欢迎访问发表云网!为您提供杂志订阅、期刊投稿咨询服务!

减少温室气体的措施大全11篇

时间:2024-01-29 17:35:53

减少温室气体的措施

减少温室气体的措施篇(1)

中图分类号:S345文献标识号:A文章编号:1001-4942(2014)05-0034-04

正确的农田管理措施能提高土壤质量和作物产量,改善环境,促进可持续发展。耕地为种子萌发、定植和生长提供合适的土壤环境条件,但是频繁耕地会降低土壤质量[1]。随着生活水平的提高,秸秆作为燃料的用量减少,而且运输成本高等,这些因素使农户选择焚烧或废弃秸秆,我国每年废弃焚烧秸秆总量约2.15亿吨[2]。焚烧将秸秆固定的碳重新释放并产生N2O等气体,危害生态环境和土壤质量[3]。

保护性耕作能减少对土壤的扰动,形式包括不翻耕、少耕、深松、覆盖耕作、免耕等[4]。许多研究证明秸秆还田能增加土壤养分[5]、提高有机碳含量[6]和改善作物品质[7]。少免耕减少团聚体破坏,秸秆促进团聚体的形成,团聚体的增加能保护有机物不被分解[8]。保护性耕作减少耕作次数和强度,降低燃料的消耗和温室气体排放。

山东省是中国重要的农业生产基地之一,主要种植模式是小麦―玉米一年两熟,目前保护性耕作已经推广了6亿公顷。由于滕州和兖州尚处于玉米秸秆还田和少免耕推广阶段,新旧技术同时存在,因此通过该调查可以研究保护性耕作技术对土壤固碳、温室气体排放和经济成本的影响。

1材料与方法

1.1调查区域和调查方法

滕州市处于鲁中南山区的西南麓延伸地带,属于黄淮平原,兖州市处于山东泰沂蒙山前冲积平原。两地都属于暖温带半湿润季风型大陆性气候,年均温13.6℃,四季冷热分明。年均降水量分别为733 mm和773.1mm,集中在夏秋季,雨热同季,全年无霜期210~240天。两地的土壤类型主要为褐土、潮土和砂姜黑土。

本研究采用的保护性耕作数据来自入户问卷调查,调查时间为2011年10月。滕州和兖州随机选取3个乡镇,每个乡镇随机选取3个自然村,有效问卷总数32份,其中滕州15份,兖州17份。

本研究中半量还田指还田量50%~70%,全量还田指还田量≥90%,传统耕地指1次翻耕+2次旋耕或2~3次旋耕,免耕指一次性完成播种行旋耕、施基肥、播种、起畦等作业[9]。

1.2计算方法

不同保护性耕作措施下的温室气体排放和减排,采用的方法和公式来自Lu等(2009, 2010)[6,10]。固碳速率考虑免耕的固碳效应、秸秆还田的固碳效应以及还田的替代氮肥的效应,因为氮肥生产导致温室气体排放,因此秸秆还田减少氮肥用量同时促进减排。温室气体排放考虑耕地的燃油消耗、秸秆焚烧不完全释放产生CH4和N2O。

1.2.1固碳速率①免耕条件下的固碳速率:SCSRNT=157 kgC/(hm2・a),其它耕作方式设定为零。

②秸秆还田的固碳速率:根据公式(1)计算:SCSRs=0.0406∑(PiriRi)+181.9(1)

式中SCSRs:秸秆还田的固碳速率,单位kgC/(hm2・a);P:作物产量,单位kg/(hm2・a),i代表小麦或玉米(下同);系数r:草谷比,小麦1.366,玉米2[11];R:作物秸秆还田比例。

③秸秆还田的氮肥替代减排效应:

MNS=∑(ePiriRiFNiDMFi)(2)

式中MNS:氮肥替代减排效应,kgCe/(hm2・a);e为氮肥生产的排放系数,为1.748 kgCe/(hm2・a)[13];P、r、R和i代表意义与公式(1)相同;FN:秸秆的干物质含氮量,小麦为0.65%,玉米0.92%;DMF:干物质含量,小麦为0.85,玉米0.78。

根据公式(3)计算土壤总固碳速率SCSR,单位为kgCe/(hm2・a):

SCSR=SCSRNT+SCSRs+MNS (3)

1.2.2温室气体排放本研究将玉米秸秆分为还田和焚烧两种用途。由于旱地吸收和氧化CH4[13],而且秸秆干物质的含N量不到1%[10],因此本研究不考虑还田对CH4和N2O产生的影响。

①耕地温室气体排放:根据Lu等(2010)[10],每次翻耕或旋耕消耗燃油所产生的温室气体排放为15.57 kgCe/(hm2・a),根据耕地次数计算温室气体排放ED[kgCe/(hm2・a)]。

②秸秆焚烧温室气体排放:本研究根据公式(4)计算100年为尺度的全球增温趋势,将秸秆不完全焚烧产生的CH4和N2O折算为CO2-C当量并求和:

EB=(0.005FC×16112×25+0.007FN×44128×298)×Pr(1-R)×DMF(4)

式中EB:玉米秸秆焚烧的温室气体排放,单位为kgCe/(hm2・a);FC、FN:玉米秸秆的干物质含碳量和含氮量,分别为44.4%和0.92%;P、r、R和DMF代表意义与公式(1)、(2)相同。

耕地和秸秆焚烧发生的总碳泄漏通过公式(5)计算:

EM=ED+EB(5)

保护性耕作产生的温室气体净排放通过公式(6)进行计算:

NMR=SCSR-EM(6)

式中NMR、SCSR、EM分别指净减排、土壤总固碳速率、温室气体排放,单位均为kgCe/(hm2・a)。

1.2.3经济成本本研究中的经济成本指保护性耕作措施下小麦耕种成本,单位为CNY/(hm2・a)。由于玉米秸秆还田导致耕地次数增加,因此成本也增加,但采取免耕播种的方式,一次性完成播种行旋耕、施基肥、播种、起畦等作业,耕种成本下降。

2结果与分析

2.1保护性耕作现状

通过调查发现,滕州和兖州的小麦秸秆全部还田,玉米秸秆在兖州的所有调查农户中全量还田,滕州67%农户进行还田,而且还田量不同(表1)。与不还田农户相比,还田农户的耕地次数增加,以便把粉碎秸秆彻底翻到土壤里面。由于技术推广,兖州有24%农户采用免耕措施。

2.2净减排效应

保护性耕作措施中,秸秆还田和免耕都能促进土壤固碳(图1)。滕州只还田小麦秸秆的方式,固碳速率达到503 kgC/(hm2・a);还田量增加导致固碳速率增大,当玉米秸秆全量还田,固碳速率增加了100%。由于产量差异不大,因此在不同地区或不同耕地方式下,秸秆全量还田下的固碳速率没有差异。兖州少量农户采取免耕的方式,固碳速率增加了157 kgC/(hm2・a)。秸秆还田的氮肥替代减排作用的变化趋势与固碳效应相同,在只有小麦秸秆还田条件下,替代减排效应为76 kgCe/(hm2・a),当玉米秸秆也全量还田时,替代减排效应大约为240 kgCe/(hm2・a)。

温室气体排放主要来自于秸秆焚烧和耕地燃油消耗(图1)。玉米秸秆全部焚烧的情况下,温室气体排放约866 kgCe/(hm2・a),随着还田量的增加和焚烧减少,温室气体排放减少。秸秆还田导致耕地次数增加,每增加一次耕地,排放量大约增加15.57 kgCe/(hm2・a)。由于传统耕地一般为2~3次,因此排放范围一般是30~45 kgCe/(hm2・a)。免耕则减少了这部分温室气体排放。

在小麦秸秆全还田、玉米秸秆全部焚烧情况下,温室气体排放量为318 kgCe/(hm2・a)。当玉米秸秆一半还田一半焚烧时,土壤由源变为汇,固定温室气体622 kgCe/(hm2・a)。当玉米秸秆全量还田,吸收固定的温室气体净减排比半量还田增加了1倍。当全量还田结合免耕措施可以吸收温室气体1 459 kgCe/(hm2・a)。

传耕不还:传统耕地+秸秆不还田;传耕半还:传统耕地+秸秆半量还田;传统全还:传统耕地+秸秆全量还田;免耕全还:免耕+秸秆全量还田;此处还田指玉米秸秆还田情况,小麦秸秆在所有农户全量还田。下图同。

2.3经济成本

保护性耕作措施中不同耕地方式导致耕地成本发生变化。随着秸秆还田量的增加,耕地次数增加,成本也上升(图2)。在传统耕地条件下,玉米秸秆不还田时,小麦耕种成本为1 110 CNY/(hm2・a)。滕州半量还田和全量还田时的成本分别增加8%和34%。兖州农户采取免耕全还措施时,与当地采取传耕全还的农户相比,成本下降了32%,为1 050 CNY/(hm2・a)。

3结论与讨论

滕州和兖州的保护性耕作主要模式是小麦秸秆还田免耕直播玉米(100%),次之是玉米秸秆还田耕地播种小麦(72%),采用玉米秸秆还田免耕播种小麦的农户最少(13%),这与汤秋香等

图2滕州和兖州不同保护性耕作措施下的耕种成本

(2008)[14]对华北平原的调查结果一致。保护性耕作要求秸秆还田并减少对土壤扰动,然而调查发现为了减少秸秆还田对播种质量和种子萌芽的影响,农户增加耕地次数和强度,这表明只有保证作物产量才能促进少免耕的推广[15]。

保护性耕作的目标在于减少作业次数,提高养分含量和节约经济成本[18]。本研究两地区秸秆还田促进耕地次数和强度的增加,这导致耕地成本增大,违背了保护性耕作的原则。因此在保证产量的基础上,可以激励农户采取秸秆还田结合少免耕的保护性耕作模式[19]。

合适的保护性耕作能促进土壤固碳,减少温室气体排放[16]。秸秆还田能直接提高土壤有机碳和养分的含量[5],秸秆含有氮素可替代化学氮肥,这样就减少了氮肥生产的温室气体排放[11]。免耕一方面通过减少土壤扰动和微生物的分解,发挥固碳作用[1],另一方面减少了燃料的消耗,意味着减少了燃油的温室气体的排放[17]。

本研究表明,在玉米秸秆全部焚烧和进行传统耕地条件下,农田表现是温室气体的排放源。而在全量还田结合免耕条件下,农田可以吸收固定温室气体1 459 kgCe/(hm2・a),而且成本降低了32%,因此全量还田和免耕相互结合的保护性耕作模式是一项经济且环境友好的管理措施。

致谢:本研究在调查期间,得到了山东农业大学农学院马尚宇博士的热情帮助,特此致谢。

参考文献:

[1]Kahlon M S, Lal R, Ann-Varughese, M. Twenty two years of tillage and mulching impacts on soil physical characteristics and carbon sequestration in Central Ohio[J]. Soil and Tillage Research, 2013, 126: 151-158.

