欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

分析化学在食品中的应用大全11篇

时间:2023-08-28 16:37:18

分析化学在食品中的应用

分析化学在食品中的应用篇(1)

食品分析是食物营养评价和食品加工过程中质量保证体系的一个重要组成部分,它始终贯穿于食物资源的开发、食品加工与销售的全过程。随着人们生活水平的提高,特别是我国加入W TO后,我国食品走向世界的关税壁垒将逐渐被技术壁垒所取代,一方面,食品的功能性和安全性将越来越受到重视,对其分析精度和检测限的要求越来越高;另一方面,作为食品生产企业和政府监管机构,对食品品质的控制则要求能实现现场无损检测和快速检测,而对分析精度和检测限的要求则相对较低。因此,食品分析技术正向着省时、省力、廉价、减少溶剂、减少环境污染、微型化和自动化方向发展。现对近年来在食品分析中出现的新生物技术作一简单介绍。

1、生物芯片技术

主要特点及其在食品分析中的应用。生物芯片技术具有可实现样品分析过程的连续化、集成化、微型化和信息化等特点,目前已应用于食品卫生检验、食品毒理学研究、分子水平上阐述食品营养机理和转基因食品的检测等多个领域。基于生物芯片在用于基因表达分析及蛋白质检测方面具有无可比拟的优越性,结合了多门学科中的高新技术,因此,其优越性将会日趋明显,预计将会成为未来食品安全检测分析中的生力军。

2、生物传感器技术

2. 1、基本原理

生物传感器是指把用固定化的生物体成分(酶、抗原、抗体或激素 )或生物体本身的细胞、细胞器、组织和器官等作为敏感元件的传感器。生物传感器技术是建立在细胞固定化和酶固定化技术基础之上的,它以生物分子去鉴别被测物,然后将生物分子所发生的物理变化或化学变化转化为相应的电信号并予以放大输出,从而得到相应的检测结果。

2. 2、主要特点及其在食品分析中的应用

由于生物传感器具有结构简单、体积小、响应速度快、样品用量少、可反复使用、灵敏度高、特异性好、不需要对被测组分进行分离和测定时不需另加试剂等特点,所以使用方便,有利于现场快速检测,故用生物传感器作为检测装置时主要应用在糖类、氨基酸类、有机酸和Vit等食品成分分析上,在食品添加剂 (亚硫酸盐、亚硝酸盐、甜味素和过氧化氢 )的分析、食品中细菌和病原菌的检测、食品鲜度的检测、食品滋气味及成熟度的检测等领域中也有应用。在未来知识经济发展中,生物传感器技术是介于信息技术和生物技术之间的新增长点,正逐渐变为在线检测的主要手段,在食品分析中有着广泛的应用前景。

3、免疫分析技术

3. 1、基本原理

免疫分析技术是指利用抗原抗体间的特异性反应为基础,结合各种定量信号方法来对某种物质进行定性或定量测定的一种技术,是一类高灵敏度、高特异性检测技术的统称,广泛应用于各行业。该类技术的基本原理相同,仅标记物质不同,最终测定所发出的信号不同。根据文献报道,具有推广价值或已广泛应用的有放射免疫分析、荧光免疫技术、酶联免疫检测技术、发光免疫分析技术、免疫电镜技术和胶体金免疫标记技术等。

3. 2、主要特点及其在食品分析中的应用

免疫分析技术具有高特异性、高灵敏性、操作简便安全无污染、干扰小和再现性好等特点,现已广泛应用在食品中微生物 (如沙门氏菌 )的检测、食品中的抗生素和激素的检测、食品中的真菌毒素检测、食品中的除草剂和杀虫剂等农药残留检测、食品中的营养素 (如蛋白质 )的检测等项目,市场上已有部分商品化的试剂盒供应。目前几乎所有的常用兽药都建立了免疫检测方法,大部分已成功的运用在动物性食品中兽药残留的检测,随着分析技术自身的优势和方法上的不断完善,尤其是制备更加特异的单克隆抗体或功能更加完备的重组单链抗体,以及免疫传感器技术和芯片技术的日臻完善,免疫分析技术在食品安全快速检测领域将发挥愈来愈重要的作用。

4、酶法分析技术

4. 1、基本原理和方法

酶分析法在食品分析中的应用主要有两个方面:一是以酶为分析对象,根据需要对食品加工过程中所使用的酶和食品样品中所含的酶进行酶的含量或活力的测定;二是利用酶的特点,以酶作为分析工具或分析试剂,用于测定食品样品中用一般化学法难于测定的物质。随着技术的发展,现已出现多酶偶联测定法、利用辅酶作用或抑制剂作用测定法、通过酶反应循环系统的高灵敏度测定法、酶标免疫检测法和放射性同位素测定法等新方法。

4. 2、主要特点及其在食品分析中的应用

与其它分析方法相比,酶法分析最大的特点和优点就是它的特异性强,对样品不需要进行复杂的预处理。此外,由于酶的催化效率高,酶反应大多比较迅速,故酶法分析速度快。酶法分析已应用在食品中葡萄糖的定量分析、食品中无机金属离子的测定、食品中Vit的测定、食品中农药残留的检测、食品中嘌呤和核苷酸的检测及食品中毒素检测等领域,并且酶法分析正朝着方便快速等方向发展,如将酶制成酶电极,直接测定,省去试剂配制和标准曲线的制作等步骤。目前已实际应用在分析中的酶电极有L -氨基酸氧化酶电极、过氧化物酶电极和脲酶电极等。

5、结束语

随着生物技术的发展,人们已逐步认识到生物技术在食品分析中的重要作用。生物技术检测方法以其自身独特的优势在食品分析中显示出巨大的应用潜能,其应用几乎涉及到食品分析的各个方面,包括食品的品质评价、食品的质量监督、生产过程的质量监控及食品科学研究等,尤其是它能够对许多过去难于检测的成分进行分析。目前由于各种条件的限制,生物技术在食品分析中的应用还不普及,随着科学技术的不断发展,在不久的将来,生物技术在食品分析中将占有越来越重要的地位。

分析化学在食品中的应用篇(2)

中图分类号:TS207文献标识码: A

食品分析采用的方法有物理分析法、化学分析法、仪器分析法(物理化学分析法)、感官分析法、微生物分析法和酶分析法、人工味觉分析法等。

1、、物理检验法

根据食品的物理参数与食品组成成分及其含量之间的关系,通过测定食品的物理量了解食品的组成成分、含量和食品品质的检测方法。物理检验法快速、准确,是食品工业生产中

常用的检测方法。食品物理检验的一种方法是直接测定某些食品质量指标的物理量,并以此来判断食品的品质,如测定罐头的真空度,饮料中的固体颗粒度,面包的比体积,冰激凌的

膨胀率,液体的透明度、薪度和浊度等。食品物理检验的另一种方法是测定某些食品的物理量参数,如密度、相对密度、折光率、比旋光度等,并通过其与食品的组成和含量之间的关

系,间接检测食品的组成和含量。

食品的物理检验方法主要有密度和相对密度检验法,折光率检验法,比旋光度检验法,薪度检验法,液态食品透明度、浊度和色度检验法,气体压力检验法,以及固态食品的比体积测定等。

2、化学分析法

化学分析法是食品分析与检验中基础的方法,包括定性分析和定量分析两部分。化学分析法适于食品的常量分析,主要包括质量分析法和容量分析法。质量分析法是通过称量食品某种成分的质量,来确定食品的组成和含量的,食品中水分、灰分、脂肪、纤维素等成分的测定采用质量分析法;容量分析法也叫滴定分析法,包括酸碱滴定法、氧化还原滴定法、配位滴定法和沉淀滴定法,食品中酸度、蛋自质、脂肪酸价、过氧化值等的测定采用容量分析法。此外,所有食品分析与检验样品的预处理方法都是采用化学方法来完成的。

3.仪器分析法(物理化学分析法)

目前,在我国的食品卫生标准检验方法中,仪器分析方法所占的比例也越来越大。仪器分析中要区分分析技术(analytical technique)和分析方法(analyticalmethod)两个概念。分析技术是指采用什么样的手段来达到分析的目的,如采用光谱分析或是色谱分析等手段;分析方法是指利用某种分析技术解决某一分析问题的方法和过程。仪器分析的分析技术是通过分析方法来实现的,分析方法可通过下列分析过程来描述:样品一取得物理或物理化学性质信息{分析仪器(硬件)}一进行数学处理一得到物质的组成和结构并进行研究和解释{计算机(软件)}。一个完整的分析方法应包括取样、样品的预处理、仪器测定、数据处理、结果表达、提供分析报告、对结果进行研究和解释等过程,缺少或忽略哪一过程都可能对分析结果的质量产生严重后果。

食品分析与检验常用的仪器分析方法有紫外一可见分光光度法、红外光谱法、原子吸收光谱法、原子发射光谱法、气相色谱法、高效液相色谱法、荧光分光光度法、薄层色谱法、电位分析法、库仑分析法、伏安分析法、极谱分析法、离子选择电极法、核磁共振波谱分析法以及气相色谱一质谱、液相色谱一质谱和等离子发射光谱一质谱联用法等。此外,许多全自动分析仪也已经广泛应用,如蛋白质自动分析仪、氨基酸分析仪、脂肪测定仪、碳水化合物测定仪和水分测定仪等。

4.酶分析法和免疫学分析法(生物化学分析法)

酶分析法和免疫学分析法是属于生物化学检验范畴的。酶分析法是利用酶作为生物催化剂,进行定性或定量的分析方法,它具有高效和专一的特征。在食品分析与检验中,酶分析法用于复杂的食品样品检验,该法具有抗干扰能力强,简便、快速、灵敏等优点,可用于食品中维生素以及有机磷农药的快速检验。免疫学分析法是利用抗原与抗体之间的特异性结合来进行检测的一种分析方法,在食品分析与检验中,可制成免疫亲和柱或试剂盒,用于食品中霉菌毒素、农药残留的快速检测。

现代食品分析与检验中应用的主要有酶联免疫吸附测定(简称ELISA)放射免疫测定(简称RIA),又称放射免疫技术;免疫传感器以及荧光免疫测定技术等生物化学检验方法。

5.感官分析法

是以人的感觉器官(眼、耳、鼻、口、手)作为分析仪器进行分析的方法,是一种对客观情况进行主观意判断的分析方法。感官分析包括两方面内容:一是以人的感官测定物品的特性;二是以物品来获知人的特性。据此可将感官分析分为具有不同作用的两大类型:分析型感官分析和偏爱型感官分析。每次感官分析试验根据不同的目的选择不同性质的评价小组进行,试验的最终结论是评价小组中评价员各自分析结果的综合,而并不看重个人的结论如何

