欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

沥青路面结构设计论文大全11篇

时间:2022-01-31 06:11:54

沥青路面结构设计论文

沥青路面结构设计论文篇(1)

由于目前我国沥青路面结构设计方法存在着较明显的缺陷,对半刚性基层仅考虑了其优势而未考虑其缺陷,严重地阻碍了混合式基层沥青路面、全厚式沥青路面等在国外运用良好的优秀沥青路面结构型式在国内的运用。本文通过分析目前我国沥青路面结构设计方法的缺点,提出了适应中国特点的混合式基层沥青路面结构设计方法,并举例进行了计算分析。

1 沥青路面结构层组合设计方法

(1)选用无机结合料类材料做基层的沥青路面无机结合料类基层具有较大的强度和刚度,因而具有较高的承载能力,适用于中、重或特重交通荷载等级的沥青路面,但这类基层存在由于温度收缩和干燥收缩受阻而产生的收缩裂缝,从而引发沥青面层出现反射裂缝,并进而发展为基层顶面受冲刷和产生唧泥病害的缺点。这类基层依靠本身的弯拉强度来抵御行车荷载的作用,因而,增加这类基层的强度可以提高路面结构的承载能力,但强度过高,会由于结合料含量的增大而引起收缩裂缝数量增加和缝隙宽度增大,从而加剧沥青面层出现反射裂缝的严重程度。

(2)选用沥青结合料类材料做基层的沥青路面通常宜选用粒料类底基层,但粒料层和路基产生的永久变形在路表的车辙总量中会占据较大的比重,结构设计时需考虑这部分永久变形量的影响。选用无机结合料类底基层时,由于其刚度较大沥青类基层底面的拉应力以及路基顶面的压应力会降低,因而,有利于增加沥青层的疲劳寿命和减少路基的永久变形量。但无机结合料类底基层产生的干缩和温缩裂缝有可能影响到沥青层,使之产生反射裂缝,因而,在配伍基层时可考虑选用能减缓反射裂缝影响的半开级配沥青碎石基层,但渗入水仍有可能浸湿路基和冲刷路床顶面,产生唧泥病害。

(3)选用粒料做基层的沥青路面粒料类基层的承载能力取决于粒料的抗剪强度和抗变形能力。粒料的类型、级配组成、细料含量和塑性指数、压实度以及湿度状况,都会影响粒料的抗剪强度和抗变形能力。选用优质集料、良好级配、限制细料含量及其塑性指数、要求达到足够高的压实度,这些措施可以保证粒料基层具有足够的承载能力和抗变形能力。

(4)以热拌沥青混合料做磨耗层和水泥混凝土类材料做下面层的复合式路面下面层选用普通水泥混凝土时,结构设计所关注的重点是沥青表面层的反射裂缝。为了减缓反射裂缝的产生,混凝土下面层板的横缝内必须设置传力杆,以减小接缝两侧的挠度差,从而降低沥青面层所承受的竖向剪切应力水平。同时,还可在水泥混凝土下面层和沥青表面层之间加设沥青碎石或橡胶沥青应力吸收层,以缓解沥青面层内由于混凝土面层的竖向和水平向位移而产生的应力集聚。面层选用连续配筋混凝土时,由于裂缝间距和缝隙宽度小,不会使上面的沥青面层产生反射裂缝。

2 沥青路面结构组合设计技术措施

2.1 面层结构设计

2.1.1 面 层

沥青面层分为热拌沥青混合料、冷拌沥青混合料、沥青贯入式、沥青表面处治与稀浆封层四种类型。热拌沥青混合料包含沥青混凝土、沥青碎石混合料。沥青混凝土适用于各级公路的面层。热拌沥青碎石混合料、沥青贯入式可用于二级、三级公路的面层,以及用于柔性基层、调平层。

2.1.2 基层与底基层

基层、底基层厚度应根据交通量大小、材料力学性能和扩散应力的效果,充分发挥压实机具的功能,以及有利于施工等因素选择各结构层的厚度。各结构层的材料变化不宜过于频繁,应有利于施工组织、管理与质量控制。

2.1.3 垫 层

垫层材料可选用粗砂、砂砾、碎石、煤渣、矿渣等粒料,以及水泥或石灰煤渣稳定粗粒土、石灰粉煤灰稳定粗粒土等。为防止软弱路基污染粒料底基层、垫层,或隔断地下水的影响,可在路基顶面设土工合成材料隔离层。垫层应与路基同宽,其最小厚度为15cm。

2.2 结构层层间结合设计

(1)半刚性基层沥青路面宜采取以下措施减少收缩开裂和反射裂缝:①选用骨架密实型半刚性基层,严格控制细料含量、结合料剂量、含水率;②适当加大沥青面层的厚度,在半刚性结构层上设置沥青稳定碎石或级配碎石等柔性基层;③在半刚性基层上设置改性沥青应力吸收层或应力吸收膜或铺设耐高温的土工合成材料。

(2)加强路面各结构层之间的紧密结合、提高路面结构整体性,避免产生层间滑移,设计时应采取技术措施如下:①沥青层之间设置黏层沥青。黏层沥青可用乳化沥青或改性沥青或热沥青,洒布数量宜为0.3~0.6kg/m2。②基层上设置透层沥青。透层沥青应具有良好的渗透性能,可采用液体沥青、稀释沥青、乳化沥青等。洒布数量宜通过现场试验确定,对粒料基层应渗入3~6mm为宜。③在半刚性基层上设置下封层。下封层宜用沥青单层表面处治或改性沥青稀浆封层,厚度不应小于6mm。④新旧沥青层之间,沥青层与旧水泥混凝土板之间洒布的黏层沥青宜用热沥青或改性乳化沥青或乳化沥青。⑤拓宽路面时,新旧路面接茬处喷涂黏结沥青。⑥双层式半刚性基层宜采用连续摊铺、碾压工艺。

3 结 论

沥青路面结构组合设计的效果贯穿于公路建设的全过程,其控制成效也直接影响着病害的预防与后期控制,关系到工程建设参与各方的经济利益。相关人员要不断借鉴国内外工程沥青路面设计理论和实践的基础上,结合我国实际市场经济条件下沥青路面设计现状,勇于探索、创新成功有效的沥青路面结构组合设计方法。

参考文献

[1]李福,陈景.新型沥青路面结构在我国的应用研究.公路交通科技,2006(3).

[2]孟书涛.简论我国沥青路面结构形式的应用和发展.交通建设与管理,2007.

[3]中国公路学会道路工程分会.高速公路沥青路面早期损坏交流论文集[R].烟台,2003.10.

[4]沈金安等编著.高速公路沥青路面早期损坏分析与防治对策.北京:人民交通出版社,2004.

沥青路面结构设计论文篇(2)

关键词:沥青;基层路面结构;综述

20世纪70年代之前,半刚性基层沥青路面的使用相当普遍,由于半刚性基层沥青路面存在缺点,限制了其使用和发展。后来,全厚式和柔性基层沥青路面迅速发展,成为主流。在公路运行车辆的时候,路面结构就是进行直接与车辆接触的部位, 路面结构是否耐久、是否抗滑和平整都直接影响着车辆能否高速并且安全的运行,对交通运输的经济和社会效益有着直接的影响。在路面设计理论已经有百年历史,经历了“古典法-经验法-力学法”这样的过程,目前世界上大多采用经验法和力学法两种方法。本文通过对国内外沥青路面结构设计进行分析,说明对沥青稳定基层路面结构设计进行研究的必要和可行性。

一、对国内外沥青稳定基层路面结构设计区别的探讨

主要包括对设计思想、设计寿命和指标设计的不同。

第一,设计思想。根据国外沥青稳定基层路面结构设计的理念,沥青路面至少能够使用几十年,因此应该采用比较厚的柔性路面,减少层底开裂和结构性车辙。那么即便是基层路面出现表面损坏,达到不可容忍的水平的时候,最经济、实用并且有效的方法,就是磨掉损坏的顶层,重铺沥青,此时表面材料还可以实现再利用。我国就不同,我国现行半刚性沥青稳定基层路面结构设计的思想,基础是把基层做为承重层,只要出现了弯沉超过标准,也就是说路面发生了结构性破坏,那么也就是说基层也发生了破坏。

第二,设计寿命。国外沥青稳定基层路面结构设计的使用年限取值在设计年限长短和考虑方式上都不同。在英国,年限为20年或者是40年,一般年限假定为40年,前提是要保证路面养护和维修。在德国,一般为20年,但通常只谨慎的取10年,反应了这个民族的特点。在澳大利亚,一般年限为20—25年。在日本,年限为10年,但是实际使用往往超过20—30年。在美国,由于气候和管理水平的不同,所以不做具体规定,实际上一般是10—20年。在我国,一般为15年,许多使用几年都会出现大的问题。

第三,指标设计。在国外,一般使用回路评价指标、弯沉指标和检验施工均匀性指标。主要采用力学设计方法设计,标准是土基顶面垂直压和层底弯拉应变,指标设计思想基本相同。我国一般采用基层层底拉应力以及路表弯沉,一般情况下,各层的拉应力又基本上起不了控制作用,唯一指标似乎成了表面弯沉。导致了弯沉过小,半刚性基层强度过大,道路开裂极其严重,排水困难十足,对路面造成很大的损坏。

二、目前沥青稳定基层路面结构设计综述

(一)目前国外沥青稳定基层路面结构设计综述

主要是经验法和力学-经验法。经验法是指对实验和使用道路的观察,测量,研究荷载、路面性能和结构的关系,著名的有CBR(承载比)法和AASHTO(柔性路面设计法)。而力学-经验法主要包括Shell设计法和美国地沥青协会(AI)法。力学-经验法分析路面结构在载荷以及环境下的力学响应,利用其与各种损坏模式之间性能模型,进行沥青稳定基层路面结构设计。

在英国,主要是柔性基层沥青路面设计,它的沥青稳定基层路面,是由粒料底和沥青面层青稳定基层组成的。英国TRL(Transport Research Laborator)机构,根据多年研究,提出新的HD26结构设计曲线,提高设计年限为40年,最小沥青厚度不得低过20cm。

法国一般采用半刚性的基层沥青路面,主要有两种设计方法,一种是组合结构,另一种是复合式结构。在德国,有与法国相似的半刚性基层沥青路面的结构,柔性基层沥青路面结构正是级配碎石和沥青混凝土的组合。后来由于美国全厚式路面结构的经验,德国用薄的结构层替代厚碎石层。将路面结构形式分为三层,分别是沥青、承重和沥青联层。

在日本,主要采用CBR法计算厚度,典型结构是集面层、级配碎石下基层、沥青稳定基层、未筛碎石底基层为一体,对于交通量小道路而言,沥青可以直接铺筑于级配碎石,然而对于交通量大道路,基层是沥青稳定材料。在美国,20世纪五六十年代的时候,就提出了AASHTO(柔性路面设计法),当时共有四种基层,包括碎石、水泥处治、砾石和沥青处治基层。

目前,美国主要以柔性基层沥青路面为基本路面结构,半刚性只在印第安出现,是比较少见的路面结构,尽管有些路面结构仍使用半刚性材料,但是只是作为地基层。美国的柔性基层沥青稳定基层路面结构设计形式种类很多,主打全厚式和下卧粒料基层。70年代后基本上舍弃了半刚性,而新建道路基本上全厚式和厚沥下卧粒料基层成主要沥青稳定基层路面结构设计形式。还有一种比较特殊的长寿命沥青路面。它是在20世纪末期基于年限总费原则而提出的,已经成为了世界各国路面研究热点。

(二)目前国内沥青稳定基层路面结构设计综述

我国的沥青稳定基层路面结构设计主要采用的是力学-经验法,这种路面结构主要采用了SHELL的设计方法,将路面看作多层弹性体系。以泊松和弹性模具为表面特征,可以根据查表、实测以及室内试验求得。早期研究表明,我国曾使用柔性路面设计,石灰或者柔性材料为主,但是随着社会发展,已经不能适应国内沥青路面状况,据悉,最近的几个实体工程、结构和正在建高等级公路的表明, 半刚性基层才我国沥青路面的最合适的结构, 造成很大的经济损失。同时,不同设计人员结构组合差别比较大,一条路,不同设计单位结构相差也比较大。因此, 要根据实际情况,结合设计以及施工的经验, 提出各个适合地区特性的结构,不要定向思维,盲目不知变通,对路面结构设计知识和方法也要更新很进步。

此外,也有研究表明,柔性基层才是王道。在大粒径沥青稳定碎石柔性基层方面,我国也是硕果累累,首先,开始了其设计指标和标准探讨,对指标影响因素进行了分析。其次是利用马歇尔和GTM法设计其混合料,并作出了比较。再者是证明其低温抗裂性要优于半刚性基层沥青路面。然后研究了其抗疲劳性能,预估了其疲劳寿命。最后,证明了其抵抗反射裂缝以及高温稳定性能等。

沥青稳定基层路面结构设计是涉及面广,相当值得研究的问题,我们需要不断的进行深入研究,总结其中的经验,纠正不足之处,才能逐步完善,使其更好的为我国现代化贡献。

参考文献:

[1]周利 蔡迎春 杨泽涛. 国内外沥青路面设计方法综述. 公路交通技术.2007(4):36-38.

