欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

智能化电气工程大全11篇

时间:2022-10-05 01:17:46

智能化电气工程

智能化电气工程篇(1)

社会经济的快速发展和科学技术的不断进步推动了电气市场的繁荣和发展,也推动了电气工程自动化控制技术的不断革新。智能化技术是一种新型的自动化控制技术,将其运用到电气工程中去,可以弥补电气工程自动化控制中存在的缺陷,并大大提高电气工程自动化控制的效率,使电气工程更好的为经济和社会发展服务,目前,我国电气工程自动化控制中的智能化技术具有十分广阔的发展前景。

1.电气工程自动化中智能化技术特点

1.1可以实现无人化操控

科学技术的快速发展推动着电气工程自动化技术朝着智能化方向发展,在这一发展阶段中,智能化控制器逐步实现,与传统控制器相比,智能化控制器技术在电气工程自动化实际工作中的应用要优于传统控制器技术,使用智能化技术对电气设备进行调控可以减少人员的劳动量,并可以通过设置程度实现系统的自我调节,实现无人化操控。

1.2智能化控制器不需要控制模型

在实际工作中,传统控制器存在一个很大的问题,当遇到具有复杂动态方程的控制对象时,传统控制器由于自身技术的限制,难以有效掌握控制对象的动态,因此被控制对象模型的设计工作难以正常进行。为了解决这一问题,经过智能化技术优化的控制器删除了被控对象模型设计这一部分,因此不会出现控制对象模型设计无法预测、不能评估的现象。

1.3智能化控制器处理不同数据时具备较高的一致性

与传统控制器相比,智能化控制器的数据处理功能更为强大,它可以对输入的所有数据进行快速准确的处理,即便是一些不常使用的数据,智能化控制器也可以对其进行快速准确的评估。在电气工程自动化控制中,控制对象的变更性强,因此面对不同的控制对象,控制器会呈现出不同的控制效果,对于一些简单的控制对象,智能化控制器甚至并不需要采取行动,就可以取得良好的控制效果。

2.电气工程自动化中智能化技术的具体应用

2.1智能化技术在故障诊断中的应用

人工智能是科学技术快速发展的产物,同时,人工智能的深入研究与发展又推动了智能化技术的发展,在社会生产的各个领域,智能化技术都得到了越来越广泛的使用,电气工程领域也不例外。电气设备故障是电气工程自动化系统运行中常见的问题,分析电气设备故障的发生原因可以发现,设备故障发生之前大多会有一些预兆,但是人们往往难以发现这些预兆,因此无法采取预防措施,为了解决这一问题,电气工程自动化控制引进了智能化技术。

2.2智能化技术在智能控制中的应用

智能化技术的发展基础是人工智能技术,通过人工智能技术的运用,智能化控制系统可以实现无人化操作、远程操作等,能够大大减少工作人员的工作量,还可以保护工作人员免收高危环境的伤害。电气工程自动化控制中往往会存在一些难度系数较高、危险性较大的工作,在没有引入智能化技术之前,这些工作只能够依靠人力来完成,工作人员要承担巨大的风险,随着智能化技术在电气工程自动化控制中的使用,人工智能操作逐渐取代了人工操作,也大大提高了工作的效率。

2.3智能化技术在优化设计中的应用

电气设备程序设计对于设计人员有着很高的要求,设计人员不仅要熟练掌握电路、电机等方面的知识,还要有较高的业务水平和严谨细致的工作态度。随着智能化技术在电气工程中的运用,计算机等辅助设备的使用可以大大节省方案设计的时间,并对设计方案进行优化,这对于电气工程的发展具有十分重要的意义。

3.电气工程自动化中智能化技术的发展前景

3.1智能化技术促进电气工程自动化控制系统性能的发展

经济社会的快速发展给电气工程造成了很大的压力,为了满足社会发展的需要,电气工程必须加快发展步伐,为经济社会的发展提供充足的能源供应。处理速度、控制精度以及控制效率是衡量电气工程自动化水平的关键性指标,随着智能化技术在电气工程自动化控制中的广泛使用和发展,电气工程自动化控制系统的处理速度会日益提升,控制精度、控制水平以及控制效率也会逐渐提高,整个自动化控制系统的性能也会更为优越。

3.2智能化技术在电气工程自动化控制中的功能作用更为凸显

在未来的发展过程中,为了满足社会生产的多种需求,电气工程自动化控制系统的的功能会逐渐多样化,智能化技术在电气工程自动化控制中的功能作用也会更为凸显。在电气工程自动化控制系统中运用用户界面图形化可以使人们通过窗口和菜单对系统进行简单的操作,能够大大方便非专业用户的使用;在电气工程自动化控制系统中运用可视化技术可以优化电气产品的方案设计,缩短产品的生产周期,提高方案的整体质量和水平。

3.3智能化技术促进电气工程自动化控制系统体系结构的发展

智能化技术在电气工程自动化控制系统中的应用将会推动控制系统的体系结构朝着集成化、模块化、网络化的方向发展。智能化技术中的LED显示技术可以提高控制系统中相关显示器的性能,提高集成电路的密度,能够缩小显示器的体积,减轻显示器的质量。利用互联网技术,电气工程自动化控制系统可以将电力机床联网,实现远程控制和无人操作,还可以通过控制任何一个机床来控制其他机床,并在一个屏幕上同时显示多个机床的画面。

结语

随着科学技术的快速发展,智能化技术在各行各业中的应用逐渐增多,实现智能化技术和电气工程的有效结合可以促进电气工程的进一步发展,并提高电气工程自动化控制的效率。人工智能是智能化技术发展的基础,因此在电气工程自动化控制中应用智能化技术首先要认真研究人工智能理论,将自动化技术用到合适的地方,从而不断提高电气工程企业的核心竞争力,促进我国电气工程自动化的快速发展。

参考文献:

智能化电气工程篇(2)

智能技术又被称作人工智能技术,它并不是21世纪的产物,而是在20世纪50年代就已经诞生。经过了长时间的摸索和发展,人工智能技术趋向于成熟,已经被运用在世界工业生产的各个领域并取得了一定的成就,给人们的生活带来了诸多便利。在电气工程领域中,我们可以研究智能化技术和电气工程自动化的结合效果,对电气工程系统发展进行进一步完善,推动着我国电气工程自动化工程行业朝着信息化的方向不断迈进。智能化技术通过大数据的运用,能够展开大规模的数据分析,在当前的电信工程发展中,智能化技术能够很好地解决传统的电气工程问题,服务于电气工程的现代化发展。

1智能化技术在电气工程自动化控制中的作用和价值

1.1减少不可控因素

在传统的自动化工程当中,工作人员必须要对电气工程进行模型设计才能对整个电气控制系统进行管控,这就会使电气自动化工程在运行过程中出现机械化的状况,无法动态的估算未来运行状态,导致整个估算预测工作缺乏精准性。自动化控制的整个流程中会出现很多不可控因素,这些不可控因素会导致建模控制的效率低下,阻碍了电气工程全面自动化的实现[1]。智能化技术的参与能够使电气自动化工程不需要建立模型就可以实现全过程的自动化控制,电气智能化技术在运行过程中能够帮助电气自动化系统减少诸多不可控因素的产生,全面提高电气工程自动化控制的运行效率,以及系统的安全可靠性。

1.2让操作更加便捷

使用了智能化技术之后的电气自动化控制系统在操作上更加简单便捷,智能化设备只需要根据电气工程的部分数据就能够采取合理化的反应措施,通过数据检测系统能够对全部自动化控制设备进行有效的监控,准确地判断电气自动化系统的运行状态。相比于传统的自动化技术,智能化技术的参与能够显著提高系统操作和控制的灵敏程度,能够适应电气自动化复杂多变的工程环境,这也是现代智能化控制系统的相对优势;另外一方面,智能化的自动化控制技术减轻了工作人员的工作压力,不需要人员的操作就可以自动完成控制指令,结合数据的分析结果完成自动调节的工作[2]。此外,在运行的过程中也不需要工作人员手动操作就可以进行远程控制,以上种种优势使得智能化控制技术当前已经成为我国电气工程自动化控制领域的中流砥柱。智能化技术能够更加广泛地运用到电气工程自动化控制领域中,一方面可以使更多的劳动力得以解放,减少资金和成本的消耗,另外一方面也能够显著提高电气自动化领域的工作管理效率,减少出现失误的可能性。