6.人工味觉分析法

6.1人工味觉技术概述

人工味觉技术就是在模拟生物味觉的基础上构建的一种分析技术,是感官分析仪器化的具体实施。它模拟人类和动物的器官功能,汲取生理学、生物化学、生物电子学、细胞生物学、分子生物学、生物信息学等多学科的研究成果,集仿生技术、电化学技术、传感器测试技术、电子技术、测控技术、信息技术和计算机技术等多学科相结合的研究领域,对各种物质及所处的环境进行有效的识别。

6.2 a-ASTREE电子舌的检测原理

场效应晶体管(field effect transistor, FET)是一种将电极敏感膜与半导体场效应器件结合起来的能敏感离子或分子的电化学半导体器件,是电化学与半导体技术理论相互渗透和结合的产物,这种器件用离子或分子敏感膜层取代金属一氧化物一半导体场效应晶体管的金属栅极,形成离子或分子敏感层,敏感层材料可为金属一氧化物一半导体场效应晶体管的绝缘体氧化物本身,如S10:或S13Nq,也可将制备的敏感膜材料沉积在栅极氧化物绝缘层上。在适当的条件下,场效应晶体管在非饱和区内,被测组分的活度与漏极电流有能斯特响应,因此测量在加有一定漏源电压情况下FET的漏极电流,就能得到溶液中待测组分的量的信息。

a-ASTREE电子舌传感器就是根据以上原理制作而成的,包括两个具有高度传导性能的半导体区域:源极(source)和漏极(drain ),并由绝缘体环绕其周围,敏感层沉积于该绝缘体上,整体由一个胶囊化聚合物封装起来,以在水溶液中起到保护传感器的作用。敏感膜与绝缘体表面以共价键结合,以减少传感器的漂移和避免敏感膜的脱落,不同的膜材料决定了每个传感器对待测化合物不同的敏感性和选择性。

a-ASTREE电子舌是根据每一个独立的带有涂层的传感器与Ag/AgCI参比电极之间的电势差进行测量的。测量时,在源极和漏极之间会施加一个电流,参比电极的电势是恒定不变的,待测样品中的分子之间的交互作用及敏感膜材料的不同会影响膜电势,这一电势差的变化反映了待测样品的信息。每个传感器每秒输出一个响应信号,信号逐步变化并最终达到平衡,一般以稳定态的响应值为输出特征,因此,每个样品的检测信号是一个包含有7个独立传感器测量值的向量。

6.3a-ASTREE电子舌的使用方法

使用前,传感器首先要进行水化/活化,使敏感膜与换能器之间保持良好的传导性能,以保证其工作正确;其次,传感器需定期经过调节( conditioning )、校正(calibration)程序,以使每个传感器自动校准到响应初始值,以保证检测数据的长期可比性;必要时再用仪器自带的诊断溶液对传感器进行诊断(diagnosis ),以验证传感器的灵敏度、重复性,确定仪器是否正常。

6.4人工味觉分析方法优点

人工味觉分析方法能够使企业在生产过程中确保产品质量的稳定性,及时发现问题,进而改进和优化生产工艺,提高产品的质量。可以根据已有产品进行配方设计,通过电子舌品尝考察新配方与已有产品的相似度,在确定新产品的最佳贮藏条件和贮藏时间时发挥作用,寻找具有最佳稳定性的产品配方,从而优化配方设计,简化配方设计过程。在对样品作更精细的感官检验之前,可首先采用这一分析方法进行筛选检验,以减少感官分析评价员的工作量,提高感官检验的效率。此外,人工味觉分析与主观的感官评定和耗时的理化分析相比具有自动采样、即时分析、可以快速获得反映样品综合信息的味觉分析结果等优点。

结束语

随着科学技术的迅猛发展,特别是在21世纪,食品分析与检验采用的各种分离、分析技术和方法得到了不断完善和更新,许多高灵敏度、高分辨率的分析仪器已经越来越多地应用于食品理化检验中。目前,在保证检测结果的精密度和准确度的前提下,食品分析与检验正朝着微仪器化、自动化、数字化、智能化的方向发展,

参考文献:

分析化学在食品中的应用篇(3)

随着我国经济飞速发展,人们生活水平的日益提高,与人们息息相关的食品安全问题日益受到国家的重视。各种新兴设备、新的科学技术正逐步运用在食品安全检测中,其中生物技术在食品安全检测中的运用尤为广泛,生物技术不仅提高了食品安全检测的精确度,也在一定程度上使得过去许多难以检测的成分得以检测,并且为食品安全检测开拓了新的方向。

一、生物芯片技术概述

1、基本原理

20世纪90年代兴起的生物芯片技术是一种新兴的微量分析技术,它综合了免疫学、分子生物学、微机械学、微电子学、计算机、化学和物理等多种技术。生物芯片这个概念最初是来源于计算机概念,最早由美国Affymetrix公司

提出,又称基因芯片或DNA芯片等。目前主要开发了基因芯片,芯片微缩实验室和蛋白质芯片这3种产品。即在大约l一2cm2的玻璃片或硅片片基上,按特定方式将许多生物探针(基因片段,基因探针,抗原和抗体)固定,形成一种具有反应作用的微阵列,微阵列与样品发生作用后,通过光学仪器和扫描仪对数据进行收集和分析,使不连续的生命科学研究的分析过程得以在芯片上集中完成。其基本流程有构建方阵,制备样品,检测和分析生物分子相互作用及结果。

2、在食品分析中的应用

生物芯片技术可以实现食品分析过程的连续化、微型化、集成化和信息化,目前已经应用于食物卫生检测、转基因食品检测和食品毒理学研究等多个领域。由于生物芯片结合了多门学科中的先进技术,在基因表达分析和蛋白质检测等方面具有无与伦比的优越性,因此它很有可能在未来的食品安全检测中发挥主力军的作用。

二、生物传感器技术

1、基本原理

生物传感器是指传感器的敏感元件是由固定化的生物体成分(抗原、酶、激素或抗体)或生物本身的细胞、细胞器、器官或组织等组成。生物传感器技术是以细胞固定化技术和酶固定化技术为基础,它通过生物分子来鉴别被测物体,然后把生物分子所产生的化学反应或物理反应转化成相应的电波信号并且放大输出,从而得到一定的检测结果。

2、食品分析中的应用

生物传感器拥有结构简单、响应速度快 、灵敏度高、样品用量少、特异性好、可反复使用及测定时不需要另加试剂等优势,所以使用起来非常方便,有利于现场进行快速检测。因此将生物传感器用作检测装置主要是应用在氨基酸类、糖类、有机酸等食品成分的分析中。在食品添加剂(亚硝酸盐、亚硫酸盐、过氧化氢和甜味素)、食品中细菌、食品鲜度、食品滋气味、病原菌的检测等领域也有大量应用。生物传感器作为生物技术和信息技术中间的新增长点,在未来信息社会发展大潮中,正逐渐成为检测的主要方式,在食品分析领域占有不可取代的地位。

三、免疫分析技术

1、 基本原理

免疫分析技术是以抗原和抗体之间的特殊性反应为基础,通过结合一些定量信号的方法对被测物质采取定量或定性测定,是一类高特异性、高灵敏度检测技术的总称,广泛应用在各行业。这类技术有相同的基本原理,差异性主要表现在标记物质和最终测定所产生的信号上。根据资料显示,存在推广价值或已经被广泛使用的免疫分析技术有放射免疫分析、酶联免疫检测技术、荧光免疫技术、免疫电镜技术、发光免疫分析技术和胶体金免疫标记技术等。

2、 在食品分析中的应用

免疫分析技术拥有高灵敏性、高特异性、操作简单安全无污染、再现性好和干扰小等优点,现如今已经广泛运用在食品中的微生物检测、食品中的真菌毒素检测、食品中的激素和抗生素检测、食品中的刹虫剂和除草剂等农药残余检测等方面,市场上已经有一些商品化的试用剂盒。目前,几乎所有的兽药都建有免疫检测法,大部分都已成功地运用。随着分析技术自身的独特优势和方法上的日趋完善,尤其是在单克隆抗体或单链抗体的制备上,以及免疫传感器技术的和生物芯片技术的日益完善,免疫分析技术在食品安全检测中起着越来越重要的作用。

总而言之,随着科学技术的发展,人们已经逐步认识到在食品分析领域生物技术的重要作用。生物技术检测法凭借其自身特有的优势在食品分析中展现其巨大的潜在力量,它的应用在食品分析的各个方面都有涉及,包括食品的质量监督、食品的生产过程、食品的科学研究等等,尤其是它能够对过去许多检测难度较大的成分进行分析。目前,由于一些条件的制约,生物技术在食品分析中运用的还不够普及,但是,随着科学技术的发展,生物技术在不久的将来一定会在食品分析领域占有愈来愈重要的地位。

参考文献:

分析化学在食品中的应用篇(4)

食品添加剂一般根据其来源和用途分类,我国一般采取按用途分类的方法,主要包括以下几种:①食用色素:是使食品染色后提高商品价值的一类呈色物质,分为天然色素和合成色素;②食品甜味剂:是指赋予食品以甜味的食品添加剂,有天然品和人工合成品2种;③食品抗氧化剂:能阻止和延缓食品氧化的食品添加剂,可提高食品的稳定性,延长存储期;④食品防腐剂:是指为防止食品腐败、变质,延长食品保存期,抑制食品中微生物繁殖的物质;⑤食用香料、食用增味剂和其他食品添加剂。

食品添加剂的检测技术

高效液相色谱。高效液相色谱法是色谱分析法的一个分支,是在20世纪60年代末期,在经典液相色谱和气相色谱的基础上,发展起来的新型分离分析技术。问世以来,因其具有分离效能高、分析速度快、检测灵敏度好、能分析高沸点但不能气化的热不稳定生理活性物质的特点,而被广泛应用于生物化学、食品分析、药物及临床分析。近年来,随着色谱技术的不断发展,各种工作站软件的开发,以及与质谱等仪器的联用,大大拓宽了HPLC的应用范围。

气相色谱法。气相色谱是流动相为气相的层析技术,作为常用的分析手段,它在测定分子量小于1000,沸点低于350℃的化合物时常被使用。气相色谱由于样品在气相中进行交换分离,分离测定物在二相中的交换速率大大加强,且层析柱的长度也可以很长,因此分离效率比液相层析高。随着多种高灵敏检测器的出现并广泛投入使用,在测定时使用较粗的层析柱时其灵敏度高于液相层析、气相色谱,常被用于食品微量成分或低沸点食品成分的分析,如香料,农药等的测定。

另外,有报道气相色谱法用于检测甜蜜素、同时测定食品中3种抗氧化剂丁基羟基茴香醚(BHA)、二丁基羟基甲苯(BHT)和特丁基对苯二酚(TBHQ)的方法,检测小麦粉添加剂。