[2]黄晓明 车同芝 张晓冰. 沥青稳定基层路面结构设计综述. 河南交通科技.1999,3(19):6-9.

[3]丁乐 王凯. 沥青稳定基层路面结构的理论研究. 山西建筑. 2009,35(3):281-283.

[4]王锡通 郑录化 吕伟民. 沥青稳定基层路面结构的研究. 浙江水利水电专科学校学报. 2006,18(3):46-48.

[5]王继东 王俊义. 沥青稳定基层路面结构的特点及其应用. 山西建筑. 2007,33(27):298-300.

沥青路面结构设计论文篇(3)

1.1沥青特性沥青一般带负电荷,由于含有少量羧酸和亚枫而呈弱酸性;而集料的岩性决定了集料表面电荷的性质和酸碱特性。所以,按照化学反应理论,沥青对集料的粘附性决定于集料的岩性。

1.2集料特性某些集料过分坚硬致密,破碎后表面光滑不利于沥青粘附。潮湿的集料与沥青的粘附性大大降低。滞留在混合料内部的水分夏季遇高温会变为水蒸汽,使沥青膜从集料表面撑开。而有些吸水率稍大的集料,只要施工时彻底干燥,沥青将会被吸入集料内部一部分,反而有良好的水稳定性。集料中含有泥土对沥青混合料得水稳定性的影响很大,土壤都带有负电荷,它是强亲水物质。单从材料本身的角度而言,水渗入路面中的途径还是很多的。

因此,在改善沥青对集料粘附性的同时,对路面结构和排水进行研究改善显然是十分必要的,国内、外对透水基层、抗滑密实的上封层和排水设施等进行了研究与应用,这是疏导的方法。

2影响沥青路面水损坏的路面结构因素分析

路面结构组合和路面排水设计合理时,路面排水通畅,路面结构内部基本无积水或不至于产生动水压力,有利于沥青混合料的水稳定性,反之则不利于沥青混合料的水稳定性。

2.1路面结构组合设计

2.1.1材料——沥青混合料类型。沥青混合料为全开式结构或密实式结构时,路面不易发生水损坏;沥青混合料为半开式结构时,路面易发生水损坏。随着公称最大粒径的增大,渗水系数将增加,所以为了做到密水,减小公称最大粒径是有效的。

施工失败时以上关于沥青混合料类型对路面水损坏的影响的分析不适用。沥青路面密实度小,则孔隙率大,路面结构内部积水,在车辆荷载作用下易产生动水压力。

2.1.2结构组合。路面结构组合设计包括给路面不同层位选择恰当的材料类型,保证路面结构的整体承载力和水稳定性。这包括选择密实而具有良好骨架结构的沥青混合料,使得路面不至于发生表面型水损坏;选择良好的透层和粘层材料,使得路面整体强度足够,不至于发生内部型水损坏;处理好接缝,避免缝边级配离析和压实不足。

2.2路面排水设计路面排水设计与沥青路面水损坏密切相关,适当的路面排水设计与路面结构设计组合可以极大地减缓路面水损坏。路面排水设计应遵循几个原则,使得路面降水尽快通过路表迳流排走,进入路面结构内部的水以尽量快的速度通过路面结构内部排水系统排走。

2.2.1中央分隔带排水。在我国,中央分隔带植树防眩而不加封闭带来的水损坏现象一直以来没有得到改善,但近年来,一些公路特别是改扩建的公路开始将植树以外的面积采用浆砌片石等措施进行封闭。遭受抱怨的还有反滤土工布被立柱打穿,造成中央分隔带渗水,但可从设计上检查立柱尺寸是否足以穿透土工布。

2.2.2硬路肩排水。挡水式的路缘石使路面表面排水滞留在路面上成为水坑,也妨碍了具有一定透水能力的表面层的内部积水从硬路肩排出。近年来较多采用了平放的路缘石,不至于使水滞留在路面上。

2.2.3路面结构内部排水。挖方路段的排水往往是薄弱环节,尤其要注意边沟的深度,不仅能排路表水,还应能排结构层的水,使路面内部的水能排入边沟。路基中有地下水或裂隙水冒出时,将使路基含水量过大,承载能力严重降低,所以挖方路段的纵向排水盲沟也是很重要的。

2.3施工质量和工艺施工质量和工艺的可靠、合理是一切设计得到体现的保证,是工程建设的生命。没有施工质量和合理的工艺作保障,任何完美的设计都只是一纸空文。

3水损的防治

水是水损害之源,对付水损害可采取封(堵)排的方法,防治水损主要从设计和施工两方面入手:

3.1设计方面为防止沥青路面因水而引发的早期破坏,除要求路基、路面必须具备足够的稳定性和强度外,路面必须具有良好的排水功能。为此,路面排水设计应成为路面设计中的重要内容。

3.1.1路面结构防水设计沥青路面结构组合设计中,应根据沥青混合料粒料公称最大直径确定合理的面层厚度,防止离析,以减少路面渗水。此外,应尽可能采用有利于减轻沥青路面裂缝的设计方案。

3.1.2路面结构排水设计路面排水可分为路表排水和结构排水。路表排水是指水沿路面横坡和路线纵坡所合成的坡度流至路基边坡直至边沟,排出路基之外,这点在路面排水设计中已考虑到,而路面结构排水考虑的还不够充分,是导致水损的重要原因。可以采取以下措施:①设置沥青下封层。一方面将基层封闭起来,避免直接受到水的冲刷,另一方面形成一个光滑的界面,以利基层表面水的排泄。②硬路肩的结构设计,应考虑将路面结构内的水迅速引向路基之外。可采用设置碎(砾)石垫层或外包土工布的纵横向盲沟等措施。③设置中央分隔带时,同样也应考虑沿界面水的排出通道,如弯道处的中央分隔带必须设置纵向排水沟,然后通过集水井、横向排水等设施,既排路表水,又排下渗水。另外,填土的分隔带顶部做成抛物线拱起,并大面积种植草皮封盖,尽可能减少雨水下渗。④地处软土地基或高填土路基的路面,由于路基沉降作用,随着时间的推移,路在横坡度逐渐变小,严重时会出现平坡甚至倒坡现象。因此,建议路面横坡度的设计值,在规范值的基础上增加0.5%-1%的预拱度,以抵消路面横坡度的损失,使渗入面层的水能沿着基层较大的横坡向外排泄。⑤设置内部排水层。将积滞在路面结构在内的水份及时排至路面和路基结构外,将有利于改善路面的使用性能,大大提高路面的使用寿命。⑥地下水位较高路段,可设置垫层以隔断毛细水,垫层应具有排除上下两方面来水的作用。

3.2施工方面

3.2.1确保面层质量注重混合料、摊铺及碾压质量,切实提高沥青和矿粉的粘结力、路面压实度与平整度,努力降低不均匀性和渗水率。

3.2.2控制基层质量摊铺基层过程中,严禁出现明显的离析现象,尤真在主车道位置上。防止出现薄弱夹层,找平过程中“宁高勿低”,严禁“薄层贴补”,并要加强养生期的养护,以防养护不到位裂缝增多。

3.2.3增强层间粘结沥青下封层施工前,必须将基层表面的浮灰全部清除干净。

沥青路面结构设计论文篇(4)

 

1前言

近年来,我国公路建设迅猛发展,截至2009年底,我国公路通车里程已达382.8万公里。伴随着公路建设的大发展,我国在公路沥青路面修筑工艺水平方面有了明显提高。但是,许多道路在使用一年左右便出现不同程度的水损害,这些损害主要表现在:路面混合料透水和蓄水的情况相当普遍,在不少地区的雨季或春融季节,路面唧浆、松散、坑槽成为严重的破坏形式。

所谓沥青路面的水损害破坏,是指沥青路面在存在水分的条件下,经受交通荷载和温度胀缩的反复作用,一方面水分逐步侵入到沥青与集料的界面上,同时由于水动力的作用,沥青膜渐渐地从集料表面剥离,并导致集料之间的粘结力丧失而发生的路面破坏过程。它是目前沥青混凝土路面早期病害中最常见也是破坏力最大的一种病害。水破坏的主要破坏形式有:网裂、坑洞、唧浆、辙槽等。论文写作,沥青路面。。沥青路面的水损害破坏已经向我们敲起了警钟,它已经成为我国公路沥青路面破坏的一种主要模式。因此有效的分析并制订措施防治水损害,具有重要意义。

2 沥青路面水损害的原因

2.1设计原因

⑴沥青与集料的粘附性能不足:沥青与集料的粘附性主要受自身性质的影响。如沥青与矿料的化学成分,沥青与矿料表面的界在张力,沥青的粘性,矿料的空隙率,矿料的含水量和含泥量等。研究表明,若粘附性不足4级以上,沥青膜容易脱离,造成路面水损害。

⑵路面空隙率过大是造成沥青混合料水损害的根本原因。设计时,有时为了考虑沥青路面的抗滑性能、保证路面行车有一定的构造深度,混合料设计空隙率一般都在6%以上,而据有关资料介绍,空隙率在8%~1 2%之间,路面水最容易侵入面层混合料内部,一旦沥青面层内部含有一定的水分,水将在沥青混合料内部自由流动,再加上车辆荷载的反复作用,面层中的水产生压动力,这部分水逐渐侵入到沥青与集料的界面上,使沥青膜渐渐地从集料表面脱离,最终导致沥青与集料之间的粘结力丧失,造成水损害破坏。

⑶沥青混合料类型:密级配沥青混合料结构密实、空隙率小,矿粉及沥青用量较大,沥青膜较厚,一般水损害较小。断级配和开级配沥青混合料粗颗粒较多,沥青用量较少,容易产生水损害。

2.2施工原因

⑴集料质量原因。沥青路面对集料的规格要求较高,因为它在相当程度上要依靠集料间嵌锁作用。但在实际施工中,人们往往对集料规格质量重视不够,直接导致沥青与集料之间粘结力下降,一旦水侵入沥青混合料内部,便会造成水损害破坏。

⑵路面压实度不足。沥青面层混合料的压实度不足是导致水破坏的最直接原因。但往往在实际施工中,由于压力机具故障、操作不规范、碾压不均匀、碾压遍数不够、碾压温度控制不好,而且有时为了片面追求平整度,忽视了压实度,最终导致面层混合料压实度不足,空隙率过大,带来水损害破坏。

⑶沥青混合料离析:主要因施工中沥青混合料拌合不均匀,运输过程造成集料离析,摊铺过程的离析以及混合料压实度不均匀等

2.3环境条件

施工后的环境条件包括气候及交通荷载情况,温度、降雨量、冻融及干湿循环等,都将影响水损害;其它条件相同时,排水不畅以及交通荷载繁重可加速水损害的发生和发展。论文写作,沥青路面。。

⑴.路面排水系统不健全。许多道路路面建成后,排水配套系统没跟上,一旦下雨,路面积水严重,再加上行车荷载的作用,导致路面破坏,还有道路中央分隔带的排水设计不够完善,雨水通过中央分隔带渗入路面结构层内部,最终导致水破坏产生。论文写作,沥青路面。。此外,部分道路未能根据路段自然的地质、地貌、水文状态进行路基排水设计,排水沟、管道、桥涵未构成完整的排水系统,往往造成排水不畅,直接危害着路基、路面强度和稳定性。

⑵重交通的作用:随着交通量以及超重车的增加,引起的危害也是很明显的。我国公路路面设计荷载是100KN的轴载,但随着大量的重型车和拖挂车通过,它们的很多车轴载都超过100KN。据我国有关方面统计研究在路面行驶的货车有45-95%是超轴载的,再加上行车速度的显著提高,所以沥青路面一些结构薄弱地段出现路面早期损坏是不足为奇的,如果有水害存在,路面的早期损坏会提前到来。

⑶温度变化的影响:冬季孔隙水上冻结冰体积膨胀,春季冻融期间温度在零度左右变化,路面结构层中的水分不易排出,而在夏季高温季节,沥青强度降低,在雨水作用下,都易造成路面水损害。

3沥青路面水损害的防治措施

⑴处治半刚性基层裂缝及其引起的路面反射裂缝。半刚性基层产生裂缝后,易辐射到沥青面层,引起反射裂缝。在沥青面层与半刚性基层之间加铺路面防裂层,可有效防治这一现象。由于路面防裂层的虚变系数较大,可以吸收和消化半刚性基层的上传应力和应变,从而避免或减少半刚性基层的反射裂缝。