[2]农业部. 全国农作物秸秆资源调查与评价报告[J]. 农业工程技术:新能源产业, 2011(2):2-5.

[3]曹国良, 张小曳, 王亚强,等. 中国区域农田秸秆露天焚烧排放量的估算[J]. 科学通报, 2007, 52(15): 1826-1831.

[4]Abdalla M, Osborne B, Lanigan G, et al. Conservation tillage systems: a review of its consequences for greenhouse gas emissions [J]. Soil Use and Management, 2013, 29(2): 199-209.

[5]韩传晓, 刘树堂, 王圣健, 等. 生物秸秆对番茄产量品质及土壤养分状况的影响[J]. 山东农业科学, 2013, 45(5): 78-81.

[6]Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland [J]. Global Change Biology, 2009, 15(2): 281-305.

[7]张锋, , 张凤云, 等. 玉米秸秆还田对不同类型小麦产量和品质的影响[J]. 山东农业科学, 2011(3):30-32,36.

[8]Six J, Bossuyt H, Degryze S, et al.. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil and Tillage Research, 2004, 79(1): 7-31.

[9]褚鹏飞, 于振文, 王东, 等. 耕作方式对小麦开花后旗叶水势与叶绿素荧光参数日变化和水分利用效率的影响[J]. 作物学报, 2012, 38(6): 1051-1061.

[10]Lu F, Wang X, Han B, et al. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model [J]. Ecological Applications, 2010, 20(3): 634-647.

[11]李京京, 美国能源部项目专家组. 中国生物质资源可获得性评价[M]. 北京:中国环境科学出版社, 1998.

[12]逯非, 王效科, 韩冰, 等. 中国农田施用化学氮肥的固碳潜力及其有效性评价[J]. 应用生态学报, 2008, 19(10): 2239-2250.

[13]孙善彬, 李俊, 陆佩玲, 等. 小麦植株在麦田CH4交换中的作用及光照的影响[J]. 中国生态农业学报, 2009, 17(3): 495-499.

[14]汤秋香, 李少昆, 谢瑞芝, 等. 保护性耕作农户认知情况调查分析[J]. 作物杂志, 2008, 42(2): 88-89.

[15]戴晓琴, 李运生, 欧阳竹. 华北平原农户对免耕种植小麦的认知及态度 [J]. 耕作与栽培, 2009(1):53-54.

[16]Lal R. Soil carbon sequestration impacts on global climate change and food security [J]. Science, 2004, 304(5677):1623-1627.

减少温室气体的措施篇(2)

(一)对墙体采取保温隔热措施

外墙按其保温所在的位置分类,目前主要有:外保温外墙、内保温外墙、夹芯保温外墙、单一保温外墙四种类型。这四种类型的外墙保温既能改善室内热环境,降低建筑造价,又起到节能、环保、利废的效果。

(二)门窗的节能措施

门窗是装在墙洞中可开启的构件,通过门窗的传热和门窗与墙体之间的缝隙渗透进来的耗热量很大,因此门窗是建筑节能的根本之源、重中之重。

1.合理控制窗墙面积比。窗墙面积比是指住宅窗口面积与房间立面单元面积的比值,窗户的传热系数一般大于该朝向的外墙的传热系数,采暖耗热量会随着窗户的传热系数增大而增大,因此对不同朝向的住宅窗墙比《居住节能设计标准》作了严格的规定。因此,从地区、朝向和房间功能出发,应选择适宜的窗面积来减少热量的损失。

2.提高外门窗的气密性,减少空气的渗透量。减少室外的冷热空气渗入室内的一个非常重要的措施就是提高外门窗的密闭性,可提高门窗框的尺寸准确性、尺寸的稳定性,以减少门窗开启缝隙的宽度;还可以在门窗与墙体的缝隙之间嵌入密封条,减少室外空气的渗入;或者在门窗框与墙体的缝隙之间用保温材料填充,提高气密性。

3.使用导热系数小的新型材料,改善门窗的保温性能。一是提高热工性能,可采用新型的导热系数小的保温材料制作的节能门窗。二是采用断桥窗户,可采用导热系数小的截断窗框的热桥制作成。三是利用框料内的空气腔室,单层玻璃本身的热阻很小,在寒冷地区可采用双层或三层玻璃。

(三)屋顶的节能设计

屋顶耗热量大于任何一面外墙或地面的耗热量,约占整个住宅建筑耗热量的9%左右。因此,提高建筑屋面的保温隔热能力,可以减少室外冷热空气对室内的影响,有效改善室内的温度环境。

1.高效保温材料保温屋面。这种屋面保温层为实铺,屋面保温层采用轻质高效的保温材料。我国现在主要使用的保温材料有挤塑聚苯板、聚苯板、岩棉板等,这些保温材料均为轻质材料,均可提高屋面的保温隔热作用,减少室外冷热空气对室内的影响,改善室内的温度环境。

2.架空型保温屋面。在屋面上面加设空气层,冬季可以增加屋面的保温功效,夏季可以有效阻隔房间的热量。

3.倒置型(外)保温屋面。外保温屋面,就是把保温层置放于防水层上面,这样做起到了保护的作用,使防水层不受外界气候和环境的老化影响,增加使用年限,也不易受到外界的机械损伤,当然这些保温材料必须保证防水和耐气温性能好。

4.隔热屋面。可采用砖、混凝土材料架空混凝土板做通风层;兜风隔热屋面在两端开口形成兜风散热;利用顶棚与屋面间的空间起到架空通风层的同样效果,这几种措施均能提高屋顶的隔热能力,起到节能作用。

5.种植隔热屋面。利用屋顶种植栽花,甚至灌木,堆假山形成一种生态型的节能屋面,这种屋面隔热保温性能优良,已经逐步被广泛利用。

6.蓄水隔热屋面。利用屋面蓄积的水层,从而能将热量散发到空气中,减少了屋顶的吸热,从而达到了隔热作用,水在冬季还起到了保温作用。

(四)采暖节能设计

促进辐射热进入室内,保证开口的方向和开口面积,并且要保证开口对热线透明度的问题;为了可以使背阴的一面也能接受到太阳辐射,可通过反射太阳光来提高太阳能的密度,例如在建筑的北侧设反射面,使北侧房间也能得到太阳的辐射;抑制辐射热从表面和窗洞口部分的热损失;适当增加屋顶和维护结构的热容量,可以减小室内温度随外界气温变化的变化。

(五)采光与照明节能设计

现代的建筑采用了大量的玻璃结构设计,这样可以使室外的光线进入室内,有效利用天空光,减少照明用电,减少能源浪费。但是天空光极为不稳定,且光污染会带来损害,这样就出现了自动照明控制系统,可提高采光的均匀度及营造一个良好的视觉环境,又可减少资源的消耗,降低维护费用,带来极大的社会效益和经济效益。

减少温室气体的措施篇(3)

没有哪种单一的技术能够在某一领域充分挖掘减缓战略的潜力。只有我们适时地采用合适的政策,消除障碍,才能实现减缓战略的经济潜力(通常要大于减缓战略的市场价值)。政府可以采用很多政策措施和工具来刺激减缓工作的开展,例如进行监管和设立标准,施加税费,引入交易许可证,进行财务激励,签署自愿性协议,利用信息工具和开展研发工作等,这些办法的可行性取决于国家环境和相关领域的现状。同时,生活风格,行为方式和管理方法的变化也能为所有领域的气候变化减缓战略作出不小的贡献。

减少温室气体的措施篇(4)

中图分类号 S511 文献标识码 A 文章编号 1007-7731(2016)01-54-02

气候变化是当今全球面临的重大挑战,人类社会生产生活引起的温室气体排放是全球气候变暖的主要原因,大气中CO2、CH4和N2O是最重要的温室气体,对温室效应的贡献率占了近80%。随着全球对气候变化的关注度越来越高,农业源温室气体排放成为全球温室气体研究的又一个热点。本文以巢湖典型圩区稻田为研究对象,通过分期监测稻田温室气体甲烷排放,研究不同施肥处理方式下稻田温室气体甲烷的排放规律,综合不同施肥处理方式对水稻产量的影响,寻求减少农田温室气体排放量的方法与措施,以助于为温室气体减排、改善人类生存环境、维护生态均衡以及减少气候变化预测的不确定性提供理论依据。

1 材料与方法

1.1 研究区概况 实验时间为2014年5~10月,实验地位于安徽巢湖市西宋村。巢湖圩区所在的长江中下游地区,是受季风影响的典型亚热带地区。本研究在巢湖湖滨设置试验田,以大田条件下的稻田为研究对象,按“淹水―中期烤田―淹水”种植普遍采用水分管理模式。

1.2 实验设计 实验处理施肥情况,分为有机无机混合处理(优化施肥)、施用有机肥(常规施肥)、空白(对照)项不同实验处理方式。本项目以采用固定箱-气相色谱法来采集、测定稻田中的温室气体,以得到控制主要温室气体的排放通过对CH4、N2O和CO23种典型温室气体排放的长期连续观测,分析稻田温室气体排放的时间变化规律;并结合环境参数的分析测试和记录,探讨各个影响因子特别是灌溉及降雨引起的干湿交替以及施肥管理等对温室气体排放的影响,以期完善稻田温室气体排放研究。

1.3 研究方法 温室气体排放(吸收)通量测定采用的方法是“静态箱-气相色谱法”,工作原理是用特制采样箱罩在一定面积的土壤及其植物上方,并隔绝箱内外气体的自由交换,测定箱内空气中被测温室气体随时间的变化,并据此计算得到该气体的交换通量。计算公式如下:

F=ρ×H×C/t×273/(273+T)×106

式中:F为温室气体排放通量,单位为mg・m-2・h-1,ρ为标准状态下温室气体的密度,单位为kg・m-3,H为密闭箱高度,单位为m,C/t为单位时间密闭箱内温室气体浓度的变化量,一般气体浓度以体积比计,所以此项单位为h-1,T为密闭箱内温度,单位为℃。

2 结果与分析

2.1 不同施肥处理方式对水稻生长季甲烷排放通量的影响 试验结果如图1,在不同施肥措施的处理下,稻田的甲烷排放量规律性基本一致,其季节生长排放规律呈现“三峰型”,第一个峰值出现在7月12日前后第一次施肥过后;第二峰值出现是在烤田前后;第三个峰值在水稻移栽后2个月左右施入穗肥后。

由此可知,巢湖地区单季稻田的甲烷排放主要集中在第一次施肥过后、烤田前后、施入穗肥后。在孕穗期的时候由于追肥的原因,土壤中甲烷菌的基质比较多,并且在这段时间降水较多,水稻田内甲烷氧化菌的活性不足,故甲烷的排放量在这一时期仍让处于较高的状态。

2.2 不同施肥处理方式对单季稻田甲烷排放总量的影响 如图2所示,单季水稻田甲烷排放总量次序为:常规施肥>优化施肥>空白。在不影响水稻产量的情况下,优化施肥处理的甲烷排放总量相比于常规施肥处理减少了27.1%。由此可见,优化施肥对于减少水稻田甲烷的排放是一种很好的减排措施,对减少大气中的甲烷排放具有重要意义。

2.3 不同施肥处理方式对水稻产量的影响 由图3可以看出,常规施肥和优化施肥的水稻产量远远高于空白处理的水稻产量,且优化施肥相比于常规施肥其产量基本一致,在保证水稻产量不减的情况下优化施肥可对水稻田甲烷减排27.1%。

3 结论与讨论

(1)巢湖地区的单季稻田的甲烷排放主要集中水稻生长的分蘖和孕穗扬花期,在水稻分蘖期是甲烷排放速率达到最高峰。在孕穗期的时候由于追肥的原因,土壤中甲烷菌的基质比较多,并且在这段时间降水较多,水稻田内甲烷氧化菌的活性不足,故甲烷的排放量在这一时期仍让处于较高的状态。因此对甲烷减排研究有重要作用。

(2)单季水稻田甲烷排放总量次序为:常规施肥>优化施肥>空白。由此可见优化施肥对于减少水稻田甲烷的排放是一种很好的减排措施,对减少大气中的甲烷排放具有重要意义。

(3)优化施肥相比于常规施肥其产量基本一致,在保证水稻产量的情况下优化施肥可对水稻田甲烷减排27.1%,对甲烷减排有积极作用。

参考文献

[1]黄耀.地气系统碳氮交换:从实验到模型[M].北京:气象出版社,2003.

减少温室气体的措施篇(5)

设施园艺实现了可调控内部环境因子量值、改善内部作物生长环境的小型人造“温室效应”,打破地域、气候、环境差异,创造作物正常生长的环境载体。通过配套设备或设施分别调控与控制各个环境因子(温度、光照、水分、气体、土壤、生物)的量值幅度与状态,给作物提供最佳的适宜生存环境,以达到市场供求及个别需求,实现经济收益。

1温度环境调控

温度是影响作物生存和生长发育的主要环境因子之一。作物从萌芽到成熟的各个生长发育阶段,体内一切生理生化过程,都有一定的“三基点”温度要求 。根据作物对温度的不同要求,分为耐寒性、半耐寒性、不耐寒性等3类作为温度管理的主要依据。在设施栽培中,目前主要推广的是棚室四段变温管理,即把一昼夜24h分成4个阶段,上午、下午、前半夜和后半夜。上午以促进作物的光合作用为目标,进行高温管理;下午和前半夜温度逐渐降低,以便把光合产物运送到各个器官;后半夜在保证作物正常生长的前提下,进行低温管理,防止消耗更多的养分。

1.1温室加温

冬季,温室内部温度受到室外自然环境的影响而降低,可能降至作物生长温度最低基点以下,若不及时采取加温措施,将很难维持作物正常生长所要求的温度环境,因此需要加温。一是空气加温。常用的主要有热水供暖系统和热风供暖系统。前者主要热媒为水,介质热容量较大,系统热稳定性较高,适应范围较广;后者热媒为空气,介质热容量较小,热稳定性较低,适用于短时间补充热量,用以短期维持室内空气温度保持相对稳定或提高。二是土壤加温。多采用土壤下埋入电热线和埋设酿热物。前者又称电热温床,使电能转化成热能,实现土壤温度的自动调节,保温效果好,设备简单,用途广泛。后者温室土壤下面埋1层酿热物,既能提高地温(10cm深土层温度提高1.5~2.0℃),又能补充二氧化碳,从而提高作物产量。

1.2温室降温

温室的降温在夏季尤为重要,降温的措施主要有:一是通风换气,包括自然通风和强制通风;二是遮阳降温,主要包括设置内、外遮阳幕系统、采用布织布覆盖、温室透明屋面涂刷半透明涂料等;三是蒸发降温,主要包括湿帘降温和空气加湿降温。

1.3温室保温

有效的保温措施可以减少热损失,在节省能源的同时,保持作物正常生育所要求的环境温度。保温措施主要有:改善温室结构形式和结构材质,提高自然光的透光率和采光量,如园艺“LY-Ⅰ型”蓄热保温墙体的应用等;选用透光率高、导热性差的透明覆盖材料;设置室外辅助保温层、内保温幕和多层覆盖技术(比单层棚膜提高10~12℃),提高散热面热阻,降低向外的长波辐射率;选址适当,避免在冬季多风、风大的风口附近建造温室。

2光照环境调控

作物全部干物质产量的90%~95%均来自于光合作用。因此,设施光环境直接关系作物生命及其干物质产量和品质,是一种基础环境。它包括光照强度、光照时数、光质、光照分布等。不同植物所要求的光照强度和光照时间不同,前者分为强光照、弱光照、中光照植物;后者分为长日照、短日照、中日照植物,光照强度和光周期性反应是进行光照条件管理的主要依据。在设施有限的空间中,在自然光照形成的设施光照环境基础上,进行对室内光照条件适当地限制、补充和有目的地调节与控制,可以在充分利用自然光照条件的前提下,营造有利于作物生长全过程的良好光照环境,能够使温室周年生产各种不同的园艺作物,满足市场供应或其他需求。一是光照强度调节。进行科学合理的规划与棚、室设计,如选择合适的建筑方位、合理的温室结构、适宜的透光覆盖材料、减少结构和设备的遮阳率等。二是光质调节。根据作物对光质的要求,选择透射的光谱波段应有益于该种植物生长与开花结果的材质。如紫色膜对紫外光、紫光透过率高,有利于茄子果实的着色和提高品质。三是人工补光调节。分为人工光周期补光和人工光合补光。前者是对长光性作物正常发育采用的人工延长日照时间的措施,如安装荧光灯和钨丝灯;后者是作物自然光照强度不足而采用人工光源补充光合能量不足的补光措施,如安装农艺钠灯、荧光灯或张挂聚酯反光幕、覆盖银黑色地膜。四是遮光调节。包括光合遮光调节和光周期遮光调节。强光和高温会降低光合速率,抑制光合作用,采用有一定遮光率的遮光材料,减弱光照强度,有效降低温度,提高光合作用速率。短光性作物并不需要日照时间过长,需要用周期遮光的措施延长暗期,缩短日照时间,以利发育良好或提早开花、促进早熟。

3水分环境调控

水是构成并支撑植物体的主要组成部分,占植物总质量的80%~95%,园艺产品尤甚。设施的水分环境,由土壤水分和空气湿度共同构成,二者只有协调管理,才能充分满足作物生长发育的要求。不同生长发育时期对水分条件要求:种子发芽期,需要足够大量的促进种子贮藏物质的转化和原生质的生命活动,以利胚根伸出并向胚胎供足水分;幼苗生长期,根系弱小,保持土壤湿润,过高的土壤湿度造成植株徒长或烂根;营养生长期,处于茎叶生长盛期,需水量大,对土壤含水量和空气湿度要求高,但湿度也不可过高,易引发病害;开花结果期,对环境水分要求比较严格,土壤水分足以维持正常的新陈代谢,不可缺水,否则导致生长发育不良或落花。空气湿度宜低,利于开花授粉。果实膨大要求土壤水分充足[1,2]。一是土壤水分调控。土壤水分的调控目的,是满足不同作物对水分的不同要求,根据不同生长期调节灌溉水量和灌溉次数。如采用滴灌、微喷灌、膜下沟灌等。二是空气湿度的调控。降低空气湿度采用:通风换气,是实现棚室内外空气交换、将温室内湿度较高的空气排除、降低室内空气湿度的办法,有效调节设施环境湿度,如通风口开启等;加热降湿,通过加热提高室内空气温度从而降低空气相对湿度;减少水分蒸发,通过采用膜下滴灌、微喷灌等节水灌溉措施,节水、减少水分蒸发量,降低空气相对湿度。增加空气湿度,如冬季供暖系统导致空气相对湿度过低,采用灌溉、微雾喷灌,增加地表水分,提高蒸发量。

减少温室气体的措施篇(6)

近几年来,新建、扩建的居住建筑与公用工程才开始有建筑节能措施,原来既有建筑没有墙体保温、没有屋面保温、开窗面积大、采用普通玻璃窗等,没有考虑建筑节能技术措施的应用,其保温隔热性能差,设备系统效率低,存在能耗大、热舒适性差的显著不足,这已经不能满足经济、社会和生态环境可持续发展的要求[1]。我国既有建筑的总保有量保守估计至少有400亿m2,大量的既有建筑在采暖季节和空调期间不断浪费能源的同时,向大气中排放着二氧化碳等污染物,加剧了温室效应,人类的生活环境进一步恶化。在我国日益面临资源能源紧张的形势下,既有建筑的节能改造就意味着对资源能源的大量节约和环境污染的减少,这是建设“资源节约型,环境友好型”的国家发展总体战略在建筑领域的具体体现[2]。对既有建筑进行节能改造,既能减少能源资源的浪费,又能提高居住环境与改造建筑立面效果,达到美化城市的目的,是我国当前紧迫的、必须尽快解决的重大问题,因此,既有建筑节能改造技术策略研究,具有较强的理论意义和实践价值。但是,既有建筑节能改造的特点在于建筑物已经存在并正在被使用,许多改造措施均受到不同因素的限制,在节能改造中要充分考虑既有建筑的使用功能、改造的经济效益以及对使用者的正常干扰影响等。基于既有建筑节能改造的特点和难点,较经济可行的节能改造部位主要为屋面、门窗、墙体、外墙遮阳等部位,其相应的节能改造措施如下:

1.屋面节能改造措施

屋面直接与外界接触,呈水平状态,受太阳辐射时间长、面积大,是影响屋面节能的主要因素。太阳光照射到屋顶外表面时,部分被反射掉,部分被屋顶表面吸收,当屋面吸收系数越大,对室内的温度影响越大,所以对屋面的改造措施是增加保温层(包括平改坡),表面采用浅色反射隔热涂层,屋面节能改造措施具体阐述如下:(1)既有建筑物不管是平屋面还是坡屋面,大部分均未设置保温层,在不改变屋面样式的前提下,可直接增加保温层措施,这样改造施工方便,成本也较低。增加保温层做法一般可分为以下两种:①当原有屋面构造基本完好时,改造采用倒置式屋面。倒置屋面能够有效防止保温层内部结露,保温隔热效果好,还能延长防水层使用寿命。其做法是(从下往上):原结构及防水层、增加隔离层、增加保温层、增加隔离层、增加保护层。保温材料通常采用不吸水挤塑聚苯板,保护层采用混凝土,表面涂反射隔热涂料。②当原有屋面构造损坏时,改造采用正置式屋面。相较倒置屋面防水层隐蔽,一旦出现渗水,漏点难找,修补费用高,正置屋面操作简单,保证程度高,维护费用低,渗漏治理简单,仍是屋面构造最佳选择之一。其做法是(从下向上依次):原结构及防水层、增加保温层、增加隔离层、增加找坡找平层、重做防水层、隔离层、保护层。屋面隔热保温层常选用珍珠岩、水泥聚苯板、加气混凝土、陶粒混凝土、聚苯乙稀板(EPS)等材料。保温材料吸水性要求低,如果吸水,保温隔热性能大大降低,所以防水层要求高,防止水份的渗入,保证隔热层的干燥。(2)当原有屋面已为坡屋面但无保温层时,也可以通过在坡屋面板下增加吊顶,在吊顶上加铺轻质保温材料的措施达到保温隔热的效果,轻质保温材料常采用XPS、岩棉板等。但这种改造措施效果不如上面两种措施。(3)当原有屋面为有保温层的平屋面,但保温性能较差时,可以采取将平屋面改为坡屋面或斜屋面的措施即平改坡,同时还可以利用“烟囱效应”原理,把屋面做成屋顶檐口与屋脊通风或老虎窗通风,达到通风散热效果。具体的平改坡一般分为三种情形:情形一为在原有平屋顶上增加一个坡屋顶,保温层不变仍由平屋面承担,坡屋面主要解决防水问题。这种方案实施起来比较简单,对下层住宅影响较小。情形二为拆除原有的平屋面,重新做成坡屋面。此方案实施难度大,对下层住户影响较大,条件不满足时不宜采取。情形三是将原平屋面改造成楼板,增加新的坡屋面,防水、保温由坡屋面承担,利用新的坡屋顶的三角形空间形成阁楼。此方案改造成本稍微增加,但可以增加建筑面积,条件可行的话此方案应作为首选改造方案。(4)在外界条件允许的情况下,改造的屋面还可以采用反射隔热涂层,把屋面颜色做白色或浅色处理。夏季,反射太阳光,阻止室外远红外热进入室内,节约制冷费用;冬季,它对室内热源所发的远红外线,反射回室内,从而节约取暖费用。(5)屋面节能改造还有个有效措施就是平改绿,即改造为种植屋面。种植屋面作为一种有效的节能环保措施,正越来越被重视,但种植屋面增加要考虑既有屋面荷载的承受能力以及构造要求,种植土可选用保水保肥性能优良的轻质营养土,植物可选用耐干旱、喜光的花草。同时还应做好防风固定措施,以减少风对种植屋面的影响。种植屋面的改造只要能够按照相关规范要求进行施工就能达到理想效果,作为屋面节能改造措施也是最佳选择之一。

2.墙体节能改造措施

外墙约占整个建筑物护结构总面积较大,通过外墙传热量的总耗热量也大,外墙的热工性能对室内的舒适影响也大。墙体节能主要有外墙自保温、外墙内保温、外墙外保温三种。既有建筑的外墙体不能拆除,采用外墙自保温改造措施一般不可行。将外墙的绝热层设在建筑内侧,会占据一定的建筑使用面积,而墙面上也难以吊挂物件,同时在施工阶段会影响室内住户的正常生活,因此,在节能改造中外墙内保温技术较少使用。所以,墙体节能改造最佳的措施为增设外墙外保温。外墙加外保温层,阻隔了热量通过墙体向外散热的通道,有利于防止或减少保温层内部产生水蒸气凝结,能够保护主体结构,大大减少温度应力变化,能有效地防止墙体开裂,提高围护结构的耐久性。而且在外保温施工时,也不会影响住户的日常生活,不会减少室内的居住面积,并阻断冷桥,提高了供热效果,改善室内热舒适度。外墙外保温就成为最佳的改造技术措施。外墙外保温节能改造(从内向外依次):内饰及墙体、粘结层、保温层、防护层、饰面层。保温层常用做法有:聚苯乙烯泡沫塑料板薄抹灰外墙外保温系统、胶粉聚苯颗粒保温浆料外墙外保温系统、喷涂硬泡聚氨酯外墙外保温系统等,结构如图2。外墙外表面尽量采用浅色配套专用底漆和柔性外墙腻子。反射隔热涂料与建筑外墙保温系统配合使用,能有效地反射、阻隔太阳光红外线的发热光波,既有装饰效果,又有保温隔热功能和防火阻燃功能。顺应了社会低碳环保的发展需要,以增加改造效果。

3.外窗节能改造措施

既有建筑透明窗户绝大部分,采用密封性能较差的单玻钢窗、塑窗、铝窗;公共建筑的透明部分大面积采用了未做任何保温隔热措施的玻璃幕墙。设计师在以往的门窗设计中,追求大、通、透,很少考虑节能要求,居住建筑中的窗墙比一般都超过30%,而公共建筑的窗墙比则较多超过60%,窗户是围护结构中热工性能较差的部分,外窗在整个建筑围护结构中是最薄弱、最敏感的部位,窗户能耗约占建筑能耗权重中所占比例为最大,热量能够轻易通过外窗进出室内外,夏天强烈的太阳辐射也容易影响室内空气温度,因此对外窗的改造是整个改造的重点之一[3]。外窗改造一般有更换窗材料和原有窗改造两种方式。(1)更换窗材料当钢窗、木窗、铝合金窗的原窗损坏时,拆掉原窗,重新安装节能型窗。门窗材料具体有铝合金断热型材、铝木复合型材、钢塑整体挤出型材以及UPVC塑料型材等一些技术含量较高的节能产品。为了解决大面积玻璃造成能量损失过大的问题,将普通玻璃加工成中空玻璃、镀膜玻璃、高强度Low-E低辐射镀膜玻璃、Low-E中空玻璃、采用磁控真空溅射放射方法镀制含金属层的玻璃以及最特别的智能玻璃。(2)原有外窗改造当原窗为塑料窗,可拆换窗扇压条,改造成中空玻璃窗扇;当原窗为铝合金窗时,可加大窗扇玻璃槽口,将窗扇改造成中空玻璃窗扇。在原有外窗的外窗台或内窗台再加设一扇窗户,可以是普通铝合金窗或节能窗,形成双层窗,之间有一定间距的空气层,达到保温效果。还可在原外窗上加密封条,如三元乙丙密封条或热弹性体密封条,来提高外窗的气密性;以及减少窗户面积,增加墙体面积,以提高节能效果。

4.遮阳改造措施

遮阳可分为室内遮阳和室外遮阳。室内遮阳,可使用镀膜窗帘,冬季,镀层使热量在室内循环以减少供热用能;夏季,可防止强烈的太阳辐射而减少制冷用能,室内挂窗帘既方便又有装饰效果。但对于冬季采暖能耗不降反升,室内遮阳因低垂的窗帘挡住了光线,不是最好的选择。室外遮阳,在夏季,可将全部的太阳直射辐射和部分的散射辐射能量阻挡在室外,可显著降低室内空调能耗和负荷;在过渡季节自然通风状态下,建筑外遮阳也可以控制进入室内的太阳辐射能量,使室内热舒适度保持在合适的水平,避免使用空调。室外遮阳又可以设置成固定式和活动式。由于固定外遮阳会遮挡冬季太阳辐射的进入,所以,目前宜采用活动式外遮阳,夏季外遮阳进行隔热,冬季时可将其移离窗口,避免外窗的遮阳对太阳辐射的阻碍[4]。常用的活动式外遮阳有:(1)旋转平板式遮阳,每年只需调节两次,天热前放平,天冷前向上转为垂直,靠墙安置。通常这种装置可以用手操作。(2)室外卷帘,由钢条制成,十分牢固,白天可以遮阳,夜间还可作安全防盗网。对东、西方向的窗户,也比较适用,可以半天放下卷帘,半天打开卷帘。(3)自动卷帘式遮阳装置,是目前最先进的。

5.其他改造措施

(1)室外硬地的改造在部分人行道、室外停车场和部分路面,采用草地砖,室外水泥地面改造为可透水、储水的地面。使硬质地面将吸收到的太阳辐射热尽快尽多地向下传递,从而降低地面反射到建筑立面的热量。(2)用能系统改造积极采用太阳能热水系统、太阳能光伏系统、地源热泵系统等可再生能源。