紫外可见分光光度计。紫外可见分光光度计既是一种历史悠久、传统的分析仪器,又是一种现代化的集光、机、电、计算机为一体的高技术产品,它的应用非常广泛,在有机化学、生物化学、药品分析、食品检验、医疗卫生、环境保护、生命科学等各个领域和科研生产工作中都已得到了极其广泛的应用,如食品中酸奶中维生素A的测定、番茄红素的测定、食品中甜蜜素的测定、食品中硝酸盐的测定。

薄层层析。薄层层析又叫薄层色谱,是色谱法中的一种,是快速分离和定性分析少量物质的一种很重要的试验技术,属固-液吸附色谱,它兼备了柱色谱和纸色谱的优点,一方面适用于少量样品的分离;另一方面在制作薄层板时,把吸附层加厚加大。因此,又可用来精制样品,此法特别适用于挥发性较小或较高温度易发生变化而不能用气相色谱分析的物质。

毛细管电泳技术。食品的多样性及组成成分复杂,对应用于食品分析的方法提出了很高的要求,一个理想的食品分析方法最好可以应用于不同的食品基质,并可同时测定同一基质的不同组分。由于毛细管电泳(CE)适用范围非常广泛,而且CE具有多種不同的分离模式,可以满足许多基质复杂的食品分析要求。如防腐剂、甜味剂、抗氧化剂、色素、营养强化剂、维生素等测定。

随着近年来商品仪器的不断改进和完善、自动进样器的使用以及高灵敏度检测器如激光诱导荧光、飞行时间质谱、串联式质谱等与CE的联用,不但可使测定精度提高,而且能完成连续自动进样及在线分析,检测极限大大降低。采用CE—MS(质谱)、CE—NMR(核磁共振)及CE—MS—MS技术,充分利用了HPCE的高离效率和MS或NMR的高灵敏度与定性鉴定能力,可快速完成众多复杂成分的分离与结构鉴定,在食物中毒等突发公共卫生事件中鉴定有毒有害物质的应用将显示巨大的潜力,毛细管电泳技术在食品安全检验中的应用将越来越广泛。

离子色谱法。离子色谱最初是为分析无机阴、阳离子而发展起来的,随着IC技术的发展,其应用范围也逐渐扩大,可分析的物质不仅包括各种无机阴、阳离子,还扩展到各种有机阴、阳离子及生化物质。在食品分析中,用于防腐剂、酸味剂;有报道离子色谱法同时测定食品中丙酸盐、脱氢醋酸、甜蜜素、山梨酸、苯甲酸等五种添加剂的方法和离子色谱法检测面制品中溴酸钾。

生物传感器。生物传感器主要由生物识别元件和信号转换器两大部分组成。生物识别元件又称感受器,由具有分子识别能力的生物活性物质构成。当生物识别元件与待测物发生特异作用后,所得产物通过信号转换器转变成可以输出的电信号、光信号等,从而达到分析检测的目的。生物传感器有优异的选择性和较高的灵敏度,有可能不用试剂,在组分复杂的试样中快速和连续测定被分析物。

酶联免疫吸附分析法。吴定等人研究了食品中苯甲酸含量的竞争ELISA测定方法。

分析化学在食品中的应用篇(5)

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdkz.2015.02.034

Rapid Detection Technology in Food Analysis Teaching

YAO Xiaolin, ZHAO Meng, Zhang Weiqi

(Food and Pharmaceutical Engineering College, Hubei

University of Technology, Wuhan, Hubei 430068)

Abstract This paper introduced the importance of rapid detection technology in food safety analysis and implementation necessity of food analysis teaching in colleges and universities. The teaching reform of food analysis teaching content is made some discussion.

Key words food analysis; food safety; rapid detection technology; teaching reform

食品分析是国内各大高校食品科学与工程专业必开的专业基础课程。本课程主要包括食品各组分的标准分析检测方法,内容主要涉及食品营养成分、食品风味成分以及有毒有害成分等的分析与检测。①目前食品分析技术的发展趋势包括两个方面:污染物或毒素等安全卫生控制指标的限量值在逐渐降低;检测方法和手段日趋高科技化、便携化和系列化。为了追求灵敏度和效率,检测方法的更新和提高十分迅速,如固相微萃取技术也正在逐步向食品安全检测领域过度,如用于酱油中致癌物2,3-二氯丙醇的分析检测。②因此,将快速检测技术引入食品分析课程中,使学生了解并掌握食品安全分析检测的实用知识,是目前食品分析内容的有效补充,可拓宽学生的专业基础知识范围,提高教学质量,增进学生的综合技能运用能力。

1 快速检测技术的定义③

快速检测技术是没有确切定义的,是个通俗概念,即在短时间内(通常为几分钟或十几分钟)采用科学的检测技术和手段检测出被检物质是不是有毒有害物质、被检物质是否处于正常状态以及得到的检测结果能否满足标准限定值,上述检测行为称为快速检测。

2 在食品分析与检测中快速检测技术的重要性

在食品安全分析检测工作中,快速检测技术具有重要的意义。目前频发的食品安全事件已造成食品行业在消费者心中的公信度下降。究其原因,不仅仅是由于食品监管执法部门制定的法律法规和标准存在不足需要不断强化外,还包括一些客观条件的不足。如专门用于食品安全检验的实验室数量较少,在一些农村地区条件更加落后;检验成本较高,导致应送检的样品未能及时送检;实验室的检测周期较长,如食品中的微生物检测,微生物生长至少需要18~24小时,该类食品没等检测报告出来食品就已经销售完毕了。为了弥补实验条件落后及法律法规不完善等因素造成的不足,降低食物安全事件发生的可能,全方位地保障食品安全,一个便捷高效的解决办法就是普及快速检测技术。

为了保障食品的卫生安全,需要采样检测的食品产品和食品生产各环节的半成品众多,采集各级样品并送到实验室检测的工作量巨大,可实施性不强。采用快速检测技术,可在销售现场或生产线上对食品取样进行初步筛查,提前发现问题食品及生产环节的漏洞,可扩大食品安全控制范围。对有问题的样品在必要时再送达实验室进行具体精确的分析检测,可有效提高食品安全管理的效率,使现场快速检测技术成为实验室常规检测的有益补充。对于食品安全监管人员,在日常食品安全监督工作中,在初步感官检验筛查的同时,辅以快速检测,能在现场及时发现可疑问题食品,并采取相应管理措施。这对提高食品监管人员的监督力度和工作效率,保障食品卫生安全具有重要的现实意义。

3 快速检测技术的主要检测形式

快速检测技术的检测形式包括以下几种:(1)试纸法,利用试纸显色或不显色来判定被检物质如农药、鼠药是否存在或是否超标,根据试纸层析技术观察显色与否来定性判断或作为限量指示违禁添加物,如苏丹红、瘦肉精等,或依据试纸显色的深浅来对如食用油酸价、过氧化值等指标进行半定量。(2)试管法,可用速测管显色来定性如毒鼠强、生豆浆等,用速测管显色的深浅半定量如亚硝酸盐、甲醇、二氧化硫等有毒物质。(3)滴瓶法,将被检物质溶液滴入装有标准溶液的滴瓶中,根据消耗的体积来推算被检物质含量,如酱油中氨基酸态氮含量等。(4)光度计法:用于快速检测的光度计实际上是一种微型分光光度计,将用比色定量测得的检测项目的线性斜率和截距作为参数预先设定,可省去标准曲线,现场检测时直接读数得到样品结果。目前,还开发出一些用于现场快速检测的仪器,包括用于油脂品质检测的食用油极性组份测定仪、蒸馏酒甲醇速测仪、农药残留速测仪、环境温度瞬间测定仪、电导仪、食品中心温度计、肉类水份测定仪等。目前已开展的快速检测技术包括:亚硝酸盐的快速检测、真菌毒素的快速检测、生熟豆浆的快速检测、乳品中三聚氰胺的快速检测、油脂酸价和过氧化值的快速检测、瘦肉精的快速检测、苏丹红的快速检测、变质肉制品的快速检测、掺水牛乳的快速检测、酱油总酸和氨基酸态氮的快速检测及有毒豆角的快速检测、生熟豆浆的快速检测、谷物中生物毒素的快速检测、蜂蜜中淀粉和糊精的快速检测、食醋感官和游离矿酸的快速检测等。④这其中采用的检测方法都是基于食品分析的基本实验方法,结合当前存在的食品安全问题设计提出的。快速检测技术是食品分析基本实验方法的综合性应用,具有便捷性、时效性和实用性。

4 快速检测技术在食品分析教学中开展的意义

针对我国当前国情的需要,对市场和超市等食品零售网点需进行食品安全监督,包括食品销售商自身管理,均需要配以方便快捷的现场抽样和快速检测。尽管快速检测技术由于灵敏度和特异性方面的限制,不能作为判定样品安全性的最终依据,但作为发现问题的第一步,其具有不可替代的作用。食品分析课程讲授的检验方法多为经食品标准委员会认可并形成的国家标准检测方法, 但是这些金标准会随着食品质量安全日益严格的新要求和新的检测手段的出现而不断发生变化。因此高校教师的教学内容应与新出台的食品检测国家标准相对应,在强调更新测定方法的同时,还要提及食品质量安全有毒有害残留物质的最新标准。食品课程教学应从实际出发, 突出重点。目前世界各地都普遍面临食品安全问题,食品安全问题变得日益严峻。⑤因此,高校食品专业的食品分析教学应将重点放在食品中农药兽药残留的检测、生物毒素和激素的检测、食品中重金属污染检测、食品中违法添加物如三聚氰胺的检测等内容上面,而快速检测技术恰恰是主要针对食品安全问题设计提出的综合型实用性方法。

食品分析教学大纲要求本专业学生在学习中注重国家标准测定方法与现代分析技术的应用相结合, 在掌握传统分析原理的同时, 熟悉现代先进分析仪器的使用方法。教师在课堂教学中需增加本学科发展的科学进展与动态,并融入国内外食品安全热点问题的检测手段与方法,扩展学生的视野,提高学生学习的兴趣。大多数学生毕业后将从事食品生产和分析检测方面的工作,食品分析课程仅仅能提供给学生一些常规食品组分及食品添加物的标准检测方法,在实际工作应用中往往可利用度不高。目前快速检测技术在在食品分析检测中主要用于食品中的农药兽药的残留、重金属污染、生物毒素,致病微生物等有害物质的快速筛查与分析,其检测领域越来越广泛,已经成为食品中有毒有害组分的便捷快速的筛查手段。但在高校本科教学中较少开展该方面内容的理论和实践教学,学生对快速检测技术了解很少。引入快速检测技术的内容,可提高学生对实用型分析技术的认识,并了解快速检测技术在食品安全分析领域应用的优势及重要性。学生通过掌握食品检测的技术方法和操作规范,明确食品安全的重要性,有利于其培养良好的食品质量安全分析控制的意识与素养。

5 结论

为了保证人们安全消费食品,新的分析手段和分析方法应运而生,这要求我们本科教学内容必须与时俱进。食品分析课程的目前的教学内容仍停留在现有传统的国家标准分析检测方法的讲授上,这在检测技术日新月异的今天是远远不够的。作为高校食品专业教师,必须及时关注食品分析领域中的新技术和新方法,使知识体系不断更新完善,并在教学过程中及时更新教学的内容,使学生学习到最新的更实用的知识,培养为社会所需的实用型人才。

注释

① 聂瑾芳,张云,李建平,陶慧林.浅议食品分析课程体系教学改革[J].广州化工,2011.39(22):109-110.