⑵提高沥青膜与石料的粘附力。水一旦进入沥青混合料中,在快速重载车辆作用下容易产生沥青剥落现象。为了减轻沥青路面的水损害,改善与提高沥青混合料的水稳定性与耐久性,需要增加沥青与矿料之间的粘附性。经验证明,我国目前所使用的表面层石料与沥青的粘附性都比较差,不能满足技术要求,必须采取抗剥落措施,以改善矿料与沥青之间的粘附性。目前我国常用的抗剥离措施主要是添加抗剥落剂。当采用花岗岩、砂石、石英石等酸性石料时,应加入石灰、水泥等材料来提高沥青与石料的粘附力。论文写作,沥青路面。。

⑶加强路层之间各层的连接。论文写作,沥青路面。。现在许多工程的施工顺序安排不当,在沥青面层铺筑过程中或铺筑后,开挖中央分隔带、埋置管道、埋设路缘石,挖出的土污染了沥青面层,即使清扫也扫不干净,有的甚至不洒粘层油,土影响了上下层的黏结和协同作用。在施工时,完成一层结构前,一定要将表面浮土清理干净,适度湿润,洒水不要过多,浸水过多部分要及时剔除。基层与基层间的连接,建议喷洒1:0.5的水泥浆。在稳定料基层上进行结构层施工时,要将表面松散颗粒和浮土清扫干净,基层与面层结合处在喷洒透层后,加做防水层或喷洒粘层;面层之间洒粘层油进行层面粘连。

⑷提高沥青混凝土压实度控制标准。碾压是沥青面层施工的最后关键工序。压实度对沥青路面的使用性能和使用寿命影响很大,它是保证沥青混合料密度与空隙率大小的关键。国内外大量研究表明,7%的现场空隙率是沥青路面是否产生早期水损害的分水岭,美国SHRP研究成果也提出4%的设计空隙率是最佳的选择。碾压不充分,会使沥青混凝土面层的压实后剩余空隙率偏大,导致雨水入渗。因此,沥青混凝土面层施工时,应进行充分压实,尽量减小压实后的剩余空隙率,减少水损坏的发生。

⑸改进透层油或设置下封层,阻止雨水下渗破坏基层。在半刚性基层上洒布乳化沥青透层油时经常透不下去,以及施工前运输车辆及施工过程中将透层破坏,透层油起不到将沥青面层与基层连接成为一体的作用,更起不到封住水的作用。为了做好透层油,在半刚性基层上一般宜采用煤油稀释的中凝液体沥青;为了使透层油至少透下去5mm,并减少唧浆,上基层最好采用水泥稳定碎石,少用二灰碎石。对于高等级半刚性基层沥青路面,尽量考虑设置下封层,可采用拌和法或层铺法施工的单层式沥青表面处治,也可采用乳化沥青稀浆封层等。下封层可有效阻止水分向基层及其以下侵渗。论文写作,沥青路面。。

⑹优化路面结构排水设计。在雨季水进入沥青层内部是不可避免的,但是我们通常在路面设计时一般不考虑路面结构层内部排水问题,相反普遍设计了埋置式路缘石、砌筑式路肩、浆砌挡墙,阻碍了渗入路面内部的水排出;设置路面结构内部排水系统设置良好的路面结构内部排水系统,迅速排除渗入路面结构内的水分,避免自由水在路面结构层中积滞的时间过长,从而改善路面的使用性能的措施能够从根本上解决沥青路面的水损害问题。在设计时应从以下几个方面考虑排水问题:

①切实做好中央分隔带的排水,避免绿化浇水横向渗入路基。可在设计时设置底坡不小于0.3%的纵向梯形或矩形盲沟,汇集中央分隔带灌溉水或雨水;设计间距为30-50mm的横向排水沟,将盲沟中的水排出路基以外;设置沥青防渗层及土工布防渗层,防止水从侧面向路基渗透。

②路面设计必须考虑混合料内部层间的水和缝隙水的排水问题,保证渗入路面内部的水能排出路外。可以在中下面层边缘设置15cm宽的碎石层盲沟(有的加设土工布)纵向排水,每5m有一个出口(有的中间设排水管)通到路外,上面覆盖表面层;也可以表面层只铺至行车道,紧急停车带不铺,中面层上洒布改性乳化沥青封层,使渗入表面层的水从界面上流出。埋置式路缘石会挡住结构层水的排出,不宜采用,沥青路缘石的效果较好。

③在沥青面层下设置排水层,可以是级配碎石层,也可以是沥青或水泥稳定碎石层,空隙率应达到15%以上。此外,要特别注意挖方路段排水边沟的深度,一定要低于路基,使其不仅能排路表水,还应能排结构层的水,且路面内部的水能排入边沟。

4结论

水是路面产生破坏的重要因素之一,沥青路面水损害的形式是多样的,只有正确分析原因,采取科学、正确的预防和处治措施,才能延长沥青路面的使用周期,降低养护费用;提高路面行车的舒适性,保证交通安全畅通。

参考文献

[1]公路沥青路面施工技术规范(JTJ032-94)

[2]王鹏.沥青混凝土路面水破坏病害成因分析和预防措施[J].北方交通,2006(6).

[3]万新昌.谈水对沥青路面造成的破坏及预防[J].建筑工程,2005(11).

沥青路面结构设计论文篇(5)

引言

沥青路面具有耐高温、抗老化和平整度好等优点,且其行车噪声小、行车稳定性强,因而在公路及市政道路工程中被广泛应用。然而,随着我国经济建设的快速发展,交通运输,特别是货物运输需求越来越强,车辆超载重载问题已经成为我国普遍性的社会难题,特别是城市经济开发区域的交通。而增长的交通运输和荷载等级,对道路结构却造成了无法恢复的损伤。我国早先建设的城市道路,沥青路面层已经出现了很多严重的病害:开裂、唧浆、坑蚀、沉陷等[1],这些病害使得:一方面,破损的沥青路面层造成行车不稳定,对车辆安全和交通集散效率造成显著影响;另一方面,每年都需要花费较多的人力和物力进行路面层的修复、替换和养护,以维持道路的使用性能,但这些养护管理工作又对城市交通、环境造成严重影响。因此,设计具有长期保障性能的沥青混凝土路面,具有迫切的需求。长期性能路面(longtermperformancepavement,LTPP)在国外已经进行了较为广泛的研究,近期也受到国内学者的关注[2,3],长期性能路面的本质是通过科学掌握车辆和环境等荷载作用下,路面层结构的变形和受力特性,从而设计出能够抵抗荷载作用的具有长期使用效果的路面结构,满足全寿命的设计理念[4,5]。论文将分析满足长期性能的沥青混凝土路面,分析长期性路面的基本概念、设计原则;从而提出开展长期性能沥青路面设计的方法和基本指标,最后,提出要进行沥青路面的材料设计是保障长期性能沥青路面的关键。

1长期性能沥青路面

我国沥青路面的设计使用年限与道路等级相关,其中最高等级的城市快速路是15a。而长期性能沥青路面则可能是40a或50a,直接将路面的使用寿命拓展1倍。该长期性能路面的设计初衷是保证其在设计使用寿命周期内不出现结构性的损坏和破坏,因此不需要进行结构性修复或重建,但任何路面都不能保证不出现病害,长期性能沥青路面可以出现不影响结构使用的表层病害,这些病害则可以通过简单的手段进行修复,就可以继续保证其运营使用。

1.1设计理念

传统的路面设计认为:在较大的车辆荷载反复作用下,无论路面层厚度多大,都不可避免路面层出现自下而上的疲劳开裂和严重车辙,因此只要使用一定年限就会出现结构性失效而不能继续承载工作。近年来,越来越多的研究表明,沥青路面层存在一个极限的弯拉应变,当外界荷载作用在该弯拉应变范围内时,就不会产生疲劳开裂和破坏;而沥青路面厚度超过一定范围时,其底部拉弯应变就会小于上述疲劳极限,使得外界荷载作用下沥青路面层结构不会发生破坏,提高其使用寿命。但这并不代表沥青路面的面层结构在车辆和环境作用下不会发生开裂、剥蚀等病害,这些病害是由于外界环境侵蚀、车轮荷载作用和结构材料退化三重作用效果,但是这些病害可以通过简单的修复解决。从长期性能沥青路面的设计理念可以看出,其设计理念与“绿色建筑”等类似,通过前期较大的投入以提高沥青路面的整体结构性能和使用年限,以优化整个寿命周期内的沥青路面结构性能和效益。

1.2设计原则

根据长期性能沥青路面的理念,其基本力学原理可以如图1所示更详细阐述,沥青路面自上而下总体分为面层、中间层、HMA基层和路基层四个部分。首先,在车辆作用下,车轮与路面接触面以下10~15cm范围内是高受力区域,是各种面层病害发生的地方,因此设计中需要采用高质量沥青混凝土作为承载面层。其次,车轮荷载经过面层向下部结构进行有效扩散,但同时要保持与上部面层的有效连接,以免发生车辙病害,设计可选用高模量抗车辙沥青混凝土作为中间层。再则,往下达到沥青混凝土路面的最大拉弯应力区域,该区域要求混凝土具有较好的抗弯拉性能,保证不会因为抵抗性不足而导致开裂和破坏,设计可采用高柔性抗疲劳沥青混凝土,同时该层厚度须具有一定保证,以使得路面不产生自下而上的开裂和破坏。最后,路基结构支撑路面层,保证路面均匀、平整和稳定,这对于路面工程的变形、抗冻都是具有重要作用的。

2长期性能沥青路面设计方法

开展长期性能沥青路面设计,首先需要明确其可能的损伤破坏模式,其次,针对破坏情况给出设计指标和方法,设计满足长期性能要求的沥青混凝土路面。

2.1损伤破坏模式

(1)结构性损伤破坏疲劳开裂和永久变形是沥青路面的两种典型破坏模式,疲劳开裂是往复车辆荷载作用下沥青路面下层产生拉弯受力导致超过疲劳极限而开裂;永久变形则是长期的车辆荷载作用下路基顶面压应变产生的不可恢复的变形所致。长期性能沥青路面采用较大厚度的沥青面层,使得路面结构底部拉弯应力水平在材料极限范围内,从而保证了路面结构不再出现结构性损坏。这需要控制好拉弯应力的指标。(2)局部性损伤破坏虽然设计合理的路面结构层可以有效地降低或者防止路面结构损伤的发生,但是却无法避免高速度、高载重、高轮压的车轮荷载作用对路面结构层所形成的较大剪应力。长此以往,随着路面材料的退化,局部损伤则很难避免。研究表明,这种局部损伤一般仅仅在路面层表部形成,不形成完全的结构性破坏,因此可以对损伤部位进行铣刨,置换为新的混合料,以延长路面层的使用寿命。

2.2设计指标

开展长期性能路面设计,建立设计的力学指标尤为关键。设计指标是作为路面设计的指导,而该指标也反映了对长期性能路面受力机理的掌握和把控。首先,需要建立保障长期性能路面完整结构特性的整体力学指标。根据前面分析的结构性破坏机理,一般需要采用沥青混凝土面层底部弯拉应变X作为控制结构性损伤破坏的标准,采用顶部压应变Y作为控制局部损伤的标准。显然指标X是确保不产生疲劳破坏,目前的设计都是以该指标不超过沥青混凝土材料容许拉应力作为设计基础,而实际上由于破坏阶段强烈的材料非线性,拉应变是控制破坏的根本因素而非拉应力,因此,在长期性能沥青路面的设计中,应该采用拉弯应变作为设计标准。同样,顶部的压应变Y则是控制局部损伤和永久变形的基础。上述两个指标在诸多文献也有研究,Monismith和Long建议X不超过60微应变,Y不超过200微应变[6]。其次,建立面层抗剪指标进一步保证顶部面层的局部损伤。表面层沥青混凝土直接与环境接触并受车辆荷载作用,而其良好的抗剪性能可以抵抗因局部轮压荷载作用导致沥青与混合料的受力分离导致开裂和局部损伤行为,因此设计中需要考虑不均匀、超重轮载作用下,对沥青面层形成的局部剪切应变,而设计的面层抗剪指标需要在保证结构具有一定的安全储备的情况下,面层的抗剪应变。