6.结语

该文总结了既有建筑节能改造的技术措施主要包括外窗改造、遮阳改造、屋面改造、外墙改造、其他改造等,具体采取何种措施需根据当地地区的气候特点和大多数既有建筑的现状情况灵活运用。但在所有的节能改造措施中,外窗的节能改造最为明显,可作为首选措施,其次为外墙、楼梯间、遮阳和屋顶等,建议以窗改为主、加装遮阳、适当综合。既有建筑节能改造技术措施以夏季隔热为主,兼顾冬季保温。节能改造前应对建筑物进行现场勘查和评估,对主体结构不符合相关标准规定的既有建筑,还要进行结构加固。对改过方案采用模拟效果计算,对不同的方案经济指标对比,坚持因地制宜、合理适用,充分考虑地区气候特点、建筑现状、居民用能特点等因素基础上,确定出最安全、最方便、最经济、最环保的节能改造方法。

参考文献

[1].吴大江,张宏.既有居住建筑的节能改造[J].室内设计与装修.2010(09)

[2].杨柳.既有居住建筑综合节能改造施工特点及施工技术[J].科技创业家.2013(10)

减少温室气体的措施篇(7)

中图分类号:F124.5 文献标识码:A 文章编号:1005-2674(2012)04-086-05

一、引言

人类社会进入后工业社会阶段,发达国家的工业化和城市化基本完成,以大量耗费能源发展经济的模式逐步被抛弃,低消耗、低排放、低污染的低碳发展,已经成为全球应对气候变暖问题和解决人类社会发展与环境矛盾的首选模式。低碳经济是继农业文明、工业文明之后的人类文明史上的又一次重大发展。2009年哥本哈根全球气候变化会议后,这种经济模式已经得到了国际社会的广泛认同。各国政府特别是西方发达国家政府,通过各种方式和途径,努力推进低碳化,力争抢占低碳技术的领先地位。低碳经济的实质是提高能源利用效率,减少温室气体排放量,降低对化石能源的依赖,改善生态系统的自我调节能力,维持生态系统平衡。其目标是降低和控制温室气体排放量,减少大气污染,改善生态环境,避免气候发生灾难性变化,从而实现经济社会可持续发展。

中国是一个经济高速增长的国家,环境污染相当严重,与其他国家相比,中国的温室气体排放量比较大,虽然作为一个发展中国家没有降低碳排放的国际要求,但是出于环境保护的目的,中国政府也积极向国际社会承诺降低碳排放。据国际能源机构(IEA)估计,如果不进行任何控制,到2030年中国的二氧化碳排放量将达到114亿吨,为此中国政府承受着巨大的压力。中国政府承诺到2020年,单位GDP的二氧化碳排放量比2005年降低40%~45%。要实现这个目标,需要我们制定科学的政策,实施有效的措施。在制定中国发展低碳经济的各种政策时,首先需要认真学习和借鉴发达国家的做法,汲取他们的经验。

二、发达国家低碳经济发展规划和策略

(一)发达国家发展低碳经济的战略性规划

自2003年英国提出低碳经济概念以来,英国、德国、日本、加拿大、美国等发达国家相继提出了发展低碳经济的战略目标。这些战略目标虽然各不相同,但是,基本方向是一致的,就是要达到降低能耗,减少温室气体排放,发展新能源产业,实现向低碳经济的转变。为了发展低碳经济,发达国家还制定了相应的政策,这些政策的重点概括起来就是开发低碳技术,发展清洁能源,改造传统产业,以便降低温室气体的排放量。

英国在2003年了《我们能源的未来:创建低碳经济》,在2008年了《气候变化法案》,使其成为世界上第一个为减少温室气体排放、适应气候变化的具有法律约束性长期框架的国家。2009年7月15日,颁布了《英国低碳转型计划》白皮书。英国在《我们能源的未来:创建低碳经济》中提出,到2050年将英国二氧化碳排放量消减60%。《气候变化法案》提出到2050年在1990年的基础上减少80%的温室气体排放,到2020年的中期目标是减少34%的排放。德国在2008年制定了《可再生能源法》。其后,又制定了《可再生能源供暖法》等法律法规。《可再生能源法》把风能作为发展的重点,尤其海上风能。《可再生能源供暖法》规定,德国积极促进可再生能源用于供暖,计划到2020年将可再生能源供暖比例提高到14%(2006年为6%)。

日本政府为了达到低碳社会目标,制定了详细的“低碳社会行动计划”(2008年),公布了《绿色经济与社会变革》(2009年)政策法案,对高排放、高污染的工业进行整顿,提出了减少温室气体排放的具体措施,推动低碳社会建设。日本把节能技术和低碳能源技术创新作为重点,对可以大规模降低温室气体的捕捉和封存技术进行大力扶持。政府继续投资化石能源的减排技术研发和推广应用,特别是投资燃煤电厂的烟气脱硫技术,确保日本形成国际领先的脱硫环保技术。

澳大利亚在2008年了《减少碳排放计划》政策绿皮书。提出了减排计划目标:2050年达到2000年气体排放的40%。计划2020年可再生能源比重要达到全部电力的20%。计划7年投资5亿澳元,重点用于热能技术升级与太阳能开发利用。计划建立一个全球碳捕集与储存中心。

(二)发达国家低碳经济的财政政策

为了促进低碳经济的发展,建设低碳社会,发达国家在进行战略规划的同时,还制定了相应的政策措施。在所有的政策措施中,制定和实施鼓励低碳产业发展的财政税收政策,是十分重要的举措。在财政政策中,支出政策和收入政策是其两个主要方面,二者的方式不同,但目的是一样的。其内容主要是财政投入政策、补贴、政府采购、税收政策等。

减少温室气体的措施篇(8)

以日光温室为代表的设施蔬菜,是我省冬季蔬菜的主要组成部分,应强化以下几个方面的管理措施,提高设施蔬菜生产能力:

(一)光照管理

光照是冬季蔬菜主要限制因子之一,生产上应采取各种措施增加光照,最大限度的保证棚内蔬菜的光照需求量。

一是选用性能优良棚膜。选用透光率高、流滴性好、耐候性强的EVA膜、PO膜等多功能复合棚膜,注意选购正规厂家生产、信誉好的产品。二是保持棚膜清洁。应坚持清扫棚面,可于每天早晨大棚揭完草帘后,将软布条捆在木杆上,自上而下把塑料薄膜棚面的灰尘和杂物清扫干净。也可以在棚面拴挂无静电布条,布条在棚膜上均匀分布并随风摇摆擦除棚膜上的灰尘和草屑,省时省力效果显著。三是采取人工补光措施。在连阴、寡照情况下,采用LED光源、碘钨灯、钠灯等进行补光效果较好。

(二)温度管理

为防冬季冷风由温室门口吹入室内,最好能建温室的缓冲间。在缓冲小房或出入口进入温室的迎面处吊挂薄膜,防止人员出入温室时冷风直接吹拂室内作物。在日光温室北部顶端通风口下方斜挂一幅塑料薄膜,冬季通风时,室外冷空气则不会直接吹到作物上,有利于作物的正常生长。

深冬季节不透明覆盖物(草苫或保温被)注意“晚揭早盖”,具体方法是:上午拉开草苫后,以日光温室内温度不下降为适宜时间,不宜过早揭苫造成温室内二次降温。下午在温室内温度降至20℃时及时盖草苫,以尽量多保存热量,以应对夜间的热量散失。

(三)肥水管理

1、浇水。冬季要严格搞好水的管理,在12月下旬至1月下旬的深冬季节,一般尽量不浇水,即在12月上中旬应选好天浇透水,在覆盖地膜的情况下土壤水分散失较缓慢。如果深冬期天气好(即阳光充足),作物表现缺水时,可选寒流刚过,天气晴朗的上午,采用膜下滴灌(或微喷灌)或膜下浇小水,以免降低地温。温室灌水宜用地下井水直接灌溉,灌溉的水温不能低于7℃,切忌直接使用河水、水库水和池塘水中的冰冷水灌溉。

2、施肥。深冬季节蔬菜作物生长发育缓慢,需肥少。若追肥,应以腐熟的有机肥和生物菌肥为主,尽量少追化肥。冬季,还可选晴朗天气,配合喷防病药剂进行叶面追肥,可喷施0.3%磷酸二氢钾加0.3%硝酸钙加1%的葡萄糖液。待冬末初春天气转暖后,再适当增加浇水和施肥次数。低温雨雪天气,还可以叶面喷施0.5%氯化钙加1%的葡萄糖液,增强植株抗性。

大力推广“水肥一体化”设备和技术,提高自动化管理水平,促进水肥的科学施用,减少设施内病害的发生蔓延。

(四)气体管理

保护地蔬菜有机肥不足时,可施二氧化碳肥,作物生长需二氧化碳浓度在800×10-6~1000×10-6。同时,在中午气温较高时,打开通风口使空气流通,把保护地内的有毒气体如氨气、乙烯、二氧化硫等放出去,以免蔬菜受气害。

(五)植株调整

冬季蔬菜植株一般长势较弱,特别是遇到异常天气时更明显。注意及早采收果实和适当疏花疏果,以免加重植株负担,导致植株生育更弱,降低抗逆能力。

(六)病虫害防控

为减轻日光温室蔬菜病害发生和蔓延,关键是要尽量降低温室内空气湿度。注意尽量选用粉尘剂或烟雾剂,喷施液体药剂时选择下午喷药。采取黄板诱杀、悬挂杀虫灯等方式,进行无害化虫害防治。

二、加强预测预报,科学应对灾害性天气

风雪、连阴天以及极端低温等灾害性天气,对冬季蔬菜生产影响很大,极易造成减产甚至绝产绝收。应注意加强与气象部门的交流合作,及时灾害性天气的预测预报。同时,采取切实可行的应对措施,把灾害性天气造成的影响降到最低。

(一)应对大风

为预防大风危害,一是要用加布套的压膜绳在拱杆间压紧,并防止压膜绳磨破薄膜。二是大风来临时,可在草苫和外覆膜上面,按东西横向压两根加布套的细钢索,可防止夜间将草苫(连同外覆膜)吹起。三是在大风天将通风口、门口均密闭,防止大风吹入温室,可减少薄膜损害。

(二)应对雪灾

遇到下雪天气,要及早覆盖草苫,草苫上覆盖防雨雪薄膜。要及时清扫积雪,在下雪过程中,有条件的可利用手提式汽油机带动的吹风机吹雪。同时,要事先准备一部分备用立柱,如果雪下得很大,可在距温室前沿3米处加上立柱,以防前屋面上面的雪下滑到温室前部压塌温室。