1.3提升系统工作的一致性

在智能化技术的参与下,电气工程自动化控制领域表现出了极高的一致性,在系统的运行过程中,如果设备能够捕捉到数据信息的差异性,那么智能化设备就会辨别数据的真伪,特别是当系统无法按照熟悉的路径采集数据时,智能化控制设备可以对数据分析流程进行精准的控制。在这个过程中,工作人员可以根据不同的控制对象作出有针对性的决定,大大提高控制设备的精准程度[3]。智能化技术在电气工程自动化控制领域的应用,能够按照操作的步骤循序渐进地检查控制措施,加速系统数据的计算和处理,在控制过程中给设备一定的缓冲机会,解决了盲目控制所带来的困扰,大大提高了电气工程自动化控制设备的精准程度和工作效率。

2智能化技术在电气工程自动化控制中的具体应用

2.1电气自动化的智能控制应用

通过长时间的工业实践我们可以发现,把智能化技术应用到电气工程自动化控制领域,能够帮助电气工程自动化工程系统实现进一步的优化和完善。智能化技术能够帮助工作人员及时判断系统故障发生的区域和原因,有针对性地提出解决对策,能够提高当下我国电气工程行业的整体发展,提高系统运行的安全稳定性。电气工程自动化工程领域必须要针对产品进行优化设计,工作人员要根据现代工厂自动化工程的运行需求构建完善的电子系统。在当前信息技术和高新产业的进一步发展下,各种信息化设备层出不穷,也导致信息设备在使用步骤上更加复杂,如果信息系统出现问题,将会直接影响到电气工程自动化控制体系的整体运行[4]。因此,在电气工程系统中一旦发现运行问题,工作人员需要及时发现并给予解决方案,不能任由问题扩大,否则将会降低电气工程的整体运行效率,也不利于电气企业的可持续发展。在这个过程中,我们可以运用智能化技术弥补传统电气工程自动化控制工作中出现的问题,保障电气工程系统操作更加顺畅,提高电气控制的准确性,工作人员也可以在智能化技术的基础之上建立全程监控系统,让智能化技术更好地在电气工程自动化控制领域发挥自身的作用,推动我国电气工程获得可持续发展的动力。

2.2电气自动化优化设计的应用

传统的电气工程自动化工程领域中会涉及到大量的人工操作,在设计过程中也容易受到周边环境的影响,包括天气温度、设备条件,这些情况会导致电气工程控制设备在运行过程中容易产生诸多故障,如果不注重提高设备的精密程度,就会导致运行效果较差,但是高密度的仪器和设备也会带来操作难度的提升,同样无法收获良好的工作效果,也会给工作人员带来繁重的工作压力。同时在电气工程策划控制工作中,需要大量的电气设备进行辅助操作,这些电气设备形成了逻辑严密的操作系统,在这个系统中如果某一个环节出现问题,那么将会导致整体性的安全事故,比如设备短路、爆炸、燃烧等,有可能会威胁到工作人员的生命财产安全,也无法促进技术的进一步发展。在这一基础之上,智能化技术需要解决以上问题,全面提高电气工程自动化控制的安全稳定性[5]。工作人员需要把握智能化技术的运用,让电气企业获得可持续发展的能力。电气企业需要重视系统的优化设计,保障电气系统设备的稳定运行。除此之外,智能化技术在电气工程自动化控制系统中的运用也必须要与时俱进,发挥出更大的价值和作用,体现出智能化技术和高新技术产业的优势。电气系统的工作人员要不断的提高自身的专业能力和专业水平,采用硬件和软件相互协作的形式,对传统的电气工程自动化控制工作流程进行精简,设计科学的工作方案,减少问题出现的概率。

2.3系统故障诊断的应用

上文已经叙述,如果电气工程自动化控制系统出现故障,将会导致电气工程整体运行质量下降,因此故障诊断的自动化非常重要。工作人员需要通过智能化技术减少故障和问题发生的频率,同时要对电气系统运行过程进行全过程的监控,如果发现某一部位的系统和仪器出现故障,工作人员可以利用智能化系统进行问题的诊断,把问题出现的部位大概地确定下来,找出故障出现的原因,制作成数据化的反馈结果传递给工作人员,这样的操作能够方便工作人员及时地采取处理措施解决问题,在一定程度上提高了电气工程自动化工程设备的系统运行效率。当前我国电气工程在工作时会运用到很多的仪器和设备,设备的质量是否良好、运行状况是否正常会决定着电气工程的系统运行效率。如果设备运行不当,将会导致设备使用出现故障,扰乱电气工程正常的系统运作[6]。传统的故障检测主要凭借工作人员的工作经验,在维修过程中也存在着瞎子摸象的尴尬情况。如果工作人员工作经验欠缺,或者粗心大意,将会导致同一个设备多次出现同样的问题,导致负面连锁反应,拉低了设备的整体运行效率,减短设备的使用寿命,给电机企业的发展带来损失。智能化技术运用在电气自动化控制的故障诊断中能够及时地分析电气工程系统的运行状态,对出现异常的数据进行及时检测,按照约定的指令向工作人员发出报警信息,把异常情况的全过程传递到工作人员手中,方便工作人员开展抢修工作。除此之外智能化技术也能够对电气工程自动化控制的设备和内部结构进行精简,成熟地使用自动诊断功能,减少系统发生问题的可能性。

2.4CAD软件设计应用

智能化电气工程篇(3)

2智能化技术在电气工程自动化控制中的特点及重要性

2.1对电气系统进行调整与控制变得更为便利

智能化技术在电气工程自动化控制中的应用特点之一就是可以通过鲁棒性变化反应的时间等实现对电气系统的调整与控制,以便于更加有效的提高电气工程自动化的工作性能,保障自动化控制的顺利进行。当然,这也就意味着无论在任何情况下智能化技术都比传统的自动化控制器的调控能力更加方便有效,也更适合将智能化技术应用于电气工程及自动化的实际工作中,从而更加有效的保障电气系统的正常运作,推动电气工程的发展。

2.2可以适当的避免进行建立控制模型

在传统的电气工程自动化控制过程中,不仅需要控制器的控制,还要事先建立控制模型才能够真正实现系统的控制。而由于被控制的电气工程自动化系统比较复杂,在实际操作过程中没有办法保证能够达到精确的效果。因此,在进行模型的建立过程中可能会出现很多无法预料的问题,影响电气工程自动化控制管理的效果。而智能化技术的提出则在很大程度上解决了这一难题,不仅有效的避免了建立控制模型,使其工作效率得到了很大的提升,也从根本上减少了很多比可控因素的出现,从而在一定程度上加强了自动化控制器的精密系数,有效推动电气工程的发展。

2.3在进行数据处理时具有较高的一致性

在电气工程中,智能控制器对所有的输入数据进行处理,同时进行快速而精确的判断。而由于被控制的对象具有很强的变换性,可能会对控制器造成不同程度的影响。而对于多样化的控制对象,即使应用了智能化技术,也很难彻底解决自动化控制中的问题。因此,在电气工程自动化控制过程中,需要进一步对智能控制的一些缺陷进行深入研究,以便于有效的寻找出合适的解决办法,促进电气工程及其自动化的智能应用技术,推动我国经济发展。

2.4强化电力运行系统的整体控制能力

在按期工程以及其自动化控制过程中,通过智能化技术的应用,可以在很大程度上对工程的数据以及电力设备进行有效的监控,从而保证这个电气工程自动化系统的正常运行。除此之外,在对相关的电力设备进行调控的过程中,还可以对系统中存在的安全隐患进行预警并及时进行排除,提高电力运行系统的稳定性。同时,还可以利用智能化技术的特点对电气工程进行远程控制,提高电力运行系统的控制能力。

3智能化技术在电气工程自动化控制中的具体应用

3.1MT9技术的应用

随着我国科学技术的发展,MT9也在逐渐代替机电控制器在生产中的作用。而为了满足电气工程的电力运行要求,借助MT9在协调电力生产方面的优势,可以有效的对电气工程及其自动化进行更好的控制。MT9软继电器在一定程度上取代了电气工程系统中实物元件的应用,不仅能够实现供电系统自动切换的功能,还可以适当提升电力系统的安全性以及稳定性,增加MT9技术应用的广泛性,同时能够实现电气工程及其自动化控制的有效性。

