和基础。改变诊断模式,适应新医学发展的要求,不仅能改变影像医学式微的趋势,更能让其走向具有广阔前景的康庄大道。影像融合,是大势所趋。

随着科学技术的发展,越来越多的影像检查设备开始提供标准DICOM格式的影像数据,从技术上解决了影像融合的问题。而影像学科因细分而导致的碎片化,却在阻碍着影像融合的进行。中国影像医学奠基人之一、中国工程院院士刘玉清教授一直提倡“大影像”,他呼吁所有的影像部门一起工作,把基于不同成像原理组成的图像放在一起,并在此基础上提取有用的信息进行融合。冯晓源认为,影像的融合更应该是学术上的融合,是各学科知识点在融合的图像上的呈现。他说:“影像医学应该从原来提供单纯的影像学信息――主要是形态学信息――向提供生物学信息进行转变。”

事实上,影像融合现在已经不仅仅只是影像医学的愿景,有些医院已经开始了相应的实践,中国医科大学附属盛京医院就是其中的一个先行者。目前,该院已经尝试将不同学科领域(如化学、计算机、生物工程)的人才引入影像学科,企图打造一个全新的融合影像学科。

三维重建与PACS

根据医学图像所提供的信息,可将图像分为解剖结构图像(CT、MRI、B超等)和功能图像(SPECT、PET等)。解剖图像以较高的分辨率提供了脏器的解剖形态信息,但无法反映脏器的功能情况;功能图像分辨率较差,无法提供脏器或病灶的解剖细节,但它提供的脏器功能代谢信息是解剖图像所不能替代的。由于成像原理的不同所造成的图像信息局限性,使单独使用某一类图像的效果并不理想。这就需要对影像进行包括图像融合在内的图像后处理,三维重建是其中的内容之一。

所谓图像后处理,是指对获取的图像进行处理、使之满足各种需要的一系列技术的总称,最典型的技术包括图像分割和三维重建。通过一定的图像分割操作,切除任意不感兴趣的数据集,仅保留要处理的部分。分割技术可以使医生排除无关图像的干扰,看得更清楚,自然得出的诊断结论也更准确。而三维重建则是根据一系列二维的医学图像,经过多重处理,提取不同物体的边界数据,得出物体的三维模型,并允许对模型进行显示、旋转、缩放等操作。三维模型的重构可以为医生提供多角度立体的视角,从而使医生方便、快捷地对病灶进行定量的分析和处理,提高诊疗水平和效率。

三维影像的获取有两种方式:设备获取和PACS获取,设备获取可分为CT、MR等设备自带工作站和专业的三维影像工作站。专业三维影像工作站功能强大,能够提供信息更丰富、品质更精细的三维图像,而另外两种途径获取的图像品质相对较差。

PACS作为一个获取、存储并提供调阅医学图像的综合应用平台,其看图模块能对图像进行各种二维处理,而三维处理功能并不是所有医疗信息化厂家提供的PACS产品都支持的功能。PACS可以集成三维后处理功能,这样就可以进行影像的三维重建。PACS是一个数字运行的平台,是一个更大的概念,重建后的三维影像可以通过PACS进行存储、传输和查看。

融合了三维影像后处理功能的PACS,以所获取的DICOM图像为基础,对其进行重建、分割等处理操作,使医生可以更全面地观察医学影像,从而扩充了PACS看图模块的功能,取得了更理想的诊疗效果。把图像分割和三维重建技术结合起来使用,将最大限度地发挥后处理功能。诊断医生通过医学PACS系统得到患者的图像信息,在看图模块中进行简单的处理之后,如果发现还不足以做出确切的诊断,就可以利用三维影像后处理系统先重建出患者检查部位的三维立体模型,分割操作可以去除不感兴趣的干扰部分,各种旋转平移操作可以给医生更多的信息,最终做出合理的诊断。

综上所述,三维影像后处理系统处理的影像来源主要是PACS,各方面都要得到PACS的良好支持,既可以成为PACS的辅助模块,也可以单独成为一个独立的软件系统。

三维重建的医学应用

三维影像的应用主要体现在临床上,比如在做手术时查看病灶和周围血管及组织之间的关系,帮助临床医生进行手术计划的制订。《中国放射学杂志》编辑部主任高宏说:“3D影像技术在疾病的诊断、治疗和基础研究方面有着广泛的应用,在肿瘤疾病上的应用更为广泛,很多肿瘤的介入治疗和放射治疗都是通过三维成像引导来完成治疗计划的制订的。”