(三)应对连续阴天

1、提前预防措施。冬季生产中的连续数天阴(雪)天对日光温室蔬菜生产影响极大,为减轻损失,应及时收听、收看天气预报,在连阴(雪)天到来之前,提前喷防病药剂或抗寒剂,并尽量少通风,下午稍提早盖草苫,使温室内积蓄较多热量,还应适当增加保温措施。

2、连阴天期间管理。在连阴天期间,只要天气无雪,可于中午前揭苫,使作物见散射光,如有补光条件可同时开灯补光,午后及早盖苫。若夜间温度低,有条件的则可以适当补温。

3、转晴后的管理。待天气转晴,揭苫时要特别注意防止光伤害,即强光下叶片蒸腾强度大,而低地温影响了根系对水分的吸收,植株得不到水分供应,叶片会很快失水萎蔫,严重时一个中午叶片就会晒焦、干枯。采取的避免措施是逐渐揭苫或揭完苫,若发现植株叶片萎蔫应随即回盖草苫,待植株恢复后再逐步揭苫。揭苫后若发现植株有萎蔫情况,可喷施与室温相同的温水或营养液(0.2%~0.3%的尿素和磷酸二氢钾混合液),也可喷施氨基酸类肥料,既可减轻萎蔫,又能补充营养。

(四)应对极端低温

每年冬季多次发生-15℃以下的极端低温天气,对日光温室蔬菜危害严重。为避免发生冻害,冷空气来临时要堵塞通风口。白天尽量增加透光时间,提高棚内蓄热;夜间加盖覆盖物,加强保温。可利用温室增温燃烧块、电热线、热风炉等,进行人工辅助加温。

三、抓住关键环节,保障露地蔬菜安全越冬

露地越冬蔬菜主要包括大蒜、菠菜等耐寒性蔬菜,生产上注意抓住以下几个关键环节:

1、浇好防冻水,增加抗寒能力。根据土壤墒情,结合植株生长状况,适时浇透越冬水,增强作物抗寒能力。

减少温室气体的措施篇(9)

空调系统的能耗主要有两个方面,一方面是为了供给空气处理设备冷量和热量的冷热源能耗,如压缩式制冷机耗电,吸收式制冷机耗蒸汽或燃气,锅炉耗煤、燃油、燃气或电等;另一方面是为了给房间送风和输送空调循环水,风机和水泵所消耗的电能。

冷热源的能耗由建筑物所需要的供冷量和供热量决定,建筑物的空调需冷量和需热量的影响因素有室外气象参数(如室外空气温度、空气湿度、太阳辐射强度等),室内空调设计标准,外墙门窗的传热特性,室内人员、照明、设备的散热、散湿状况以及新风量的多少等。风机、水泵的输送能耗受所输送的空气量、水量和水系统、风系统的输送阻力影响,风系统、水系统的流量和阻力的影响因素有系统型式、送风温差、供回水温差、送风和送水流速、空气处理设备和冷热源设备的阻力和效率等。针对上述影响因素和商业建筑的特点,商业建筑空调节能的技术措施可归纳为七个方面:减少冷热负荷、提高冷热源效率、利用自然冷源、减少水泵电耗、减少风机电耗、改进气流组织、改善控制。

2 减少冷热负荷

冷热负荷是空调系统最基础的数据,制冷机、供热锅炉、冷热水循环泵以及给房间送冷、送热的空调箱、风机盘管等规格型号的选择都是以冷热负荷为依据的。如果能减少建筑的冷热负荷,不仅可以减小制冷机、供热锅炉、冷热水循环泵、空调箱、风机盘管等的型号,降低空调系统的初投资,而且这些设备型号减小后,所需的配电功率也会减少,这会造成变配电设备初投资减少以及上述空调设备日常运行耗电量减少,运行费用降低。所以减少冷热负荷是商业建筑节能最根本的措施。减少冷热负荷有以下一些具体措施:

2.1 改善建筑的保温隔热性能

房间内冷热量的损失通过房间的墙体、门窗等传递出去的。改善建筑的保温隔热性能可以直接有效地减少建筑物的冷热负荷。改善建筑的保温隔热性能可以从以下几个方面着手:

确定合适的窗墙面积比例,不要盲目追求大窗户、全玻璃幕墙。

合理设计窗户遮阳。

充分利用保温隔热性能好的玻璃窗。

2.2 选择合理的室内设计参数

如果夏季设计温度太低或冬季室内设计温度太高,都会增加建筑的冷热负荷。在满足舒适要求的条件下,要尽量提高夏季的室内设计温度和相对湿度,尽量降低冬季的室内设计温度和相对湿度,不要盲目追求夏季室内空气温度过低、过干,冬季室内设计温度过高。

2.3 局部热源就地排除

商业建筑中的有些房间,由于使用功能的需要,会在房间的局部产生较大的散热量,例如厨房的灶台、医院消毒间的消毒柜、电话机房的交换机等。在空调系统设计过程中,应考虑在发热量比较大的局部热源附近设置局部排风,将设备散热量直接排出室外,防止热量散发到室内,以减少夏季的冷负荷。但是在运行中,这些排风机可能没有开启或者发生故障并得不到及时的更换和修理,那么这些局部热源就会造成很大的冷负荷,浪费冷量和破坏室内热环境。

2.4 控制和正确使用室外新风量

由于新风负荷占建筑物总负荷的20~30%,控制和正确使用新风量是空调系统最有效的节能措施之一。下图为北京某写字楼典型工况的冷热负荷各分项的比例:

图3-1 冷热负荷分项比例

由于新风负荷接近总负荷的1/3,所以要严格控制新风量的大小。除了严格控制新风量的大小之外,还要合理利用新风。春秋季或冬季,有些房间仍需供冷,此时当室外空气焓值小于室内空气设计状态的焓值时,可采用室外新风为室内降温,可减少冷机的开启量,节省能耗。

减少新风负荷应从以下两方面着手:

不要随意提高最小新风量标准

杜绝非正常渠道引入新风

3 提高冷源效率

评价冷源制冷效率的性能指标是制冷系数(COP,Coefficient Of Performance ),是指单位功耗所能获得的冷量。制冷系数与制冷剂的性质无关,仅取决于被冷却物的温度T0’ 和冷却剂温度Tk’, T0’越高,Tk’越低,制冷系数越高[4]。所以空调系统冷机的实际运行过程中不要使冷冻水温度太低、冷却水温度太高,否则制冷系数就会较低,产生单位冷量所需消耗的功量多,耗电量高,增加建筑的能耗。提高冷源效率可采取以下一些措施:

3.1 降低冷却水温度

由于冷却水温度越低,冷机的制冷系数越高。下图显示了某离心压缩制冷机的制冷效率与冷却水温度的变化关系:

从右图可以看出,冷却水的供水温度每上升1℃,冷机的COP下降近4%。降低冷却水温度需要加强运行管理,停止的冷却塔的进出水管的阀门应该关闭,否则,来自停开的冷却塔的温度较高的水使混合后的水温提高,冷机的制冷系数就减低了。冷却塔使用一段时间后,应及时检修,否则冷却塔的效率会下降,不能充分地为

冷却水降温。

3.2 提高冷冻水温度

由于冷冻水温度越高,冷机的制冷效率越高,右图显示了某冷机制冷系数与冷冻水供水温度的关系。从图中可看出,冷冻水供水温度提高1℃,冷机的制冷系数可提高3%,所以在日常运行中不要盲目降低冷冻水温度。例如,不要设置过低的冷机冷冻水设定温度;关闭停止运行的冷机的水阀,防止部

分冷冻水走旁通管路,经过运行中的冷机的水量较少,冷冻水温度被冷机降低到过低的水平。

4 利用自然冷源

由于建筑室内的人员、照明灯光、电脑的设备的散热量的影响,在春秋季当室外空气温度较低时,室内空气温度仍然较高,仍需要供冷。尤其是没有外墙、外窗的内区房间,即使在寒冷的冬季,由于室内的散热量没有途径散发到室外,室内仍需供冷。此时如果开启冷机供冷,不仅由于此时冷负荷较小,冷机制冷系数较低、能耗大,而且极端不合理。

比较常见而且容易利用的自然冷源主要有两种,一种是地下水,另一种是春秋季和冬季的室外冷空气。由于地下水常年保持在18℃左右的温度,所以地下水不仅可以在夏季可作为冷却水为空调系统提供冷量,而且冬季还可以利用水源热泵机组为空调系统提供热量。第二种较好的自然冷源是春秋季和冬季的室外冷空气,此时室外空气较低,可用于空调系统供冷。例如,北京春秋季的室外空气湿球温度一般低于15℃,冬季室外空气湿球温度一般低于0℃,这种温度下的空气是较好的冷源,可用于空调系统供冷。

室外冷空气的利用有两种方法:一是春秋季利用低温室外空气供冷,当室外空气温度较低时,可以直接将室外低温空气送至室内,为室内降温。为了能实现在春秋季利用低温室外空气供冷,空调系统设计时注意要有足够的新风道引入室外新风。第二种方法是利用冷却塔供冷,适合没有足够的新风道为室内送室外新风。具体方法是春秋季利用冷却塔将冷却水温度降低,再通过板式换热器冷却冷冻循环水,被降低了温度的冷冻水送到末端的散冷设备,如风机盘管、空调箱,将冷量送到各个需要供冷的房间。

此外,冬夏季利用全热交换器回收冷热量,也可起到很大的节能作用。为了保证室内空气足够新鲜,满足人们的舒适要求,空调系统需要从室外抽取一定量新鲜空气送入室内,同时将室内污染物浓度较高的空气排至室外。而这部分排风的温度、湿度参数是室内的空调设计参数,冬季比室外空气热,夏季比室外空气冷。通过全热交换器,将排风的冷热量传递给新风,可以回收排风冷热量的70~80%左右[5],有明显的节能作用。

5 减少水泵电耗

空调系统中的水泵不仅起着非常重要的作用,而且耗电量也非常大。下图是对北京12家星级宾馆空调水泵耗电量的调查结果:图3-4 空调水泵耗电量比例

从上图可以看出,空调水泵的耗电量占建筑总耗电量的8%~16%,占空调系统耗电量的15%~30%,耗电量接近于全楼照明用的电量,所以水泵节能非常重要,节能潜力也比较大。减少空调水泵电耗可从以下几个方面着手:

5.1 冷却水开式系统改为闭式系统

开式冷却水系统中冷却水泵的扬程除了要克服冷却水在管道中的流动阻力外,还要提供将冷却水从冷却水池送至高位冷却塔克服水位高差所需要的能量。如果取消冷却水池,将从冷却塔回来的水管直接接至冷却水泵的入口,这种冷却水系统成为闭式冷却水系统,冷却水泵就不需提供将冷却水从制冷机提升到冷却塔克服水位高差所需要的能量,只需提供能量克服冷却水在管道中流动的阻力,所以所需要的水泵扬程要

5.2 减小阀门、过滤器阻力

阀门和过滤器是空调水管路系统中主要的阻力部件。在空调系统的运行管理过程中,要定期清洗过滤器,如果过滤器被沉淀物堵塞,空调循环水流经过滤器的阻力会增加数倍。

阀门是调节管路阻力特性的主要部件,不同支路阻力不平衡时主要靠调节阀门开度来使各支路阻力平衡,以保证各个支路的水流量满足需要。由于阀门的阻力会增加水泵的扬程和电耗,所以应尽量避免使用阀门调节阻力的方法。

实际工程中有很多不合理地调节阀门开度,造成水泵电耗无谓浪费的现象。例如北京某饭店的空调水系统的压力分布如下图所示:

5.3 提高水泵效率

水泵功率是指由原动机传到泵轴上的功率被流体利用的程度。水泵的效率随水泵工作状态点的不同从0~最大效率(一般80%左右)变化。在输送流体的要求相同,即要求的输出功率相同的条件下,如果水泵的效率较低,那么就需要较大的输入功率,水泵的能耗就会较大。因此,空调系统设计时要选择型号规格合适的水泵,使其工作在高效率状态点。空调系统运行管理时,也要注意让水泵工作在高效率状态点。

5.4 设定合适的空调系统水流量

空调系统的水流量是由空调冷热负荷和空调水供回水温差决定的,如下式所示:

(3-1)

式中:

G――水流量,kg/h;

Q――冷热负荷,kcal/h;

Δt――供回水温差,℃。

从上式可看出,空调水供回水温差越大,空调水流量越小,从而水泵的耗电量越小。但是空调水流量减少,流经制冷机的蒸发器时流速降低,引起换热系数降低,需要的换热面积增大,金属耗量增大。所以经过技术经济比较,空调冷冻水的供回水温差4~6℃较经济合理[4],空调热水的供回水温差10℃较经济合理,大多数空调系统都按照5℃的冷冻水供回水温差和10℃空调热水供回水温差的工况设计。

空调循环水泵的耗电量跟流量的3次方成正比,如下式所示:

(3-2)

式中:

N――水泵耗电功率,kW;

S――管路阻抗,表征管路特性的参数,kPa.s/m6;

G――水流量,m3/s;

――水泵效率。

实际工程中有很多空调系统的供回水温差只有2~3℃,如果将供回水温差提高到5℃,水流量将减少到原来的50%左右,所以如果水流量减少50%,水泵耗电量将减少87.5%,节能效果非常明显。但是实际工程中常出现如果减少水流量,有些房间就会出现夏季室温降不下来的情况,而不得不提高流量、降低温差来运行。出现这种情况的原因是水系统中各个支路阻力不平衡,夏季过热的房间所属的支路阻力大,当流量减少时,阻力大的支路水流量减小到不能满足需要的程度,致使房间过热。如果加大流量,阻力小的支路就会超过需要的水流量,那些阻力大的支路的水流量则刚好满足要求,不会出现夏季室温降不下来的情况。这种空调系统的运行是以增大流量和耗电量为代价的。

变频水泵的使用

室外空气温度、湿度参数在整个供冷季和供暖季是在不断变化的,所以空调系统的冷热负荷在一年中也在不断变化,并不保持一成不变。空调的冷热负荷一年中变很大,全年大部分时间的负荷只有最大负荷的50%左右。当空调冷热负荷变化时,由公式(3-1)可知,所需要的空调冷热循环水量也随负荷相应变化。水泵的流量、扬程、轴功率和转速间的关系如下:[7]

(3-3)

式中:

所以通过改变水泵电机的转速,就可以连续地改变水泵的流量。电机的转速跟交流电的频率成正比。通常市政电网的电流频率是50hz,变频调速水泵就是利用变频器改变电流频率来改变水泵转速和流量。

由于建筑全年平均冷热负荷只有最大冷热负荷的50%左右,如果通过使用变频调速水泵使水量随冷热负荷变化,那么全年平均的水量只有最大水流量的50%左右,水泵能耗只有定水量系统水泵能耗的12.5%,节能效果是非常明显的。

6 减少风机电耗

空调系统中风机包括空调风机以及其它送风机、排风机的,这些设备的电耗占空调系统耗电量的比例是最大的,右图显示了北京某饭店空调系统各设备能耗所占的比例:

空调系统风机电耗所占比例最大,风机节能的潜力也就最大,风机的节能也应引起最大的重视。减少风机能耗主要从以下几个方面入手:定期清洗过滤

图3-6 某饭店空调系统各设备耗电量比例

定期检修、检查皮带是否太松、工作点是否偏移、送风状态是否合适。

减少温室气体的措施篇(10)

设施园艺实现了可调控内部环境因子量值、改善内部作物生长环境的小型人造“温室效应”,打破地域、气候、环境差异,创造作物正常生长的环境载体。通过配套设备或设施分别调控与控制各个环境因子(温度、光照、水分、气体、土壤、生物)的量值幅度与状态,给作物提供最佳的适宜生存环境,以达到市场供求及个别需求,实现经济收益。

1温度环境调控

温度是影响作物生存和生长发育的主要环境因子之一。作物从萌芽到成熟的各个生长发育阶段,体内一切生理生化过程,都有一定的“三基点”温度要求 。根据作物对温度的不同要求,分为耐寒性、半耐寒性、不耐寒性等3类作为温度管理的主要依据。在设施栽培中,目前主要推广的是棚室四段变温管理,即把一昼夜24h分成4个阶段,上午、下午、前半夜和后半夜。上午以促进作物的光合作用为目标,进行高温管理;下午和前半夜温度逐渐降低,以便把光合产物运送到各个器官;后半夜在保证作物正常生长的前提下,进行低温管理,防止消耗更多的养分。

1.1温室加温

冬季,温室内部温度受到室外自然环境的影响而降低,可能降至作物生长温度最低基点以下,若不及时采取加温措施,将很难维持作物正常生长所要求的温度环境,因此需要加温。一是空气加温。常用的主要有热水供暖系统和热风供暖系统。前者主要热媒为水,介质热容量较大,系统热稳定性较高,适应范围较广;后者热媒为空气,介质热容量较小,热稳定性较低,适用于短时间补充热量,用以短期维持室内空气温度保持相对稳定或提高。二是土壤加温。多采用土壤下埋入电热线和埋设酿热物。前者又称电热温床,使电能转化成热能,实现土壤温度的自动调节,保温效果好,设备简单,用途广泛。后者温室土壤下面埋1层酿热物,既能提高地温(10cm深土层温度提高1.5~2.0℃),又能补充二氧化碳,从而提高作物产量。

1.2温室降温

温室的降温在夏季尤为重要,降温的措施主要有:一是通风换气,包括自然通风和强制通风;二是遮阳降温,主要包括设置内、外遮阳幕系统、采用布织布覆盖、温室透明屋面涂刷半透明涂料等;三是蒸发降温,主要包括湿帘降温和空气加湿降温。

1.3温室保温

有效的保温措施可以减少热损失,在节省能源的同时,保持作物正常生育所要求的环境温度。保温措施主要有:改善温室结构形式和结构材质,提高自然光的透光率和采光量,如园艺“LY-Ⅰ型”蓄热保温墙体的应用等;选用透光率高、导热性差的透明覆盖材料;设置室外辅助保温层、内保温幕和多层覆盖技术(比单层棚膜提高10~12℃),提高散热面热阻,降低向外的长波辐射率;选址适当,避免在冬季多风、风大的风口附近建造温室。

2光照环境调控

作物全部干物质产量的90%~95%均来自于光合作用。因此,设施光环境直接关系作物生命及其干物质产量和品质,是一种基础环境。它包括光照强度、光照时数、光质、光照分布等。不同植物所要求的光照强度和光照时间不同,前者分为强光照、弱光照、中光照植物;后者分为长日照、短日照、中日照植物,光照强度和光周期性反应是进行光照条件管理的主要依据。在设施有限的空间中,在自然光照形成的设施光照环境基础上,进行对室内光照条件适当地限制、补充和有目的地调节与控制,可以在充分利用自然光照条件的前提下,营造有利于作物生长全过程的良好光照环境,能够使温室周年生产各种不同的园艺作物,满足市场供应或其他需求。一是光照强度调节。进行科学合理的规划与棚、室设计,如选择合适的建筑方位、合理的温室结构、适宜的透光覆盖材料、减少结构和设备的遮阳率等。二是光质调节。根据作物对光质的要求,选择透射的光谱波段应有益于该种植物生长与开花结果的材质。如紫色膜对紫外光、紫光透过率高,有利于茄子果实的着色和提高品质。三是人工补光调节。分为人工光周期补光和人工光合补光。前者是对长光性作物正常发育采用的人工延长日照时间的措施,如安装荧光灯和钨丝灯;后者是作物自然光照强度不足而采用人工光源补充光合能量不足的补光措施,如安装农艺钠灯、荧光灯或张挂聚酯反光幕、覆盖银黑色地膜。四是遮光调节。包括光合遮光调节和光周期遮光调节。强光和高温会降低光合速率,抑制光合作用,采用有一定遮光率的遮光材料,减弱光照强度,有效降低温度,提高光合作用速率。短光性作物并不需要日照时间过长,需要用周期遮光的措施延长暗期,缩短日照时间,以利发育良好或提早开花、促进早熟。