3.2故障诊断技术的应用

在进行电气系统的运行过程中,往往会由于各种原因导致电气设备出现不同的故障。而随着智能化技术的应用与发展,我们可以通过设备故障出现前的预兆进行判断,从而有效的保障系统的正常运行。在电气工程及自动化控制系统中,相关的研究人员针对变压器这一重要的设备进行了合理的保护与维修,使其的寿命得到有效的延长,但是还是不能够完全避免设备故障的出现。因此,这就要求我么咋进行故障分析诊断的过程中,要合理的利用智能化技术对设备进行诊断,从而实现快速有效的确定设备故障的原因及故障范围,最终将故障消除。通过对电气工程及其自动化控制系统进行故障分析与诊断,在一定程度上保证了电气系统运行的安全性,从而避免严重事故的发生,推动社会经济的发展与进步。

3.3优化设计技术的应用

电气工程自动化控制主要就是针对电气设备进行设计研究,在一定程度上对其进行优化设计,保障电气工程的快速稳定的发展。因此,就要求相关的设计工作人员要十分熟悉电气工程相关的理论知识,同时还要具备丰富的设计研究经验基础,才能保证电气工程及其自动化的设计能够更加具有科学性与创造性。在进行电气工程及其自动化的优化设计的实际应用中,最为典型的就是遗传算法的应用,这种设计理念将电气系统中的多项功能集中到同一处理器上进行处理,因此,就导致处理器的运行负担加重。。而智能化技术的应用,则可以实现远程监控,在一定程度上可以减少材料之处,降低电气工程成本,实现监控系统通信共享,引进先进的智能设备,同时还有效的提高了工程的实用性以及安全性,从而促进智能化技术的快速发展与推广,提高电气工程及其自动化的控制质量。

智能化电气工程篇(4)

在电子信息技术、计算机技术、互联网技术的研究成果更加丰富的时代里,人们对自动化、智能化的需求得到了较好的满足。电气工程作为社会经济建设的重要行业,对自动化、智能化的需求也更加迫切。智能化技术作为新兴技术的代表,发展的历史不长,但是应用的范围却很广泛。在电气工程行业的自动化控制系统,能有效提高信息数据处理的效率,减少现场操作人员,降低人工工作强度,为企业创造了良好的效益。因此智能化技术受到了电气工程领域企业的欢迎。但是目前的智能化技术的应用还难以满足企业日益增长的技术需要,因此本文主要是从智能化技术的优势入手,探讨了目前智能化技术在电气工程领域应用中的不足,并结合发展需要提出了建设性的意见和建议。

一、智能化技术的应用优势分析

智能化技术诞生只有不到一百年的时间,但是其作为信息技术的代表,已经逐步发展成为涉及医学、生物学、计算机学、信息学和语言学等众多学科交叉相融的综合类技术。智能化技术目前主要是指人工智能,和计算机及机器应用有着紧密的联系。智能化技术能为机械设备安装智慧的大脑,让机器能在使用者的指令下从事很多难度高、风险大、操作精密程度高的工作。目前人工智能已经在很多领域替代了人类的传统工作,在一些人们难以保证质量的岗位上更是稳定发挥出了卓越的性能。智能技术水平的提高,主要来源于计算机技术,计算机的仿生学习能力让智能化技术正在从模拟人类到超越人类的过程进化。从智能化技术优势上看,其具有的和人类大脑相似的功能,能自主实现对事物或者问题的判断、思考及其决策控制的系列操作,因为比人工操作的稳定性更好,成本低廉,而受到广泛应用。智能化技术应用的主要优点表现在五个方面。一是能实现绿色节能环保。智能化技术的应用,能有效减少噪声、粉尘等对环境造成的污染程度,从而提高企业绿色创建能力,让生产运行成本得到有效控制。二是减少操作员工。智能化技术能替代很多重复性简单劳动,让一线操作员工的劳动强度降低,而生产的效率和质量却得到了提高。三是让操作难度降低。智能化设备的操作更加简单,操作人员很容易学会并快速上岗,并却在日常维修使用时,很容易查找故障来源进行维护。四是能减少工作风险。智能化技术目前主要是应用在很多危险系数高、难度大、工作强度大而工作标准高的岗位。智能化技术替代人们从事这些高危行业,对员工也是一种保护和关爱。五是能提高安全稳定运行周期。智能化技术能利用计算机实现对设备最大性价比的应用。能让设备的安全稳定运行时间更长,从而有效减少检修的成本,提高运维的性能。

二、电气工程领域自动化的智能技术应用优势

一是智能化技术能实现对数据的规范化管理和处理。电气工程中,智能化技术中的处理器能对所有输入的数据进行规范化、标准化处理,从而为后续快速、准确地决策提供依据。这种规范的数据处理能力,让电气工程中的控制元素不再受到可变性的影响,让不可控因素得到最大程度的管理。这样的优势能有效解决电气工程中需要控制的对象数量多、范围广的问题。二是智能化技术能提高电气工程系统化控制能力。电气系统是一种集成化的系统,对控制的全面能力有较高要求。智能化技术的应用,通过监督和控制系统的数据和设备,能实现对电气系统的全面管理,从而保证电气系统工作运行的安全稳定性。比如智能技术在进行相关电力装置的调控中,能从采集的全局数据中发现可能出现的安全隐患,从而对安全隐患及时治理和整改,有效提高了电力系统的安全稳定运行。智能技术还能实现远程控制电气工程系统,避免系统遇到突发情况造成控制延误,或者是必须到现场才能解决控制问题,影响了工作效率。三是智能化技术能提高电气工程的自动化水平。智能技术相比较传统技术,具有更好的简便操作性能。在不同条件下需要对电气工程进行调控时,智能技术能促进系统的自动化水平得到提高。四是智能化技术无需建模就能实现。传统的电气工程自动化技术是基于建模而实现。建模的准确性和精度直接影响到自动化控制的工作效率。智能化技术的应用无需建立模型就可以进行系统控制,这对提高自动化控制器的精度有非常大的帮助。传统的自动化控制中,遇到模型和实际情况、实际操作不相同时,只能通过自身调节来进行弥补,但是还是会导致自动化控制能力的下降。智能化技术面对不同情况的变化,往往能出具多种应急处理方案,因此不会对系统的自动化水平造成影响。

智能化电气工程篇(5)

关键词:

智能化技术;电气工程;自动化控制;应用

0引言

随着我国社会的不断发展,经济的进步,我国的电气行业也得到了迅猛的发展,电气工程行业逐渐的得到了人们的重视。自动化控制在电气工程中起到关键的作用。在传统的电气工程中,自动化技术还没有足够的完善,对生产的效率没有有效的提高,对电气工程的发展产生了一些影响。在自动化技术中引入了智能化技术,不仅加强了电气工程的发展,而且使电气工程生产中的效率提高。

1智能化技术的基础理论

智能化技术实际的运行中包含了控制学、语言学、信息学等多门技术,其具有较强的综合性。这项技术是研究在生产工作中极其的自动管理,不需要人员的控制来完成一些工作[1]。可以通过计算机技术对智能化技术加以强化,使其在实际工作中具有更加重要的作用。自能化技术是现今电气工程行业里不可缺少的一项内容,通过计算机的编程技术编辑出自动化的软件并加入进设备中去,使其在生产工作中来完成一些人工进行困难的工作,提高了工业生产工作的效率。因此,在现阶段的发展中加强智能化技术的发展是社会经济发展的需求,可以使企业的投入成本降低,减少了人工的工作需求,更好的解决人力资源上的问题。

2自能化技术的特点

2.1无人化管理

在传统的电气工程自动化控制工作中,往往都需要工作人员在旁边进行监管,保证工作的正常运行,而加入了智能化技术之后,在工作中往往是机器自动的运行,发现问题自主的发出警报并进行简单的处理,可以减少企业对人力资源的需求。同时电气设备还可以通过自动化技术来完成自我调节,更加减少了人员的使用,使企业的投入成本大大的降低了。

2.2无需控制模型

在自动化过程中,传统的自动化控制技术往往需要控制模型来进行设备的控制的,但被控设备常常会出现一些无法预测的变化,不能准确的测量出数据,增加了设备的控制难度,无法对设备进行有效的控制。而在加入智能化技术后,对设备的监管就不需要控制模型了,它是从根源上解决了设备的变化问题,使自动化控制在测量阶段变得更加的准确[2]。