② 沈玉栋,李瑞婷.酶联免疫吸附分析实验在食品分析教学中的实施[J].科技创新导报,2013.13:149-151.

分析化学在食品中的应用篇(6)

中图分类号:G642.0 文献标识码:B 文章编号:1671-489X(2013)12-0086-02

食品安全关系到公众的生命健康和社会稳定,是一个重大的公共卫生问题。近年来,苏丹红、塑化剂、地沟油等食品安全重大事故频频发生,食品安全形势日益严峻,已威胁到我国食品行业的竞争秩序和良性发展,并成为阻碍我国食品出口业发展的桎梏[1]。在这一形势下,如何培养职业道德高、综合素质强的食品安全人才成为各大高校急需解决的问题。根据各高校食品类专业十几年建设经验,如何将化学类基础课程与食品类专业课程体系进行完美融合,并在化学类基础课程教学中凸显食品类专业特色已成为完善教学体系、提高教学质量的一种重要途径。近几年来,北京工业大学生命科学与生物工程学院灵活运用多种教学方法组织教学,在课堂上取得很好的反响。现将经验进行总结,希望能为其他院校此课程的建设提供参考。

1 分析化学教学现状

分析化学是食品类专业的基础课,旨在通过阐述分析化学基本知识,为食品类专业提供研究食品营养与功能成分以及食品添加剂的理化检验原理、技术和方法,同时也为提高学生的科学素养打下坚实的基础[2]。作为一门理论与实践相结合的学科,大多数初学者并不清楚教学实践对于分析化学的重要性;另外大部分高校食品专业的分析化学课程都由化学专业教师担任,他们往往容易忽视此课程与食品类专业的联系,授课重点、实验内容设计与食品专业脱钩,导致理论与实际需求错位;而且教材中抽象理论多,内容枯燥难以理解,难以调动学生的学习积极性。

2 分析化学教学改革与探索

2.1 根据专业特点整合教学内容,突出教学重点

根据北京工业大学的学科发展情况,在认真学习分析化学教学大纲,研究其在整个专业课程体系中的地位和作用以及课程内容的深度、广度、要点、重点后,在原有化学分析基础上将仪器分析定量部分加入到教学中[3],同时加强分析化学与食品学科的联系。具体教学内容做如下调整:将四大平衡(酸碱滴定、配位滴定、氧化还原滴定和沉淀滴定)的内容精选讲解,避免重复,减少繁琐计算,增加色谱分析、光谱分析等食品检验运用较多的仪器分析技术。此外,将10余年来的国内外相关科研积累融入教学内容中。教学内容注重与食品专业学科发展相结合,与本专业后续课程相衔接。分析化学为食品专业领域的前沿课题提供方法和技术支持,如食品农药残留的检验、食品添加剂的鉴定等[4]。同时也为本专业后续开设的课程如食品化学、食品分析奠定基础。整合后的教学内容既使学生更系统地学习分析化学知识,更好地培养学生准确的“量”的概念,又了解该课程在食品专业中的重要地位,让学生感受到学有所用。

2.2 结合专业特点,注重专业思维塑造

作为食品质量检测手段,分析化学对于数据的记录及处理有着相当严格的要求。在进行理论课讲授时,特别强调学生对数据记录的规范性,同时辅以实用的数理统计以及生物统计知识和技巧,教会学生如何记录数据和分析处理数据,培养他们求实严谨的科研作风。在平时的教学活动中,不仅要教授给学生严谨完备的理论知识,同时要传授给他们严格规范的实验技术技巧,在授课过程中还给学生介绍开放性题目、让学生撰写小论文、开发学生思维、鼓励小组讨论。每个学生定期独立制作一个课件,优秀课件在教师指导下进行5~10分钟课堂演示。通过学生参与教学过程,培养学生的自学能力、科学精神和创新能力。

2.3 结合教学大纲,利用多种媒介创新教学方法

传统的教学模式是“一言堂”,教师为教而教,学生为学而学,很难发挥自身的主体作用[5]。分析化学中充满繁琐的公式以及数学推导和论证,如多元酸碱反应和电化学平衡,学生普遍反应难以掌握。这就使得直观的化学反应变成枯燥的数学计算,加之实验内容设计与食品专业脱钩,学生体会不到分析化学与自己专业的联系,导致学习兴趣和热情减退。因此在理论授课时,为了增加学生对于定量分析的感性认识和理解,在每一个专题的课程中都配合有教师示范实验操作的录像以及现场讲解,这样不仅让学生对接下来的实验课程有了初步认知,同时加强了他们对基本理论和概念的理解。在讲课过程中采取灵活多样的教学方法,注重采用启发式、研究式教学,确保教学质量。课下学生还可以在校园网内的课后教学辅导网站下载教学课件,教师通过网站、邮件对学生提出的问题进行回答,将典型的问题反馈到课堂教学中。

针对食品专业的学生,为了突出分析化学在食品领域中的应用,在课堂讲述中引入案例教学元素,在每个专题的理论讲述之后都会向学生展示大量分析化学在食品检验中的应用实例,使他们在学习专业知识的同时完备自己的专业认知体系。如在酸碱中和滴定的课时中,向学生展示食品中有机酸的测定方法;在氧化还原滴定课时中,向学生展示碘量法测定食品中的维生素C、葡萄糖的方法。

2.4 充分发挥实验教学联系化学和其他专业课程的枢纽作用

作为一门实用性很强的学科,分析化学的实验课显得尤为重要。以往实验课多是验证性和纯化学的实验,降低了学生的兴趣。因此,在分析化学理论内容改革的同时,对实验内容相应调整。在分析化学的实验课程中,首先根据教学内容安排基础实验,让学生将先前在课堂上学到的理论知识加以实践应用,加深记忆和理解,使其在掌握基本实验操作和方法的同时培养严谨的科学态度和处理解决问题的能力[6],从而提升实验结果的准确度,同时强化学生的基本实验规范和专业意识。然后开设与食品专业息息相关的代表性实验,增加综合性实验。经过实验内容的改变,分析实验不再是单纯的验证,如茶叶中铜含量的测定实验就涉及茶样的采集、保存、前处理和各项指标测定方法的确定等。实验与食品专业以及日常生活的紧密结合,大大地提高学生的参与热情,教学质量与学生的操作技能都会明显提高。

2.5 注重理论教学与实际应用的协调统一

近年来全球屡次发生大规模食品安全事件,如国外二英、苏丹红事件,我国的三聚氰胺奶粉以及席卷全国的地沟油事件。食品安全与人们的日常生活息息相关,是热点问题,也是最能吸引食品专业学生学习兴趣的问题。在基础实验之后,安排分析化学综合实验――食用油脂品质检验。通过氧化还原滴定、酸碱滴定及分光光度法等实验综合检验食用油,以日常生活中必不可少的食用油为分析样品,让学生对教师发放的盲样以及学生自带食用油进行测定,激发学生对分析实验的浓厚兴趣,大大提高学生的积极性。学生自主完成查阅资料、实验设计、实验准备、实验主体、结果记录等整个实验研究过程,综合提高学生的分析实验技能。

实验以食品质量监督检验站原始数据的记录要求,严格规范学生的实验原始记录和有效数字填写与更改,并根据实验结果对样品进行品质评价,出具符合质检站要求的品质评价报告,使学生具备在质检站工作的基本技能。实验测定结束后,对学生的实验结果进行统计分析,做出测定结果的正态分析图,进行综合评价,并由学生对自己的测定结果进行自我剖析,分享实验成败经验,从总结中巩固实验成果。

3 结语

通过教学实践发现,就教学方法而言,在遵循教学基本规律的前提下,必须因生、因课、因时而异,才能取得好的教学效果。总之,作为一门实用性很强的学科,在对食品专业学生的分析化学授课中不仅要强调理论知识的记忆和理解,同时要特别重视学生对于这门学科的感性认识以及实验动手能力。通过学生在之后课程学习中的反馈效果来看,这样的教学方法是相当成功的。笔者相信,学生通过对分析化学理论课和实验课的学习,不仅能够掌握到系统扎实的化学分析知识和专业规范的分析化学实验操作技能,同时能够收获求是严谨的科研工作作风以及不惧困难挫折、勇攀高峰的优秀个人品格。

参考文献

[1]于丽艳,王殿华.发达国家食品安全标准对中国食品出口的影响[J].华东经济管理,2011,25(10):66-69.

[2]张福兰.《无机及分析化学》教学改革探讨[J].中国西部科技,2010(3):94-95.

[3]罗云敬,张淑芬,方方,等.生命科学专业医用分析化学课程教学改革的实践与探索[J].中国教育技术装备,2010(3):26-27.

分析化学在食品中的应用篇(7)

中图分类号: F407 文献标识码: A

前言

当下,我国食品中添加各种添加剂、防腐剂等现象屡禁不止,致使食品中含有有害人们身体健康的微量元素,一旦人们长期食用将会给人们的身体健康造成严重的危害。针对此种情况,即便呼吁人们不要购买含有有害微量元素的食品,但是由于人们无法通过肉眼辨别食物是否含有有害的微量元素,还是无法科学的购买到安全食品。此时,对食品中微量元素进行检验显得尤为重要,其能够准确的检测出食品中是否含有有害的微量元素。目前,提出的几种现代检测方法的检测效果更好,如原子吸收分光光度法、氢化物发生―原子荧光光谱法、电化学分析法等。相信在不远的将来,会有更多更有效的微量元素检验方法被推出,为人们鉴别出安全食品。

1、食品中微量元素检验的重要性

在当下,我国经济水平不断的发展,科学技术不断的进步。这对于我国来说是非常有利的,其能够推动中国经济更加迅速的发展,从而提高我国的综合实力。但是,相对的,有利就有弊。科学技术进步所产生的弊端已经体现在人们日常生活中,食品中各种含有有害微量元素的防腐剂等就是其中一方面。一旦食品中含有有害微量元素,将会给人们的身体健康带来严重的危害。为了避免人们的健康受到危害,对食品中的微量元素进行检验,确定食品中是否存在含有有害的微量元素是十分必要的,此举可以尽量避免人们通过食物摄取有害的微量元素,给身体带来健康隐患。只有通过对食品中微量元素进行检验,才能够确定食品中是否存在汞、铅、砷等有害身体健康的微量元素,不同的微量元素对人的身体所造成的伤害不同,如一些元素使用后将会表现的非常明显,一些微量元素使用后几乎没有任何影响,如若有害的微量元素积累到一定程度上,将会导致给人的身体造成严重的危害。然而,无论任何性质的有害微量元素都回给人们的身体造成一定危害,应用食品微量元素检验方法控制食品质量,才能够为人们提供安全食品。