除了高宏提到的肿瘤疾病的治疗,三维影像在骨科、心血管等临床外科的应用也较普遍。北京大学第一医院泌尿外科要求每个肾癌病例都要进行三维重建,有着一套严格的对肾癌进行三维重建的要求:重建哪几个解剖的位置、重建哪些血管和肿瘤的关系等等。该院呼吸内科开创了用呼吸内镜把肺气肿病变切除的手术,该院影像科主任王霄英评价:“内科把外科的活干了,开拓了一个全新的领域。”

不仅仅是在临床,目前三维重建在诊断、教学和科研方面的应用也已经初具规模。郭佑民认为,三维影像在放射科的应用会越来越多,“对于放射科医师而言,除了观察断面图像之外,结合3D技术可以为临床提供更多更丰富的诊断依据。”他说。

并不是所有的影像从业者都认可郭佑民的观点,在采访中部分放射科主任认为,作为诊断工具来讲,三维影像对放射科的帮助并不大。放射科医生一直都是通过二维影像做诊断,经过多年的专业训练之后,他们已经可以透过二维影像在脑海中重建三维结构,此外,三维影像并没有提供更多与诊断相关的信息。倒是对临床医生而言,三维影像更能帮到他们。

青岛大学医学院附属医院副院长董则在科研方面进行了探索,国家“十二五”科技支撑计划课题“小儿肝脏肿瘤手术治疗临床决策系统开发” 就是由他领衔的。董和他的团队希望在国际上首次将中国各年龄阶段儿童和成人肝脏进行数字化虚拟测量,建立中国儿童肝脏数据库和小儿肝脏肿瘤立体模拟手术系统。

在教学方面,郭佑民认为3D影像与2D影像相结合,有利于学生对影像学结构图像的理解和应用。“因为医学生从学习人体解剖课程开始,就逐步地建立了人体组织和结构的空间概念,而对横断面的2D图像理解不够透彻。借助3D图像可以更好地对照和理解每一幅2D图像与3D图像的关系,为后续的学习奠定基础。”他说。

三维重建的发展方向

三维重建在医学上的应用已经较为普遍,其重要性正在越来越多地得到认可。如何充分利用三维影像的优势,更好地为医学服务,学术、临床及产业界都在进行着积极的探索。

影像引导的放射治疗

影像引导的放射治疗(IGRT)是一种前沿技术,通过放疗前以加速器自带的CT进行扫描,采集并重建三维图像,与治疗计划图像配准后再实施治疗。这样可以克服因治疗摆位和肿瘤位置移动所造成的误差,确保在精确照射肿瘤的同时,将对其周围正常组织的损伤降到最低限度,全方位提高效果。它在三维放疗技术的基础上加入了时序的概念,可以说是一种四维技术。

IGRT可从定位、计划到治疗实施和验证等方面创造各种解决方案。它充分考虑了解剖组织在治疗过程中的运动和分次治疗间的位移误差,如呼吸运动、小肠蠕动、膀胱充盈、胸腹水、日常摆位误差、肿瘤增大/缩小等引起放疗剂量分布的变化和对治疗计划的影响等方面的情况,在患者进行治疗前和治疗中利用各种先进的影像设备对肿瘤及正常器官进行实时监控,并能根据器官位置的变化调整治疗条件,使照射野紧紧“追随”靶区,做到真正意义上的精确治疗。

高级影像中心

四川大学附属华西医院目前正在计划建立AVC(Advanced Visualization Centre,高级影像中心,也称3D中心或三维中心)。

西门子大中华区影像和知识管理总经理王峻介绍,AVC模式是以临床需求为中心而设计的影像信息系统,其所有的活动都是围绕着临床的某些诊疗需求而设计的。他说:“AVC改变了传统影像科的工作模式,使其更贴近临床科室的需求。AVC把大量之前只有在放射科才能访问到的高级图像处理软件的浏览权限向临床科室开放,使临床医生大为获益。AVC模式还将改变放射科的报告不受临床科室重视的尴尬状态,使得放射科的检查、处理和报告可以全面地为临床治疗服务,并为临床医生提供大量其需要的辅助信息。相信AVC能为医院诊断和治疗这两个重要的医疗行为找到更好的合作模式。”