2.3智能化控制器有很强的一致性

在对于数据的处理时,智能化控制器能准确的对数据进行分析并加以处理,各个控制对象,即使在对一些不长用数据的处理也能快速准确的进行,使自动化技术在工作中稳定的运行。在控制不同的对象时,由于被控制对象的不同,一些控制并不能立刻就进行,控制效果达不到预计的效果,降低了控制器的准确性。使用智能化控制器后,他能对被控对象进行具体的分析,根据其工作的实际情况进行对被控对象的控制,有效增强了控制过程中的准确性。因此要加强智能化控制化技术的加强,加快社会经济大发展步伐[3]。

3智能化技术在电气自动化控制中的具体应用

3.1智能控制

智能化技术在电气自动化控制的使用,可以使设备控制更好的管理,对设备进行远程超控,加强生产工作的效率,为自动化控制提供了良好的环境氛围与有效手段。智能化技术在电气自动化工程的应用,是人们对智能技术的认可,为智能化技术在其他行业的发展提供了保障,为人们的生活工作带来了便利。

3.2优化设计

在传统电气工程设计时存在着很多的困难与麻烦,这就需要大量的设计人员进行参与进来。因为设计工作的复杂,设计人员往往不可能完全的考虑每一个问题,使之后的工作进行带来麻烦,往往会出现大量的问题,这样就需要设计人员加强专业知识,并且要根据以往的工作经验,细致的对设计进行检验。智能化技术在电气工程自动化控制中的就完美的解决了这一问题,设计人员可以通过计算机上的设计软件进行设计,加强了设计时各项数据的准确性,丰富了设计的内涵,加快了设计的完成,同时加强了对设计各环节的监管,更好的实现了电气工程自动化控制。

3.3自动化控制整个电气工程

在电气工程中,很多的工作都包含了控制环节,所以就要在电气工程自动化系统中加入智能化技术,使其在工作中发挥更好的作用。智能化技术主要是以神经网络控制多层次的对电气工程自动化进行控制,神经网络控制能具有学习功能,很好的解决了复杂的非线性、不确定、不确知系统的控制问题。在神经网络控制的子系统中,子系统转子的速度可以通过对系统参数的判断和调控得出,另一个子系统可依照此参数判断和调控定子的速度。因为其的优秀功能,使其在在智能控制中得到了有效的应用。

3.4故障诊断

在电气工程工作过程中,电气设备常常会发生一些问题,在问题发生之前会出现一些有关系的症状,在症状出现时及时的发现问题,进行快速的解决。会对之后出现的故障更好、更快的解决,这就要使用智能化技术来完成。在电气设备中,变压器在生产工作中具有重要作用,因此,对变压器的管理相当的重视,时常的对其进行维护与检修,降低其发生故障的概率,即使这样也不能完全避免电气设备故障的出现,所以加入智能化技术就完好的解决了这一问题,使故障的出现率降到了最低,减少了电气工程工作中的损失。

4总结

智能化技术在电气工程自动化中的使用,不仅使企业的生产效率得到提高,同时还减少了企业的投入成本,降低了企业对人力的需求。使企业各项生产工作向着以自动化建设目标为主的方向进发,增强了企业在市场生的竞争力与生存力。推动着企业快速稳定的发展。

作者:王宁洁 单位:江苏海事职业技术学院

参考文献:

智能化电气工程篇(6)

中图分类号:F407.6 文献标识码:A 文章编号:

近年来,随着我国建筑工程的不断增多,建筑施工技术也不断进步。越来越多的技术在电气工程中应用开来,这也充分天线了现代科学技术的发展。在建筑工程中,较为重要的一个施工项目是电气工程,建筑电气工程主要包括建筑施工工程中与电气有关的设备、装置等的施工工程。建筑电气工程影响着建筑的投放使用,目前,在建筑电气工程中,智能化技术开始应用。智能化技术是综合了精密传感技术、计算机技术以及 GPS 定位技术的一种新兴技术。在建筑电气工程中应用智能化技术,可以有效地减少人工操作量,提高操作速度以及操作精准度,提高工程的可靠程度,并且能够降低成本,方便工程完成后的检修维护工作。

随着人们对生活水平的要求不断提高,建筑物中,尤其是居民建筑物中,对建筑电气工程的要求越来越高,新技术在电气工程的应用越来越广泛,对电气工程的质量要求也越来越高。建筑电气工程的主要施工工序主要包括:安装成套配电柜及其控制装置,安装电缆桥架及架上电缆,安装电线杆上电气设备以及架空线路,安装变压器,安装动力装置以及照明配电装置,安装柴油发电机组,安装不间断电源,安装低压电动机、电动执行机构以及电加热器并进行接线,试运行低压电气动力设备,安装开关插座等,安装接地装置,安装母线(包括封闭母线、裸母线以及插接式母线等),铺设电缆线路并制造电缆头,铺设导管、穿管及线槽,对钢索、槽板进行配线,测试线路等的绝缘性,安装灯具及其他照明装置,试运行所有照明装置,铺设避雷设施,连接等位点以及安装接闪器,建筑电气工程的验收等。

作为新兴的计算机科学的重要领域之一,人工智能理论的研究与延伸,对人工智能技术的本质进行了解释,基于此生产出的与人类智能类似的智能机器即为人工智能技术。该领域研究的对象主要包括:语音识别、图像识别、专家系统、机器人及自然语言处理等。对于电力系统而言,电气工程方面主要包含自动控制、信息处理、系统运行、研制开发、电子电气技术及计算机与电子应用等方面。人工智能技术在电气工程自动化中的实际应用中,还存在一些问题,要对这些问题进行分析和解决,才能促进我国电气工程自动化的发展。

人工智能概念在1956年的时候首次提出后,其发展的状态一直良好,并且逐渐形成以计算机为核心,包括哲学、医学、生物学、心理学、自动化、控制论、信息论与数理逻辑的综合性科学,其属于计算机科学中重要的分支,对智能本质有较好的阐述,且生产了与人类的智能机器相仿的机器,实现了多种研究。随着科技的发展与进步,计算机编程技术可模仿人类的大脑,例如分析、收集、回馈、处理以及交换信息,因而,计算机以模仿人类大脑的形式,在一定的程度上促进电气工程的自动化发展的步伐。在日常生产、分配、流通与交换中,均需电气工程的自动化控制,并且通过电气工程自动化的控制,可有效实现自动化电气工程,提高工作的效率,进而促使生产与工作总体的效率有所提升。

对于不同人工智能的控制,需运用不同方式进行探讨,由于部分人工智能的控制器,例如神经、模糊、模糊神经以及遗传算法均属于类非线形函数的近似器;采用此分类有利于了解总体,以及促进对人工智能控制策略综合性的开发,以上人工智能的函数近似器具备常规函数的估计器不具有的优点。

首先,在多数情况下,精确了解控制对象动态方程是相对比较复杂的,所以控制器设计实际的控制对象模型,通常会出现许多不确定因素,例如参数变化与非线性时等,往往无法掌握新的信息。但人工智能的控制器设计,可不需参照控制对象模型。按照鲁棒性、响应时间与下降的时间不一样,人工智能的控制器可经过适当调整以提升自身性能,例如,在下降的时间上,模糊逻辑的控制器可比PID控制器还要快四倍;在上升的时间上,模糊逻辑的控制器可比PID控制器还要快两倍。同古典的控制器比较,人工智能的控制器更具备易调节的特点。尽管缺少专家现场的指引,人工智能的控制器也可以采取响应数据进行设计。

此外,还可由相应的信息以及语言等形式开展设计工作,人工智能的控制器一致性极强,输入陌生数据便可以出现很高的估测,还可忽视驱动器对控制器的影响。针对部分控制对象而言,尽管目前未采取人工智能的控制器,也能有良好效果,不过对其他控制的对象而言,不一定能产生良好的效果,因而,设计时需遵守具体问题应具体分析原则。在模糊化与反模糊化的过程中,若运用隶属函数、规则库以及适合模糊神经的控制器,便可精确进行实时的确定。