2、食品中微量元素的现代检验方法

在我国经济水平不断提高的背景下,人民的素质有很大提高,相应的对自身身体健康的保健意识增强,针对当前食品中存在防腐剂等化学品的情况比较排斥。但是,由于人们对食品检查相关知识掌握的比较少,无法分别出食品质量的好坏,尤其是无法通过肉眼观察出含有有害微量元素的食品,这使得含有有害微量元素的食品依旧存在市场中。为了杜绝此种情况的出现,采用现代检验方法对食品进行检测,准确的检测出食品中是否存在有害微量元素,进而实现为人们筛选健康的食品。

2.1 食品样品处理

采用现代检验方法对食品进行检验前,需要对所要检验的食品进行处理,再应用现代检验方法进行具体的检测,才能够发挥检验方法的作用。食品样品的处理主要是 :

2.1.1 干法灰化处理

进行干法灰化处理的目的是将食品中存在的杂物去除,避免其影响到检验结果。具体的处理内容为,将定量的食品样品放置在坩埚中,用微火对坩埚进行烧制,将实物样品中的水分或其他易挥发的物质清除,再将食品进行高温处理,并在其中加入盐酸溶液,用火煮沸,得到能够应用于检测的样品。

2.1.2 湿法消化处理

湿法消化处理方法是一种非常有效的样品处理方法,其处理的思路是通过有氧分解方式将样品分解成检验所需的样本。湿法消化处理主要是应用等氧化剂对食品进行分解,如若为了提高分解速度,也可以在其中加入催化剂,增加食品样品分解速度,促使食品成为现代检验方法所需的样品。

2.2 食品微量元素的现代检验方法

在当前这个现代社会中,应用于食品微量元素检验的现代检测方法有多种,能够有效的、准确的检验出食品中是否存在对人们身体有害的微量元素,对于保证食品安全非常有用。

2.2.1 原子吸收分光光度法

此种微量元素检验方法是以原子对特征光吸收的特点为基础研究出来的一种微量元素相对测量方法。原子吸收分光光度法的基本原理是依照光源能够辐射出待测元素的特征光普在蒸汽影响下,观察基态原子吸收情况。所用的仪器为原子吸收分光光谱仪,其中原子化系统是重要组成部分,其作用是将样品中的待测元素转化为自由态原子蒸气。原子化装置一般包括火焰原子化系统、石墨炉(无火焰)原子化系统和氢化物发生器三种类型。应用原子吸收分光光度法对处理的食品样品进行检测,能够非常准确的检测出其中元素的种类,进而确定食品中是否存在有害的微量元素。应用原子吸收分光光度法对样品进行具体的检测内容是采用原子吸收分光光普仪器度对食品样品进行检测,应用光源辐射样品中含有的元素,并对样品进行蒸发处理,促使样品中的基态原子在进行氢化处理后能够确定样品中含有的微量元素种类。原子吸收分光光度法具有精确度高、准确性好、消除干扰、易实现自动化、选择性佳的特点,促使其成为食品微量元素检测的现代检测手段之一。

2.2.2 氢化物发生―原子荧光光谱法

原子荧光光谱法具有多种特点,如元素分析性较强、受干扰的可能性小、能够对多种元素同时进行分析等等。在元素检测中同样属于一种重要的检验手段,此种检验手段是从每种元素特定的原子荧光强度出发,对样品中的元素含量进行检测,从而准确的检测出样品中含有的微量元素以及有害元素。氢化物发生―原子荧光光谱法除了应用元素具有的特定原子银光强度的特征外,还需要应用到氢化物,通过应用氢化物对所检测的样品进行氢化处理或者应用磷酸 - 酒石酸对样品进行处理,进而消除共存离子的干扰,提高氢化物―原子荧光光谱法的检验结果,可应用于室温原子化下对保健食品中的痕量锗的测定。

2.2.3 电化学分析法

电化学分析法是进行微量元素检验中比较常用的一种分析方法。因为,电化学分析中所应用的极普法和离子选择电极法具有良好的应用性,尤其是检测食品样品,能够测定出其中存在的色素、糖精以及微量元素等等。应用电子分析法进行食品检测的具体方法是将食品样品应用电势电解的方法进行控制,目前,在食品样品的元素分析中,溶出伏安法是一种较为先进的电化学分析方法。应用伏安分析法对其中的汞电极进行分析,并应用伏安技术对样品进行处理,是样品中的元素从电极上融入到溶液中,绘制出样品的伏安曲线。此时样品溶液中电解电流的成分增大,再结合充电电流进行分析,通过这种有效的分析能够样确定品中的微量元素。由此可见,电化学分析法是一种非常有效、灵敏的微量元素分析法,将其应用到食品中微量元素检测当中是非常适合的。

结束语

食品中微量元素的检测方法很多,有原子吸收分光光度法、氢化物发生―原子荧光光谱法、电化学分析方法等,除了本文介绍的方法之外,还有很多其他的方法来测定食品中的微量元素是否都符合要求。为了人们购买安全食品的要求,应不断加强对食品中微量元素的分析测试方法的研究,从而将微量元素的分析检测技术推进到一个更新更高的水平。

参考文献

[1]邱秀玉.微波消解氢化物原子荧光法用于食品中砷和汞同时测定的研究 [J]. 福建轻纺.2005(08).

[2]石杰,宋庆国,赵开楼,曹丰璞,郭玮.断续流动氢化物发生-原子荧光光谱法同时测定茶叶中的痕量铋、镉[J].食品科学.2005(07).

分析化学在食品中的应用篇(8)

0引言

《食品分析》是中职院校食品专业一门必修的专业基础课程,是阐述各类食品中化学组成成分的检测原理和方法的一门技术性专业课程。本课程的任务是让学生学会如何根据不同的分析目的,运用物理、化学或者生物化学等方法对食品样品进行检测和分析。随着当前人们对食品功能性及安全性的日益重视,以及食品分析技术本身的快速发展,要求食品工作人员不但具有扎实的基础理论知识和丰富的实验实践经验,而且还要具有严谨的学习态度和学习方法。因此,对于培养专业技术人员的中等院校而言,对食品分析课程教学的改革也就尤为迫切。为此,本文对这门课程的研究性教学方法的改革进行了一些探索和实践。

1对教师教学方法的改革

人们对教师的理解大多是知识的授予者,但是随着时代的进步,以往的教学模式正逐渐出现弊端,无法满足对人才培养的要求。新的教育形式下,研究性教学提倡教师应多方面发挥自身的作用。教师应该在学生学习过程中更多起到“启发者”和“促进者”的作用,不应该作为高高在上的“领导者”进行总结型的教学活动。

教材是教学过程中的基础内容,是学生学习的重要工具,也是教师实施教学活动的第一手材料。教师对教材的理解直接关系到教学的质量和学生的学习效率。对于教师,首先要做的是详细理解教材内包含的知识结构,这也是研究性教学的首要环节。中职教学中教师的任务只是单纯地向学生灌输知识,让学生各个学科都能够有大概的理解,内容相对简单。对比于中学教学,中职课堂教学理论性较强,知识点密集,要求学生具有充足的逻辑思维能力。学生需要在理解知识的前提下,进一步对所学内容进行拓展和感悟。这种情况下,教师就需要深刻理解研究性教学的内涵。教师不能像往常那样一味地以课本进行授课,要去思考如何把知识合理地传授给学生的同时,还能让学生主动的去掌握研究方法,让学生认识到内在的逻辑。比如对于难理解的部分,教师可以采取倒向研究或者提出引导性的实际应用例子来丰富教材的结构,这样使得枯燥乏味的学习过程变得生动有趣起来,也达到了使学生认真学习的目的。

2食品分析理论教学的改革

理论知识的教学要紧紧围绕教学大纲进行有目的、有针对性的讲授。教师在讲解专业知识时,刚开始应该降低学习难度,先将基础知识和必须掌握的重点渗透给学生,其他浅显易懂的部分留给学生课后自己预习和掌握。

食品分析中蕴含多种学科的交叉,例如有机、无机、分析化学、仪器分析及物理化学等多个专业知识,未来学科的发展也是向着各个学科之间协同合作、互相渗透。这些学科同样也是食品分析、检验,更是食品样品中营养成分分析的重要基础和技术支持,但问题是这些学科的内容学习起来十分困难,课时少、任务多,学生无法在短时间内全部掌握,而且容易产生知识点的混淆。所以,在实验理论教学方面,我们应该重点针对知识结构的框架进行调整和改进,保证学生在理解好知识的前提下,提高学习效率。

食品分析中营养成分分析较为关键,如检测食品中抗氧化性物|花青素物质的含量。学生对花青素的结构理化性质较为陌生,学习起来很困难,这时教师要先重点讲解花青素的分子式及主要官能团,对应具体结构,学生能清楚地明白花青素为什么会有很强的抗氧化功能。

目前,食品分析正逐步朝着高科技方向发展,各种高端仪器的运用加快了食品分析的检测效率和结果的准确性。教师还可以向学生介绍一些最新、最前沿的科研成果和实验仪器,丰富学生的知识面。例如,向学生讲解氨基酸的种类及其成分的常规测定时,主要利用的分析手段是高效液相色谱(HPLC),但是这种检测方法已经不能满足日渐苛刻的检测要求,教师可将最新的分析理念液相色谱仪和质谱仪联用的检测方法的原理和仪器运行的结构介绍给学生。

3食品分析实验教学的改革

实验教学的目的在于提高学生的知识运用能力和实践动手能力,更重要的是提高了学生今后在工作中的能力和业务水平。最近几年,针对食品分析的实验教学,部分学校做出了一些大胆尝试,总结了如下几方面的经验和改革思路。

3.1实验方法

实验是对学生理论知识学习情况的考核,要求知识点的灵活运用。实验部分的教学难度就在于如何真正的做到理论和实践的全面结合,所以教师可以将发生在身边的具体案例结合起来,引起学生浓厚的学习兴趣和动力,有助于学生理解。例如,近来引起广泛关注的食品安全性问题,苏丹红、毒奶粉、瘦肉精、地沟油等,让学生都认识到食品安全检测的重要意义。如凯氏定氮法测定蛋白质的含量,可以从三聚氰胺事件入手,强调凯氏定氮法能应用于食品中所有含氮化合物的测定,这样就加强了学生对于选择检测方法的理解。另外,实验教学中对于一些频繁出现的专业术语,教师要给予(下转第74页)(上接第62页)重点解释,实验过程中要做到及时和学生探讨和沟通,这样也有助于提升学生对学习内容的掌握。