3长期性能沥青路面的材料设计

根据长期性能沥青路面的设计指标,可以很好地确定整体沥青面层厚度及各分层厚度,而这其中难点是各层材料的选用,以相互匹配协同受力,达到长期性能的使用要求。(1)路基层稳定、均匀、高强的路基层对于路面的均匀受力和长期变形稳定具有非常重要的意义,因此对长期性能沥青路面极为重要。路基层可选用化学稳定、密实的路基和粒料,或者非稳定高强度的碎石和砂砾组成,无论使用何种,经过施工密实处理后要达到一定的刚度和强度要求。英国TRL规定路基顶面模量不小于40MPa,德国交通部则规定不小于48MPa,法国则通过规定轴载13t作用下不产生大于2mm的变形,或者承压板试验结果弹性模量不低于50MPa。因此,保证40~50MPa的路基层弹性模量是基本要求。(2)沥青HMA基层沥青HMA基层是拉弯应力承载主体,因此高沥青含量的混合料有助于抵抗疲劳开裂,设计中需要选择较高的沥青含量同时保证一定的厚度。研究表明细级配沥青混合料可以有效改善疲劳寿命。另外,沥青基层较容易受水影响,因此需要考虑湿度因素对混合料力学性能的影响,选择水稳定性强的材料进行设计。(3)HMA中间层中间层没有特殊的使用要求,但是需要具有较好的耐久性和稳定性,稳定性的基础是该中间层与顶部面层和底部基层具有很好的粘结效果,因此可以从粗骨料间的骨架结构以及采用合适的高温等级沥青获得,同时采用碎石和砂砾形成骨架。此外,中间层的高温等级应该与顶层保持一致,以使得具有良好的抗车辙效应。(4)顶部面层顶部沥青面层的要求极高,需要具备抗车辙、耐久性、抗渗、抗磨损等系列性能,长期性能沥青路面对于面层的使用寿命一般要求10a,但是对于抗车辙、抗渗等要求等级较高的地区,仍然需要谨慎设计,一般可以选择SMA密级配混合料作为面层设计。

沥青路面结构设计论文篇(6)

随着我国国民经济的快速发展,高速公路的建设进入高潮。由于沥青路面作为一种无接缝的连续式路面,具有足够的力学强度,能适应各种行车荷载,且行车平稳、舒适、噪音低以及工期短、维修方便等优点,已建和在建的高速公路绝大部分采用沥青路面,这也促使其质量及使用性能取得了长足的进步。但我国的高速公路沥青路面在投入运营后仍出现了不少早期破坏现象,主要体现在局部沉陷、开裂、水损害(坑洞、网裂、唧浆)、高温车辙、泛油及路面平整度迅速下降等诸多方面。上述破坏现象的产生有的与下卧层的施工质量密切相关,而大多数情况下则与沥青路面本身的材料、结构设计及施工质量有密切关系。本文主要探讨如何从沥青路面本身的材料选择和结构设计来进一步提高沥青路面的质量,增长高速公路的使用寿命。

一、 重载交通对沥青混凝土路面设计的影响

重载交通是指道路通车后交通量与累计当量标准轴次之比超过一般水平,路面性能衰减超常规发展的现象,国际道路界称为重任务交通,在国内被称为重载交通,主要表现形式为车辆超限、超载。

超载车辆对沥青混凝土路面设计中弯沉值和厚度选取有重大影响。《公路沥青路面设计规范(JTJO14―97)》是以设计弯沉值为路面整体刚度的控制指标,对高等级公路的沥青混凝土面层,半刚性基层和底基层进行弯拉应力验算,采用多层弹性层状理论公式进行验算,并以ZZ―100为设计标准轴。对于汽车的超载情况按超载50%时、100%进行当量轴次换算,我们发现当车辆超载50%时标准轴的数量增大约3倍;当车辆超载100%时,标准轴的数量增大约7倍。可见,车辆超载相当于增加了我们设计中的标准轴的数量。路面设计中,弯沉值是表征路面整体刚度大小的指标,当路面结构确定之后,其设计的弯沉的大小主要取决于累计轴次的大小。设计弯沉的大小又影响路面的设计厚度,因此,超载车辆对路面设计弯沉值和厚度选取有重大影响。

车辆超载对结构层弯拉应力也有影响。根据设计弯沉值对路面厚度计算时,应对面层及半刚性基层、底基层的拉应力进行验算,以此确定路面设计厚度。在目前公路施工中,普遍采用的水泥稳定碎石基层,水泥稳定土底基层为半刚性基层,所以设计时我们应对这些基层进行层底拉应力验算。

按照超载50%、100%对车辆进行当量轴次换算,以黄河JN150为例,折算为BZZ―100标准轴次,其疲劳作用已远远超出设计规范允许的正常范围。由于半刚性基层及底基层产生拉应力的大小完全取决于标准轴的数量,所以按正常设计的公路基层或底基层抗拉强度不能满足超载车辆行驶,使基层或底基层提前开裂,从而造成路面提前破坏。

通过对重载交通沥青路面的大量调查资料显示,重载交通可致使路面产生以下几种快速破坏:

(1)一次性破坏。一辆运货的特重车,在正常道路上行驶一次,便可将路面彻底压坏,即一次性破坏作用。由于其重量大,加之车辆的振动冲击作用,一次作用就可能使基层底面产生微细裂缝造成一次性破坏。

(2)车辙。沥青路面具有高温软化,粘滞流动、基层和土基的变形的特性,并包括一定程度的压实作用和材料磨耗。加之公路的渠化交通作用,在车辆的反复作用下将产生车辙;而半刚性基层沥青混凝土路面的车辙主要来源于沥青混合料的粘滞流动和一定程度的压实作用。重载车辆由于重量大、速度慢,将会大大加快车辙的形成。

(3)剪切推动。车辆在刹车、上下坡即转弯过程中,将会产生较大的推动力,重载车辆的这种剪切推动将显著增强,加速沥青面层的剪切破坏,致使重车行驶的行车道上推移、拥包明显增多。所以,重载交通将加速沥青面层的剪切破坏。

(4)结构性破坏。在重载交通的作用下,原设计的路面弯沉值、路面结构层厚度及沥青混凝土面层、半刚性材料基层、底基层弯拉强度可能无法满足实际要求,从而使路面结构提前破坏。

(5)泛油。泛油是指沥青面层重的自由沥青受热膨胀,直至沥青混凝土空隙无法容纳,溢出到路表的现象。泛油现象的产生会导致路面抗滑性能迅速降低,影响行车安全,进一步发展将会导致车辙的产生。沥青用量过多和设计空隙率过小都会使沥青混合料的饱和度过高,另外,在大量重型荷载的反复作用下,混合料不断地被压密,矿料间隙率逐渐减小,也会导致混合料无法容纳原来的沥青量而导致泛油。

(6)水破坏。轮迹带车辙裂缝类损害本身对路面承载能力影响并不大,对路面危害主要是由此带来的水损坏:当车辙达到一定的深度时,在辙槽内易积水,路表水会沿裂缝进入结构层内部。一方面,水分逐步侵入到沥青与集料的界面上,引起沥青与石料界面粘附性降低,从而导致沥青薄膜渐渐从集料表面剥离;另一方面,若进入路面的水透过面层,并滞留在半刚性基层顶面,在大量重型车辆的反复作用下,自由水产生很大的动水压力并冲刷基层混合料的细料,这样会导致路面大面积的破坏。

以上的破坏现象反映了重载交通对沥青路面几个主要方面的破坏,因此,在重载交通下,我们要从沥青水泥混凝土路面的材料和结构着手,研究出一个合理的沥青水泥混凝土路面的方案,避免沥青水泥混凝土路面在投入使用不久就产生破坏。

二、重载交通下沥青混凝土路面设计

重载作用下沥青路面设计首先是合理的材料设计,其次是合理的结构设计。但当前,普遍存在将路面结构设计和材料设计割裂开来的现象,缺乏结构、材料一体化的设计思想。提高重载交通环境下沥青路面的行驶质量,关键还在于路面各个结构层的材料设计和组合设计,其中提高沥青路面结构的抗剪切能力是重载沥青路面结构设计的核心。具体包括:改善沥青混合料质量,合理选择沥青混凝土层厚度,加强结构层之间的粘结,同时,提高基层强度和路面结构的承载能力也是必不可少的措施。

1.材料设计要求

根据前面的分析,沥青路面在重载作用下,在车辆轮载附近产生较大的剪应力,这是造成沥青面层疲劳开裂和车辙损坏的主要原因。而沥青混合料在设计和性能分析时,并未考虑混合料的抗剪强度。因此,有必要对沥青混合料的设计方法进行分析,并提出相应的解决方法。

现行的沥青混合料设计方法是马歇尔法,是一种基于经验的设计方法,根据稳定度、流值、密度及孔隙率等指标提出适当的配合比。它不能恰当得评估沥青混合料的抗剪强度,不能反映路面材料的实际受力状态,所以不适应重载交通路面的要求。因此有关专家建议采用三轴试验方法按抗剪强度进行沥青混合料设计。同时,以现行的沥青混凝土设计方法为基础,对其中的一些参数指标进行完善,进而达到改善沥青混凝土品质的目的,一条切实可行的途径 并且,我们应该看到,改善沥青混凝土的质量不仅仅是采用优质的改性沥青,更主要是完善现行沥青混凝土的设计方法,选用优质的改性沥青作为混合料的结合料,有利于提高混合料的粘结力,但这仅仅是提高混合料抗剪强度的措施之一,石料的性质、颗粒形状、级配的类型等是提高混合料抗剪强度的另一方面;此外,混合料现场空隙率水平是影响其在高温条件下的抗剪切能力最主要的因素,所以说,为了改善沥青混凝土质量应该从合理选择原材料,调整混合料的级配,完善配合比设计等方面入手。

2.结构设计探讨

一定厚度的沥青混凝土面层对提高沥青路面整体承载能力是有一定作用的,但沥青面层过厚会导致较严重的车辙,增加沥青面层厚度对改善沥青混凝土面层内部的剪应力状态并不是很理想。因此,在重载条件下要选择合理的面层厚度范围,沥青面层厚度的选择应考虑两方面因素:一是理论上的厚度,二是考虑实际施工水平的安全厚度,一般来说安全厚度略大于理论厚度。

我国的高等级公路大部分为半刚性基层沥青路面结构,而这种结构在重载车辆的作用下,早期损坏现象十分严重,全厚式路面对重载车辆的适应性较强,尤其适合于目前高速公路上超载较多的情况。全厚式路面在英国、美国等国家已经取得了成功,其使用寿命可达到50年之久。因此,针对我国重载车辆较严重的现状,引入这种路面结构有其合理性和必要性。

全厚式路面的设计理念代表了国外高等级公路路面结构选择和设计的新趋势,具有一定的合理性。而且它的总厚度比常规基层的沥青路面结构更薄,同时可以减少疲劳裂缝的可能性,并使路面可能发生的破坏限制在路面结构的上部。这样,当路表面的破坏达到某一临界水平时,只需更换表面层,不需要改变路面标高。这是一种最经济的路面维修方式。

全厚式路面结构设计的核心是按功能合理设置路面结构层,要求路面结构的面层具有抗车辙、不透水和抗磨耗的能力,中间层要具有良好的耐久性,基层要具有抗疲劳和耐久的能力。但国内尚未修筑此类路面,作为重载交通条件下的路面结构类型,尚需要进行进一步的研究。

沥青路面结构设计论文篇(7)

1 引言

目前,我国己成为世界上隧道最多、最复杂、发展最快的国家、特别是国家西部大开发战略的实施,我国西部多山地区公路建设将保持较大的建设规模和较快的发展速度,隧道的里程将大大增加;随着公路服务水平和线性等级的提高,公路隧道目前正朝着长大化方向发展,隧道内的行车速度和密度越来越大。

隧道路面与一般道路相比,它是一个半封闭、空间狭小的管状结构物,隧道路面受雨水、太阳辐射、通风等影响较少,视觉空间小,能见度较低,行车状况较为复杂。这种环境对路面结构有更多要求,常用的路面类型是水泥混凝土和沥青混凝土两种,与水泥混凝土路面相比,沥青混凝土路面的抗滑性、平整性、降噪性等比较好,且养护容易,在公路建设中得到了广泛应用。隧道内采用沥青混凝土路面,在常温及开放环境内,沥青属于难燃材料,而在隧道内部一旦发生火灾,由于空间狭小,积蓄的热量能够使得沥青达到燃点并燃烧释放出大量烟雾和有毒气体,给消防工作带来极大隐患,因此,开展沥青路面面层材料阻燃性能研究非常必要。

隧道路面除地基板为弹性模量较高的基岩,其地质条件、水文条件、环境条件及交通状况的特殊性使得隧道路面结构的受力、变形等特性与隧道外路面结构存在明显差别,但是隧道内路面结构和材料设计没有专门的规范和指南,而是套用公路或城市道路设计规范。因此,需要对沥青路面结构深入分析。

2 隧道沥青路面阻燃性能研究

2.1 隧道失火的原因

1)车辆燃烧是引发隧道火灾的主要诱因。据统计,汽车火灾的原因有:电气线路短路起火、汽化器起火,载重汽车气动系统起火等。如1964年,日本关门隧道大火起因为电气线路起火引起;2010年浙江大溪岭隧道大火为是货车轮胎起火造成的。