采用人工智能技术,可以实现以下控制功能:首先,对数据信息进行采集与处理,实时采集所有的开关量与模拟量,根据要求进行处理与存储。其次,画面显示,系统与设备的运行通过模拟画面真实的反应出来,对电压、电流实时的显示出来,根据模拟量、计算量、隔离开关及断路器等,自动生成趋势图。第三,运行管理。专家系统在操作系统中的运用,实现日志、报表的生成,运行曲线、数据存储等操作。第四,故障录波。实现了模拟量的故障录波、顺序记录、波形捕捉及开关量变位等。第五,操作控制,利用键盘及鼠标对断路器及隔离开关进行控制,实现停机操作,通过设置,对操作人员的权限系统可以进行限制,对值班管理进行加强。第六,在线分析。在线进行参数修改与设定。对不对称的运行进行在线分析及负序量进行计算。第七,运行监控,对模拟量数值及开关量状态实现智能实时监控,通过声光、语音等形式自动报警,对事件的顺序进行记录。

由人工智能的技术不断发展,运用智能化技术控制的领域也逐渐广阔,包含人工智能运用在电气产品的优化设计、控制及保护、故障的预测与诊断等方面。

建筑电气工程的智能化技术应用分析:在建筑电气工程中,智能化技术主要应用于建筑电气工程的自动化控制、建筑电气设备故障预测分析以及建筑电气设备的优化设计等。所以建筑电气工程的智能化技术应用分析主要包括:智能化技术在建筑电气工程自动化控制中的应用;智能化技术在建筑电气工程故障检测分析中的应用以及智能化技术在建筑电气工程电气设备优化设计中的应用等。

智能化技术在建筑电气工程自动化控制中的应用:在建筑电气工程中,需要有自动控制和保护系统,以便在发生一些意外时,可以进行自我控制和保护,防止事故的发生。而这些自动保护以及控制系统中则可以运用智能化技术。首先在计算机控制系统中,应用 GPS 定位功能,对整个建筑电气工程的电气设备、线路以及装置配件等进行定位,并利用传感技术进行将电气工程的施工或者工作状况传输给计算机系统,即进行电气工程施工或运行的数据采集,然后计算机系统利用电机设备、电磁场以及电路等学科知识对所收集到的数据进行综合分析,然后按照设定的系统程序,如果出现了哪种数据,就该进行何种控制措施。这样就可以对建筑电气进行智能自动化控制。

电力系统中,对人工智能技术的应用主要涵盖神经网络、专家系统、启发式搜索及模糊集理论等方面,而专家系统是应用最广泛的一项。专家系统是一个复杂的程序系统,它集合了大量的经验、规则及专业知识,依靠特定领域专家的知识和经验,进行分析和判断,模拟出专家的决策过程,对各种难题进行解决和处理。专家系统主要由知识库、推理机、数据库、知识获取、咨询解释及人机接口等部分构成,常用“If-Then”规则,也就是对 If 条件进行满足的基础上对 Then 之后的操作进行执行。在该系统的使用中,要根据实际情况对系统规则库及知识库不断进行更新,才能适应发展的需要。

结语:

当前,很多行业中都广泛的采用人工智能技术,智能化技术运用于电气工程的自动化中,可发挥巨大的作用,促进电气优化的设计,及时诊断故障,并且还可实现智能控制,不断提升电气工程的效率,更好地服务于社会。

参考文献

智能化电气工程篇(7)

一、智能化技术的含义

(1)智能化技术是上个世纪中旬提出的,随着时代的变迁与科学技术的持续发展,智能化技术也在不停的进步中,到目前为止,智能化技术中的实践和理论基础慢慢的发展到了很多的学科当中,但在这过程中,智能化技术发展的还不是很完善。在科技不断发展的过程中,智能化技术也在慢慢的向专一的方向发展,这时就会要求相关技术人员在设计智能化的过程中,做到合理的完善。

(2)随着经济的迅猛发展,也提高了人们对电气工程自动化的认识。电气工程自动化带来了很多的数据信息,可以通过它把设备设计成更符合人类所需要的,让拥有其各种功能,使人类的生活变得更加方便。信息的收集和处理以及电气应用的各个方面是电气工程中的智能化技术应用的主要应用的方向。经实践研究表明,实际运用性和适应性则主要表现在电气工程及其自动化领域。因此,电气工程自动化的智能化技术领域一直在被推广和发展,在某个程度上来说,通过增强自动化管理和控制的内容,降低工作人员的工作强度,能够带动整个行业的进步发展。

二、智能化在电气工程当中的特点

(1)为了更加有效的提高电气工程自动化的工作程度,保证自动化控制能够顺利进行,可以通过观察实时变化来实现电气系统的调控。这也就是说,在一般情况下智能技术都要比以往的自动化控制器的控制能力更加便捷,通过把智能化技术应用到实际当中去,让电气系统能够顺利运行,使得电气工程得到良好的发展。

(2)在以往的电气工程控制中,要通过控制器的控制和建立控制模型为基础才能实现真正的意义上的控制系统,然而经常由于系统比较复杂,不能够达到很精准的结果,在整个过程当中也会遇到一些问题,影响控制的表现,加之图纸复杂,给维护带来困难。智能化技术则解决了以往电气工程中出现的这些问题,真实有效的避免了单独建立模型,提高了工作效率,也从根本降低了很多不可抗力的因素,增强了自动控制的精准度,进一步加快了电气发展的步伐。

(3)以往自动控制系统处理数据过程中拥有较高的协同性,控制器会接受一切的输入数据,与此同时进行较高速度的精准判断,但是由于被控制的对象拥有较强的替代性,也会对控制器有所影响。面对不同的控制对象,使用智能化技术可以解决自动化控制过程当中出现的这些状况。由此可见,在自动化控制的过程中,加深对智能控制所带来缺陷的探究,可以更好的寻找到合适的解决方法,助力电气自动化的智能化,推动我国经济的迅速发展。

(4)增强电子运行系统全方位的控制能力。在这个过程和其自动化控制发展中,智能化技术的发展应用可以对工程数据和电力设备的监控进行实时监管,来保障整个电气工程系统的正常工作。与此相关的电力设备控制中,还能预警和排除安全隐患,提高稳定性。还可以通过进行远程操控,来掌握系统的运行。

三、智能化技术的广泛应用

智能化电气工程篇(8)

【文章摘要】

我国经济和科技的迅速发展使得电气工程自动化技术被广泛应用到电力领域,并促进着电力产业的高速发展。作为近年来在电气工程自动化中新兴起的一门技术,人工智能技术的应用不仅提高了电气工程的自动化水平,而且对于电力产业的整体发展也起到了重要的推动作用。本文通过对人工智能的概念和应用领域进行简要分析,在结合其在电气工程自动化中应用优势的基础上,对人工智能在电气工程自动化中的应用方法展开了深入研究。

【关键词】

人工智能;电气工程自动化;电力系统

0 前言

人工智能在近年来被人们研究并应用,其研究范围不仅包括了智能控制、图像识别和语言识别,还包括了人工神经网络和专家系统等方面的研究。而电气工程自动化则主要研究与电气工程相关的系统运行和自动控制技术以及电子电气技术和信息处理技术。通过将人工智能科学地应用到电气工程自动化当中,可以使电气自动化系统对相关的数据进行实时分析并处理,从而实现电力的自动化生产。故本文针对人工智能的概念及其在电气工程自动化中应用的优势,对其在电气工程自动化中的应用进行了详细分析。

1 人工智能简述

1.1 人工智能的概念与应用领域

人工智能是研究并开发用来模拟、延伸并扩展人的智能的理论、方法以及技术和应用系统的一门计算机科学的分支学科。作为一门极富挑战性的学科,人工智能企图对智能的实质进行了解,并产生一种以与人类智能相似的方式对事物做出反应的智能系统或机器。近年来,人工智能在机器翻译、智能控制、机器人学、专家系统、航天应用以及遗传编程和庞大信息处理与语言图像识别等领域均得到了不同程度的应用。

1.2 人工智能在电气工程自动化应用的优势

人工智能在电气工程自动化中的应用主要是通过人工智能控制器来实现的, 根据人工智能控制器自身非线性函数近似器的相关特性,可将其在电气工程自动化中的应用优势总结为如下几方面:

1.2.1 受外界影响因素较小。传统的电气工程控制器在进行自动化模型的构建时通常会受到模型参数变化、不同数值计算类型等诸多不确定因素的影响,而基于人工智能控制器的电气自动化系统则无需获得精准的动态模型,同时,在自动化模型的建立过程中,对参数和模型环境的运行要求也相对较低。因此,基于人工智能的电气工程可以大幅提高其自动化水平。