华西医院放射科高级工程师王跃介绍,AVC所特有的各种结构化报告,能协助放射科在临床科室的亚专业和放射科的亚专业之间形成对接,这种一对一的沟通和协作,可以为临床中的不同疾病和亚专业提供更准确而有用的个性化、专业化报告,在提高放射科医生诊断报告价值的同时,也能提高放射科报告的利用率和实用性。

王跃说:“AVC的建设不仅能够大大加强放射科与临床科室的互动,使得临床更加需要放射科的工作以便更好地为患者服务,而且能够提升放射科自身的实力和水平。AVC代表了未来的放射科-临床科室工作模式,完全可以称为诊疗模式的一次革命。”

3D医学打印

据《健康报》今年7月报道,北京大学第三医院骨科刘忠军带领的团队在脊柱及关节外科领域研发出了几十个3D打印脊柱外科植入物,其中包括颈椎椎间融合器 、颈椎人工椎体及人工髋关节在内的三个产品已经进入了临床观察阶段。报道称,已经有近40位颈椎病患者和髋关节病患者在签署知情同意之后,植入了3D打印出来的骨骼。

3D打印技术,是以计算机三维设计模型为蓝本,通过软件分层离散和数控成型系统,利用激光束、热熔喷嘴等方式将金属粉末、陶瓷粉末、塑料、细胞组织等特殊材料进行逐层堆积黏结,最终叠加成型,制造出实体产品。3D打印技术又称“增材制造”,长期以来被应用于制造珠宝、电子产品和汽车部件模型,然而如今的工业3D打印机也在造福医疗领域,它们已经可以定制人体肝脏和肾脏的模型,而科学家们也正在研究如何用3D打印机打印胚胎干细胞和活体组织,目标是制造出能够直接移植到受体者身上的人体部位,先进的3D打印机目前已经开始走进医院。

医疗行业(尤其是修复性医学领域)存在大量的定制化需求,难以进行标准化、大批量生产,而这恰是3D打印技术的优势所在。目前,3D打印技术在助听器材制造、牙齿矫正与修复、假肢制造等领域已经得到了成功应用,且应用已经相对比较成熟。

篇(7)

中图分类号:TP391.41

医学图像的三维成像技术是运用计算机图形学和图像处理技术,把由多排螺旋CT获取的断层图像进行计算机处理,获得原来器官的三维重建图像。利用人机交互的方式,在计算机的屏幕上可以模拟临床的外科手术,完成手术的解剖和仿真等。医学图像的三维建模有利于医生对病灶的性质以及与周围组织三维结构关系有精确的认识,能够为医生做出准确的诊断和制定合理的手术方案提供保障[1]。

Mimics软件是由比利时Materialise公司开发的医学图像的三维模型重建软件,它是一个交互式的医学图像控制系。Mimics由RP Slice、STL+、MedCAD、Simulation和FEA 5个模块组成[2],能够将CT、MRI图像和三维渲染对象进行可视化,它可以将二维断层序列图像如CT图像、MRI图像等利用自身的三维重建功能来建立3D模型并可以进行编辑处理,结果输出CAD、FEA和RP等通用的文件格式。通过Mimics建立的三维重建模型可以使人们在虚拟的三维空间上对人体中感兴趣的对象进行放大、旋转和平移,从而近距离地观察人体内部复杂的空间关系,从而为提高医疗诊断水平和治疗规划的准确性与科学性打下基础。本文以多排螺旋CT扫描图像数据基础,应用Mimics 10.01软件的三维重建功能详细介绍了医学图像的三维模型的重建方法,并以此为依据建立了较为精确的人体肾脏组织的三维模型。

1 建立肾脏组织的三维模型

1.1 材料及方法。(1)计算机硬件:Tntel(R)Core(Tm)i5-3570 CPU@3.40GHz,32G 内存,500G硬盘;(2)应用软件:Mimics10.01;(3)扫描对象:从吉林医药学院附属医院影像科,应用6排螺旋CT机对健康志愿者的腹腔进行扫描。扫描范围包含完整的肾脏图像,共获得断层图像序列85张,以Dicom3.0标准刻盘保存,获得肾脏CT的 Dicom格式数据集。

1.2 CT图像的识别定位。将获得肾脏的CT扫描图像以DICOM格式存储并导入到Mimics软件中,在软件界面的右侧区域导入的是原始的CT断层扫描图像,界面左侧上半部是由原始CT断层图像生成的冠状面图像,左侧下部是根据右侧原始CT图像所生成的矢状面图像。可以通过设置图像的方向来进行定位,再设置相应视图的方向。视图方向设置完成后,在Mimics软件中生成三个不同的视图以及三维模型的显示区域(右下方区域),如图1所示.