2)货车上的货物引起火灾。由于所载货物中有可燃或易燃物品,遇明火易发生燃烧或自燃。如1996年英法海底隧道火灾是因一列火车上的聚苯乙烯起火造成。

3)车辆相互碰撞起火。如1978年荷兰凡尔逊隧道火灾,1979年日本烧津隧道火灾,都是由车辆在隧道内发生互相碰撞引起的。

4)隧道内设施的电气线路短路引起火灾。隧道内设施由于老化或受潮等原因,进而引发汽车或货物着火。

2.2国外隧道沥青路面阻燃现状研究

国外对于沥青阻燃性能研究,是在沥青毛毡的阻燃技术研究的基础上,借鉴聚合物阻燃经验,一般采取的技术是在沥青中添加阻燃剂来改善材料的阻燃性能,实现沥青的阻燃目的。

SBS改性沥青中添加1-20%的卤素阻燃剂和1-5%的无机磷(磷酸铵或红磷)制成阻燃沥青,其符合ASTM E-108中要求的A级材料要求,即具有极高的阻燃性能;采用40-60%沥青、1-20%SBS和30-40%阻燃剂(由65-80%磷酸一铵、5-15%硫酸铵和1%硅胶组成)制成阻燃沥青,被美国保险商试验室(UL)认证为A级;在沥青中添加35-50%的硬硼酸钙石制成沥青毛毡用于建筑屋顶;以十溴二苯醚、五氧化二锑和硼酸锌为阻燃添加剂,加入热弹性改性沥青中制成阻燃改性沥青;将在表层使用聚磷酸铵(APP)作用添加剂制成具有自愈合性能的改性沥青胶浆用于建筑屋顶,且具有一定的阻燃等级。

由上可见,国外对于沥青阻燃的研究成果大部分应用于沥青油毡和沥青涂层,而应用于沥青路面的研究却很少。

2.3 国内隧道沥青阻燃现状研究

国内对于沥青阻燃的研究相对较晚,而且最早对于沥青阻燃的研究是针对沥青油毡和沥青涂层进行的,随着我国交通事业的快速发展,隧道规模和交通密度的增长,行车速度的提高,隧道交通事故发生的频率也随之加快,同时随着人们对公路隧道防灾的重视程度的提高,相关研究机构对于隧道内沥青路面的阻燃性能也开始着手研究,有关单位开始将沥青阻燃技术应用于隧道内沥青路面。近年来多条已通车隧道沥青路面进行阻燃处理,并开展了大量的研究,取得了一定的研究成果。

重庆公路科学研究,采用7%左右掺量溴系阻燃剂掺入SBS改性沥青中,氧指数(LOI)从19%提高到23%,并且根据阻燃沥青的评价的建议,即提出阻燃改性沥青的极限氧指数大于23%时就可满足工程需要。

同济大学杨群等人研究了OGFC对沥青路面阻燃性能的影响,由于OGFC自身具有大空隙率的特性,当发生火灾时,如有可燃液体通过OGFC中的大空隙通道离开燃烧范围,从而起到一定程度上的阻燃效果。在OGFC的基础上,武汉理工大学丁庆军等在沥青中按照一定比例加入氢氧化铝(ATH)、氢氧化镁(MH)和Zeolite沸石粉,可以使阻燃沥青的极限氧指数达到29%以上,闪点可达到420℃,同时可使OGFC的孔隙率在20%时,动稳定度达到7365次/mm,燃烧时间较水泥混凝土缩短一半,逃逸汽油量高达89%。

谭忆秋等在ATH掺量为沥青20%的情况下,将矿粉与沥青按1:1混合,此时LOI实验结果为32.5%,以充分实现了材料自熄性。并对A-T阻燃体系的放热及发烟特性进行研究,结果表明,其性能均优于基质沥青。

由此可见,虽然我国对阻燃沥青的研究起步较晚,但越来越重视阻燃沥青的研究,并在国内隧道内进行铺筑试验路或直接进行施工,开发了多种隧道阻燃沥青路面及其阻燃技术方案。

3 隧道沥青路面结构组合研究

随着交通量的不断增加和行车舒适性,安全性要求的不断提高,对隧道路面的结构强度和使用性能提出了更高的要求,其发展方向是水泥混凝土路面向柔性,沥青混凝土路面向硬性,因此隧道复合式沥青路面结构力应用而生,其力学分析、结构设计,贫混凝土沥青路面等国内外的研究现状如下:

由于复合式路面结构中水泥混凝土板接缝的存在,使得加铺于水泥混凝土板上面的沥青混凝土层与公路隧道普通沥青路面结构的受力状况相差很大。石春香等建立了公路隧道复合式沥青路面结构的三维有限元分析模型,分析了隧道复合式沥青路面结构接缝处沥青混凝土层内部和界面处应力进行了分析比较,确定偏载为最不利加载位置,提炼出关键的设计指标:纵缝边缘加载位中心对应的沥青混凝土层底水平拉应力和接缝处沥青混凝土层顶面竖向剪应力。利用多元非线性回归技术对分析结果进行整理,得出了高强度基岩下的应力回归公式,并通过工程实例阐明了公路隧道复合式路面结构沥青混凝土层厚度设计计算步骤。

杨群针对目前隧道复合式沥青路面表面出现受拉破坏的现象,揭示沥青层表面破坏的力学机理,运用三维有限元方法建立隧道复合式路面结构与荷载模型,分析垂直荷载与水平荷载综合作用下沥青层表面的拉应力,得出了影响沥青层表面拉应力的影响因素,提出了延长隧道复合式路面使用寿命的措施。

李英涛针对当前高速公路隧道复合式路面沥青层混合料设计方法存在的不足,根据隧道交通及复合式路面的受力特点,首次提出了隧道复合式路面沥青层混合料的剪应力设计方法,并结合实际工程提供了设计示例。

刘朝辉等人通过比较中国公路隧道路面结构类型,针对G319湖南浏阳焦溪岭隧道提出路面结构方案,针对目前中国公路隧道路面结构类型与材料现状,提出了一种新的纤维混凝土复合式隧道路面结构,并论述其施工要求及注意事项,结果表明,钢纤维混凝土是刚柔相济的复合型材料,抗弯拉强度比普通混凝土明显提高,具有很强的抵抗动载冲击能力和耐疲劳能力。其特点恰恰与隧道路面技术控制指标相吻合。

黄晓明等为了选择适合于隧道工作环境与交通条件的路面结构类型,提高隧道路面的使用性能延长使用寿命,采用灰靶理论从整体刚度、耐久性、平整度、抗滑性能、耐磨性能、修复与重建难度六个方面系统地比较了水泥混凝土与沥青混凝土两种常用的路面结构类型在隧道内的适用性。分析结果表明,采用灰靶理论评判模型选择隧道路面结构类型在一定程度上克服了选择过程的主观因素,使隧道路面的选择结果更具有客观性;在隧道内特殊的工作环境与交通条件下沥青路面的性能更加优越,具有更好的适用性,能提高隧道路面抗滑性能,降低噪音,改善行车舒适性,维修、养护简便,保证隧道营运通畅,为实体工程路面结构类型选择提供依据。

付其林等为了分析贫混凝土基层沥青路面在不同路面结构和材料参数下的温度-荷载耦合应力状况,通过三维有限元数值方法,分析了沥青面层厚度和模量、贫混凝土基层厚度和模量及基层缩缝宽度对沥青路面温度-荷载耦合应力的影响。研究表明:沥青面层厚度和基层缩缝宽度对路面温度-荷载耦合应力有显著影响;基层厚度和模量对耦合应力的影响不显著。适当增加沥青面层厚度对预防反射裂缝十分有效;改变贫混凝土基层的厚度和模量对预防反射裂缝作用不大;适当宽度的基层缩缝对延缓反射裂缝效果显著。

4 隧道沥青路面结构与材料存在的问题

1)阻燃性良好的阻燃剂大多数毒性大

目前最有效的卤-锑、卤-磷、磷-氮协效类阻燃剂,但有机溴类阻燃剂加工、拌合、施工和燃烧过程中会释放出溴化氢和二恶英等有毒和致癌物质,其中二恶英类物质具有急性致死毒性、致癌性、生殖毒性和内分泌干扰毒性、发育毒性和致畸性、免疫毒性等特点。

2)阻燃沥青燃烧发烟量大

阻燃剂往往是通过捕获燃烧释放的自由基、释放气体形成隔离层、形成固相保护层等机理来实现阻燃。但是往往由于抑制燃烧时,导致燃烧物的不完全燃烧,反而使燃烧物生烟量变大。

3)阻燃剂有效性

阻燃沥青在拌和、运输、摊铺过程中,长时间处于高温状态,这样会导致部分阻燃剂会开始热解,释放出毒性气体。这样不仅会降低阻燃效果,而且影响施工人员的健康状况。

4)隧道复合式沥青路面结构

隧道组合是沥青路面结构反射裂缝问题需要长期深入研究,由于基层面层材料的物理力学性能差异较大,导致层间结合效果差,层间是隧道复合式沥青路面结构的薄弱环节。

5 结论

在设计隧道沥青路面结构之前,深入调查、观测和研究气候、环境对隧道内路面结构和材料的影响,以实体工程为依托,通过调研、现场观测、室内外试验、工后观测和理论分析,结合新材料、新结构、新工艺、新技术等的应用研究,科学、系统地提出隧道路面结构合理型式、合理厚度和结构组合,提出隧道路面材料设计指标与技术标准,提出隧道路面结构施工工艺以及隧道旧路面的修复技术,用以指导我国公路隧道路面的建设及养护,提高隧道路面使用性能、使用寿命及服务水平,降低行车噪声和养护成本,提高公路隧道运营的安全与综合效益。

参考文献:

[1]Yu JY, Cong PL, Wu SP. Investigation of the properties of asphalt and its mixtures containing flameretardant modifier[J]. Constr Build Mater 2009;23:2277C82.

[2]倪照鹏,陈海云.国内外隧道防火技术现状及发展趋势[J].交通世界,2003,3(2-3):28-31.

沥青路面结构设计论文篇(8)

Abstract: In recent years, many countries in the world on the old cement concrete pavement for a lot of restoration work, the main measure is the board in the old cement concrete pavement overlay asphalt surface, the actual project shows that if the action taken properly, the old cement concrete pavement joints or cracks in asphalt overlay easy to produce reflective cracking. From the viewpoint of fracture mechanics, can be considered mainly due to its internal cement concrete pavement cracks or joints as the original defect exists due to stress concentration due. Since the old cement concrete pavement cracks and joints can not withstand pulling (bending) stress and shear stress (or shear capacity is low), assumed the asphalt overlay where most of the pulling (bending) stress or shear stress in traffic loads and temperatures under repeated stress, asphalt overlay will produce reflective cracking. Asphalt overlay reflective cracking are mainly two models: shear cracks and open-type reflector reflective cracking. Therefore it is necessary to load and temperature load of the vehicle under the action of the asphalt overlay coupled stress analysis.