1.2.2 参数调节便利。与传统控制器相比,人工智能控制除了具有简单易学和适应能力强等特点外,还可通过参照相关数据,利用语言与响应信息进行自动化模型参数的设计,为参数的调节提供了较大便利。

1.2.3 电气产品性能的一致性较好。与传统的基于特定目标的控制方法相比,基于人工智能的电气自动化系统具有较高的一致性,在忽略部分外部影响因素的基础上,即使向系统中输入任何未知的相关数据也可以使得到的结果产生很高的估计值,在提升了产品规范性的同时,保证了产品本身的一致性。

1.2.4 操作过程的误差较小。人工智能技术在电气工程自动化系统中应用时,由于受外部因素的影响较小,且控制器自身的抗干扰性较强,这就使得经设定过的参数在运行过程中出现的误差较小。

1.2.5 节省资源。基于传统控制器的电气操作,通常会涉及到线路、变压器以及电线和电缆等多种电气设备,又需要专业的工作人员对相关电气设备进行管理和维修,增加了人力和物力等大量资源的消耗。而与传统的控制器相比,人工智能可以减少系统对线路、变压器以及电线、电缆的依赖,进而减少人力和无力的投入。

2 人工智能在电气工程自动化中的应用方法

2.1 人工智能在电气设备中的应用

人工智能在电气设备中的应用主要是指人工智能对电气设备的优化设计。电气设备的优化设计工作较为复杂,不仅要求设备的优化与设计人员具备电路、电磁场以及电机和电器等方面的知识,还需要其具有丰富的经验和较强的应变能力。传统的以人工手动制作为基础的产品设计方式已经无法满足当前电气工程自动化的具体要求,而以计算机辅助设计为产品设计方法,即CAD 的产品设计方法的应用有效缩短了产品的开发周期。在电气设备的设计过程中,将人工智能引入CAD 中, 可以有效提高产品的设计质量与设计效率。就现阶段而言,人工智能在电气设备设计优化方面主要体现在遗传算法和专家系统两个层次上。由于遗传算法对自动化模型的计算方法较为先进且其计算结果具有较高精度,因此,遗传算法经常被应用于相关电气产品的优化设计中。在专家系统的应用方面,由于电气设备在出现故障前是存在相关征兆的,根据电气设备故障的非线性与不确定性的特点,在专家系统中加入人工智能,可以最大限度地发挥专家系统对产品合理性的设计作用,从而提高电气产品的整体性能。

2.2 人工智能在电气控制过程中的应用

电气控制过程对于电气工程自动化技术以及电气技术的整体应用具有决定性的作用,确保电气系统高效稳定的运行是电气自动化研究领域长期以来备受讨论的问题。对于技术人员而言,电气控制过程的要求是较为严格的,其控制过程也相对繁琐,经常出现的问题是由于技术人员的操作不当使得电气设备发生故障或降低了设备的运行效率。人工智能在电气工程中的应用一方面可以使技术人员提高对电气控制过程的精准度,另一方面, 对于提高电气系统的整体运行效率也具有重要作用。首先,人工智能通过借助计算机自动计算的核心技术,实现了代替部分人工智能工作的电气控制功能,在节省了人力和物力的同时,提高了控制精度。其次,人工智能的应用以界面化的形式简化了控制流程,不仅提高了电气系统的控制效率,而且也实现了对电气系统的远程控制。再次,人工智能的应用使得系统可以及时地将相关的重要信息与数据进行保存,进而通过自动生成报表的形式,降低人力物力的投入,并为技术人员日后的数据查询工作提供较大便利。最后,在人工智能的模糊控制中,还可以根据电气系统传统控制过程的交、直流传动实现对整个电气系统的控制。一方面,在以直流传动为主的电气控制过程中,人工智能的模糊逻辑控制主要包括了Sugeno 与Mamdani,Mamdani 主要用来对电气系统的运行速度进行调控,而Sugeno 则是Mamdani 的一种特殊情况。另一方面,在以交流传动为主的电气控制过程中,则主要应用基于人工智能理论的模糊控制器来代替传统的电气调速控制器来实现电气系统的各方面功能。 

2.3 人工智能在电气设备故障诊断中的应用

对电气工程自动化系统及其运行过程进行分析可知,电气设备例如发电机、发动机以及变压器等均容易频繁出现相关事故。传统的故障诊断方法为:对所收集的变压器油所产生的气体进行分析,进而根据所收集气体样本的分析结果判断存在故障与否。基于传统方法下的电气设备故障检测除了需要耗费大量时间外,还需要相关维护人员对设备检测进行实时监控,加之电气设备故障自身具有较强的突发性和不确定性,大幅增加了设备故障诊断的难度。基于人工智能的电气设备故障诊断方法在设备诊断过程中加入了模糊理论以及基于人工智能技术的神经网络和专家技术,进而有效提高了电气设备故障诊断的效率,并在提高电气工程生产效率的同时,也减少了人力和物力资源的输出。

2.4 人工智能在电力系统中的应用

就现阶段而言,人工智能中的专家系统和人工神经网络在电力系统自动化中的应用比较普遍。其中,专家系统是一个较为复杂的程序系统,其通过集大量的规则、知识和经验于一身,通过对电力系统中的问题进行分析和判断,进而模拟专家决策的过程来解决相关问题。在应用专家系统对电力系统进行优化和调控时,应该根据系统运行的实际情况和相关要求,更新电力系统中的数据库、规则库以及知识库中的数据信息,从而使其与电力系统的应用需要相适应。

在人工神经网络的应用方面,由于该种方法本身具有高度灵活的学习方式,其存储方式也呈现出完全的分布式,因此, 其被广泛应用于电力系统大规模数据的处理当中。人工神经网络通过对模型进行合理分类,进而科学选择相关输入,以此来构建不同类型的季节性时间模型,利用该模型可以对电力系统的短期负荷进行有效预测,从而帮助技术人员对故障可能出现的系统环节进行全面分析,提高系统运行效率。

3 结论

本文通过对人工智能的概念和应用领域进行分析,并结合其在电气工程自动化中的应用优势,进而对其在电气设备、电气设备故障诊断以及电气控制过程中的应用展开了深入探讨。可见,未来加强对人工智能在电气工程自动化中的研究和应用力度,对于提高电气工程的自动化水平并促进电力产业健康、全面发展具有重要的历史作用和现实意义。

【参考文献】

智能化电气工程篇(9)

1.1故障诊断

电气工程设备的工作时间长,难免会发生故障,由于电气设施故障的非线性、复杂性及不确定性,一旦发生故障,往往需要大量的时间排查故障,效率低、准确率低。而智能化技术能够有效解决这一问题。在故障发生前,一般仪器会出现一些人们很难发现的预兆,通过实时监测仪器状态,在出现异常时及时报警并提示故障位置,在故障真正发生前避免故障,能够在极大程度上减少维修时间。电气工程中常常通过分析变压器中渗漏油分解出来的气体进行故障诊断,确定故障发生的范围,并通过各种手段逐步缩小范围,从而确定故障位置并提示派遣人员及时检修。同时,智能化装置可以记录故障问题,为以后的故障诊断提供参考,使故障诊断更加安全可靠。

1.2智能控制

智能控制能够在很大程度上实现电气工程及其自动化的控制过程自动化,实现无人化管理和远程管理,提高管理的高效性。尤其对于一些高危险、高难度的工作,如高压控制,智能控制是必不可少的。相对于传统的控制器,智能控制器的灵活性更好,更易调节。传统的控制器在设置时需要精确考虑控制对象的动态方程,而实际涉及到的控制环境往往很复杂,存在很多不确定因素。但是智能控制不存在这方面问题,因为其在设计时并不涉及控制对象的模型。并且智能化控制器可以根据对响应数据(如鲁棒性变化、响应时间、下降时间)的分析随时调整系统,调整后智能控制器的性能会大大提高,调整的过程并不需要专业人士在场,这样就减少了大量的人力。以风力发电厂智能化升压站系统为例。智能化升压站系统通过对过程层和间隔层设备升级,将一些模拟量和开关量数字化,有效运用光纤设备,实现间隔层和过程层的通信。站控层由系统主机、工作站、VQC等设备组成,是全站监控、管理、调度中心。系统通过智能化控制,自动完成信息的采集、测量、控制、保护等功能,相比于传统的升压站系统在效率、有效性等方面有很大的提高。