1.3 图像阈值的界定。在CT断层图像中,由于不同的组织的密度不同,因此对应的灰度值不同。在提取相应组织结构时,可以通过设置较为准确的阈值来对不同组织进行区分,因此阈值设定是否准确是提取组织结构的关键,阈值设置的过高或过低都有可能出现组织丢失或者噪点过多等情况,因此需要根据实际情况设置相应组织的阈值范围。Mimics软件将阈值范围内的像素放入蒙罩中,通过修改蒙罩可添加或删除相应的组织。通过查询相关文献,本文定义的灰度范-21―51HU,此阈值可使得大部分肾脏组织通过热区选取出来。

1.4 区域生长。区域生长是将类型相似的像素集合起来进行三维建模,通过区域增长,可以帮助自动分割与所感兴趣的部位不相连的区域,从而将需要建立三维模型的热区分离出来。通过区域生长可以将肾脏同其他部位分离,排除干扰因素和噪声,后续的操作只需在分隔所得的部位中进行即可。

1.5 空洞处理。在CT扫描的过程中,噪声是无法避免的,有可能使肾脏组织的信息丢失,这样就会形成空洞。因此需要将每一张CT图片中有空洞的地方进行填补使其完整,使得模型更加平滑。填补空洞后会更加接近实际的计算结果,所以对于空洞的处理是建模前的一个必要的过程。如图3所示,蓝色区域即为经过区域生长和空洞处理后的肾脏图像。

1.6 三维建模(Calculate 3D Models)。Mimics软件通过直接读取CT图像进行建模,并利用自身功能对模型进行优化处理。因此,通过Mimics建模的方式更加简单快捷,且可避免在操作过程中复杂性对数据产生的影响与信息的丢失。在选取肾脏组织的热区后,通过在三维实体(3D Object)菜单栏中导入新生成的Mask并进行运算,就可以获取肾脏组织的三维模型,如图3所示。三维实体模型质量的提高可以通过选择表面光滑处理、减少矩阵、三角形的减少、边减少等处理方式来处理。建立的三维模型可以自由缩放与组合,并且可以多角度进行观察。

2 结束语

本文应用腹部多层螺旋CT的断层扫描图像数据,利用Mimics软件对二维的断层扫描数据进行图像的识别定义、阈值分割、区域生长、空洞处理等操作,建立了人体肾脏组织的3D模型。建模的结果表明利用Mimics软件的三维重建功能可以快速建立生成人体组织的三维模型,并可以对所创建的3D模型进行多角度的观察、测量、手术模拟和仿真等操作,为临床医生诊断的准确性和手术治疗方案的合理性提供了依据。

参考文献:

[1]黎弘,蔡元龙,姜航毅.基于微机的医学图像三维重建[J].中国生物医学工程学报,1995(03):226-234.

[2]付淼,李莉,何叶松.Mimics与医学图像三维重建[J].中国现代医学杂志,2010(10):3030-3031.

篇(8)

1.1图像成像

从本质上来看,生物医学图像成像技术(下文简称“图像成像技术”)与医学影像技术的区别并不大,仅仅是人们更习惯将其表达为医学影像。生物医学图像成像技术的研究内容为:利用染色方法和光学原理,清晰地表达出机体内的相关信息,并将其转变为可视图像。图像成像技术研究的图像对象有:人体的标本摄影图像、观察手绘图像、断层图像(如ECT、CT、B超、红外线、X光)、脏器内窥镜图像、激光共聚焦显微镜图像、活细胞显微镜图像、荧光显微镜图像、组织细胞学光学显微镜图像、基因芯片、核酸、电泳等显色信息图像、纳米原子力显微镜图像、超微结构的电子显微镜图像等等。

图像成像技术主要包括2个部分:现代数字成像和传统摄影成像。通常可采用扫描仪、内窥镜数码相机、采集卡、数字摄像机等进行数字图像采集;显微图像采集则可应用光学显微镜成像设备及超微结构电子显微镜成像设备;特殊光源采集可应用超声成像仪器、核磁共振成像仪器及X光成像设备。目前,各种医学图像技术的发展都十分迅速,特别是MRI、CT、X线、超声图像等技术。在医学图像成像技术方面,如何提高成像分辨力、成像速度、拓展成像功能,尤其是在生理功能及人体化学成分检测方面,已经引起了相关领域的重视。