3.2实验考核手段的改革

考核是检查学生学习情况好坏的一种体现,同样也起到督促学生学习的作用。现阶段的大多数中职,考核方式还是以平时出勤和期末考试两部分组成。这种考核方式存在的弊端是出题模式固定,学生出现为了应对考试死记硬背、“临时抱佛脚”的现象,知识考完就忘,意义不大。针对这种问题,研究性教学提出需要对学生的考核方式进行改革。例如,教师在出题内容方面,题型应该新颖,在满足重点知识的考核外,可以添加自拟的主观题,让学生表达出自己对某个前沿问题的看法和见解,每个人的想法都算是一种答案,这种考试要求学生有很强的临场发挥水平,有助于挖掘学生的潜力,活跃学生的头脑。

4结语

综上所述,食品分析课程是一门难度较大、知识面广、实践性强的课程。所以,在新的形势下,教师必须努力改革原有的教学方法与手段,力求使教学效果更好。从目前的部分教学改革形式来看,食品分析的研究性教学改革已经取得了很好的效果――学生的基本素质得到了提高,教学质量也得到了有效的提高。只有掌握坚实的理论基础,具备熟练的操作技能以及科学、严谨的工作态度的学生,才是社会和市场所需要的综合型人才。对此,食品分析课程教学只有不断地探索、研究和改革,才能适应社会发展对人才的需要。

参考文献

分析化学在食品中的应用篇(9)

1前言

民以食为天,食以安为先。食品安全关系人类健康,一直以来,都是全球关注的热点。随着社会经济的发展,一方面,随着生活水平不断提高,公众对食品安全越来越重视,要求也越来越高;另一方面食品工业快速发展,国际食品贸易日趋频繁,食品安全问题已呈现全球化模式。威胁食品安全的因素不仅仅有传统的化学危害物、食源性致病菌;采用劣质原料生产高货值食品、以次充好、以假乱真、产地造假、成分造假等等问题,是目前食品安全面临的新挑战。目前,已知危害物的检验技术已经比较成熟;未知、潜在的食品安全危害物侦别及成分鉴定、产地鉴定等,是食品安全检测技术面临的难题。食品安全检测迫切需要新的方法和手段来解决这些难题和挑战。组学是最近几十年发展起来的新学科,主要包括基因组学(Genomics)、蛋白组学(Proteinomics)、代谢组学(Metabolomics)、转录组学(Transcriptomics)、脂质组学(Lipidomics)、糖组学(Glycomics)等等。其中,基因组学、转录组学、蛋白组学和代谢组学共同构成了“系统生物学”[1-2]。组学技术的基本思路是通过研究成千上万的DNA、RNA、蛋白质或者代谢物等物质,找出与某一生命过程相关的特征蛋白、DNA、RNA或者代谢物,进而对某一目标进行评估。组学技术依托高通量、高分辨率、高精度的现代化分析仪器,通过海量数据处理,进行信息提取和结果分析。近年来,组学技术与食品安全检测不断融合,在食品安全检测领域发挥着越来越重要的作用。

2与食品安全检测相关的组学技术

2.1蛋白组学。蛋白组学研究特定状态下蛋白整体水平的存在状态和活动规律,是从分子水平上来分析蛋白质的表达、修饰、功能等的一门学科。蛋白组学的研究对象涉及植物、动物、微生物等,其在药物开发、病理研究、食品安全等方向都有诸多应用。蛋白质可以作为食品组分的特征标记物,因此蛋白组学可以用于食品安全检测[3]。蛋白组学的研究手段主要有凝胶技术和质谱技术,质谱可以对肽段和蛋白进行表征和测序,是分析蛋白的重要技术。通过蛋白酶解后得到肽段的肽指纹图谱结合质谱技术,可以分析某一种或同类食物的蛋白质成分[4],经过比较和筛选,确定特征标志蛋白或者肽。基于对蛋白或者肽的分析,质谱技术可以获得食品组分的特定指纹信息,实现定性分析。一旦获得蛋白标志物或者肽标志物,即可用液相色谱-质谱的选择反应监测(SRM)或者多反应监测(MRM)模式对目标物进行快速、灵敏的定量分析检测。2.2代谢组学。代谢组学以生命体的代谢物为研究对象,主要研究分子量1000以下的小分子[5-6]。根据研究对象不同,代谢组学可以分为研究已知化合物的靶向代谢组学和分析未知化合物非靶向代谢组学。代谢组学作为新兴的研究技术已应用在食品安全、药物研发、疾病诊断、环境科学和植物育种等方面[7]。代谢组学的主要研究手段包括核磁共振技术(NMR)和质谱技术。质谱技术以高通量、高灵敏度著称,飞行时间质谱和高分辨质谱是代谢组学研究中经常用到的仪器;NMR技术具有非破坏性的优点,可以对研究对象内部化学变化和生化反应进行跟踪[8-9]。常见的代谢物主要有极性化合物(例如有机酸、氨基酸、糖、胺)、脂类、类萜和固醇。代谢组学分析得到的数据量巨大,需要借助化学计量学对数据进行分析处理,常用的分析方法包括主成分分析(PrincipalComponentsAnalysis,PCA)、判别分析(DiscriminantAanalysis,DA)、偏最小二乘法-判别分析(PartialLastSuares-DiscriminantAeqnalysis,PLS-DA)等方法[10]。2.3基因组学。基因组学的研究对象包括基因组的结构、功能、进化、定位、编辑等,以及他们对生物体的影响。基因组学通过使用高通量DNA测序和生物信息学来组装和分析整个基因组的功能和结构。近几十年来,多重聚合酶链式反应、基因测序、基因芯片等技术飞速发展,为基因组学在食品安全领域的应用打下了良好的基础。基于基因组学特异性强、灵敏度高和高通量的特点,其在病原微生物检测,物种鉴定和转基因食品检测方面有着很多应用[11-12]。

3组学技术在食品安全检测中的应用

3.1食品中有害物质检测。食品中不含危害人类健康成分是食品安全的最基本要求。组学技术在检测食品中有害物质方面有着广泛的应用。随着生活水平的提高,动物源性食品的需求量快速增加。经济利益驱使下,为了规避食品安全法规中已有兽药的使用限制,使用新兽药的情况时有发生。传统方法只针对目标化合物进行检测,对于非目标化合物即新型兽药的检测无能为力。采用组学方法,寻找合适的生物标志物,可以及时发现新型兽药的使用情况。Courant等[13]采用液相色谱-高分辨质谱和非靶向代谢组学技术,建立了监测小牛尿液中β2-受体激动剂代谢物的方法,有望成为筛查各类β2-受体激动剂兽药的有效方法。Regal等[14]应用代谢组学技术结合高效液相色谱-高分辨质谱结合多元变量统计分析,找出了牛血清中外源性雌二醇和孕酮的生物标志物,为检测动物养殖过程中的激素滥用提供了新方法。发酵食品中含有丰富的微生物和各种有益消化酶,具有独特的风味和较高的营养价值,深受大众喜爱。生物胺和亚硝酸盐是食品发酵过程中常见的两类有害物质。生物胺包括芳香胺(酪胺、苯乙胺、多巴胺等)、脂肪胺(腐胺、精胺、亚精胺等)和杂环胺(组胺、色胺等),主要来源于发酵过程中的微生物降解。亚硝酸盐是发酵食品中重要的危害物质;发酵过程中,微生物分泌硝酸盐还原酶将硝酸盐还原产生亚硝酸盐。Meyer等[15]利用液相色谱法和主成分分析相结合的代谢组学方法,研究了发酵香肠中的生物胺和亚硝酸盐含量。用该方法对101个样品进行检测,发现其中NaNO2的浓度均低于20mg/kg,生物胺含量普遍很低,仅在一个样品中发现尸胺和腐胺浓度达到了中毒水平。3.2组学技术在食源性致病菌检测中的应用。食源性致病菌是食品安全面临的最严峻挑战之一,传统检测方法从细菌培养到细菌计数,检测一个样品至少需要4~5d的时间,而组学技术可大大提高食源性致病菌检测的效率。代谢组学在沙门氏菌和大肠杆菌的鉴定方面已经取得一定成果[16-18]。Xu等[16]利用气相色谱-质谱法和一种多元算法进行了鼠伤寒沙门氏菌污染猪肉和自然变质猪肉中代谢物的分析,确定了17种代谢产物(包括各种类型的氨基酸和脂肪酸),以区分被致病微生物污染的猪肉。Cevallos等[18]建立了基于代谢组学检测大肠杆菌O157∶H7、沙门氏菌的方法,根据对细菌代谢物的分析,此方法可以在18h内快速检测以上两种病原体,在牛肉和鸡肉中大肠杆菌O157∶H7、沙门氏菌检测水平均可以达到7±2CFU/25g。Whiteside等[19]给出了大肠杆菌的在线基因组学预测平台SuperPhy,该平台整合了所有可以公开获得的大肠杆菌基因组分析工具和基因组序列数据,可以用于临床医学、流行病学、生态学和进化领域等领域,亦可应用于食品安全检测领域。祝儒刚等[20]运用多重聚合酶链式反应结合基因芯片技术,建立了一种检测大肠埃希氏菌、沙门氏菌、金黄色葡萄球菌、志贺氏菌和单核细胞增生李斯特菌5种食源性致病菌的方法,该方法快速、准确、灵敏。全基因组测序(WholeGenomeSequencing,WGS)广泛应用于食源性致病菌特征分析,在确定污染事件根源、食品安全事件溯源、食品安全突发事件检测和鉴定,以及毒力和致病性特征分析方面,WGS技术发挥着越来越重要的作用[21-22]。3.3食品掺假及欺诈的研究。食品掺假、欺诈是世界性问题[23]。据估算,全球食品行业每年由于食品掺假和欺诈带来的经济损失高达150亿美元[24]。当前,与食品掺假相关的议题包括产地、品种、生产方式、未宣布成分、物种替代等[25]。有关食物的完整、准确和真实的信息不仅是消费者的迫切需求,也是行业和政府的迫切需求。运用组学技术对食品进行检测,可以确保食品从农场到餐桌的真实性。与传统检测方法项目比,组学技术在检测食品掺假和欺诈方面具有天然优势。通过高通量的检测模式,对样品中的蛋白质、代谢物或者DNA进行检测,通过对大量数据的统计处理、甄别食品特性,进而可以确定食品产地、品种、成分、物种及生产方式等诸多与食品掺假相关的要素。运用特征标记肽段可以检测马肉、牛肉、羊肉和猪肉[26]。MontowskaFornal[27]采用液相色谱-串联质谱方法,选择了20个热稳定肽段,可以有效区分猪肉、牛肉、鸡肉、鸭肉、鹅肉,在实际样品检测中,从禽肉肠中检出含量仅为0.8%的牛肉成分。基于气相色谱技术,运用代谢组学分析方法可以有效区别冷冻猪肉和新鲜猪肉[28]。乳品行业中,牛乳冒充羊乳,奶粉调制的复原乳冒充鲜奶,工业化生产的奶酪冒充手工奶酪的欺诈行为极其常见。Caira等[29]应用基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)进行分析,根据酪蛋白的特征肽可以有效鉴别水牛乳、牛乳、牛初乳和乳酪。一种结合肽和蛋白质谱的方法可以有效检测水牛乳、羊乳中的牛乳,判断鲜牛奶中是否加入奶粉[30]。根据靶向DNA的高特异性,运用基因组学的方法也可以准确鉴别牛乳、水牛乳、羊乳等等,但是准确定量还有一定的难度[31-32]。Majcher等[33]利用气相色谱-质谱结合代谢组方法以及化学计量学数据处理方法,可以准确鉴别传统手工艺制作的奥西佩克奶酪和工业化生产的奥西佩克奶酪。蜂蜜是很受消费者欢迎的食品。不同种类花的蜂蜜不仅口感不同,其营养价值和价格也大不相同。Jandric等[34]利用代谢组学方法,结合液相色谱-质谱,傅里叶变换红外光谱等手段,建立了鉴别三叶草、麦卢卡、拉塔、卡玛西四种新西兰蜂蜜的方法。基因组学方法也可以提取蜂蜜中的物种特异性信息,确定蜂蜜的植物学和昆虫学起源,从而鉴定蜂蜜真伪[35-36]。组学技术可以准确鉴别葡萄酒真伪、产地。采用基因组学技术,对DNA来源进行分析,可以鉴别葡萄酒真伪[37]。采用蛋白组学方法,MALDI-TOF-MS技术可以准确鉴别33种克罗地亚白葡萄酒[38]。采用代谢组学技术,通过对葡萄酒中挥发物的分析,即可判断酿酒葡萄的品种和产地[39]。利用代谢组学方法还可以将有机种植的胡萝卜[40]和大麦[41]与普通的胡萝卜和大麦区别开来。代谢组学方法可以对咖啡质量和来源进行评价,阿拉卡比咖啡质量要好于罗布斯塔咖啡,在阿拉卡比咖啡中掺入罗布斯塔咖啡也是常见的咖啡造假手段,核磁共振技术可以检测低至2%的罗布斯塔咖啡[42]。使用单核苷酸多态性基因分型可以确定5个最常见的希腊橄榄油品种[43]。基因组学和代谢组学技术均可以检测橄榄油中是否掺入玉米油、大豆油、葵花籽油、花生油等其他食用油。[44-45]3.4转基因食品的检测。转基因技术通过生物工程技术将一种或几种外源性基因转移到某种特定的生物体内,使其表达出相应产物,以转基因生物为原料加工生产的食品就是转基因食品。关于转基因食品的安全性,目前仍存在争议。Tan等[46]应用蛋白组学技术研究了转基因玉米和非转基因玉米的蛋白质组差异,结果发现两者之间存在148个差异表达的蛋白质,其中42个在转基因玉米中表达较高,106个在非转基因玉米中表达更高。基于液相色谱-质谱技术自上而下的蛋白质组学技术,可以检测抗草甘膦玉米(NK603)中117种蛋白质表达变化[47]。转基因玉米的代谢组学分析中[48],抗草甘膦玉米(NK603)的几种胺类代谢物(例如:尸胺、腐胺、N-乙酰尸胺、N-乙酰腐胺)相比非转基因玉米有显著提高。Catchpole等[49]启动快速代谢组“指纹图谱”,比较了转基因土豆和非转基因土豆的总代谢物,发现转基因土豆与传统品种差异不大。代谢组学技术也已应用到对转基因大米[50,51]、转基因番茄[52]等转基因食品的分析。实时PCR(real-timePloymeraseChainRactione,rtPCR)是欧盟法规规定的评估转基因食品的唯一有效方法。微滴式数字PCR技术(dropletdigitalPCR,ddPCR)可以对食品中的植物源转基因成分进行分析[53]。Kosir等人结合基因步行(GeneWalking,GW)和下一代基因测序技术,可以同时检测混合物中低至1%的转基因玉米(MON810、MON89034、MON88017)和棉籽(MON1595)[54]。