3水分环境调控

水是构成并支撑植物体的主要组成部分,占植物总质量的80%~95%,园艺产品尤甚。设施的水分环境,由土壤水分和空气湿度共同构成,二者只有协调管理,才能充分满足作物生长发育的要求。不同生长发育时期对水分条件要求:种子发芽期,需要足够大量的促进种子贮藏物质的转化和原生质的生命活动,以利胚根伸出并向胚胎供足水分;幼苗生长期,根系弱小,保持土壤湿润,过高的土壤湿度造成植株徒长或烂根;营养生长期,处于茎叶生长盛期,需水量大,对土壤含水量和空气湿度要求高,但湿度也不可过高,易引发病害;开花结果期,对环境水分要求比较严格,土壤水分足以维持正常的新陈代谢,不可缺水,否则导致生长发育不良或落花。空气湿度宜低,利于开花授粉。果实膨大要求土壤水分充足[1,2]。一是土壤水分调控。土壤水分的调控目的,是满足不同作物对水分的不同要求,根据不同生长期调节灌溉水量和灌溉次数。如采用滴灌、微喷灌、膜下沟灌等。二是空气湿度的调控。降低空气湿度采用:通风换气,是实现棚室内外空气交换、将温室内湿度较高的空气排除、降低室内空气湿度的办法,有效调节设施环境湿度,如通风口开启等;加热降湿,通过加热提高室内空气温度从而降低空气相对湿度;减少水分蒸发,通过采用膜下滴灌、微喷灌等节水灌溉措施,节水、减少水分蒸发量,降低空气相对湿度。增加空气湿度,如冬季供暖系统导致空气相对湿度过低,采用灌溉、微雾喷灌,增加地表水分,提高蒸发量。

4气体环境调控

温室内气体来自室外环境中的大气,但温室是个半封闭的空间,并非随时与室外保持连通,同时又种有作物,气体条件比较复杂,二氧化碳气体有时不足,有毒气体较多,如管理不当,易造成作物减产甚至中毒死亡。

二氧化碳为绿色植物进行光合作用的原料,对作物的生长发育、产量、品质有重要影响,随着环境中二氧化碳浓度的提高,作物碳代谢、体内碳氮比提高,促进花芽分化、器官健全、可达到增产和果实品质优良的目的。试验证明,二氧化碳浓度比正常空气高50%时,作物增产26%~37%。有害气体通过作物气孔进入其体内,不但影响作物生产发育,而且有的会导致作物受害致死,主要可能发生的有害气体有邻苯二甲酸二异丁酯、二氧化硫、氯气、氨气等。一是二氧化碳调控。及时打开通风口,使室外的二氧化碳补充进来,以满足作物光合作用的需要,降低“生理饥饿”造成的减产。采用一氧化碳定时、定量的充分燃烧,液态或固态二氧化碳的挥发、化学反应等方法,定量提高温室内二氧化碳的浓度;或利用有机肥的发酵在一定程度上作人为调控,从而提高光合速率,提高产量和品质。二是有害气体调控。选用安全可靠的农用塑料薄膜、塑料制品;施用充分腐熟的有机肥,防止氨气和二氧化硫有毒气体的危害;直燃式供暖设备的密闭性,防止一氧化碳和二氧化硫有毒气体的危害;避免化肥、农药等堆放不当,造成挥发,产生有害气体。

5土壤环境调控

土壤环境包括土壤物理性状(土壤质地、土壤结构、土壤水分、土壤温度、土壤气体)、土壤化学性状(土壤的酸碱度、土壤所含有机质和矿物质元素的物理化学性质)和土壤生物环境,对作物的生长与营养状况及产量有着密切的关系。温室周年生产,土壤利用率高,施肥量大,造成室内土壤环境与室外露地土壤明显不同,造成表层土壤盐分高,产生次生盐渍化、土壤酸化、连作障碍突出等问题[3,4]。一是利用平衡施肥技术。根据土壤的供肥能力和作物各生长阶段的需肥规律,有针对性地进行施肥,从根源上减少土壤盐分积累,避免或减缓土壤次生盐渍化或酸化。二是有机肥调节。增施有机肥,增加土壤腐殖质同时改善土壤理化性状,减缓盐类浓度上升。三是调节灌溉方式。采用微喷、滴灌、渗灌等灌溉方式,节水同时有效降低土壤表层蒸发强度,减缓土壤因大量水分上升而导致的地表层盐分过多积累。四是土壤消毒。温室内出现土壤病虫害难以灭绝,可采用高温消毒或药剂熏蒸消毒如硫磺、氯化苦等。五是合理轮作。避免由于栽培品种单一连作而造成土壤中养分失衡,植物残体及根系分泌物产生的自毒现象,对保持土壤肥力、减轻病虫害极为有利。六是改善土壤环境。由于温室空间有限,可以花费有限的人力、物力和时间彻底改变温室内的土壤环境,如更换土壤、针对土壤物理和化学性状有目的地改良土壤。

6参考文献

[1] 闫杰,罗庆熙,陈碧华.园艺设施内湿度环境的调控[J].长江蔬菜,2004(9):36-39.

减少温室气体的措施篇(11)

(二)我国建筑能源浪费非常严重。由于我国人口非常多,随着生活条件的不断改善,建筑能耗也随之增加,能耗量也非常大。因为冬季需要采暖和夏季炎热需要空调,使这些建筑能耗量非常之大,能源浪费非常严重。

(三)在采暖期时候北方空气污染严重。总体看来,北方城市在采暖期的大气污染指数,如二氧化碳、总悬浮颗粒和氮氧化物等大气污染物高于非采暖期时候,且采暖地区的建筑面积约占全国的近50%。从这个数据中可以看出建筑的采暖期采暖是大气污染的一个主要来源,只有从根本上减少建筑的采暖期能耗,才能使采暖期的空气污染情况得以改善。

(四)我国因地球变暖遭到巨大损失。随着经济的发展及对生活质量的要求在逐步提高,我国的温室气体的排放量为世界第二,并且还在不断增加。而我国为人口大国,生活条件也在不断提高,由此排放的温室气体也会随之增长。

二、提高建筑节能的措施

建筑设计的目标就是应该符合人类的需要,更加舒适、方便、通风良好、冬暖夏凉。在能源和资源得到充分有效利用的同时,建筑应该采取一些节能措施。

(一)对墙体采取保温隔热措施。外墙按其保温所在的位置分类,目前主要有:外保温外墙、内保温外墙、夹芯保温外墙、单一保温外墙四种类型。这四种类型的外墙保温既能改善室内热环境,降低建筑造价,又起到节能、环保、利废的效果。

(二)门窗的节能措施。门窗是装在墙洞中可开启的构件,通过门窗的传热和门窗与墙体之间的缝隙渗透进来的耗热量很大,因此门窗是建筑节能的根本之源、重中之重。

1.合理控制窗墙面积比。窗墙面积比是指住宅窗口面积与房间立面单元面积的比值,窗户的传热系数一般大于该朝向的外墙的传热系数,采暖耗热量会随着窗户的传热系数增大而增大,因此对不同朝向的住宅窗墙比《居住节能设计标准》作了严格的规定。因此,从地区、朝向和房间功能出发,应选择适宜的窗面积来减少热量的损失。

2.提高外门窗的气密性,减少空气的渗透量。减少室外的冷热空气渗入室内的一个非常重要的措施就是提高外门窗的密闭性,可提高门窗框的尺寸准确性、尺寸的稳定性,以减少门窗开启缝隙的宽度;还可以在门窗与墙体的缝隙之间嵌入密封条,减少室外空气的渗入;或者在门窗框与墙体的缝隙之间用保温材料填充,提高气密性。

3.使用导热系数小的新型材料,改善门窗的保温性能。一是提高热工性能,可采用新型的导热系数小的保温材料制作的节能门窗。二是采用断桥窗户,可采用导热系数小的截断窗框的热桥制作成。三是利用框料内的空气腔室,单层玻璃本身的热阻很小,在寒冷地区可采用双层或三层玻璃。

(三)屋顶的节能设计。屋顶耗热量大于任何一面外墙或地面的耗热量,约占整个住宅建筑耗热量的9%左右。因此,提高建筑屋面的保温隔热能力,可以减少室外冷热空气对室内的影响,有效改善室内的温度环境。

1.高效保温材料保温屋面。这种屋面保温层为实铺,屋面保温层采用轻质高效的保温材料。我国现在主要使用的保温材料有挤塑聚苯板、聚苯板、岩棉板等,这些保温材料均为轻质材料,均可提高屋面的保温隔热作用,减少室外冷热空气对室内的影响,改善室内的温度环境。

2.架空型保温屋面。在屋面上面加设空气层,冬季可以增加屋面的保温功效,夏季可以有效阻隔房间的热量。

3.倒置型(外)保温屋面。外保温屋面,就是把保温层置放于防水层上面,这样做起到了保护的作用,使防水层不受外界气候和环境的老化影响,增加使用年限,也不易受到外界的机械损伤,当然这些保温材料必须保证防水和耐气温性能好。

4.隔热屋面。可采用砖、混凝土材料架空混凝土板做通风层;兜风隔热屋面在两端开口形成兜风散热;利用顶棚与屋面间的空间起到架空通风层的同样效果,这几种措施均能提高屋顶的隔热能力,起到节能作用。

5.种植隔热屋面。利用屋顶种植栽花,甚至灌木,堆假山形成一种生态型的节能屋面,这种屋面隔热保温性能优良,已经逐步被广泛利用。

6.蓄水隔热屋面。利用屋面蓄积的水层,从而能将热量散发到空气中,减少了屋顶的吸热,从而达到了隔热作用,水在冬季还起到了保温作用。

(四)采暖节能设计。促进辐射热进入室内,保证开口的方向和开口面积,并且要保证开口对热线透明度的问题;为了可以使背阴的一面也能接受到太阳辐射,可通过反射太阳光来提高太阳能的密度,例如在建筑的北侧设反射面,使北侧房间也能得到太阳的辐射;抑制辐射热从表面和窗洞口部分的热损失;适当增加屋顶和维护结构的热容量,可以减小室内温度随外界气温变化的变化。

(五)采光与照明节能设计。现代的建筑采用了大量的玻璃结构设计,这样可以使室外的光线进入室内,有效利用天空光,减少照明用电,减少能源浪费。但是天空光极为不稳定,且光污染会带来损害,这样就出现了自动照明控制系统,可提高采光的均匀度及营造一个良好的视觉环境,又可减少资源的消耗,降低维护费用,带来极大的社会效益和经济效益。

友情链接