Key words: load and temperature; coupling stress; analysis

TU973+.21

沥青加铺层反射裂缝是在交通荷载及温度的循环作用下引起路面材料和结构疲劳损伤而逐渐发展形成的。沥青加铺层反射裂缝扩展过程经历了三个阶段:第一个阶段为起裂阶段,沥青加铺层由旧水泥混凝土路面接缝或裂缝处存在的缺陷引起; 第二个阶段为稳定扩展阶段,沥青加铺层在交通荷载和温度应力引起的应力集中点向上发展并贯穿整个沥青加铺层; 第三个阶段为破裂阶段,沥青加铺层经过一段时间的运营,尤其是在冬季加铺层表面开始出现裂缝。反射裂缝出现初期对路面的使用性能影响不大,但随着雨水或雪水的浸入,裂缝两侧的路面结构层,特别是裂缝附近的土基含水量加大,甚至饱和,造成路面结构的承载能力明显降低,在大量行车荷载反复作用下,产生冲刷和唧泥现象,导致裂缝两侧路面面层的碎裂并出现较大的垂直相对位移,影响路面的使用性能,加速路面的破坏,缩短路面结构的使用寿命。

国内外道路工程界对防止或减缓旧水泥混凝土路面沥青加铺层反射裂缝的措施仍在试验及探索过程中,目前采用的主要方法有以下几种,如增加沥青层厚度、设置碎石裂缝缓解层、在沥青加铺层与水泥混凝土路面板间设置土工布、土工网格、钢丝网或改性(橡胶)沥青混合料应力吸收层等防裂夹层,这些措施对防止或减缓反射裂缝具有一定的效果。

旧水泥混凝土路面上加铺沥青层及土工合成材料、改性沥青应力吸收层或特粗粒径沥青碎石等防裂夹层后,与混凝土板原有接缝或裂缝形成了复杂的复合结构,对于这种结构,目前尚无成熟的研究模型及设计方法,为研究反射裂缝产生与发展的机理,有必要对水泥混凝土路面板上的沥青加铺层内的应力状态进行力学分析。目前主要有三种方法:静力平衡法、断裂力学法和有限元法。由于断裂力学能深刻地揭示反射裂缝产生的机理,因此采用断裂力学基本原理分析沥青加铺层反射裂缝的萌生及扩展原因。但由于断裂力学求解的多为平面应力(应变)问题,且各断裂参数难以确定,对于受荷载与温度共同作用的含夹层三维加铺层路面结构体,要求得一个适用的解析公式有很大的难度。而有限元方法在工程上应用已较为广泛,它可求解任意荷载、任意边界条件的应力情况。在以往分析带路面裂缝结构体时多采用平面应变有限元模型,这与路面的实际应力应变状态有较大差异,因此、采用更符合实际情况的三维有限元模型,对沥青加铺层在车辆荷载及温度作用下的应力状态进行分析。通过力学分析研究反射裂缝产生机理,为水泥混凝土路面加铺层设计方法提供理论依据。

一 、车辆荷载与温度荷载共同作用下沥青加铺层耦合应力分析

在实际的交通及气候条件下,沥青加铺层往往处于车辆荷载与温度荷载的共同作用之下,因此有必要对车辆荷载与温度荷载耦合作用下的沥青加铺层受力状况进行研究。由于沥青混合料的松弛特性跟温度与时间有关,温度越低,作用时间越短,应力松弛效应就越低,而以下进行的耦合分析所采用的温度一般都在-10℃左右,因此,可不考虑沥青混合料的温度松弛特性。本文主要对车辆荷载与温度荷载共同作用下的普通沥青混凝土加铺层、设置土工合成材料的沥青加铺层、设置特粗粒径沥青碎石裂缝缓解层的沥青加铺层这三种典型结构的耦合应力进行分析。

1.1 车辆荷载与温度荷载共同作用下普通沥青混凝土加铺层耦合应力分析

路面结构参考温度为0℃,沥青加铺层表面降温幅度分别为-5℃、-10℃、-15℃、-20℃及-25℃,车辆荷载为100KN,分别与不同的温度进行耦合作用分析。主要计算参数为: 水泥混凝土路面板的厚度hc=22cm,弹性模量Ec=30000MPa; 基础当量模量E0=100MPa; 沥青加铺层厚度ha=10cm,沥青混合料模量Ea为1200MPa计算。车辆荷载与温度耦合作用下沥青加铺层的应力介于车辆荷载应力与温度应力之间,略小于温度应力值,说明在耦合作用中温度所起的作用较大。耦合应力比温度应力略小的原因在于在降温过程中,由于温度梯度的影响,水泥混凝土路面板产生向上的翘曲变形,使接缝张开,而接缝附近车辆荷载的作用又部分抵消了混凝土板的翘曲变形,因此,沥青加铺层在车辆荷载与温度荷载的耦合作用下所产生的应力σ1、σe、τmax均小于仅由温度荷载作用的所产生的应力。

1.2 车辆荷载与温度共同作用下设置土工合成材料夹层的沥青加铺层耦合应力分析

路面结构参考温度为0℃,沥青加铺层表面降温幅度为-10℃,车辆荷载为100KN,研究不同模量的土工合成材料夹层对车辆荷载与温度荷载共同作用下加铺层的耦合应力的影响,主要计算参数为为: 土工合成材料厚度设定为0.3cm,弹性模量为10MPa~5000MPa; 水泥混凝土路面板的厚度hc=22cm,弹性模量Ec=30000MPa,基础当量模量E0=100MPa; 沥青加铺层的厚度ha=10cm、模量Ea=1200MPa。含土工合成材料夹层的沥青加铺层耦合应力比温度应力值略小,但比荷载应力值要大。当土工合成材料的模量值从10MPa增大到1000MPa时,耦合作用产生的σ1、σe、τmax急剧减少,说明该阶段土工合成材料对减少耦合应力所起的作用较大,而当土工合成材料的模量值从1000MPa增大到5000MPa时,曲线趋于平缓。耦合作用分析进一步说明了高模量的土工格栅对防止反射裂缝所起的作用要强于低模量的土工布。

1.3车辆荷载与温度荷载共同作用下设置特粗粒径沥青碎石裂缝缓解层的加铺层耦合应力分析

为比较设置不同类型裂缝缓解层的沥青加铺层在车辆荷载与温度荷载共同作用下的受力状况,分别对特粗粒径沥青碎石裂缝缓解层与同等厚度的普通沥青混凝土裂缝缓解层进行对比分析。路面结构参考温度为0℃,沥青加铺层表面降温-10℃,车辆荷载为100KN。计算参数为:水泥混凝土路面板的厚度hc=22cm,弹性模量Ec=30000MPa; 基础当量模量E0=100MPa; 沥青加铺层AC-13Ⅰ、AC-20Ⅰ的模量Ea=1200MPa,厚度分别为3cm及5cm; 特粗粒径沥青碎石裂缝缓解层AM-40模量为600MPa,厚度为9cm。对比结构普通沥青混凝土裂缝缓解层模量为1200MPa,厚度为9cm。

在温度荷载作用下,特粗粒径沥青碎石裂缝缓解层的最大主应力σ1、等效应力σe及最大剪应力τmax分别为0.589MPa、0.237MPa及0.134MPa,而在车辆荷载与温度荷载耦合作用下,σ1、σe及τmax分别为0.536MPa、0.257MPa及0.147MPa,耦合应力与温度应力值非常接近,说明在耦合作用中,温度荷载所起的作用是主要的(未考虑温度应力松弛效应)。当取厚度同为9cm的普通沥青混凝土代替这特粗粒径沥青碎石结构层时,在相同耦合荷载的作用下,最大主应力σ1、等效应力σe及最大剪应力τmax分别为0.742MPa、0.340MPa及0.192MPa,后者比前者分别增大了38.4%、32.3%及30.6%,这说明采用特粗粒径沥青碎石裂缝缓解层AM-40后,其耦合应力同样小于同厚度的普通沥青混凝土的应力值。

二、 结论

(1)沥青加铺层最大主应力σ1、等效应力σe及最大剪应力τmax随降温幅度的增加而基本呈线性增长趋势。温度应力还与沥青加铺层与旧水泥混凝土路面层间接触条件有关,当降温幅度较大、层间保持连续接触时,沥青加铺层会产生很大的温度应力,有时甚至会超过车辆荷载所产生的应力。

(2)在车辆荷载或温度荷载作用下,随着沥青加铺层模量的增加,接缝处沥青加铺层σ1、σe及τmax都逐渐增大,但增加的趋势逐渐变缓。对同一种材料的沥青混合料而言,其模量随温度降低而增大,故气温越低,加铺层内的车辆荷载应力及温度应力就越大,因此,反射裂缝多在冬季产生。

(3)沥青加铺层的厚度对车辆荷载应力及温度应力都有较大的影响,一般来说,加铺层越厚,其防止或延缓反射裂缝的效果就越好。在车辆荷载的作用下,加铺层σ1、σe、τmax及接缝处的弯沉、弯沉差均随加铺层厚度的增加呈减小的趋势。在温度荷载的作用下,加铺层的σ1、σe、τmax曲线下降速率更快,说明增加沥青加铺层的厚度对减小温度应力的效果比减小车辆荷载应力的效果更为明显。

(4)在旧水泥混凝土路面与沥青加铺层之间设置土工合成材料夹层对减小车辆荷载应力、温度应力及耦合应力都能起到一定的效果,应力随土工合成材料模量的增加呈降低的趋势。相比较而言,土工合成材料对减少加铺层车辆荷载应力的幅度较为有限,而它对减少加铺层温度应力及耦合应力的效果相对较好。

(5)改性沥青应力吸收层具有模量低、柔性强、不易开裂的特点,是减少反射裂缝的新型材料。在车辆荷载或温度荷载的作用下,应力吸收层及沥青加铺层的σ1、σe、τmax及接缝两侧弯沉差均随加铺层厚度的增加而逐渐减小。通过对几种厚度沥青加铺层的应力分析可知,设置应力吸收层后,沥青加铺层各种应力及弯沉差均有一定程度的降低,尤其是在加铺层厚度较薄时,效果更为明显。通过设置与未设置改性沥青应力吸收层的几种加铺层结构应力对比分析可知,应力吸收层对减少车辆荷载应力及温度应力的效果是十分明显的。

(6)在旧水泥混凝土路面与沥青加铺层之间设置AM—40特粗粒径沥青碎石作为裂缝缓解层,可有效地延缓反射裂缝的产生和扩展速度。通过车辆荷载、温度荷载及耦合荷载作用下特粗粒径沥青碎石裂缝缓解层与同等厚度普通沥青混凝土应力对比分析可知,特粗粒径沥青碎石加铺层的σ1、σe及τmax比同等厚度的普通沥青混凝土加铺层的应力值均有大幅度降低,说明采用特粗粒径沥青碎石裂缝缓解层AM-40后可明显改善加铺层结构的受力状况。

主要参考文献

[1]中华人民共和国交通部,公路水泥混凝土路面养护技术规范(JTJ073.1-2001),北京:人民交通出版社,2001

[2]中华人民共和国交通部,公路水泥混凝土路面设计规范(JTG D-40-2002),北京:人民交通出版社,1994

[3]中华人民共和国交通部,公路沥青路面设计规范(JTJd50-2006),北京:人民交通出版社,1997

[4]中华人民共和国交通部,公路排水设计规范(JTJ018-97),北京:人民交通出版社,1997

[5]中华人民共和国交通部,公路土工合成材料应用技术规范(JTJ/T019-98),北京:人民交通出版社,1998

[6]中华人民共和国交通部,公路沥青路面施工技术规范(JTJF40-2004),北京:人民交通出版社,1994

[7]中华人民共和国交通部,公路路面基层施工技术规范(JTJ034-2000),北京:人民交通出版社,2000

[8]嘉木工作室,ANSYS有限元实例分析教程,北京:机械工业出版社,2002

[9]陈精一,蔡国忠,电脑辅助工程分析ANSYS使用指南,北京:中国铁道出版社,2001

[10]王瑁成、邵敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1996

[11]朱伯芳,有限单元法原理与应用,北京:中国水利水电出版社,2000

[12]谢康和、周健,岩土工程有限元分析理论与应用,北京:科学出版社,2002

[13]郑健龙、周志刚、张起森,沥青路面抗裂设计原理与方法,北京:人民交通出版社,2002

[14]武贤慧,半刚性基层沥青路面低温抗裂性研究,长安大学硕士学位论文,2003

[15]冯建亚,沥青混凝土罩面层的开裂破坏规律研究,大连理工大学硕士学位论文,2002

[16]郭大志、任瑞波,层状粘弹性体系力学,哈尔滨:哈尔滨工业大学出版社,2001

[17]郭大志、冯德成,层状弹性体系力学,哈尔滨:哈尔滨工业大学出版社,2001

[18]姜伟之、赵时熙等,工程材料的力学性能,北京:北京航空航天大学出版社,2000

[19]贾乃文,粘塑性力学及工程应用,北京:地震出版社,2000

[20]叶志明,各向异性材料与混凝土材料断裂力学引论,北京:中国铁道出版社,2000

[21]汤林新、刘治军,高等级公路路面耐久性,北京:人民交通出版社,1996

[22]山西省公路局,公路工程通病分析与防治,北京:人民交通出版社,2000

[23]王从曾,材料性能学,北京:北京工业大学出版社,2001

[24]王旭东,沥青路面材料动力特性与动态参数,北京:人民交通出版社,2002

[25]刘瑞堂、刘文博,工程材料力学性能,哈尔滨:哈尔滨工业大学出版社,2001

[26]朱照宏、王秉刚,路面力学计算,北京:人民交通出版社,1988

[27黄晓明、朱湘,公路土工合成材料应用原理,北京:人民交通出版社,2001

[28]周志刚、郑健龙,公路土工合成材料设计原理及工程应用,北京:人民交通出版社,2001

[298]乔生儒,复合材料细观力学性能,西安:西北工业大学出版社,1997

[30]符冠华,沥青混凝土加铺层改造旧水泥混凝土路面的应用研究,东南大学博士学位论文,2001

[31]于宝明,反射裂缝研究与旧水泥混凝土道面上沥青加铺层的设计,同济大学博士论文,1991

[32]刘悦,旧水泥混凝土路面沥青加铺层温度应力分析,长安大学硕士学位论文,2000

[33]郑健龙,沥青路面温度收缩开裂的热粘弹特性研究,长安大学博士学位论文,2001

[34]杨军,格栅加筋沥青路面研究,东南大学博士学位论文,1996

[35]关宏信,土工格栅防治沥青罩面温缩型反射裂缝的有限元分析,长沙交通学院硕士学位论文,1998

[36]曹东伟,旧水泥混凝土路面沥青加铺层结构研究,西安公路交通大学硕士学位论文,1998

[37]高启聚,水泥混凝土路面上沥青罩面层结构的三维空间有限元分析,长沙交通学院硕士学位论文,1999

[38]胡长顺、曹东伟等,土工织物在PCC—AC结构中应用的理论与实践,公路,2000.9

沥青路面结构设计论文篇(9)

Abstract: With the rapid development of our society and economy, the highway construction has entered a rapid development period. However, the increasing traffic and load conditions, constructed pavements exposed many problems in the use of the pavement materials and the traditional construction technology, especially in the rainy south road area, water and surface water damage to the phenomenon of performance very prominent. This has become a big difficulty in domestic and foreign road construction. Therefore, the traditional asphalt concrete pavement are needed to make improvements in the design and construction process. The asphalt concrete pavement is a new pavement structure adapted to the needs and develop, especially suitable for wet areas. This paper makes a simple study of this.