1.3优化设计

电气设备的设计工作相当繁琐,需要综合运用成套设备、电路、电机与电气、电磁场、变压器等学科的知识,并结合过去的设计经验。传统的设计方式根据经验和实验,手工完成设计,方案的达标率非常低,修改难度大,成本高,产品的开发周期也很长。应用智能化技术能够有效提高设计产品的质量,缩短开发周期。智能化技术在这方面的应用主要有专家系统和遗传算法。其中,专家系统依据该领域的专家提供的知识经验,建立数据库,在决策前模拟专家决策过程,做出合理决策,该技术比较前沿,目前尚处于研发阶段,尚未得到大量应用。遗传算法是一种借鉴进化论的随机化搜索方法,被广泛运用于信号处理、组合优化、自适应控制等领域,在电气设计产品的优化上性能优越。

1.4PLC技术

PLC(可编程逻辑控制器)具有高可靠性和抗干扰能力,广泛应用于自动控制领域。在一些大型的电力企业的辅助系统中,PLC已经代替了一般的继电控制器。PLC技术使用内存,用程序方式存储控制逻辑,并用半导体电路实现。PLC技术的应用实现了供电系统的自动切换,用软继电器取代了实物器件,使供电系统更加安全可靠。并且,它能使用复杂的工作环境,具有良好的发挥性能,稳定性强。

2.智能化技术在电气工程及其自动化中的应用前景

2.1优势分析

智能化技术在电气工程及其自动化中相比于传统的控制系统有巨大优势。传统的自动控制系统需要建立控制模型,运用数学方法分析,建立动态方程,但由于系统的复杂性,在实际应用中往往会出现无法预料的问题,很难达到预期的效果。智能化系统可以从根本避免不可控因素,提高工作的效率。智能化技术可以实时监控系统,通过监测响应时间、下降时间等对系统进行实时调节,使系统性能大大提高。因此,智能化系统比传统的控制器更能适应实际工作环境。另外,智能化技术拥有很强的一致性。在输入不同的数据时具有同样可靠的估计能力,有广泛的适用性。

2.2性能方向

速度、精度及效率是电气工程及其自动化的关键指标。在电力系统中采用智能高速处理器芯片,同时采用交流数字伺服系统,能够改善电力系统的动态特性和静态特性,提高系统的速度、精度和效率。柔性化柔性化主要包括群控系统和数控系统这两个方面。对于群控系系统,必须按照生产流程的具体要求设计系统,使系统能够发挥最大的作用,完成信息流和物料流的动态调控。对于数控系统,其强大的可裁剪性和覆盖面可以满足客户的具体要求。

2.3功能方向

在功能方向上,主要包括设计用户图形界面、可视化计算、多媒体技术方面的发展。目前的操作系统一般都采用图形界面,具有良好的人机交互性。在智能化系统中采用图形化界面,通过窗口和菜单实现编程、图像显示、图像模拟、仿真等功能,能够降低操作者的门槛,方便非专业人士操作。通过可视化技术,信息的表达不再是呆板的文字和数据。将数据转化成图表,能方便操作者分析数据,也可以高效地处理和解释数据。同时,采用无图纸设计、虚拟样机技术等技术,将可视化和虚拟环境相结合,能够更加有效地提高产品质量、缩短产品开发周期。多媒体技术一般是将声音、文字、图像、视频等融合在一起传输,如果将多媒体技术应用于智能化系统,可以更加综合化、智能化地处理信息,能带来很大的经济效益。

2.4体系结构

通过集成化、模块化、网络化实现智能化技术在体系结构方面的发展和完善。可以使用高集成度的处理器、大规模集成电路FPGA、CPLD等提高软硬件运行速度。器件的高度集成化能够提高电路密度,减小器件体积,更加方便安装和使用。将智能化技术模块化,各模块之间通过接口通信,这样有助于技术的标准化和集成,也可以运用模块的增减将智能化产品分级别销售。将智能化系统联网使得人们能够对系统进行远程监控,随时掌握系统状况,使电气工程的控制不受地域限制。也可以实现在一台设备上控制其他设备,进行编程等操作。对于较小的电力系统,远程控制能够节约电缆的增加数,材料以及安装费用,并且可靠性高、灵活性强;但是在通讯量大的系统中远程控制会比较困难。

智能化电气工程篇(10)

2智能化技术的优势与特点

2.1无需创建控制模型

在过去,国内主要采用旧式的控制装置来完成自动化控制,但是由于在执行控制的进程中,控制对象是不断发生变化的,复杂程度较高,所以想要真正掌握控制过程是具有很大难度的,并且在模型设计过程中会有许多影响因素是无法得到准确预知的,这样的实际情况会显著降低控制工作的效率[1]。然而,如果对智能化技术加以合理的应用,则可以直接舍去控制模型的创建环节,也可以从根本上杜绝所有客观因素的影响,在确保自动控制针对性和准确性的基础上,切实提高了系统与工程的控制效率。

2.2具有更高的一致性

智能化技术具有较高的一致性主要表现在处理数据的过程中,如果需要写入的数据类型是过去工作没有涉及到的,借助该技术仍可以对这些数据进行正确的预估,所以该技术可以和控制工作完全吻合。控制目标所具有的差异性导致控制的实际效果存在较大的区别,控制过程中充分运用智能化控制装置,尽管控制装置没有在短时间内运用某种措施对目标实施操作,但它却可以对最终的控制效果产生有利的影响。

2.3能够对电气系统进行有效的调控

智能化技术具备提高工作效率、缩小响应时间等功能和特点,所以运用该技术可以针对电气系统实行高水平、高效率的调控工作。与以往的控制装置相比较,智能化的控制装置在执行调控时是具有很大优势的[2]。除此之外,智能化的控制装置还具备一个十分明显的优势,那就是仅仅需要数据的变化,就能够对电气设备进行针对性的调控,工作人员无需在设备运行的现场进行监督与操作。由此可见,智能化的控制装置可以完成远程操控,在无人值班的前提下也可以对电气设备进行控制,与现阶段电气系统方面的自动化发展目标完全契合。

3智能化技术的应用

3.1智能控制

如果可以在自动化控制进程中采取科学的手段,良好的融入智能化技术,就可以使电气控制真正实现自主化、远程操作与高效运行,此外也可以无需安排专业人员对设备实施操作,为电气工程的发展创在了良好的发展前景。如果智能化技术在电气控制领域得到了全面的应用,不仅充分体现了该技术的优越性,还可以提高该技术的认同度,使其在其他领域中也发挥出最佳的效果,进而从根本上提高整体控制水平。

3.2优化设计

在对电气工程实施自动控制的过程中,设计是重要的组成部分,设计结果对于自动化控制目标的实现有着决定性的影响。设计实际上是一项十分复杂且繁琐的工作,不仅对设计人员对于电路等基本知识的掌握情况有着极高的要求,设计人员还需具备丰富的工作经验与创新意识。在过去的设计环节中,设计人员通常运用将自身工作经验与试验结果整合方式来进行设计,这种方法需要很多次的试验和研究才能获取一种较为理想的方案,而且方案一经确定几乎是无法对其进行修改的[3]。但是,如果在设计的过程中充分运用智能化技术,比如CAD、计算机软件等,可以在确保设计方案时效性的基础上,大大提升了工作效率,使设备具有更加优异的性能。优化设计过程中充分运用智能化技术的主要形式和方法为遗传算法的具体应用,这样的方式不仅使所得的设计方案突破了传统挂念的限制,时期具有更高水平的实用性,还可以从技术层次优化设计参数,为方案的修改创造了有利的条件。

3.3故障诊断

电气系统的运行过程中,设备、仪器装置难免会产生一些故障,为有效减少故障出现的频率,提出针对性强的故障预防策略是必不可少的,智能化技术的出现很好的解决了这一问题。在复杂的电气设备当中,变压器是具有关键性作用的,因此,工作人员应对此类关键性器件实施全面的诊断和预防故障工作,借助智能化技术及时发现装置潜在的问题和故障,进而有效的降低故障带来的损失[4]。运用智能化相关技术对变压器等关键器件实施故障诊断的过程中,主要是对变压器当中渗漏油产生的分解气体实施检测和分析,明确故障的发生位置,通常是一个区域,然后逐渐缩小这一区域,直至找到准确的故障位置,针对故障的类型采取相应的维修方法。充分利用职能化技术可以大幅提高设备故障诊断的效率与准确性,确保发生故障的装置不会产生较为严重的后果,进而提高系统运行的经济效益[5]。