1.2图像处理

生物医学图像处理技术,是指应用计算机软硬件对医学图像进行数字化处理后,进行数字图像采集、存储、显示、传输、加工等操作的技术。图像处理是对获取的医学图像进行识别、分析、解释、分割、分类、显示、三维重建等处理,以提取或增强特征信息。目前,医学领域所应用的图像处理技术种类较多,统计学知识、成像技术知识、解剖学知识、临床知识等的图像处理均得到了较快的发展。另外,人工神经网络、模糊处理等技术也引起了图像处理研究领域的广泛重视。

1.3图像分析及图像传输

生物医学图像分析技术,是指测量和标定医学图像中的感兴趣目标,以获取感兴趣目标的客观信息,建立相应的数据描述。通过计算测定的图像数据,可揭示机体功能及形态,推断损伤或疾病的性质及其与其他组织的关系,进而为临床诊断、治疗提供可靠依据。生物医学图像传输技术,是指应用网络技术,在互联网上开展医学图像信息的查询与检索。通过网上传输图像,在异地间进行图像信息交流,可实现远程诊断。同时,在院内通过PACS(数字医学系统—医学影像存档与通信系统),也能在医院内部实现医学图像的网络传递。

篇(9)

一、虚拟医学解剖实验概述

所谓虚拟医学解剖实验是指利用虚拟现实技术模拟解剖试验的过程,创建一种模拟现实环境的多维信息空间,通过这一空间获取与实际医学解剖实验接近或一致的信息。虚拟医学解剖实验的实现需要综合应用多种技术,包括计算机图形学技术、多媒体技术、人工智能技术、仿真技术、计算机网络技术、多传感技术、并行处理技术等。利用虚拟医学解剖实验室能够对虚拟的标本进行无限次的手术练习,且不受场地、温度等多种因素的限制。若制作的标本仿真度够高,还可用于大型医疗科研项目,其所具有的优越性是不可估量的。虚拟标本仿真度的高低主要由三维图像重建技术决定,因此三维图像重建技术是虚拟医学解剖实验的关键方法[5]。

二、虚拟医学解剖实验关键方法

—三维图像重建的原理三维图像重建这一词汇并不陌生,医疗领域的放射性检查中常应用这一词汇。所谓三维重建是指三维物体建立适合计算机表示和处理的数学模型。该种技术主要依赖计算机和图像处理技术实现,是在计算机中建立、表达客观世界的关键性技术。三维图像重建技术在虚拟医学解剖实验中的应用需要基于LabView平台获取最佳应用效果。现阶段,大部分三维精确重建算法均是以FDK算法为基础算法进行计算得到的,重建原理结合图1进行分析。图1为锥束圆形的扫描轨迹,其中x轴、z轴、y轴分别用于描述扫描区域做标记,u轴和v轴用于描述探测器投影数据坐标系,t轴和s轴用于描述射线源坐标系。以z轴为旋转中心轴进行旋转,s轴会一直经过射线源的中心,并与探测器平面保持垂直关系。为了方便极端,根据集合比例将探测器投影数据转换为经过原点O的平面投影数据,基于FDK算法的三维图像重建需要进行滤波和反投影的计算。滤波的计算公式为:滤波=aa2+b+c姨d•h(e),其中a为射线源中心与原点之间的距离,b和c均为旋转角夼下的投影,d为旋转角夼下的滤波投影数据,h(e)为卷积函数。反投影计算公式为:反投影(f(x,y,z)=2π0乙u2P(p,q)a),其中(p,q)用于描述重建体素点在滤波投影平面上的反投影点位置。