分析化学在食品中的应用篇(10)

为了加强食品安全保障,国家食品质检部门加大了食品检查力度,运用高标准食品检测技术保证食品安全。食品企业选择应用快捷、高效的检测技术,可以有效降低生产成本。本文对食品检测中快速检测技术的运用进行分析。

1食品快速检测技术类型

1.1现场快速检测技术

在食品加工行业,现场快速检测技术的应用有效保障了食品生产安全。现场快速检测技术基本原理为:基于传感器的信息传递作用,获取食品成分结构信息,通过数据模型转化,将食品成分信息输出,并保存在电子计算机中[1]。运用现场快速检测技术,食品检测方可以快速分析出食品内所含的有害物质。现场快速检测技术具有定量检测的特征和广泛的应用空间,是目前食品快速检测技术发展的重要方向。食品检测人员在运用现场快速检测技术时,需要对大量的信息数据进行分析,因此食品检测人员要提升检测效率,简化操作流程。由于现场检测工作涉及不同的食品生产车间,所以现场检测技术需要运用轻便的设备,以便检测人员能够在不同的条件和空间下进行食品安全检测。

1.2实验室快速食品检测技术

食品检测工作开展的主要目的是确保食品安全。实验室快速检测技术为食品检测工作提供了优良的检测资源和检测条件。在这一环境下检测人员开展食品快速检测工作,可以采用定性和定量两种检测方式[2]。定量检测要求检测人员确定目标物质含量,定性检测要求检测人员分析样品内不同物质构成。为了提升检测工作的效率和准确性,检测人员需要依据实际情况选取食品检测样品,一方面要保证待检样品具有较强的代表性,能够满足所有食品的检测需求;另一方面,样品的选取要充分反映食品的质量。基于实验室环境开展实验室快速识别检测工作,检测人员可以运用先进的检测方法和设备,使检测的专业性和精准度大大提升。针对食品检测部门提出的高要求检测任务,经常会用到实验室快速检测技术,对食品的结构以及物质含量进行分析。

1.3远程快速检测技术

在食品检测工作之中,部分检测无法在食品生产的现场进行,此时检测人员就可以通过远程快速检测技术实现对食品进行检测。远程快速检测技术依托无线网络展开,通过无线网进行信息传输,终端设备运用了便携式光谱技术,确保现场检测信息可以快速发送至远端处理中心,待远端处理中心接收到数据信息后便可及时对检测样本的物质构成以及数量级别进行分析。远程快速检测技术具有完备的系统,其终端设备携带较为方便。激光是远程快速检测技术的重要手段之一。检测人员不需要与被检测食品进行亲密接触,检测期间不存在食品污染问题。诸多食品生产厂商以及质检部门均运用了远程快速检测技术,提升食品检测的效率。

1.4免疫分析技术

在进行免疫分析技术应用的过程中,检测人员主要根据抗原和抗体之间的特异性来进行有效识别,将此作为主要的依据来进行日常检测。在实际检测时需要利用这一技术来放大其中的结合体,通过肉眼或仪器设备来观察最终的检测结果,这项技术主要应用于蔬菜和水果等食品的检测,尤其在农药检测方面的应用优势较为突出。免疫分析技术具备较强的灵敏度,可有效地提高整体检测效果。在实际检测过程中需要做好数据的记录工作,不仅使整个技术方案具备较强的稳定性,还能快速发现在检测中所产生的问题,从而全面提高整个检测工作的效果。检测过程中无需使用特殊的仪器设备就能够完成检测任务,并且可以通过标记抗原抗体来进行日常的检测,得出最终的检测结果。

1.5免疫标记法

免疫标记法本身的特异性和敏感性较强,主要是利用荧光素和电子致密物质来进行有效检测。在抗体反应之后,能够通过肉眼来进行识别。目前较为常见的方法为荧光免疫法和放射免疫法。检测人员要根据实际情况进行科学选择,避免对后续检测工作造成影响。

1.6化学比色法

在具体实施过程中,主要是利用仪器设备和判定试纸按照不同的颜色进行样品的定性分析。在实际检测过程中先让食品样品接触试纸,然后根据试纸的变化来判断食品中的相关成分。在现阶段进行蔬菜水果检测时能够通过这一方法检测其中是否含有有机磷等相关物质。在实际检测时还要配合微型检测仪器来进行日常操作。该方法灵敏度较高,可以有效提高整体检测效果。

1.7酶抑制技术

这一技术方案操作非常简单,整个检测时间较短,具有成本较低的优势,可以快速检测出食品中是否含有农药残留物。该技术是利用氨基甲酸酯和有机磷物质能够产生一定反应的原理而实现对农残的检测。运用这项技术能够检测洋葱和大蒜等一些有刺激性气味的食品。在检测之前需要进行科学处理,减少假阳性问题的出现,并且还需要筛选高素质人员来负责日常的检测,避免各种干扰问题的发生,从而使最终结果能够得到充分保障。

1.8生物传感技术

生物传感技术在当前快速检测中也是较为常见的一项技术,其应用范围较广,具有较高的精准度,通常用来检测食品中是否含有重金属和亚硝酸盐等。先将检测样品和相应的分子识别元件进行特异性结合,之后再根据最终的放大反应转换成电信号,得出最终的检测结果。整个操作非常便捷,并且节约了大量时间,是最佳的快速检测技术。

1.9纳米材料检测技术

纳米材料检测技术主要是利用纳米材料来检测食品,凭借纳米材料本身的优势快速完成当前的检测工作。由于纳米材料具有体积小和声光电等众多的性能优势,所以该检测技术成本较低,适合于大规模的检测。在实际检测过程中要选择正确的纳米技术以及纳米材料,并且配合纳米材料本身的碳纳米管完成当前的检测任务。通过胶体金试纸条和电化学传感器进行检测时,可以配合传感器的应用功能检测食品中的生物酶素以及违禁添加物等。该技术在当前食品检测工作中的应用优势较为突出,并且取得了良好的应用效果。

1.10电化学传感器检测技术

电化学传感器技术是随着我国科技水平的不断提高而衍生的新型技术,其有效提高了整体检测效率,并且还有助于充分发挥电化学传感器技术本身的特异性以及敏感度完成当前的检测任务。电化学传感器的类型丰富多样,其中纳米材料传感器的技术模式应用最为广泛。在实际工作中结合了纳米技术和电化学技术研发出多种类型的传感器,有效地提高整体检测效果。电化学传感器可以完成化学信号和电信号之间的相互转换,实现了免疫学检测技术和电化学技术的相互融合。这一技术方案具有高效性和特异性,其在我国食品检验中的优势已被充分证明,并且被逐渐推广成为新型的技术方案。在实际操作过程中需要掌握该技术方案的应用要点,根据食品检测的相关要求进行日常检测,并且做好数据的记录工作。但是这一技术方案在实际检测过程中还存在诸多问题,因此该技术还有待完善。