Key words: porous asphalt concrete; pavement; mix design; construction technology; quality control

中图分类号:TU2

一、研究背景

随着我国经济及社会快速进步,基础设施建设也正以前所未有的速度发展,高速公路建设就是基础设施建设的重点之一。截至2005年底,高速公路通车里程已超过4.1万公里。尽管随着新材料的应用和施工工艺的优化,沥青路面的质量不断提高,但仍有相当部分沥青混凝土路面在使用过程中发生一定程度的损坏现象,特别是由于各种综合因素引起的早期(使用3年左右)破坏,致使公路沥青路面的使用性能与寿命常达不到应有的设计水平,已严重影响了公路交通运输功能的正常发挥,造成巨大的经济损失,同时也在一定程度上制约了我国高速公路事业的发展。以往路面破坏形式主要表现为车辙、低温开裂和疲劳开裂,而采用了半刚性基层路面结构和对沥青混合料品质得到了有效缓解。但水损坏的破坏形式则取而代之,成为困扰我国高速公路发展的新课题。尤其是在我国南方多雨地区,高速公路在春融季节、梅雨季节及雨季,路面会出现麻面、松散、掉粒乃至坑槽,这种引人注目的早期破坏,是人们始料不及的。

二、水损害研究

沥青路面的水损坏问题,首先就要涉及到公路的排水系统。为保证公路路基的稳定、路面的良好使用性能以及行车的安全,公路都会设置完善的排水设施,以排除路界范围内的地表水和地下水。公路排水一般由路界地表排水、路面内部排水和地下排水三部分组成。路界地表排水包括路表排水、中央分隔带排水和坡面排水。路面内部排水包括多孔隙面层排水、路边缘排水及透水基层排水。地下排水包括渗沟、边沟、暗沟或暗管。研究表明,设置良好的排水系统,能提高沥青的使用寿命达30%以上。相反,排水不畅的沥青路面,其过早破坏通常是由于路面面层结构处于饱水状态下,又通行重载车辆引起的。路面结构层中任何一层处于饱水或泡水状态,都会导致结构层强度降低,加速路面各种病害的产生和发展。沥青路面的水损坏来源于水,只有水渗入路面才有可能引发沥青膜和集料剥离,从而造成路面的破坏。因此,渗水性是沥青路面会不会产生水损坏的关键性指标。应该说增加渗水系数指标对于提高沥青路面的施工质量,预防水损坏有重要意义。而排水性沥青路面正是基于公路排水系统的以上特点而发展起来的一种新型公路路面结构形式。排水沥青路面,又称透水沥青路面,针对表面层来说又称多孔隙沥青磨耗层;指压实后空隙率在20%左右,能够在混合料内部形成排水通道的新型沥青混凝土面层,其实质为按照嵌挤机理形成骨架-空隙结构的开级配沥青混合料。其特点为:第一,雨天能防止路表水膜的形成,抗滑性能好,提高路面粗糙度,抵抗车辆的滑移;消除或减轻车尾喷水花的现象,提高驾驶员视线的清晰度,从而提高行车安全性;第二,高温稳定性好,抗车辙能力强;第三,具有防眩光和降低交通噪声等功能。可见排水路面具有既利于环保,又利于交通安全的诸多特点,符合当前的技术发展及社会发展的趋势。

三、国内外研究现状

二十世纪六十年代以来,一些欧洲国家如德国、法国、英国和意大利相继提出了排水性沥青路面这种概念,并着手对沥青材料进行研究,取得了很多有益的成果,从而促进了该技术的推广应用。欧洲国家首先研究开发的是一种空隙率高达20%~25%,厚度为4~5cm的磨耗层。因为空隙率大,雨水可以渗入路面之中,由路面中的连通空隙向路面边缘排出。这样雨天不存在很厚的水膜,避免了“水漂”的产生,同时也不再出现溅水现象,有效地保证了行车的安全。因为这种多空隙的路面能很快地排水,所以称之为排水性沥青路面。迄今为止欧洲国家对排水性沥青路面的研究和使用已超过30年,部分国家排水性沥青混合料路面占道路面积约达10%以上。欧洲各国对沥青材料的选择达成的基本共识是使用改性沥青,并主要考虑以下要求:具有较好的高温稳定性、低温抗裂性以及抗氧化性能。美国在1973年通知全国建议使用开级配抗滑磨耗层路面,明显降低下雨天的“水漂”现象,取得了良好得效果。进入二十世纪末期以来,各国对排水性沥青路面的应用技术研究进入了一个新的阶段,美国公路计划中的路面长期性能项目中就有专门针对大孔隙沥青混合材料的试验路面研究的子项目;1990年在美国华盛顿召开了TRB年会,主要议题就是排水性沥青材料在道路工程中的应用经验。同年,美国联邦公路管理局制定了。开级配沥青抗滑表层混合料设计方法对表层得孔隙率、厚度及主要功能均进行了说明。英国从1984年起在全国各地铺筑了各种试验路,目的是为了验证排水性沥青路面的降噪效果和耐久性。奥地利出于环境保护的需要,在许多经过城镇的道路上铺筑了排水性路面,10多年前已累计有650万m2,并且计划将透水路面用于城市道路。该国己就多孔排水式路面制定了设计规范。荷兰每年铺设透水性路面250万m2,即荷兰已有15.4%的汽车专用道铺设了这种路面。法国采用排水性路面速度非常之快,几年前就己经铺筑了2000万m2,而且还以每年400万m2的速度递增。

四、排水性沥青混凝土面层设计要点

(一)排水量的确定

新建要点沥青混凝土路面结构内部排水的设计仍需计算所在地区正常情况下需要排出的排水量,计算公式同已建成的水泥混凝土路面结构内部排水量的计算公式。

(二) 排水结构的确定

公路路面结构内部排水结构分三种:第一种是中央分隔带排水,用于多雨地区分隔带无铺面的高速公路;第二种是路面边缘排水;第三种是设置排水基层。这几种结构形式的选择,可根据公路等级、路面结构类型及当地的降雨量等具体情况经过计算来确定。对于多雨地区的高速公路,在条件允许的情况下,以上三种结构最好能同时采用。

中央分隔带排水渗沟图

新建路面边缘及基层排水图

(三) 新建沥青混凝土路面结构排水系统材料及施工要求

1、主要材料及要求

因排水性沥青混合料空隙率大,受阳光、空气、雨水的影响也较大要求沥青粘度高,抗老化性能好,设计使用高粘度的改性沥青,增加沥青与集料的粘结力,防止骨料在车轮荷载作用下飞散,提高混合料的耐久性。高粘度沥青的主要特点是软化点高,60℃粘度高,韧性和粘韧性高。高粘度改性沥青性质要求见表4.1。

表4.1高粘度改性沥青性质要求表

2、中央分隔带排水系统施工要求

中央分隔带内倾的横向坡度使下渗的雨水流向分割带中央低凹处,并通过纵坡排流到泄水口或横穿路界的桥涵水道中。分隔带的横向坡度不得陡于1:6;分隔带的纵向排水坡度,在过水断面无铺面时不得缓于0.25%,有铺面时不得缓于0.12%。当水流速度超过地面土的最大允许流速时,应在过水断面宽度范围对地面图进行防冲刷处理,做成三角型或"U" 型断面的水沟。防冲刷层可采用石灰或水泥稳定土,或者采用浆砌片石铺砌,层厚10cm~15cm。渗沟周围

包裹反滤织物(土工布等),以免渗入水携带的细粒将渗沟堵塞。渗沟上的回填料与路面结构的交界面处铺设涂双层沥青的土工布隔渗层。排水管可采用直径70mm~150mm 的PVC 塑料管。

3、路面边缘排水系统的材料及施工要求

路面边缘排水填料由水泥处治开级配粗集料组成,材料与施工方法与已建成路面边缘排水填料相同,但集水沟底面的最小宽度不应小于30cm。

4、排水基层的材料及施工要求

排水基层直接设置在混凝土路面板下。排水基层由水泥或沥青处治不含或含少量粒径4.75mm 以下细料的开级配碎石集料组成,或者由未经结合料处治的开级配碎石集料组成。集料应选用洁净、坚硬而耐久的碎石,其压碎值不应大于30%。最大粒径可为20cm 或25cm,并不得超过层厚的2/3。粒径4.75mm 以下细料的含量不应大于10%。集料级配应满足透水性要求(渗透系数不得小于300m/d),可通过常水头或变水头渗透试验试配后确定。水泥处治碎石集料的水泥用量不宜少于160kg/m3, 其7d 浸水抗压强度不得低于3MPa~4MPa。沥青处治碎石集料的沥青用量约为集料干重的2.5%~4.5%。排水基层的厚度应按所需排放的水量和基层材料的渗透系数通过水力计算确定,通常在8cm~15cm 范围内选用,但最小厚度不得小于6cm(沥青处治碎石)或8cm(水泥处治碎石)。其宽度应视面层施工的需要超出面层宽度30cm~90cm。排水基层的下卧垫层应选用不透水或低透水性的密级配混合料,以阻截自由水的下渗和路基中细料土的上迁。

在地下水位较高的路段,为拦截地下水、滞留水或泉水进入路面结构,或者排除因负温差作用而积聚在路基上层的自由水,可直接在路基顶面设置透水性排水垫层,并酌情配置纵向集水沟。

五、总结

水是危害公路的主要自然因素,也是沥青混凝土路面早期损坏的主要原因之一。进入路面的水分和渗入的水分,是造成或加速路面结构过早损坏的主要原因之一,新型材料防水,无论从经济角度,还是施工工艺上来说,都可以有效提高路面使用性能,延长其使用寿命。为道路施工建设提供了有效的保障。

【参考文献】

[1]支学军.排水性沥青路面研究,河北工业大学硕士学位论文,2002

[2]冯杰.水及溶质在有大孔隙的土壤中运移机制研究.河海大学博士学学位论文.2001.10

[3]吉青克.路面内部排水系统设计.同济大学博士学位论文,2002.03

[4]冷真.排水性沥青混合料级配组成设计及性能研究.东南大学硕士学位论文2003.03

[5]刘松,曹林涛.沥青路面水损坏原因及预防措施,第六届全国路面材料及新技术研讨会论文集,2005

[6]郭德栋,郭小宏.传统施工工艺下沥青路面早期水损坏的原因分析及解决办法.公路交通技术,2006(1)

[7]诸永宁.排水性沥青路面排水性能研究与排水设施的设计.东南大学硕士学位文,2003.03

[8]刘朝晖.透水性沥青混合料研究综述.石油沥青,1997.09

[9]王知乐.排水性沥青路面的研究,泰州职业技术学院学报,2006(3)

沥青路面结构设计论文篇(10)

 

沥青路面的主要类型有沥青混凝土、沥青碎石、沥青表面处治、沥青贯入式、热拌沥青混合料路面等,因其具有造价相对较低、行车舒适、修复方便等特点,被广泛用于公路和城市道路。沥青路面早期破坏的现象有:泛油、麻面、油包、裂缝、坑槽、露骨、松散、脱皮、搓板等。论文格式,原因。这些病害极具普遍性和严重性,为公路工程质量通病之一,下面从三个方面分析其原因。

一、路面设计方面

1、结构设计不合理

沥青面层结构选用不当、混合料类型不合理。根据沥青路面设计规范,沥青面层除应满足车辆的使用要求外,还应满足雨水不渗等要求,宜选用粒径较小,空隙也小的级配混合料,尽量采用小粒径沥青砼,以提高沥青路面面层的防渗性。对于选用中粗粒砼或开级配或半开级配沥青碎石的沥青路面,必须在沥青面层下设下封层,防止雨水渗入。论文格式,原因。