三、三维图像重建技术的应用

三维图像重建技术的应用主要包括两部分,分别为建立虚拟模型和制作虚拟模型,以简单的形体为例,可直接建立整体的三维模型,然后对各个剖切面进行处理,形成一个复杂的组合体。之后借助三维CAD设计虚拟模型的各个部分。本文以人的手臂为例,分析三维图像重建技术的实际应用,具体步骤如下:(1)首先建立一个整体三维模型,然后以剖切面为界限对各个部分进行处理,分别创建组成部分。(2)完成模型建立后使用三维CAD设计软件的输出插件功能生成VRML文件,将三维模型建好后在三维CAD设计软件中应用输出插件导出1wrl格式的文件,与VRML问卷和HTML文件基本相似,并用文本文件对场景和链接进行描述。(3)在VRMLPad中打开查看上一步骤导出的源代码,使用VRMLPad自带的文件压缩功能对文件进行优化压缩,得到人体手臂三维模型。(4)应用VRML的设计交互功能,通过VRML的脚本节点Script对场景对象进行定义和改变。脚本节点Script包括一个Java文件,在脚本节点Script初始化时应用,当收到事件指令后将执行相应的函数,该函数能通过常规的机制发送事件指令或直接向脚本节点Script指向的节点发送事件,最终通过双击“shoubi.1wrl”文件,之后可借助VRML浏览器浏览“shoubi.1wrl”文件。至此,完成了三维图像重建技术在虚拟医学解剖实验中的一次应用。

四、结论

综上所述,三维图像重建技术作为虚拟医学解剖实验的关键方法,能够将大量解剖学知识直接表现出来,使抽象的解剖学概念更加直观化、形象化,不仅能够节约昂贵的实验动物和人体标本,还能提高解剖实验过程的灵活性,避免真实解剖实验研究过程中存在的风险事件。但其也存在一些应用弊端,如在解剖实验教学中的应用,可能会导致学生缺乏对解剖基本技能的重视,忽视相关仪器的使用规范。因此,建议我国医疗领域和高等医学院校合理应用该项技术。

作者:张雷 李斌 单位:张家口学院

参考文献

篇(10)

[中图分类号] R-092 [文献标识码] A [文章编号] 1673-7210(2012)05(b)-0123-02

本研究中所谓中医古籍图像,是指中医古籍文献中所刊载的各类插图而言。数量众多、内容丰富的中医古籍图像是中医学知识除文字外表述的重要补充,也是中医学知识最为直观、形象的表达。然而当前鲜见有关于中医图像的成规模、系统性研究,在中医古籍数字化建设中,也未曾将图像作为单独的研究课题。2011年,中国中医科学院基本科研业务费第三批自主选题团队项目——“中医古籍图像分类整理研究”课题(ZZ03076),首次对中医古籍图像资源进行了系统的调研,并搜集到大量的图片资料[1],由此中医医史文献研究者第一次全面而系统的掌握了如此海量的图像资源,这确为一件幸事。

然而如果继续沿用传统的文献学和史学的方法对数量如此众多的图像进行整理研究,单凭人工的方法就已显得力不从心。因此借助于现代信息技术的数据库技术,实现对古籍图像的管理,并利用知识管理的理论方法,对图像资源进行标引,将大大提高古籍图像研究的深度,并对从整体上把握图像的分类具有很好的规范作用。本研究拟探讨一个集中医古籍图像管理与应用功能为一体的数据平台的构建方案。

1 系统设计

中医古籍图像数据平台拟采用多层化、模块化和组件化的理念进行架构设计,构建一个分布式应用、集中式管理的WEB应用系统平台。该系统分为:数据资源层、加工管理层、查询应用层。

1.1 数据资源层

包括中医古籍图像、索引和系统3个数据库。中医古籍图像数据库:存储中医古籍图像文件及其标引信息。索引数据库:存储中医古籍图像数据库中的索引信息,为高速查询检索提供数据层支持。系统数据库:存储用户信息和用户产生的各类数据等。

1.2 加工管理层

包括图像信息著录、图像主题标引和用户管理、内容管理4个功能模块。图像信息著录:为数据加工人员提供对古籍图像的外部信息进行著录、修改、审核的平台;图像主题标引:为图像研究人员提供对图像内容进行主题以及关系标引的平台;用户管理:为管理员提供管理用户和用户权限的工具;内容管理:为管理员提供审核、删除各类用户在评注、交流、通讯过程中所产生相关内容的工具。

1.3 查询应用层

包括检索查询、评注交流、统计报表、图像网络4个功能模块。检索查询:向用户提供图像查询和输出功能;评注交流:为用户提供学习、交流的平台;统计报表:为研究人员提供查询结果统计报表及多种统计图示生成的功能。图像网络:为研究人员提供动态图像关系网络展示功能。