智能化电气工程篇(11)

在城市化建设持续推进的背景下,电气工程自动化逐渐受到社会的关注。通过应用人工智能技术不仅能够降低电气工程人力投入成本,提高自动化控制水平,而且还能明显提高电气工程质量,这对我国电力事业实现可持续发展具有积极的促进意义。

1人工智能技术应用优势

为明确人工智能技术在电气工程自动化中的应用价值,本文通过分析相关资料,对人工智能技术的应用优势进行总结,其具体内容如下。

1.1省略模型设计

在现代科学技术持续发展的背景下,电气化设备内部结构复杂性正在不断提升。以此为基础,电气工程自动化技术应用对象的动态方程复杂程度已得到明显加强。因此,工作人员难以利用该项技术对机器运作状态等方面进行计算,在情况严重时,若技术无法满足机器基本需求,甚至将导致电气化设备运行效率及自动化程度显著下滑,这对提高电气工程质量极为不利。但在应用人工智能技术手段的情况下,工作人员将实现对模型设计环节进行忽略,并充分结合控制对象与人工智能技术,从而达到对设备运作状态进行准确预测的目的,这对电气工程实现健康发展具有积极的促进意义。由此可见,应用人工智能技术具有极强的必要性与可行性,因此相关人员必须对其给予高度重视,以此最大化人工智能技术应用效果。

1.2无人化

通过实际调查可以发现,我国电气工程采用的控制器对人力投入成本具有极高的要求。在相关人员开展该项工作的过程中,其不仅需要充分掌握设备实际运行情况,而且还要对其他设备进行利用,以此达到监控机器运行状态的目的。该种工作方式不仅能够增加人员工作压力,而且对电力企业控制人力投入成本极为不利。此外,在现代科技水平不断提高的背景下,我国电力企业开始积极引入计算机技术手段,并以此实现半自动化机器控制。虽然该种控制方式能够有效缓解人员工作压力,但其无法对安全事故进行预测,因此半自动化控制难以显著提高电气工程质量。因此,为满足时展需求,电气工程必须引入人工智能技术,从而实现无人化控制。以此为基础,控制器将在满足电气工程基本需求的情况下对设备进行控制,并明显加强电气工程稳定性,从而为实现我国电力事业健康发展奠定良好基础。

1.3精准性

从现实角度出发,可发现我国传统电气工程对机器进行控制时,极易受到多方面因素的影响,从而导致机器控制出现极强的变更性。在此基础上,不仅电气工程自动化控制工作效率将受到严重影响,而且电气工程质量也将显著下滑。但在引入人工智能技术手段的情况下,上述问题将得到有效解决。在应用该项技术手段的过程中,工作人员将实现在保证评估结果具有精准性的基础上,对各种数据进行控制与处理,以此达到显著提高评估工作效率及质量的目的,从而实现促进我国电力事业健康发展。但通过实际调查可以发现,受到电气设备控制对象全面性不断加强的影响,我国电气工程自动化控制复杂程度也在不断提高。因此,相关研究人员必须加强人工智能技术研究力度,充分明确智能化控制器中存在的问题,并及时采取针对性措施。以此为基础,不仅人工智能应用效果将显著提升,而且电气工程质量也将明显提高。

2人工智能技术应用现状

通过分析相关资料可以发现,目前我国多数电气工程已积极引入人工智能技术,并将其应用于自动化控制中。为加强人工智能技术应用效果,本文针对人工智能技术在自动化控制中的应用现状进行总结,其具体内容如下。

2.1设计电气产品

此前,我国工作人员对电气产品进行设计时,采用的设计方式多为手工。虽然该种设计方式具有一定的可行性,但其不仅对设计人员专业能力水平具有极高的要求,而且还极易受到设计人员主观意识的影响,从而导致电气产品设计工作合理性显著下滑,在情况严重时,甚至将造成电气产品出现质量问题。此外,通过该种设计方式对电气产品进行设计时,工作人员必须利用纸张记录设计方案,但该种方式传递效率极低,极有可能对产品制作效率产生影响。因此,我国电气产品设计人员选择引入计算机技术手段及人工智能技术。其中,计算机技术能够简易化电气产品设计环节,并显著提高信息传递效率,以此达到有效节省设计时间及控制成本的目的;人工智能技术能够在网络中对设计模块进行建立,并通过对设计方案采取对比措施,从而实现迅速明确方案缺陷。在工作人员对方案进行调整时,该项技术手段能够为工作人员提供可靠依据,促使产品设计环节具有更良好的合理性及科学性。

2.2智能化控制

从现实角度出发,可发现我国电气工程传统控制方式具有极强的局限性,其不仅对人力投入成本具有极高的要求,而且难以全方位提升控制质量。在此基础上,我国电力事业发展及电气工程质量将受到严重影响。因此,我国相关企业开始积极引入人工智能技术,并将其应用于电气工程自动化控制中,以此达到显著提高数据信息收集效率、实时监控电气设备运行质量以及在线分析设备各项指标的目的。此外,人工智能技术手段能够对多项工作内容进行严格把控,并在电气工程原有自动化控制的基础上,对自动化控制进行完善,这对电力企业满足时展需求具有积极的促进意义。由此可见,人工智能技术在电气工程自动化控制中具有良好的应用效果及应用价值,但由于时展节奏正在不断加快,故而工作人员必须对人工智能技术进行优化,以此最大化其应用效果,从而实现为电力企业健康发展奠定良好基础。

3人工智能技术的实际应用

3.1加强自动化控制

针对电气工程自动化控制运行过程而言,其涉及的控制程序及系统环节具有极强的多样性,因此工作人员无法通过传统控制技术达到对电气工程进行控制的目的。从现实角度出发,可发现传统控制技术对电气设备的控制及调节效率较低,其无法为电力企业实现健康发展提供基本保障。在此基础上,我国电气工程工作人员开始引入计算机技术手段,并以此实现对电气工程进行半自动化控制。虽然该种方式具有一定的可行性,但其对操作人员仍具有较高的要求。因此,电力企业必须积极应用人工智能技术,并通过模糊控制以及神经网络等控制方法,实现及加强自动化控制,从而为电气工程质量提供保障。

3.2故障诊断

针对电气设备传统故障诊断而言,其诊断方式多是由技术人员通过相关手段,达到有效诊断故障的目的。但通过实际调查可以发现,由于电气设备始终处于密封状态,故而技术人员无法对设备内部零件进行全面了解,从而导致故障诊断工作科学性不高;我国部分电力企业检修人员责任意识欠佳,其在诊断过程中未严格依照相关标准对设备进行检验,致使设备隐患未及时得到解决,从而引发运行故障,并对电气工程质量产生严重影响。因此,在电气工程中必须积极使用人工智能技术,并通过该项技术达到对电气设备进行实时监控的目的。以此为基础,工作人员将迅速明确设备中存在的故障问题,并及时采取针对性措施,从而实现为电气工程质量提供保障。此外,人工智能技术能够自主进行存在安全隐患的诊断工作,以此达到降低安全事故发生率的目的。

3.3优化设计

从现实角度出发,可发现电气工程设计环节具有极强的复杂性,其涉及的学科内容包括磁力以及电路等。因此专业能力水平较低或缺少经验的工作人员难以胜任该项工作。但在应用人工智能技术的情况下,工作人员可利用CAD技术及相关软件,达到自动化设计电气工程的目的。该种工作方式不仅具有极高的工作效率,而且形成的设计方案也具有极强的合理性。由此可见,人工智能技术在电气工程中具有良好的应用效果及应用价值。

4结语

综上所述,自动化控制在电气工程中具有重要地位,因此相关人员必须对其给予高度重视,积极应用人工智能技术,并深入发掘该项技术手段的潜在价值,从而达到提高电气工程整体质量的目的。基于此,我国电力企业将实现可持续发展。

参考文献:

[1]缪国平.人工智能技术在电气自动化中的应用[J].中国设备工程,2021,33(03):37-38.