2食品检测中快速检测技术的运用

2.1食品快速检测技术工作原理

在实际食品检测工作之中,检测人员需要了解食品快速检测技术的工作原理,明晰检测技术的具体操作流程。依托食品安全快速检测仪可以对食品进行检测,并对食品进行分类,运用分类检测的方法可以提升食品检测速度。分类检测工作对检测设备以及仪器的性能具有较高的要求。常见的检测仪为小型质谱仪,这类仪器具有体积小、便于携带、精准度高的特征[3]。小型质谱仪因其多样化的检测功能,在现场食品检测工作中有着十分广泛的应用。在进行食品快速检测时,检测人员还可以运用生物传感器分析方法。生物传感器具有较强的适应性以及灵活性,常被用于蔬菜、水果等食品中农药含量检测。生物传感器技术主要通过酶传感器或免疫传感器实现对食物农残的检测。酶传感器工作原理是通过检测标靶酶活性,明确食物内农药残留含量。随着技术不断更新,研究人员现已研发出光导纤维免疫传感器,通过这一传感器检测人员可以对全类型农药残留含量进行检测。

2.2食品快速检测技术具体操作

针对食品内药物残留,食品检测人员需要运用快速检测技术明确药物成分,分析药物含量,可以选择免疫分析法或仪器分析法[4]。通过免疫检测技术检测食品中药物残留量,按照检测项目可分为荧光免疫法、酶免疫法、放射免疫法。其中酶免疫法在食品农药类检测方面保持了较高的精确度,而仪器分析法则要求检测人员运用专业设备检测食品农药残留量,其检测效率高,但检测设备携带困难,不利于现场检测工作的开展。随着食品检测技术的不断进步,检测人员还可以结合分光度计使用酶抑制法。根据检测环节颜色的变化分析计算食品酶抑制率,获取食品农药残留数据信息。该检测方法不会被食品所含水分及碳水化合物影响,具有较高的准确性。在传统食品检测工作中,检测人员对食品内微生物的检测是通过富集培养微生物鉴定样品生化指标,了解食品内微生物种类以及含量。这类检测方法耗时较长,而且会产生检测误差,在实际应用中效率较低。随着技术的发展,检测人员运用快速检测技术,包括显微镜观察法、电镜染色技术、聚合酶链式反应技术。这些快速检测技术的检测效率高、检测质量高,其中聚合酶链式反应技术运用最为广泛。检测人员还可以运用扩增核酸技术检测食品内微生物含量,该技术耗时较短,依托计算机进行数据分析,提升了检测结果的准确性。在一些食品中通常会添加添加剂,以此来达到提味和增色的效果,但是如果食用过多会对人体造成一定的影响。因此,针对食品中的添加剂含量可以选择快速检测技术对食品中的添加剂含量进行有效检测,从而使食品安全能够得到充分保障。在具体检测过程中,需要根据实际情况选择气相色谱检测法或高效液相色谱检测法。该方法检测效率较高,但是在实际操作时对检测人员的操作技术要求较多,因此需要选择高素质人员来负责现场的检测,保证得出结论的精准性。但是这一方法在实际检测时也存在一定的局限,例如,无法检测出多成分的食品添加剂,应用范围较为狭窄。因此在实际检测时需要根据实际情况选择正确的检测方法,避免对后续检测工作造成干扰。

3结语

食品安全问题事关人民群众的身体健康。食品生产企业需要运用科学检测技术,保证出厂食品的质量安全。监管方需要运用快速检测技术,避免不合格食品进入市场。食品技术科研单位以及企业研究部门通过技术研发,创新食品快速检测技术,提升检测效率。

【参考文献】

[1]马巧玲,马文萃.浅谈快速检测技术在食品检测中应用[J].食品安全导刊,2016(18):37.

[2]杨丽兵,韩业祥.浅谈快速检测技术在高校食堂食品安全管理中的应用[J].中国设备工程,2021(15):160-161.

分析化学在食品中的应用篇(11)

中图分类号 G642.0 文献标识码 A 文章编号 1007-5739(2014)05-0344-01

Suggestions of Teaching Reform in Food Chemistry and Analysis Course

LU Jin-zhen 1 REN Jun 1 XIONG Han-guo 2

(1 Department of Bioengineering,Wuhan Institute of Bioengineering,Wuhan Hubei 430415; 2 College of Food Science and Technology,

Huazhong Agricultural University)

Abstract Combined with years of teaching experience,according to current teaching situation of food chemistry and analysis course,several suggestions of teaching reform in food chemistry and analysis course were put forward,so as to provide reference for the teaching reform.

Key words food chemistry and analysis;teaching reform;suggestions

食品化学与分析课程是高校食品相关专业的基础类课程,主要从化学角度分析了食品的化学结构、理化性质和营养元素,以及食品在生产加工等各个环节发生的变化及对食品质量安全的影响等[1]。该课程是一门应用性很强的综合性基础学科,其教学质量的好坏直接关系到学科学生相关专业课程的学习和专业综合素质能力的提升。目前食品化学与分析课程在教学过程中往往只注重学生学科知识的全面性,而没有根据专业产业需求合理定位,教学内容宽泛;教学内容多为理论课程,缺乏专业实践;教学方式多为教师单项理论讲解,学生的综合应用能力得不到锻炼;课程评价方式为卷面考试,考核方式单一;重视理论知识学习而轻视开拓创新能力的培养;学生死背课本、应付考试,教学效果大打折扣。如何在教学中最大限度地激发学生的学习兴趣,让学生主动地去探寻感兴趣的相关知识,如何培养学生综合分析和解决实际问题的能力,以及如何培养学生的创新能力是食品化学与分析课程教师面临的主要任务。笔者结合多年教学经验,介绍了对食品化学与分析课程教学改革的几点建议,以期提高教学质量,更新教学模式,培养社会需求的应用型人才。

1 以多媒体作为教学手段,丰富课堂内容

提高食品化学与分析课程教学质量,必须改变刻板的教学模式。合理运用多媒体教学是推动教学改革的有效方式。与传统教学手段相比,多媒体借助动画、图像、声音等方式传递教学信息,不仅能够使抽象的教学内容更加形象化、具体化,而且能拓宽学生们的知识广度,激发学生学习的积极性,提高教学效率[2]。如在介绍水分子氢键的形成时引入动画,即可取得很好的效果。适当播放视频,可有效扩大学生的知识面,如色素之惑、反式脂肪酸等相关视频。

2 多样化教学方式,提高教学质量

改变教学方式,建立良好的互动交流教学模式,如案例式教学、启发式教学和研讨式教学等,以激发学生学习的积极性和自主性。

2.1 案例式教学

在具体的教学中,要在学生透彻理解课程内容的基础上,多联系一些与实际生活相关的例子,激发学生的兴趣。例如,结合方便面的制作、日常生活中米饭放置久后出现的硬化现象解释淀粉糊化和老化的原理;结合巧克力的生产介绍油脂的同质多晶型;结合日常生活中家庭制作糖醋排骨的例子讲授糖类焦糖化反应;结合香蕉、苹果、土豆的变色现象讲解酶促褐变;结合冰淇淋、雪糕、蛋糕等食品讲解蛋白的起泡性;结合兰州拉面的制作介绍面团形成的本质等。案例式教学能够让学生将生活中的食品化学现象与课本知识联系起来,有助于学生理解生涩的理论知识,提高教学效果。

2.2 研讨式教学

研讨式教学对学生基础知识掌握程度要求较高,应根据学生具体情况选择性进行。可选择一些与日常生活息息相关的内容进行研讨式教学,如“水分在食品中的应用研究”、“蛋白质在食品中的应用研究”、“功能性油脂的发展趋势和研究进展”、“脂肪加工中的危害控制”等。要求学生查资料完成报告,由教师进行审查,以提高讨论的质量。在教学过程中应改变传统的灌输式教学,让学生充分的阐述自己的观点,开展全班自由式的讨论,交流不同意见,教师在讨论过程中注意记录学生的观点,讨论结束后,由教师进行总结。这种教学方式可以充分体现学生在课堂的主导性,调动学生在课堂上的积极性,同时可以培养学生查阅资料的能力、团队合作能力、思辨能力。

3 课程内容整合优化

食品化学与分析应按照专业规范的要求,妥善删减与其他专业课程交叉重复的内容,优化课程结构,突出课程特色[3]。例如,食品化学与分析课程在添加剂方面的教学内容应以其作用机理为主,而食品添加剂课程则应侧重于其在食品中的应用等内容;食品化学与分析课程在介绍酶这一章节时,应将重点放在酶对食品加工和储藏的影响等内容,而生物化学课程则应侧重酶的特性、化学本质、催化机理及酶促反应动力学。

4 将前沿科技成果充实到具体的教学中

注重将理论知识与实际应用相联系,将最新的前沿科技成果介绍给学生。比如,讲到单糖的构型时可介绍L-阿拉伯糖的生物化学作用;讲到功能性低聚糖、木糖醇的结构时可介绍其生理功能、生产工艺及在食品工业中的应用情况;讲到美拉德反应时介绍食用香精的制备、反应产物的抗氧化性能、抗诱变性能、消除自由基和活性氧的性能以及对多酚氧化酶的抑制等,以激发学生的学习兴趣。

5 强化实验教学

传统的课程教学往往只注重理论教学,而忽视了学生的综合实践。即使是实验课,也是按照课本的实验步骤按部就班的完成实验过程,这样的教学方式效果甚微,学生实际操作能力以及分析与解决问题的能力得不到质的提高。在实验课程的设置上,应遵循教学规律,适当提高创新性实验、设计性实验的比例。实验教学主要从基础实验、综合实验和创新实验3个方面进行,有助于学生理解理论知识内容,掌握食品化学专业的研究方法,并且可培养学生的综合能力与创新能力[4]。

6 改进考核方式

改进考核方式,加大过程的考核比例,将平时成绩所占考核比例由原来的30%提升到50%~60%,以提高学生学习的自主性和兴趣,避免部分学生平时不用心学,考前临时抱佛脚应付考试,考后便将课程内容忘得一干二净。可将平时提问、课下作业、课前相关知识的播报、课程小论文或报告、挑选简单内容让学生分组做课件上讲台讲解等都纳入平时成绩的考核。也可以采用每上完一章内容,分组让学生互相提问并解答的方式巩固学生所学知识。只有深入学习理解的学生才能提出问题,这便激发了学生的学习兴趣,促使其自觉地学习,并通过阅读相关文献资料拓展知识面。期末考试试题可适当增加案例分析题的比例,提高学生综合应用能力。

7 参考文献

[1] 阚建全.食品化学[M].2版.北京:中国农业大学出版社,2008.