2 系统功能

2.1 加工管理功能

2.1.1 图像信息著录 数据加工人员首先将经过裁切、正畸、除污等技术处理过的图像文件上传进本系统,然后以张为单位,分别对图像的各项外部信息进行著录。

2.1.2 图像主题标引 图像研究人员可对图像的分类、关系、主题等内容信息进行标引。①分类标引:按照多种分类体系,对每张图像进行多重标引;②关联标引:根据构建图像网络的需要,对图像间的等同、版本、组图、衍化等关系进行标引;③主题标引:以《中国中医药学主题词表》[2]作为工具,对图像所反映的内容主题进行标引。

2.1.3 用户管理 管理员可对在系统中工作或使用者,赋予不同的角色类型,并对用户的权限进行管理。

2.1.4 内容管理 管理员可对系统中各类用户在使用过程中产生的诸如留言、评注、笔记、通讯等各类信息进行审核管理。

2.2 查询应用功能

2.2.1 检索查询 系统向用户提供简单查询、组合查询、关联查询3种方式。①简单查询:用户可以通过输入单一的图像信息或主题词作为条件,检索相应的图像;②组合查询:用户可以通过输入组合的图像信息或主题词作为条件,检索相应的图像;③关联查询:用户可以一张图像作为中心,检索与其相关的其他图像。以上查询结果,均可按照年代、作者、主题等条件进行排序。

2.2.2 评注交流 为用户提供对古籍图像进行笔记、批注的功能;为加工人员及科研人员提供一个问题交流、讨论、反馈的机制;提供加工管理层与查询应用层之间用户间点对点的通讯功能。目的是为用户搭建一个科研学习的虚拟平台。

2.2.3 统计报表 按照年代、作者、类型、刊刻单位、版本、流传等条件统计分析图像数目,生成报表或其他图示形式。

2.2.4 图像网络 按照图像间的关联,生成图像网络。以展示图像的主题关系以及流传谱系。

3 系统实现

系统功能实现的基础为中医古籍图像数据库,以下简要介绍一下数据库主要表的结构(图2)。

3.1 图像表

①图像编码(主键):识别图像的标识。②图名:图像的名称,原有图名的沿用原图名;原没有图名的可自拟图名,也可为空。③出处(外键):古籍图像所出自的古籍及其版本。④特征:图像诸如彩图、墨图、雕版、手绘等形态特征。⑤分类:图像的分类号。⑥关联:图像相关的其他图像的编码。⑦主题词:描述图像内容的主题词,域值为《中国中医药学主题词表》。⑧有无图像:布尔值。⑨图像文件:链接图像的文件。⑩备注:关于图像其他信息的备注说明。

3.2 书目表

①古籍编码(主键):识别古籍的标识。②书名:古籍的正题名,以《中国中医古籍总目》[3]的题名著录作为主要参考。③版本:古籍的版本,以《中国中医古籍总目》的版本著录作为主要参考。④总目号:古籍在《中国中医古籍总目》中的编号。⑤主要责任者:古籍的编者、著者等。⑥次要责任者:古籍的校注者、增补者等。⑦成书时间:古籍成书的时间。⑧刊刻时间:版本刊刻的时间。⑨内容提要:对古籍作者、成书、版本、主要内容等的概括性介绍。⑩载图数:古籍所刊载的图像数量。馆藏单位(外键):古籍的馆藏单位。借阅号:一般为馆藏单位为古籍编制的财产号。

3.3 馆藏单位表

①馆藏单位编码(主键):识别馆藏单位的标识,以《中国中医古籍总目》的馆藏地代码为参照。②馆藏单位名称:馆藏单位的名称。③地址:馆藏单位的地址。④联系人:古籍借阅联系人的姓名。⑤联系方式:古籍借阅联系人的联系方式。

4 相关基础研究

中医古籍图像数据平台的构建,技术实现仅是其中一方面的工作,关于中医古籍图像的分类研究,分类体系的建立以及主题标引的规范,才是研究的难点和重点之所在。系统功能研究成果的水平,主要取决于以上基础性研究工作的进展情况。

“中医古籍图像分类整理研究”课题先期取得的成果,为图像系统性研究提供了很好的示范和指导作用,希望以此平台的构建为契机,整合起分散于全国的人力、智力和古籍图像资源,为中医古籍图像的进一步深入、系统、可持续的研究奠定良好的基础。

[参考文献]

[1] 秦秋.我国首次开展中医古籍图像研究[N].中国中医药报,2011-12-16(001).