2、设计与路段实际情况差别大

例如,我县一条沥青路面砼路穿过土基过湿地段,但设计按一般正常情况设计,全部利用挖方和就地借方填筑路基,采取逐层晾晒法施工,造成极大的窝工,影响了工期,还增大了投资。

3、油路补强段的路面厚度考虑不足

我县在加快实现乡镇通油、水泥路路面工程,但为充分利用老路并节约土地及投资,利用旧路的线位及结构层。按照公路补强设计的一般要求和科学态度,宜先对所利用的路段状况进行客观评估,根据旧路的状况(特别是强度弯沉指标)确定利用旧路的方案及补强厚度。但设计时没有认真细致的调查,大致给出一个补强厚度及路段桩号就草草了事,结果导致许多补强路段补强后弯沉值大于设计值,造成新路强度不足,早期破坏严重。论文格式,原因。

4、岩石路段石质类型确定有误

在路基设计中,由于没有足够的地质钻探资料,仅靠地表情况判断石质类型,矿料的选用不合格,容易出错。论文格式,原因。论文格式,原因。

二、路面施工方面

路面施工过程是其质量形成的关键环节。直接影响面层质量的施工环节主要是面层本身的施工、基础施工及相关联接层施工。

1、路面施工

(1)、对原材料检验不严,对沥青混合料的配合比控制不够,特别是矿粉和沥青用量不准,使沥青路面早期出现推拥、油包、松散、露骨、坑槽等。

(2)、施工机械设备陈旧、不配套,使混合料的配合比计量、拌和均匀性、压实度、平整度等受到很大影响。

(3)、沥青混合料加热温度过高,沥青和矿料拌和时,沥青便被矿料的高温灼焦、沥青老化,使路面强度不足,产生松散、坑槽等病害。

(4)、碾压温度过高,造成温度过高的原因有两种情况:一是沥青混合料出厂温度超过规范规定的上限值;二是沥青混合料出厂温度虽然在规定的范围内,但接近高限,如果运距较短,摊铺碾压又很及时,就会使碾压温度超过规范高限。如果碾压温度过高,混合料就压不实,就会出现推移,发生微裂。

2、基层施工

基层是承担面层传递的车辆荷载的主要承重层。基层的强度及稳定直接关系面层的强度和稳定性。基层施工的主要问题:

(1)、基层、底基层、路面表面清除不干净。

(2)、基层松铺系数(或基层标高)控制不严而导致的二次补加层,因二次补加层与下层基层无法紧密连接,自身厚度又较小,因而极易松散,进而引起沥青层的网裂、松散、坑槽等破坏。

(3)、部分基层压实度不足的问题。要适当增大碾压吨位、增加碾压遍数,确保基层到规定压实密度。论文格式,原因。

三、养护管理及其它原因

1、养护不及时

沥青路面在行车作用下出现小面积松散,个别坑槽后,未及时进行养护,特别是采用层铺法施工的贯入式路面和表面处治,初期及时养护更为重要。

2、养护方法不当

有些养护人员,在沥于混凝土路面上采取人工喷油(或洒布机喷油)、人工洒料方法进行养护,结果破坏了原路面的平整度,甚至由于喷油不够,用油量控制不平,造成泛油、推拥、松散等病害。

3、其他方面原因

(1)、因我们地处青藏高原,气候特殊,季节不明显,冬季长,温差较大,冰冻地层深厚,加之沥青标号达不到寒冷地区的使用标准,路基经冬冻夏溶后收缩弹性较大,严重损坏沥青路面。

(2)、因我县矿产资源丰富,拉运矿石的车辆吨位较大,而路面的承载力有限,所以路基、路面均被破坏。

(3)、施工技术管理、质量管理不严。

沥青路面结构设计论文篇(11)

中图分类号:S611

文献标识码:A 文章编号:

一、重载作用对沥青路面的影响

1重载交通参数分析

N =∑c1c2n(P)。其中,P为轴重;N为轴载作用次数;n为系数。通过分析不同路面结构下轴载换算系数与轴载的关系,发现轴载换算系数n主要与轴载有关,利用回归分析,忽略不同路面结构对轴载换算系数所造成的误差,可以得到基于弯沉、弯拉以及车辙等效的轴载换算系数n的取值范围。考虑超载,弯沉等效时n=5.0~5.8,线性分析结果n=5.0,非线性分析结果n=5.5;弯拉等效时,一般半刚性基层路面n≈8.0,考虑超载时n≈9.0;车辙等效时,n=4. 0~4. 5。此结果与国内外其他对轴载换算关系的研究成果基本一致。

由以上分析可知,n的取值远大于规范规定的数值,这就说明在较短的时间内可以达到路面设计的累积标准轴次,所以路面的使用寿命大大减少。超载100%时,高速公路、一级公路的路面结构只能使用1. 40年,二级公路的路面结构只能使用1. 20年,三级公路的路面结构只能使用0. 70年。所以必须采取措施,减少影响,延长重载交通下沥青路面的使用寿命。

2重载对设计指标体系的影响

根据分析,在标准轴载作用下,应用现行规范设计指标体系进行沥青路面结构厚度计算时,路表弯沉指标起控制作用,整体性结构层(包括面层和基层)的层底拉应力验算指标在厚度设计时一般不起作用。但路表弯沉指标同时存在明显的缺陷。与其利用它来控制路面破坏,不如采用整体性结构层层底的拉应力和土基顶面容许压应变来控制更为合理。但是,路表弯沉设计准则在我国柔性路面设计中已使用多年,它具有量测方便的优点,在一定程度上也反映了土基顶面压应变。大量的计算分析表明,路表弯沉和土基顶面压应变之间具有良好的相关关系。通过相关关系可以由路表弯沉推算到土基顶面压应变,把土基顶面压应变准则和路表弯沉结合起来,就可以同时利用上基顶面压应变准则较合理和路表弯沉量测方便的优点。因此,建议仍将路表弯沉作为一个设计指标。

3重载对沥青路面结构的影响

重载交通沥青路面结构,轴载增大时,路面结构的力学响应那些发生了变化,在设计中我们将怎么在满足疲劳寿命与设计指标的要求,下面我们先分析当轴载增大,主要对设计指标弯沉与基层底拉应力的影响。

表1轴载对设计指标的影响

图2弯沉与轴重的关系

图3基层底拉应力与轴重的关系

图4沥青层底拉应变与轴重的关系

图5基层顶压应变与轴重的关系

上面的图表我们发现,当轴载为100KN增大到160KN时,路面的弯沉从30增大到45,基层底的弯拉应力从0.11MPa增大到0.17MPa,青层底拉应变增大到90με。,基层顶压应变从130增大到260με,也就是说,在重载作用下,路面结构的整体刚度下降,基层的疲劳寿命降低,路面结构永久变形增大。经过上面的病害调查,重载下路面的车辙严重。

二、重载作用下沥青路面的设计

1设计步骤

根据现行沥青混凝土设计规范,可归纳出重载沥青路面设计步骤为:

(l)交通资料的收集。交通资料包括:初始年日平均交通量和交通组成、轴载谱、超载方式和超载规律、历年交通量及交通组成、方向分配系数、车道分配系数、轴载年平均增长率等,在此基础上判断是否适用于重载路面设计方法。若适用,利用本报告研究结果进行轴载换算及使用年限内累计标准轴次的计算,最后计算设计弯沉。

(2)收集沿线地质、土质及筑路材料状况,并结合原有沥青道路路面的使用及破坏情况,选择适合于重载道路的筑路材料并初拟路面结构。试验测定各结构层材料的抗压回弹模量、劈裂强度等设计参数。

(3)根据设计弯沉值计算路面厚度,并进行半刚性基层、底基层容许弯拉应力、极限弯拉应力验算及土基顶面容许压应变验算。若不满足要求,或调整路面结构层厚度,或变更路面结构组合,然后重新进行计算。

2材料设计

对于沥青路面的设计使用材料要充分考虑施工混合材料的抗剪强度。沥青路面的混合材料通常是采用马歇尔设计方法,马歇尔设计方法是通过混合料的密度、流值、空隙率等做出材料的混合比,但是这种设计方法不能够正确的分析出沥青混合料的抗剪强度,所以对重载情况下,沥青路面的实际受力状态无法真实的反映出来。可以将沥青路面的受力情况进行模型试验,通过测量的数据,反映出沥青路面在重载条件下的受力情况。通过三轴试验方法,按抗剪强度进行沥青混合料的配比设计。

3结构设计

根据以前的室内疲劳方程和力学设计程序,无论沥青结构层多厚,结构都会必然产生疲劳开裂、车辙。而最新的理论发现当沥青层超过一定厚度时,良好施工的路面结构不会产生源于层底的疲劳开裂和结构性车辙。当标准轴次超过一定次数后,沥青层厚度无须增加。也就是说,沥青层的厚度使层底拉应变小于一定的值以后,沥青路面的下部将可以无限期地使用下去。所以永久性路面的最大特点是确保路面各类损坏控制在路面表面层顶部很薄的范围内,如自上向下温度疲劳开裂、车辙、表面磨耗、沥青老化都努力限制在磨耗层内,防止出现中面层以下的结构性损坏,表面层的损坏只需通过预防性养护得以补救。 目前我国高速公路的结构设计大部分采用半刚性基层沥青路面结构,这种结构路面对于车辆重载的抗压能力较弱,容易导致路面破损现象出现。为此,本文介绍推荐一种由法国规范规定的全厚式路面结构设计方法,按该方法设计的沥青混凝土路面结构,其厚度相比半刚性基层沥青路面结构略薄,同时能够降低路面因载重疲劳产生开裂现象发生,当需要修复时,只需要更换或加铺一层表面层即可,无需大的结构性重修或重造。这给路面的修复工作降低了工作量和工程成本。全厚式路面结构设计是按照路面的功能合理的布置路面的层次结构,其特点是具有抗载重、抗疲劳、抗磨损、抗车辙、抗透水等。

4全厚式路面结构设计

重载沥青路面多为全厚式路面结构设计。全厚式沥青混凝土路面结构一般由磨耗层、连接层、基层和底基层组成。磨耗层应具有防渗透、防雨雪、抗滑耐磨的性能。连接层应具有抗车辙蠕变能力,能够有效的保护基层。基层和底基层为全厚式沥青混凝土路面的主要持力层,应具有良好的抗疲劳性能和很高的承载能力。支撑全厚式沥青路面结构稳定的另一个非常重要的因素是路面承台的稳定和强度。路面承台也即国内统称的路基和垫层。路面承台的变量参数,直接影响路面结构的计算结果,法国人根据地质、水文、路基填料、施工工艺水平,交通量等因素,将路面承台划分为多个等级,列表供查。全厚式沥青混凝土路面出现结构性破坏主要表现在两方面:一是沥青混凝土路面的疲劳裂缝破坏;二是路面承台发生的结构性车辙破坏。为保证全厚式沥青混凝土路面不出现上述破坏,需要对路面结构进行计算并满足两个条件:一是沥青层层底的水平拉应变 εt,ad 应小于允许极限值;二是路面承台表面的竖向压应变 εz,ad 应小于允许极限值。

5厚度设计

国外的沥青路面设计一般以沥青混凝土面层的弯拉应力作为设计控制指标,同时以基层底面拉应力和路标弯沉作为验算指标,如 Shell 设计法、AI 设计法等,这些方法比较符合国外的全厚式结构或粒料基层结构的特点。我国沥青路面设计规范以路面设计弯沉为主要控制指标,对高等级路面的面层和半刚性基层验算其层底拉应力。但根据有关研究,在目前半刚性基层应用十分普遍的情况下,基层的层底拉应力可以比较好反映荷载对结构的疲劳损耗要求,而且在进行高等级的路面结构设计时,往往是路标弯沉值符合要求,而基层底面拉应力验算不能通过,因此基层底面拉应力指标更具有控制意义。根据国内外经验,在重载沥青路面设计中,一般采用增加沥青面层厚度、改变沥青面层强度、增加半刚性基层厚度以及土基增强等方法。

4 结语

随着交通运输业的快速发展,道路交通呈现出交通量大、轴载加大、轮胎压力增加、车速提高等现象,这加剧了路面的疲劳损伤,并带来一系列的早期破坏,严重影响了道路正常的使用寿命。因此,为保证路面的服务水平和长期性能,在道路设计中对交通参数进行合理处理,设计出适宜重载交通的路面结构和材料形式就显得尤为重要。通过对本文的学习研究,可对提高重载交通条件下沥青路面的承载能力、延长路面使用寿命具有一定的参考意义。

参考文献:

[1]王斌等.重载下沥青路面早期主要病害成因及维护方法[J].魅力中国.2010(2)

[2]张勇.重载沥青路面结构应力分析与优化方法探讨[J].北京工业大学.2009