篇(11)

doi:10.3969/j.issn.1004-7484(s).2013.11.843 文章编号:1004-7484(2013)-11-6816-02

医学影像存储与传输系统是医院信息系统的重要组成部分。数字化医院的建设必须是以患者为中心的信息化,为此医院的计算机管理系统的重点是建设以患者为中心的医疗信息化,即网络化图文报告传输系统、HIS系统、EMR系统、LIS系统,这些是医院信息化的核心组成部分。研发使用网络化图文报告传输系统,真正做到了影像学资料的传输、存储完全数字化、网络化。网络化图文报告传输系统实现放射线、CT、超声、腔镜、核医学、病理、心电、腹腔镜手术、宫腔镜检查等的图文报告传输到医生的电子病历工作站上,使各个科室之间的医疗信息得到共享。

1 图文报告传输系统研发的目的与意义

长期以来医技各科室图文报告信息形同孤岛,数据不能共享,医技医生在做诊断时不能参考患者的其它诊断因素,患者基本信息只能通过患者口述或参考申请单,易出现不准确。实现网路化图文报告传输系统可以将患者基本信息直接导入,对患者需检查项目、项目费用等相关信息了解明确;可以实现患者医技检查信息集中管理,信息共享,提高医技科室信息统计管理;可以方便历史资料的快速准确的查询,以及进行检查费、日常工作量和综合信息的快速准确统计等工作;可以构建各个影像学科图像及文本信息整合,实现在统一ID、统一界面及统一索引下涵盖医疗、教学和科研信息的管理;可以在电子病例系统中查阅患者检查的图文报告数据;可以为医院全面数字化、信息化奠定基础。

2 图文报告传输系统的研发方法

连接医院各科现有主要影像设备,实现全院影像资料标准化存储与管理;建立服务器集群和大容量集中存储系统,并可平滑扩容,所有数据按照国家相应法律法规进行长期备份保留,提供多级数据安全体系保障;建立数据的备份及容错系统,提供数据转移、恢复措施;在系统内部建立统一全面的用户权限管理;提供多种影像调阅模式,实现放射科、门诊、住院及部分相关科室的影像快速调阅,提供各种影像后处理功能以提高质量诊断;实现影像检查质量控制管理和诊断报告质量控制管理;实现临床科室影像调阅和报告阅读;连接放射线科、超声科、腔镜科、核医学科、病理科等影像科室,实现全院范围内的标准化数字化影像系统;实现医院内部影像资料及相关信息的统一存储管理,数据共享;实现与HIS系统及电子病历系统的进一步融合;建立整个图文报告传输系统系统的系统安全机制,主系统出现故障进可快速切换;实现数据的容错、容灾及安全备份,在线数据系统出现灾难性故障时,可提供及时、准确的数据恢复。

3 结 果

网络化图文报告传输系统实现了图文报告系统的网络化传输,使医生能够第一时间掌握病人的诊断结果;实现了放射线、CT、超声、腔镜系统、核医学、病理、心电、腹腔镜手术、宫腔镜检查等的图文报告传输到医生的电子病历工作站上;实现了医院影像数据及相关信息长期的可靠存储与科学有效管理,使其能更好的应用到医院的诊断、科研、教学等实际工作中;实现了医院影像诊断过程中各类信息的全面科学管理,提高了医院管理效率及管理水平;通过完善的系统接口功能,实现了与医院HIS进行无缝连接,实现了医院信息系统、工作流程的高效整合。同时网络化图文报告传输系统使医技图文报告信息网络化,数据集中存储到服务器上,定期备份,避免在本机时数据易损坏易丢失。数据共享使得医技医生通过此系统可以调阅参考患者在其它检查科室诊断,可以为此次检查结果作出明确诊断。信息集中处理简化了作业流程,提高了历史资料的快速准确的查询,以及进行检查费、日常工作量和综合信息的快速准确统计等工作。

4 结 论

随着医疗事业的发展,医院信息化、网络化管理已成为现代医院管理的必然趋势,给医院、医疗、教学和科研带来了很大的帮助,对于提高医院和科室的整体管理水平和医院科室的数字化发展、并融入整个社会的数字化和网络化是必不可少的,结合网络化图文报告传输系统完成医技科室的日常管理工作和综合信息及数据资料的自主管理等工作,规范的诊断报告使临床医师阅读方便,减少了手工重复性劳动,大大提高了医技人员的素质和工作效率,提高了医院及科室的综合管理水平,塑造了医院的窗口新形象,社会效益和经济效益显著提高,更好的体现了“以病人为中心”的服务宗旨。

参考文献